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We show that the main properties of the fracton quasiparticles can be derived from a generalized
covariant Maxwell-like action. Starting from a rank-2 symmetric tensor field AμνðxÞ, we build a partially
symmetric rank-3 tensor field strength FμνρðxÞ which obeys a kind of Bianchi identity. The most general
action invariant under the covariant “fracton” transformation δfractAμνðxÞ ¼ ∂μ∂νΛðxÞ consists of two
independent terms: one describing linearized gravity (LG) and the other referable to fractons. The whole
action can be written in terms of FμνρðxÞ, and the fracton part of the invariant Lagrangian writes as F2ðxÞ, in
analogy with Maxwell theory. The canonical momentum derived from the fracton Lagrangian coincides
with the tensor electric field appearing in the fracton literature, and the field equations of motion, which
have the same form as the covariant Maxwell equations (∂μFαβμðxÞ ¼ 0), can be written in terms of the
generalized electric and magnetic fields and yield two of the four Maxwell equations (generalized electric
Gauss and Ampère laws), while the other two (generalized magnetic Gauss and Faraday laws) are
consequences of the “Bianchi identity” for the tensor FμνρðxÞ, as in Maxwell theory. In the covariant
generalization of the fracton theory, the equations describing the fracton limited mobility, i.e., the charge
and dipole conservation, are not external constraints, but rather consequences of the field equations of
motion, hence of the invariant action and, ultimately, of the fracton covariant symmetry. Finally, we
increase the known analogies between LG and fracton theory by noting that both satisfy the generalized
Gauss constraint which underlies the limited mobility property, which one would not expect in LG.
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I. INTRODUCTION, SUMMARY OF RESULTS,
AND DISCUSSION

Fractons are quasiparticles with the defining property
of having restricted mobility [1–11]. In particular “true”
fractons cannot move at all, while other quasiparticles
which can be traced back to fractons can move only in a
subdimensional space, like “lineons,” which move on a line
and “planons,” which move on a plane [2,11]. The first
observations of a fractonlike behavior appeared in lattice
spin models [3], and since then many developments
followed [4,5,12–15]. Lattice models describing fractons
fall into two classes, depending on their particle content:
“type I,” the most representative of which is the X-cube
model [5], has both fractons and 1,2-dimensional particles,
while “type II,” of which the Haah’s code [4] is the

prototypical example, describes fractons only. Fractons,
like linearized gravity (LG), can be described by a gauge
theory of a symmetric tensor field, which generalizes the
ordinary Maxwell electromagnetism for a vector field [6].
This class of fracton theories, which can be related to
the previous lattice models via a Higgs-like mechanism
[16,17], were first introduced to describe gravity-related
phenomena [18–21], and later were developed into the
actual fracton theory [6–9]. Written in terms of a rank-2
symmetric tensor field AijðxÞ (i; j… spatial indices), the
typical starting point is a Maxwell-like Hamiltonian
[E2ðxÞ þ B2ðxÞ], where the “electric” field EijðxÞ is the
conjugate momentum of AijðxÞ as in standard electromag-
netism, and the “magnetic” field BijðxÞ is defined as the
gauge invariant object depending on the lowest possible
number of derivatives of AijðxÞ [8]. From these definitions,
generalized Maxwell equations follow [6]: Faraday’s equa-
tion is a relation between EijðxÞ as conjugate momentum
and the time derivative of BijðxÞ, while Ampère law is a
Hamilton’s equation for EijðxÞ. Finally, the usual Gauss
theorem in this picture is not really a theorem, but, rather, is
imposed as a constraint. The gauge transformation of AijðxÞ
is crucial since, besides determining BijðxÞ, it is strictly
related to the Gauss-like constraint, which has a key role in
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implementing the restricted mobility of fractons [1,6–10].
There are two possibilities [1,2,6–8,10,22]:

(i) scalar charge theory: the Gauss constraint and the
gauge transformation of AijðxÞ are

∂i∂jEij ¼ 0 ð1:1Þ

δAij ¼ ∂i∂jΛ: ð1:2Þ

In the presence of fractonic matter one can define a
charge density operator ρðxÞ [10] and the Gauss
constraint generalizes to [7]

∂i∂jEij ¼ ρ: ð1:3Þ

The restricted mobility becomes evident, since (1.3)
implies charge and dipole (piðxÞ ¼ xiρðxÞ) neutral-
ity when integrated on an infinite volume V (or up to
boundary terms) [1,2,6,7,23]

Z
dV∂i∂jEij ¼

Z
dVρ ¼ 0 ð1:4Þ

−
Z

dV∂iEik ¼
Z

dVxkρ ¼
Z

dVpk ¼ 0: ð1:5Þ

Eq. (1.5) states that single charges cannot move
(fractons) due to dipole conservation, while di-
poles do.

(ii) vector charge theory : the Gauss constraint and the
gauge transformation of AijðxÞ are

∂iEij ¼ 0 ð1:6Þ

δAij ¼ ∂iΛj þ ∂jΛi: ð1:7Þ

As in the scalar case, a vector charge density
operator ρjðxÞ can be defined [10] and the gener-
alized Gauss constraint is [7]

∂iEij ¼ ρj; ð1:8Þ

which immediately implies (1.3) together with the
conservation laws (1.4) and (1.5), but yields a further
mobility constraint due to conservation of angular
momentum

Z
dVϵ0ijkxiρj ¼ −

Z
dVϵ0ijkEij ¼ 0:

Hence, vector charges can move only along the
spatial direction related to the charged vector.

In Maxwell theory the A0ðxÞ component of the gauge field
AμðxÞ is a multiplier enforcing the standard Gauss con-

straint ∇⃗ · E⃗ðxÞ ¼ 0. Following this, in fracton models the
Gauss constraint (1.1) is implemented by introducing a
Lagrange multiplier, as done for instance in [8], sometimes
called A0ðxÞ to enhance the Maxwell analogy. This
multiplier seems to have no relation with the AijðxÞ tensor
field and in addition, due to this “by hand” implementation,
the Lagrangian acquires an inhomogeneous number of
(spatial) derivatives [8]. For these reasons, despite all the
similarities we mentioned, while Maxwell theory has a
natural covariant formulation, the construction of fracton
models appear to be intrinsically noncovariant.
In this paper we show that the main results concerning

fractons, in particular the existence of tensorial electric and
magnetic fields, the Gauss constraints, the Maxwell-like
Hamiltonian and the dipole response to “electromagnetic”
fields through a “Lorentz force,” to cite a few, are indeed
consequences of a covariant action for a symmetric rank-2
tensor field AμνðxÞ, invariant under the covariant extension
of the fracton transformation (1.2)

δfractAμν ¼ ∂μ∂νΛ; ð1:9Þ

which therefore plays, as usual in quantum field theory, a
central role. We shall show also that from the gauge tensor
field AμνðxÞ it is possible to construct a rank-3 tensor
FμνρðxÞ which we may call the fracton field strength,
invariant under (1.9) and satisfying a kind of geometrical
Bianchi identity. Quite surprisingly, the fracton action can
be written in terms of the fracton field strength as

R
F2, as

the ordinary Maxwell theory, and all the above mentioned
equations characterizing fractons are nothing else than the
“Maxwell” equations, without need of introducing any
external constraint or particular request, and therefore are
just consequences of the covariant symmetry (1.9).
Moreover, electric and magnetic tensor fields emerge
naturally, and in terms of the action and the energy density
read, respectively,

R ðE2 − B2Þ and ðE2 þ B2Þ. Finally, the
Lorentz force for fracton dipoles derived “by intuition”
(sic) in [6] is here recovered as part of the conservation law
for the stress-energy tensor. As a matter of fact, the
covariant generalization described in this paper makes
apparent that the fracton theory is, indeed, a direct
extension of the standard electromagnetic theory which
can be formulated covariantly according to the typical field
theory chain

symmetry → action → equations of motion

δfractAμν ¼ ∂μ∂νΛðxÞ → −
1

6

Z
d4xFμνρFμνρ → ∂μFαβμ ¼ 0;
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which really appears as a higher rank extension of Maxwell
theory.
The relation between fractons and gravitons has been

already remarked [1,2,22,23]. From the field theory point
of view this is evident from the covariant extension (1.9) of
the fracton symmetry, which is a particular case of the
stronger infinitesimal diffeomorphism transformation [22]

δdiffAμν ¼ ∂μΛν þ ∂νΛμ: ð1:10Þ

In practice, this means that, while the diff symmetry (1.10)
uniquely defines the LG action, the most general action
invariant under (1.9) is formed by two separately invariant
terms: the LG action and the fracton action

R
F2, which is

quite peculiar since, to our knowledge, this is the only case
of a Lorentz invariant action which, although free and
quadratic, shows a dimensionless constant which cannot be
eliminated by a field redefinition, and which cannot be
identified as a physical mass, like in topologically massive
3D gauge theory [24]. Coherently with this covariant
picture, both fractons and LG can be given an electromag-
netic formulation (the first, as discussed, in terms of
tensors, while the second, known as gravitoelectromagnet-
ism [25–27], involves vectors), but, as we shall see, they
also share the “Gauss” constraint (1.1) (which is not an
external constraint in our formalism) which underlies the
fracton limited mobility property.
The analogy with ordinary electromagnetism can be

pushed further through the topological θ-term that can be
added to the Maxwell Lagrangian (see for instance [28] and
references therein). The role of an analogous boundary
term has been studied in the case of fractons in [8] and, as
for dyons, the result is that the electric charge gains an
additional contribution related to a magnetic vector charge
[1,2,8]. As the standard Witten effect has consequences in
condensed matter physics, this higher rank version of the
fracton θ-term might give interesting results in the context
of higher order topological phases [29]. The case of a local,
instead of constant, θðxÞ is relevant in axion models
[30,31], where Maxwell equations acquire additional con-
tributions [32,33]. In [27] a local θðxÞ-term has been added
to LG, with mainly two consequences: a correction to the
Newtonian gravitational field and a Witten-like effect for
gravitational dyons, in which “gravitipoles” [34] acquire
mass. The results of [27] for LG suggest the possibility of
generalizing what has been found in [8] for fractons, since
both LG and fractons are described by a rank-2 symmetric
tensor field.
There are of course, and fortunately, a few open ques-

tions, which deserve further efforts. The first is that wewere
not able to find a symmetry which separates fractons from
gravitons. In other words: while the diff symmetry (1.10)
uniquely defines the LG action, the fracton symmetry (1.9)
gives two invariant functionals. One must necessarily buy
gravitons, together with fractons. The way out in field

theory is to recover the fracton action for vanishing LG
constant, but, still, it would be more satisfying to pick up
the fracton action by means of an additional symmetry.
Moreover: the fracton symmetry (1.9) [but also the original
(1.2)] is dimensionally problematic. In 4D the rank-2 tensor
AμνðxÞ has mass dimension one, both in fracton and LG
theory. Hence, to be dimensionally homogeneous, the
fracton gauge transformation would require a scalar gauge
parameter ΛðxÞ with negative dimension

d ¼ 4 ⇒ ½A� ¼ 1 ; δAμν ¼ ∂μ∂νΛ ⇒ ½Λ� ¼ −1; ð1:11Þ

but this would not be the case in 6D, which would be the
most “natural” spacetime dimensions for fractons to live in

d ¼ 6 ⇒ ½A� ¼ 2 ; δAμν ¼ ∂μ∂νΛ ⇒ ½Λ� ¼ 0: ð1:12Þ

As we shall see, this reflects also in the fact that, in 4D, the
stress-energy tensor is not traceless, hence the theory is
not scale invariant, differently from the classical Maxwell
theory. Instead, tracelessness is recovered in 6D.
Finally, we remark a subtle point which concerns the

stress-energy tensor of the fracton action. In Sec. III we
compute the stress-energy tensor, defined as

Tαβ ¼ −
2ffiffiffiffiffiffi−gp δS

δgαβ
; ð1:13Þ

and we show that it has the correct components, which are
exactly the higher rank generalizations of the Maxwell
energy density (T00ðxÞ), of the Poynting vector (T0iðxÞ)
and of the stress tensor (TijðxÞ). The time component is
conserved on shell, i:e:∂μTμ0ðxÞ ¼ 0, and gives the con-
tinuity equation relating the energy density to the Poynting
vector. So far so good. But the space component of the
stress-energy tensor conservation law is not exactly con-
served. We find a breaking term which might be interpreted
as follows. The stress-energy tensor (1.13) is the conserved
current associated to the infinitesimal diff invariance (1.10)
[26], which is not a symmetry of the theory defined by
(1.9). Hence, the stress-energy tensor (1.13) should not
be conserved. Nonetheless, the fracton transformation
(1.9) is a particular case of the general diff transformation
(1.10). Hence, it is not that unexpected that the stress-
energy tensor is almost conserved. A further confirmation
that TαβðxÞ (1.13) is the correct one is that, when matter is
added, quite remarkably the conservation equation gives
exactly the Lorentz force for fracton dipoles that has been
conjectured in [6].
The paper is organized as follows. In Sec. II we derive

the theory defined by the fracton symmetry (1.9), com-
posed by two terms, fracton and LG. We then construct the
rank-3 fracton field strength FμνρðxÞ and we show that both
the fracton and the LG actions can be written in terms of
this tensor, which satisfies an identity analogous to the

MAXWELL THEORY OF FRACTONS PHYS. REV. D 106, 125008 (2022)

125008-3



Bianchi one. We then compute the canonical momentum
ΠαβðxÞ associated to AαβðxÞ and derive the field equations
of motion. In Sec. III we consider the fracton theory only,
obtained by putting the LG constant to zero. Without
imposing any external constraint, we recover the main
properties of the fractons simply from the equations of
motion, which, written in terms of the electric and magnetic
tensor fields, impressively reminds the ordinary Maxwell
equations. We derive the stress-energy tensor and physi-
cally identify its components, which are the higher rank
extensions of their Maxwell counterparts. We then write,
interpret and discuss the stress-energy tensor conservation
laws. In Sec. IV we add matter to the theory, represented by
a symmetric rank-2 tensor coupled to AαβðxÞ, and extend
the previously found results in the presence of matter. The
most important achievement of this section is the expres-
sion of the Lorentz force which describes how dipole
fractons respond to the electromagnetic tensor fields.
This Lorentz force coincides with the one conjectured in
[6]. Finally, in Sec. V we add to the fracton action the
generalized θ-term, which, again, can be written both in
terms of the electromagnetic tensor fields and of the fracton
field strength, in complete analogy with Maxwell theory.
We recover and generalize previous results obtained in
the context of LG [27] and of fractons [8] giving to the
θ-parameter a local dependence. Some final remarks can be
found in Sec. VI.

II. FRACTONS AND LINEARIZED GRAVITY

A. The symmetry

We adopt the standard point of view of field theory, that
is to consider the symmetry as the birth certificate of a
theory. In our case, the symmetry, hereinafter “fracton”
symmetry, is the covariant generalization of the extended
electromagnetic transformation (1.2) invoked in [6–9] for
fractons, i.e.,

δfractAμν ¼ ∂μ∂νΛ; ð2:1Þ

where AμνðxÞ is a rank-2 symmetric tensor field and ΛðxÞ a
local scalar parameter. The fracton transformation (2.1) is
obtained from the more general infinitesimal diffeomor-
phism transformation

δdiffAμν ¼ ∂μΛν þ ∂νΛμ ð2:2Þ

for the particular choice of the gauge parameter
ΛμðxÞ ¼ 1

2
∂μΛðxÞ. The most general 4D action invariant

under the fracton symmetry (2.1) is a linear combination of
two invariant actions

Sinv ¼ g1Sfract þ g2SLG; ð2:3Þ

where

Sfract ¼
Z

d4xð∂ρAμν∂
ρAμν − ∂ρAμν∂

μAνρÞ ð2:4Þ

SLG ¼
Z

d4xð∂μA∂μA − ∂ρAμν∂
ρAμν − 2∂μA∂νAμν

þ 2∂ρAμν∂
μAνρÞ; ð2:5Þ

g1, g2 are dimensionless constants, and A≡ ημνAμν is the
trace of the tensor field. The action SLG is readily
recognized to be the linearized action for gravity [35],
while Sfract is our candidate to be the covariant action for
fractons, as we shall motivate in this paper. Hence, the
space of 4D local integrated functionals invariant under
the fracton symmetry (2.1) has dimension two, and one of
the two constants g1 and g2 can be reabsorbed by a
redefinition of AμνðxÞ, so that we have the rather peculiar
feature that the free quadratic theory defined by the action
(2.3), hence by the fracton transformation (2.1), depends on
one constant. To our knowledge, this is the only example of
a free quadratic covariant theory depending on a constant
which cannot be reabsorbed by a field redefinition, without
being identified as a mass, like in 3D topologically massive
gauge theories [24]. In particular we have that Sfract (2.4)
and SLG (2.5) are both invariant under the fracton trans-
formation (2.1)

δfractSLG ¼ δfractSfract ¼ 0; ð2:6Þ

but only the LG action (2.5) is invariant under the diff
transformation (2.2)

δdiffSLG ¼ 0; ð2:7Þ

while the fracton Sfract (2.4), hence the whole action Sinv
(2.3), is not

δdiffSfract ¼ g1

Z
d4x½2∂μ∂νAμν∂

ρΛρ

− ∂
2Aμνð∂μΛν þ ∂

νΛμÞ� ≠ 0: ð2:8Þ

B. The fracton field strength

The first step toward a Maxwell theory for fractons,
which is the main purpose of this article, is the construction
of the “building block” of the theory, namely the extension
of the electromagnetic field strength FμνðxÞ

Aμ → Fμν ¼ ∂μAν − ∂νAμ

Aμν → Fμνρ ¼ ? ð2:9Þ

To this aim, we look for a rank-3 tensor built from the first
derivative of the rank-2 tensor field AμνðxÞ
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Fμνρ ≡ a1∂μAνρ þ a2∂ρAμν þ a3∂νAμρ; ð2:10Þ

where ai are dimensionless constants. As the electromag-
netic tensor FμνðxÞ is invariant under the ordinary gauge
transformation δgaugeAμðxÞ ¼ ∂μΛðxÞ, in the same way we
require that FμνρðxÞ is invariant under the fracton symmetry
(2.1), which gives a constraint on the coefficients ai

δfractFμνρ ¼ 0 ⇒ a3 ¼ −ða1 þ a2Þ; ð2:11Þ

so that

Fμνρ ¼ a1∂μAνρ þ a2∂ρAμν − ða1 þ a2Þ∂νAμρ: ð2:12Þ

As a consequence of its definition, the invariant tensor
(2.12) has the properties listed in Table I, compared to those
of the Maxwell field strength FμνðxÞ.
We remark that the fracton invariance of FμνρðxÞ (2.11)

and the property which we called “cyclicity” in Table I are
equivalent

δfractFμνρ ¼ 0 ⇔ Fμνρ þ Fνρμ þ Fρμν

¼ 0 ⇔ a1 þ a2 þ a3 ¼ 0: ð2:13Þ

All the physically relevant quantities (like for instance the
equations of motion and the conjugate momenta) are
obtained by making functional derivatives with respect
to AμνðxÞ, which is a symmetric tensor field. With the aim
of writing everything in terms of the tensor field strength
FμνρðxÞ, it is natural to ask that also this latter is symmetric
by the change of two indices, for instance the first two

Fμνρ ¼ Fνμρ; ð2:14Þ

which implies a2 ¼ −2a1.
1 Therefore, after a rescaling of

AμνðxÞ, our fracton field strength is

Fμνρ ¼ Fνμρ ¼ ∂μAνρ þ ∂νAμρ − 2∂ρAμν: ð2:15Þ

Rather surprisingly, the same symmetric tensor (2.15)
appears as an unnumbered comment in the final part of
a 1988 paper by Y. S. Wu and A. Zee [36] as a consequence
of the covariant symmetry (2.1), but in a completely

different context, since fractons were not even con-
ceived yet.2

C. The fracton and LG actions

The actions (2.4) and (2.5) can be written in terms of the
fracton field strength FμνρðxÞ (2.15) as

Sfract ¼
1

6

Z
d4xFμνρFμνρ ð2:16Þ

SLG ¼
Z

d4x

�
1

4
Fμ

μνF
ρν
ρ −

1

6
FμνρFμνρ

�
: ð2:17Þ

Notice that also the LG action (2.5) can be written in terms
of the newly introduced tensor FμνρðxÞ (2.15). The fact
that the fractonic component of the total action Sinv (2.3)
turns out to be of the form

R
F2 tells us that we are on the

right way to build a Maxwell theory of fractons, but the
analogies are even more surprising in what follows.

D. The canonical momentum ΠαβðxÞ
In the theory of the fracton quasiparticles an important

role is played by the momentum canonically conjugated to
AμνðxÞ [1,6–8,37]. From (2.3) we have

Παβðg1; g2Þ≡ ∂Linv

∂ð∂tAαβÞ
¼ −g1Fαβ0 − g2

�
ηαβF λ0

λ

−
1

2
ðη0αF λβ

λ þ η0βF λα
λ Þ − Fαβ0

�
; ð2:18Þ

whose components are

Π00 ¼ 0 ð2:19Þ

Πi0 ¼ −g1Fi00 −
1

2
g2F

ji
j ð2:20Þ

Πij ¼ −g1Fij0 þ g2ðFij0 − ηijF k0
k Þ: ð2:21Þ

From (2.19) we see that A00ðxÞ is not a dynamical field for
the whole theory (both fractons and LG). For what concerns
LG alone, it is known [23,35] that the components with a
time index, A00ðxÞ and A0iðxÞ, have nondynamical equa-
tions of motion, acting as Lagrange multipliers to enforce
gauge constraints, in the same way as A0ðxÞ acts as a
Lagrange multiplier enforcing Gauss law in Maxwell
theory. The physical degrees of freedom are contained in
the spatial symmetric tensor AijðxÞ. We shall see that this
property concerning LG holds for fracton theory too, which
therefore remarkably shares close similarities with both LG

TABLE I. Properties of the fracton and Maxwell field strengths.

Fractons Maxwell

Invariance δfractFμνρ ¼ 0 δgaugeFμν ¼ 0

Cyclicity Fμνρ þ Fνρμ þ Fρμν ¼ 0 Fμν þ Fνμ ¼ 0

Bianchi ϵαμνρ∂
μFβνρ ¼ 0 ϵμνρσ∂

νFρσ ¼ 0

1We checked that this is indeed the case, i.e., FμνρðxÞ −
FνμρðxÞ is always ruled out. 2We thank Giandomenico Palumbo for this remark.
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and Maxwell theory. We finally notice that for a particular
combination of g1 and g2 the trace of Παβ vanishes

ηαβΠαβ ¼ Πα
α ¼ Πi

i ¼ −ðg1 þ 2g2ÞF λ0
λ ¼ 0

if g1 þ 2g2 ¼ 0: ð2:22Þ

This corresponds to the fact that, as already remarked in
[22], the theory defined by Sinv (2.3) at (2.22) does not

depend on the trace of the tensor field AμνðxÞ, further
lowering the number of degrees of freedom.

E. The field equations of motion

As the fracton and LG actions (2.16) and (2.17), the field
equations of motion (EoM) can be written in terms of the
fracton field strength FμνρðxÞ as well

δSinv
δAαβ ¼ 2g1½ð∂μ∂αAμβ þ ∂

μ
∂βAμαÞ − ∂

2Aαβ� þ 2g2½ηαβð∂μ∂νAμν − ∂
2AÞ þ ∂α∂βAþ ∂

2Aαβ − 2ð∂μ∂αAμβ þ ∂
μ
∂βAμαÞ�

¼ g1∂μFαβμ þ g2

�
ηαβ∂μF

νμ
ν −

1

2
ð∂αFμ

μβ þ ∂βF
μ
μαÞ − ∂

μFαβμ

�
¼ 0; ð2:23Þ

whose components are
(i) α ¼ β ¼ 0

g1∂iF00i − g2∂iðF λi
λ þ F00iÞ

¼ 2∂i

�
−g1Fi00 −

1

2
g2F

ji
j

�
¼ 2∂iΠi0 ¼ 0; ð2:24Þ

where we used F00i ¼ −2Fi00 and the definition of
the canonical momentum Πi0 (2.20).

(ii) α ¼ 0, β ¼ i

g1∂λF0iλ −
1

2
g2ð∂0F λi

λ þ ∂
iF λ0

λ þ 2∂λF0iλÞ

¼ −∂0Πi0 þ g1∂jF0ij −
1

2
g2ð∂iF λ0

λ þ 2∂jF0ijÞ ¼ 0;

ð2:25Þ

(iii) α ¼ i, β ¼ j

g1∂μFijμ þ g2

�
ηij∂μF

νμ
ν −

1

2
ð∂iFμ

μj þ ∂jF
μ
μiÞ

− ∂
μFijμ

�
¼ 0: ð2:26Þ

III. MAXWELL THEORY FOR FRACTONS

In this section we treat the case g2 ¼ 0, and we shall
recover the main features generally attributed to the fracton
quasiparticles [1,6–8], thus allowing us to justify the
identification of Sfract (2.16) as the action for fractons.

A. Electric/magnetic tensor fields and “Maxwell”
equations

As far as only fractons are considered, in [1,6–8,37] an
electric tensor field EijðxÞ is defined as spatial “canonical
momentum” as follows

Eij ∝ −∂tAij þ ∂i∂jA0: ð3:1Þ

We would like to show here that EijðxÞ (3.1) can indeed be
derived from the action (2.16) in a way which also clarifies
which is the origin of the scalar field A0ðxÞ appearing in
(3.1). In fact, A0ðxÞ cannot be directly part of a canonical
momentum unless in the Lagrangian weird terms with three
derivatives are admitted [8]. The covariant extension (2.1)
of the fracton symmetry has a central role in determining
(3.1), without the need of any ad-hoc introduction. In fact,
starting from the fracton transformation (2.1) one gets
the action Sinv (2.3) from which the spatial canonical
momentum (2.21) is derived. In the case where only
fractons are present, namely g2 ¼ 0, the canonical momen-
tum ΠijðxÞjg2¼0 reads:

Πijjg2¼0 ¼ −g1Fij0 ¼ g1ð2∂0Aij − ∂
jA0i − ∂

iA0jÞ; ð3:2Þ

which differs from (3.1). Nevertheless, the electric tensor
field (3.1) can be indeed obtained from the spatial canonical
momentum ΠijðxÞjg2¼0 using the EoM (2.23) with g2 ¼ 0,
i.e., those derived from the fracton action (2.16) alone,
which closely remind the usual Maxwell equations

∂
μFαβμ ¼ 0: ð3:3Þ

In fact, taking (3.3) at α ¼ β ¼ 0 (or, equivalently, (2.24) at
g2 ¼ 0) we have

∂
iF00i ¼ 2∂ið∂0A0i − ∂iA00Þ ¼ 0: ð3:4Þ

A particular solution is given by

A0μ ¼ Aμ0 ≡ ∂μA0; ð3:5Þ

which introduces the missing scalar potential A0ðxÞ. What
renders remarkable the solution (3.5), which is a direct
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consequence of our covariant approach, is that it leads to
recover, up to a constant, the electric tensor field (3.1). In
fact, using (3.5) in (3.2) we get

ðΠijjg2¼0Þjð3.5Þ ¼ 2g1ð∂0Aij − ∂
i
∂
jA0Þ≡ Eij; ð3:6Þ

which indeed coincides with the tensor electric field (3.1).
Hence, finally, the answer to the question is the following:
the electric tensor field EijðxÞ (3.1) introduced in [6–8,37]
is defined as the canonical momentum Πij (3.2) of the
fracton action Sfract (2.4), evaluated on the EoM (3.4). In
addition to the properties listed in Table I, which hold in
general, the particular solution (3.5) implies also

Fi00 ¼ F0i0 ¼ F00i ¼ 0 ð3:7Þ

Fij0 ¼ −2F0ij ¼ −2Fi0j: ð3:8Þ

which hold for fractons only. As anticipated, because of
(3.7), for the fracton theory g2 ¼ 0 we have an additional
Hamiltonian constraint, besides (2.19)

ðΠi0jg2¼0Þjð3.5ÞA0 ¼ −g1Fi00 ¼ 0; ð3:9Þ

which corresponds to the fact that, like in LG, also for
fractons the degrees of freedom concern only the spatial
components AijðxÞ. Moreover, again in surprising analogy
with Maxwell theory where the electric field and the field
strength are related by EiðxÞ ¼ −F0iðxÞ, we have that

Eij ¼ −g1Fij0 ¼ 2g1F0ij ¼ 2g1Fi0j: ð3:10Þ

Taking (3.3) at α ¼ 0 and β ¼ i (or, equivalently, (2.25) at
g2 ¼ 0) we have

∂μF0iμ ¼ ∂jF0ij ¼ −
1

2
∂jFij0 ¼ 0; ð3:11Þ

which, using (3.10), writes

∂jEij ¼ 0; ð3:12Þ

which is the vacuum Gauss law for the electric tensor field
(3.6). It is the tensorial extension of

∇⃗ · E⃗ ¼ 0: ð3:13Þ

Eq. (3.12) trivially implies

∂i∂jEij ¼ 0; ð3:14Þ

which, together with (3.12), is crucial for the property of
limited mobility characterizing the fracton quasiparticles
[1,2,6,7]. As we shall show in a moment, while the Gauss-
like equation (3.12) holds only for the fracton action (2.16),
an equation formally identical to the limited mobility
equation (3.14) holds for the LG action SLG (2.17), too.
In fact, taking the divergence ∂i of the whole EoM (2.25)
and using (2.24) we have, at g1 ¼ 0, i.e., for LG only,

∂i∂
iF λ0

λ þ 2∂i∂jFij0 ¼ −∂i∂jΠijjg1¼0 ¼ 0; ð3:15Þ

where we used the cyclicity property in Table I of the tensor
FμνρðxÞ, which in particular implies

∂i∂jF0ij ¼ −
1

2
∂i∂jFij0: ð3:16Þ

Equation (3.15) is formally identical to its fracton counter-
part (3.14), and its possible consequences on the limited
mobility of the gravitational waves are worth to investigate
and to interpret. Finally, taking (3.3) at α ¼ i and β ¼ j (or,
equivalently, (2.26) at g2 ¼ 0), we have

∂μFijμ ¼ ∂0Fij0 þ ∂kFijk ¼ −
1

g1
∂0Eij þ ∂kFijk ¼ 0;

ð3:17Þ

where we used the definition of the electric tensor field
EijðxÞ (3.10). The fracton EoM (3.17) suggests to define the
magnetic tensor field, in analogy with the ordinary vector
magnetic field BiðxÞ ¼ ϵijk∂

jAkðxÞ ¼ 1
2
ϵijkFjkðxÞ, as

B j
i ≡ gϵ0ilk∂lAjk ¼ g

3
ϵ0iklFjkl; ð3:18Þ

where g is a constant to be suitably tuned. Its inverse is

Fijk ≡ −
1

g
ðϵ0iklB j

l þ ϵ0jklB i
l Þ: ð3:19Þ

The EoM (3.17) then can be written

−
1

g1
∂0Eij −

1

g
ðϵ0ikl∂kB j

l þ ϵ0jkl∂kB i
l Þ ¼ 0; ð3:20Þ

which turns out to be completely analogous to the electro-
magnetic Ampère law of electromagnetism in vacuum

−∂tE⃗þ ∇⃗ × B⃗ ¼ 0; ð3:21Þ

of which (3.20) is the tensorial extension. It coincides with
Eq. (26) in [6]. From the definition (3.18) we find that the
magnetic tensor field is traceless
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Bp
p ¼ 0; ð3:22Þ

and satisfies

∂
aBp

a ¼ 0; ð3:23Þ

which is analogous to the standard Maxwell equation

∇⃗ · B⃗ ¼ 0; ð3:24Þ

and coincides with Pretko’s second equation (38) in [6]. As
in standard electromagnetism, the Eq. (3.23) is a geometric
property, consequence of the definition of the magnetic
tensor field B j

i ðxÞ (3.18).
Let us now study which information comes from the

“Bianchi” identity in Table I
(i) α ¼ 0, β ¼ j

ϵ0iab∂
iFjab ¼ 3

g
∂
iBj

i ¼ 0; ð3:25Þ

we therefore recover the tensor magnetic Gauss
law (3.23).

(ii) α ¼ l, β ¼ i

0 ¼ ϵlμνρ∂
μFiνρ

¼ ϵlμj0∂
μFij0 þ ϵlμjk∂

μFijk þ ϵlμ0j∂
μFi0j

¼ 3

2
ϵlmj0∂

mFij0 þ ϵl0jk∂
0Fijk

¼ 3

2g1
ϵ0lmj∂

mEij þ 3

g
∂0B i

l ; ð3:26Þ

where we used (3.7), (3.8), (3.10) and the definition
(3.18). Equation (3.26) is new, and it is the tensorial
extension of the Faraday equation of electromag-
netism:

∇⃗ × E⃗þ ∂tB⃗ ¼ 0: ð3:27Þ

It coincides with Pretko’s Eq. (36) in [6].
(iii) α ¼ β ¼ 0 and α ¼ i, β ¼ 0 are trivial identities.
Summarizing, from the EoM (3.3) and the “Bianchi”

identity in Table I we have the following strong analogy
with classical electromagnetism:

Maxwell Fractons

∇⃗ · E⃗ ¼ 0 ∂jEij ¼ 0
ð3:28Þ

∇⃗ · B⃗ ¼ 0 ∂
aB p

a ¼ 0 ð3:29Þ

∇⃗ × E⃗ − ∂tB⃗ ¼ 0 ϵ0lmj∂
mEij −

2g1
g

∂
0B i

l ¼ 0 ð3:30Þ

∇⃗ × B⃗ − ∂tE⃗ ¼ 0 − ∂0Eij −
2g1
g

�
ϵ0ikl∂kB

j
l þ ϵ0jkl∂kB i

l

2

�
¼ 0: ð3:31Þ

Setting

2g1
g

¼ −1 ð3:32Þ

the last two Eqs. (3.30) and (3.31) are fully analogous to the
corresponding ordinary Maxwell equations at the left-hand
side, and coincides with those introduced by Pretko in [6]
from a completely different point of view, where actually it
is written (3.14) rather than the more fundamental (3.12).

B. Fracton action in terms of electric and magnetic
tensor fields

We have seen that the fracton action (2.4), originally
written in terms of the field AμνðxÞ, can be written in terms

of the tensor FμνρðxÞ as (2.16). This makes apparent the
strong analogy with the classical electromagnetic Maxwell
theory, of which the fracton theory appears to be the higher
rank generalization. This analogy is even more spectacular
when the four Eqs. (3.28)–(3.31) governing the theory are
considered, which can be written in terms of the two
electric and magnetic tensor fields EijðxÞ (3.6) and B j

i ðxÞ
(3.18). As in Maxwell theory, two equations, namely (3.28)
and (3.31), are the EoM of the action (2.16), while the other
two, (3.29) and (3.30), are consequences of the “Bianchi”
identity written in Table I for the tensor FμνρðxÞ, hence have
a geometrical nature. The analogy with electromagnetism
can be pushed further by noting that the fracton action
(2.16) can be written in terms of the electric and magnetic
tensor fields as follows:
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Sfract ¼
g1
6

Z
d4xFμνρFμνρ

¼ g1
6

Z
d4xðF0ijF0ij þ Fij0Fij0 þ Fi0jFi0j þ FijkFijkÞ

¼ g1
6

Z
d4x

�
1

4
Fij0Fij0 þ Fij0Fij0 þ

1

4
Fij0Fij0 þ FijkFijk

�

¼ g1
6

Z
d4x

�
3

2
Fij0Fij0 þ FijkFijk

�

¼ g1
6

Z
d4x

�
−
3

2

1

g21
EijEij −

2

g2
ϵ0kmnB l

nϵ0kabBb
cðδamδcl þ δal δ

c
mÞ
�

¼
Z

d4x

�
−

1

4g1
EijEij þ

g1
g2

B j
i B

i
j

�

¼ 1

2

Z
d4x

�
−

1

2g1
EijEij þ

2g1
g2

B j
i B

i
j

�
; ð3:33Þ

where, besides the definitions of the electric and magnetic
tensor fields (3.6) and (3.18), we used the properties of
FμνρðxÞ (3.7) and (3.8), and the tracelessness of the tensor
magnetic field (3.22). The result (3.33) closely reminds the
electromagnetic action, whose Lagrangian is proportional
to E2 − B2, provided that

g2 ¼ 4g21; ð3:34Þ

which is compatible with the previously found constraint
(3.32), that we will assume from now on.

C. Stress-energy tensor and conservation laws

The stress-energy tensor for the fracton action Sfract
(2.16) is

Tαβ ¼ −
2ffiffiffiffiffiffi−gp δSfract

δgαβ

����
gαβ¼ηαβ

¼ −
g1

3
ffiffiffiffiffiffi−gp δ

δgαβ

Z
d4x

ffiffiffiffiffiffi
−g

p
gμλgνγgρσFλγσFμνρ

����
gαβ¼ηαβ

¼ g1
6
ηαβF2 −

g1
3
ηαγηβλð2FλνρFγ

νρ þ FμνλF γ
μν Þ: ð3:35Þ

Notice that taking the trace of Tμν, we have, in d-spacetime
dimensions

T ¼ ηαβTαβ ¼ g1
ðd − 6Þ

6
F2

����
d¼4

¼ −
g1
3
F2; ð3:36Þ

which does not vanish in d ¼ 4, differently from what
happens in Maxwell theory. The tracelessness of the stress-
energy tensor would be recovered in d ¼ 6, which, as
already remarked in the Introduction, seem to be the most
natural, although unphysical, spacetime dimensions for
fractons. The nonvanishing of the trace of the fracton stress-

energy tensor is the sign that the theory, already at classical
level, is not scale invariant. This suggests the existence of
an energy scale. Now, since tracelessness is eventually
related to the masslessness of the photon, the fact that the
trace (3.36) does not vanish might suggest the existence of
a mass (as the typical energy scale) for the fractons, which
can be introduced in a similar way as in LG [38,39]. The
components of the stress-energy tensor are physically
interpretable as follows:

(i) α ¼ β ¼ 0 gives the energy density T00 ¼ u

T00 ¼ u¼ −
g1
6
F2þg1

3
ð2F0μνF0μνþFμν0Fμν0Þ

¼ −
g1
6
F2þg1

2
Fij0Fij0

¼ 1

4g1
ðEijEij−Bj

i B
i
jÞþ

g1
2

�
−
1

g1

��
1

g1

�
EijEij

¼ −
1

4g1
ðEijEijþBj

i B
i
jÞ; ð3:37Þ

where (3.7), (3.8), (3.33), (3.10), and (3.34) have
been used. Again, this expression is formally iden-
tical to the corresponding electromagnetic result
u ∝ E2 þ B2. From the positivity constraint of the
energy density u it must be

g1 < 0; ð3:38Þ

and, from now on, we choose

g1 ¼ −1; ð3:39Þ
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(ii) α ¼ 0, β ¼ i gives the Poynting vector T0i ¼ Si

T0i ¼ Si ¼
1

3
ηiλð2FλνρF0νρ þ FμνλFμν0Þ

¼ 1

3
ηijð2FjklF0kl þ FkljFkl0Þ

¼ 1

6
ηij½−ðϵ0jlpB k

p þ ϵ0klpB j
p ÞEkl þ ðϵ0kjpB l

p þ ϵ0ljpB k
p ÞEkl�

¼ 1

6
ηijEklð−2ϵ0jlpB k

p − ϵ0klpBj
p þ ϵ0kjpB l

pÞ

¼ −
1

2
ηijEklϵ

0jlpB k
p

¼ 1

2
ϵ0ilpEklBp

k; ð3:40Þ

which, as in Maxwell electromagnetism, is the vector product of the electric and magnetic tensor fields S⃗ ∝ E⃗ × B⃗;
(iii) α ¼ i, β ¼ j gives the stress tensor Tij ¼ σij

Tij ¼ −
1

6
ηijF2 þ 1

3
ηjkð2FkμνFiμν þ FμνkFμνiÞ

¼ −
1

6
ηijF2 þ 1

3
ηjkð3Fka0Fia0 þ 2FkabFiab þ FabkFabiÞ

¼ −
1

6
ηijF2 − ηjkEkaEia þ

1

3
ηjkð2FkabFiab þ FabkFabiÞ

¼ −
1

6
ηijF2 − ηjkEkaEia þ

1

6
ηjkð2δki B b

a Ba
b − 2B a

i B
k
a þ 4B k

a Ba
i − ϵ0akpϵ0biqB b

p B
q
aÞ

¼ −
1

6
ηijF2 − ηjkEkaEia þ

1

2
ηjkðδki B b

a Ba
b − B a

i B
k
a þ B k

a Ba
iÞ

¼ ηijT00 − ηjkηilEkaEl
a −

1

2
ηjkηilðBlaBk

a − B k
a BalÞ; ð3:41Þ

where we used

2FkabFiab ¼ −
1

2
ðϵ0kbpB a

p þ ϵ0abpB k
p Þðϵ0ibqBq

a þ ϵ0abqB
q
iÞ

¼ 1

2
ðδki B b

a Ba
b − B a

i B
k
a þ 4B k

a Ba
iÞ ð3:42Þ

FabkFabi ¼ −
1

4
ðϵ0akpB b

p þ ϵ0bkpB a
p Þðϵ0aiqBq

b þ ϵ0biqB
q
aÞ

¼ 1

2
ðδki B b

a Ba
b − B a

i B
k
a − ϵ0akpϵ0biqB b

p B
q
aÞ; ð3:43Þ

and, from [40],

ϵ0akpϵ0biq ¼ −δabðδki δpq − δpi δ
k
qÞ þ δai ðδkbδpq − δpbδ

k
qÞ − δaqðδkbδpi − δpbδ

k
i Þ; ð3:44Þ

so that

ϵ0akpϵ0biqB b
p B

q
a ¼ −δki B b

a Ba
b þ B a

i B
k
a þ B k

a Ba
i; ð3:45Þ

because of the tracelessness of the magnetic tensor (3.22). Finally, we used also the fact that, because of (3.33) and
(3.37) we have T00 ¼ − 1

6
F2 þ 1

2
B b
a Ba

b. As expected, the stress tensor is symmetric i ↔ j:
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Tij ¼
1

4
ηijðEabEab þ B b

a Ba
bÞ − ηabEiaEjb −

1

2
ηabðBiaBjb − BajBbiÞ: ð3:46Þ

Once again, the analogy with Maxwell theory, for which the stress tensor is

σij ¼
1

2
ηijðE2 þ B2Þ − EiEj − BiBj; ð3:47Þ

is impressive.
Let us now discuss the (on-shell) conservation of the stress-energy tensor

∂
νTμν ¼ 0; ð3:48Þ

whose components are
(i) μ ¼ 0:

∂
νTν0 ¼ ∂

0T00 þ ∂
iTi0

¼ ∂
0uþ ∂

iSi

¼ −
1

4
∂0ðEabEab þ B b

a Ba
bÞ þ

1

2
ϵ0ilp∂

iðEklBp
kÞ

¼ −
1

2
½Eab∂0Eab þ Ba

b∂0B
b
a − ϵ0ilp∂

iðEklBp
kÞ�

¼ −
1

2
½ϵ0aklEab∂kB b

l þ ϵ0amnBa
b∂

mEbn − ϵ0ilp∂
iðEklBp

kÞ�

¼ 1

2
ϵ0amn½Eab

∂
mBn

b þ Bn
b∂

mEab − ∂
mðEabBn

bÞ�
¼ 0; ð3:49Þ

where we used the EoM (3.20) and (3.26). The continuity equation is therefore verified on-shell

∂
iSi þ ∂

0u ¼ 0: ð3:50Þ

(ii) μ ¼ i:

∂
νTνi ¼ ∂

0T0i þ ∂
jTji

¼ ∂
0Si þ ∂

jσji

¼ −
1

2
ϵ0imn∂0ðEamBn

aÞ þ ∂iu − ηil∂kðEkaEl
aÞ − ηil∂kðBlaBk

a − B k
a BalÞ

¼ −
1

2
ϵ0imn

��
1

2
ðϵ0akl∂kB m

l þ ϵ0mkl
∂kB a

l Þ
�
Bn

a − ϵ0nbc∂bEacEam

	

þ ∂iu − ηil∂kðEkaEl
aÞ − ηil∂kðBlaBk

a − B k
a BalÞ

¼ −
1

4
½ϵ0imnϵ

0akl
∂kBm

l þ ðδki δln − δknδ
l
iÞ∂kB a

l �Bn
a −

1

2
ðδbi δcm − δbmδ

c
i ÞEam

∂bEac

þ ∂iu − ηil∂kðEkaEl
aÞ − ηil∂kðBlaBk

a − B k
a BalÞ

¼ −
1

4
ð−Bn

i∂mB
m
n − 2Bn

m∂nB m
i þ 2Bn

m∂iB m
n Þ − 1

2
ðEac

∂iEac − Eab
∂bEaiÞ

þ ∂iu − Eia∂kEka − Eka
∂kEia −

1

2
ðBn

m∂nB m
i − Bn

i∂mB
m
n − B m

n ∂mBn
iÞ

¼ 1

4
½ð3Bn

i∂mB
m
n þ 2B m

n ∂mBn
iÞ − 2Eab

∂bEai�
≠ 0; ð3:51Þ
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where (3.20), (3.26), (3.44), and (3.12) have been
used. Differently from the continuity equation (3.50),
the spatial components of the divergence of the
stress-energy tensor do not vanish. Now, what
should we expect actually ? If we think of the
stress-energy tensor as the conserved current asso-
ciated to the diffeomorphism symmetry, as the
definition (3.35) suggests, it should not be conserved
in a theory like the fracton one, which is not
diffeomorphism invariant (2.8). On the other hand,
we are facing here with a partial conservation of the
stress-energy tensor, because its time component is
indeed conserved, yielding the continuity equa-
tion (3.50), which relates the flux of the energy
density to the divergence of the momentum density.
The partial conservation of the stress-energy tensor
might be explained by observing that the fracton
symmetry (2.1) is indeed a diff transformation (2.2)
with a particular choice of the vector diff parameter.

IV. FRACTON LORENTZ FORCE

It is interesting to study how the physics is modified if
matter is introduced by means of a symmetric rank-2 tensor
JμνðxÞ ¼ JνμðxÞ coupled to the fracton field AμνðxÞ

Sfract → Stot ¼ Sfract þ SJ; ð4:1Þ

where Sfract is the pure fractonic action (2.4) [or (2.16)], and
SJ is the matter action

SJ ≡ −
Z

d4xJμνAμν: ð4:2Þ

The EoM (3.3) modifies as

∂μFαβμ ¼ −Jαβ: ð4:3Þ

We observe that, due to the cyclicity identity in Table I, Jαβ

is conserved in the following sense

∂α∂βJαβ ¼ 0: ð4:4Þ

The components of the EoM (4.3) are
(i) α ¼ β ¼ 0:

∂iF00i ¼ −J00 ¼ 0; ð4:5Þ

which vanishes because of (3.7), consequence of
(3.5). Hence, there is no coupling with A00ðxÞ, as
expected, since it is not a dynamical degree of
freedom of the theory, due to (2.19).

(ii) α ¼ 0, β ¼ i:

∂jF0ij ¼ −J0i; ð4:6Þ

which, using (3.10), becomes

∂jEij ¼ 2Ji0: ð4:7Þ

Taking the divergence of (4.7) we find the analogous
of the Gauss law

∂i∂jEij ¼ ρ; ð4:8Þ

where we defined the charge density

ρ≡ 2∂iJi0: ð4:9Þ

This equation plays a central role in [1,2,6–8], since
it yields not only the charge neutrality condition, but
also the vanishing of the total dipole moment. In
fact, integrating (4.8), we get

Z
dV∂i∂jEij ¼

Z
dV ρ ¼ 0; ð4:10Þ

which states that the total charge inside an infinite
volume is zero. Moreover, from (4.8) we also have

Z
dVxk∂i∂jEij ¼

Z
dV xkρ ¼

Z
dV pk ¼ 0;

ð4:11Þ

according to which the dipole moment density,
defined as

pk ¼ xkρ; ð4:12Þ

of an infinite volume vanishes.
(iii) α ¼ i, β ¼ j:

∂μFijμ ¼ −Jij; ð4:13Þ

which, using (3.20), becomes

−∂0Eij þ 1

2
ðϵ0ikl∂kB j

l þ ϵ0jkl∂kB i
l Þ ¼ Jij: ð4:14Þ

Differentiating with ∂i∂j, we have

0 ¼ ∂0∂i∂jEij þ ∂i∂jJij

¼ ∂0ρþ ∂i∂jJij; ð4:15Þ

where (4.8) has been used. It is a kind of continuity
equation [6,37,41], which can also be obtained from
the conservation equation (4.4)

0 ¼ ∂α∂βJαβ ¼ 2∂0∂iJ0i þ ∂i∂jJij ¼ ∂0ρþ ∂i∂jJij;

ð4:16Þ
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where we have used the definition of the density
charge ρðxÞ (4.9) and the fact that J00ðxÞ ¼ 0 (4.5).

It is also interesting to see how the (partial) conservation of
the stress-energy tensor is modified by the presence of
matter. The continuity equation (3.50) is modified as

∂
νTν0 ¼ ∂

0T00 þ ∂
iTi0 ¼ ∂

0uþ ∂
iSi ¼ EabJab; ð4:17Þ

while the spatial components of (3.51) acquire the term in
the last row

∂
νTνi ¼ ∂

0T0i þ ∂
jTji ¼ ∂

0Si þ ∂
jσji

¼ 1

4
½ð3Bn

i∂mB
m
n þ 2B m

n ∂mBn
iÞ − 2Eab

∂bEai�

þ 1

2
ϵ0imnJamBn

a − 2Ja0Eia; ð4:18Þ

The additional terms appearing in (4.17) and (4.18) can be
easily interpreted if, again, we think to the standard
Maxwell theory of electromagnetism, where the divergence
of the stress-energy tensor in presence of matter involves
the 4D “Lorentz force” per unit volume on matter fμ:

∂νTμν þ fμ ¼ 0: ð4:19Þ

At the right-hand side of (4.17) appears

f0 ¼ EabJab; ð4:20Þ

which is the analogous of the electromagnetic power E⃗ · J⃗.
The last term at the right-hand side of (4.18)

fi ¼ 2Ja0Eia −
1

2
ϵ0imnJamB a

n ð4:21Þ

can be traced back to the generalized Lorentz force on a
dipole piðxÞ moving with velocity vi proposed in [6]

Fi ¼ −pjEij − ϵilkpjvlB
j
k ; ð4:22Þ

once we take

J0i ∼ pi; ð4:23Þ

and

Jij ∼ pivj þ pjvi: ð4:24Þ

The first identification (4.23) is compatible with (4.11),
when (4.7) is taken into account, and the second relation
(4.24) agrees with the microscopic lattice definition of the
current of a dipole made in [6,19]. What is remarkable
is that we recover here as part of the conservation law of
the stress-energy tensor the picture conjectured in [6]: the
isolated electric monopoles of the theory described by the

action (2.16) are fractons, which do not respond to the
electromagnetic fields and, hence, do not move, due to the
dipole conservation constraint (4.8). What we find here
is that, instead, dipole motion, which preserves the global
dipole moment, does respond to the electromagnetic
field tensors EijðxÞ and B j

i ðxÞ according to (4.21), like
a conventional charge particle responds to an ordinary
electromagnetic field. Hence, from (4.21), we confirm the
“intuition” proposed in [6] concerning the Lorentz force on
a fracton dipole (4.22).

V. θ-TERM

In ordinary vector gauge field theory, it is known that a
term can be added to the Maxwell action (or to its non-
Abelian extension, namely the Yang-Mills theory): the so
called θ-term, which has the form

Sθ ∼ θ

Z
d4xϵμνρσFμνFρσ ∼ θ

Z
d4xE⃗ · B⃗; ð5:1Þ

where θ is a constant parameter. The θ-term represented by
(5.1) is topological, since it does not depend on the
spacetime metric, and it is a total derivative, hence it does
not contribute to the EoM. Nonetheless, the θ-term is
relevant in several contexts, like axion electrodynamics, the
Witten effect and the strong CP problem (see for instance
[28,30–33]). For what concerns the fracton theory, in [8]
the θ-term has been generalized as EijBij, in analogy with
the fractonic Hamiltonian density, assumed to be propor-
tional to ðEijEij þ BijBijÞ. Considering a compact tensor
gauge field, which implies a magnetic monopole ð∂iBij ¼
gi ≠ 0Þ, the introduction of the θ-term gives to the Gauss
constraint an additional contribution related to the magnetic
field. As for dyons in the Witten effect [42], the electric
charge gains an additional contribution related to the
magnetic vector charge [1,2,8]. On the other hand the
possibility of a nonconstant θ-term has not yet been
investigated in the context of fractons. The motivation
for such a generalization comes from the topological
insulators, which are characterized by a step function θ-
term, which switches between θ ¼ 0 outside the material
and θ ¼ π inside. Another example is given by axion
models [30,31], which describe a dynamical field coupled
to photons via a local θðxÞ-term. This generates modified
Maxwell equations [32,33] as follows

∇⃗ · E⃗ ¼ ρ − ∇⃗θ · B⃗ ð5:2Þ

∇⃗ × B⃗ − ∂tE⃗ ¼ J⃗ þ ∂tθB⃗þ ∇⃗θ × E⃗; ð5:3Þ

where the additional terms contribute as an excess of charge

(∇⃗θ · B⃗) and current (∂tθB⃗þ∇⃗θ× E⃗) densities. Thus axion
models are frequently used in the context of condensed
matter and topological insulators to mimic a nonconstant
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θ-term, like for instance in [43]. As we are dealing with a
rank-2 tensor theory, an interesting example is the case
studied in [27] in the context of LG, where modified
gravitoelectromagnetic [25] equations analogous to (5.2)
and (5.3) are recovered. According to the formalism
presented in this article, based on the Maxwell-like con-
struction of a consistent theory for fractons, the analogous
of the θ-term should be the following

Sθ ¼
1

9

Z
d4xθϵμνρσFλμνFρσ

λ ¼
Z

d4xθϵμνρσ∂μAλν
∂
ρAσ

λ :

ð5:4Þ

We shall see that this is indeed the case by comparing the
consequences of adding this term to the action Sfract (2.4) to
the known results concerning the θ-term in the theory of
fractons [1,2,8] and of LG [27]. Notice that, differently
from the standard θ-term introduced to solve the strong
CP problem [28,44], Sθ is not topological, due to the
contraction of the λ-indices in (5.1). Moreover, here θðxÞ
is not constant, like in [27]. For instance, θðxÞ might be
the Heaviside step function, which would correspond to
introducing a boundary at x ¼ 0 [45–49]. The contribution
of Sθ to the EoM is

δSθ
δAαβ ¼ −ðδγαδσβ þ δσαδ

γ
βÞ∂ρθϵμνρσηλγ∂μAλν: ð5:5Þ

It is interesting to observe that this contribution is the same
as the one that in [27] gives the θ-modified term of the
gravitoelectromagnetic equations, where the electric and
magnetic fields are vectors. The EoM (3.3) acquire an
additional term

δSfract
δAαβ þ δSθ

δAαβ ¼ 0; ð5:6Þ

whose components are
(i) α ¼ β ¼ 0

∂iF00i − 2∂kθϵ0ijk∂
iA0j ¼ 0; ð5:7Þ

which is still solved by A0μ ¼ ∂
μA0 (3.5);

(ii) α ¼ 0, β ¼ i

∂jEij − ∂
jθB i

j ¼ 0; ð5:8Þ

which is the tensorial extension of (5.2)

∇⃗ · E⃗ ¼ −∇⃗θ · B⃗; ð5:9Þ

(iii) α ¼ i, β ¼ j

δijab½∂0Eab − ϵ0akl∂kB b
l

þ ηacðϵ0nmb
∂nθEmc þ ∂0θBb

cÞ� ¼ 0; ð5:10Þ

where we defined the symmetrized delta

δabij ≡ 1

2
ðδai δbj þ δbi δ

a
j Þ; ð5:11Þ

which agrees with (5.3)

∇⃗ × B⃗ − ∂tE⃗ ¼ ∂tθB⃗þ ∇⃗θ × E⃗: ð5:12Þ

Therefore Eqs. (5.6) are generalized tensorial θ-modified
Maxwell equations. In particular, as in the standard modified
Maxwell equations [33], we can interpret the θ-dependent
terms as an excess of charge and current densities:

∂jEij ¼ ρ̃i ; − ∂0Eij þ 1

2
ðϵ0ikl∂kB j

l þ ϵ0jkl∂kB i
l Þ ¼ J̃ij;

with

ρ̃i ≡ ∂
jθB i

j ; J̃ij ≡ δijabη
acðϵ0nmb

∂nθEmc þ ∂0θBb
cÞ:

We have a further confirmation that Sθ (5.1) is indeed the
correct θ-term when we write it in terms of the electric and
magnetic tensor fields (3.6) and (3.18)

Sθ ¼ −
1

3

Z
d4xθηlmϵ0ijkFil0Fmjk ¼ −

1

2

Z
d4xθEilBil;

ð5:13Þ

which is the tensorial extension of the standard θ-term
Sθ ∼ θ

R
E⃗ · B⃗ for constant θ [28].

VI. FINAL REMARKS

In this paper we adopted a covariant approach to the
theory of fractons. This is not only a matter of formalism,
but, rather, it allows to better understand the nature itself
of these quasiparticles. In the usual approach of the theory
of fractons, space and time are treated separately, hence
noncovariantly. The standard way to proceed is to take the
spatial Gauss contraint (1.1), written for a “tensor electric
field” EijðxÞ, as the tool to realize the defining property of
fractons, i.e., their limited mobility, by extending to fracton
dipoles the usual conservation law holding for electric
charges. This is usually achieved by introducing a “tensor”,
instead of a vector, potential AijðxÞ, obeying the general-
ized spatial gauge transformation (1.2). As we explained,
the tensor field EijðxÞ was, somehow, defined as the spatial
canonical momentum, as in (3.1). We say somehow because
in the definition of EijðxÞ a scalar field A0ðxÞ appears, as a

ERICA BERTOLINI and NICOLA MAGGIORE PHYS. REV. D 106, 125008 (2022)

125008-14



multiplier introduced by hand in order to enforce the Gauss
constraint. Moreover, given the fracton limited mobility,
it comes naturally to ask which is the generalization of
the Lorentz force, and how the absence of motion could
be compatible with the existence of an electromagnetic
Lorentz force, and, above all, which is the elementary
object on which such a force acts. Last but not least, in the
Literature fractons are often seen in relation to gravity in a
nontrivial way, starting from [23]. The main contribution of
this paper is to show that, embedding the usual spatial and
non covariant theory of fractons in a more general covar-
iant gauge field theory, everything goes to the right place
naturally, without introducing by hand any external ingre-
dient. Our unique and starting point, as usual in field theory,
is the covariant transformation (1.9), from which the most
general covariant invariant action (2.3) is derived. To cite a
few new results following this approach, the relation with
linearized gravity appears immediately, since the action
(2.3) consists of two terms, one of which, namely (2.5),
just describes linearized gravity. The theory of fractons as
“emergent electromagnetism,” as often has been called, is
evident from the beginning as well, once we defined the

rank-three “electromagnetic” tensor field (2.15) by means
of which the fracton Lagrangian writes as F2, just like
Maxwell theory (from which the title of this paper).
According to our field-theoretic point of view, the Gauss
constraint is not an external constraint anymore, but turns
out to be one of the equations of motion, the others formally
coinciding with the Maxwell equations, which is mostly
interesting, in our opinion. Finally, studying the conserva-
tion of the stress-energy tensor, we recovered the Lorentz
force (4.21), exactly as it was correctly guessed in [6], from
which we see that, as one might expect, the force acts on
fracton dipoles, and not on isolated charges, thus preserv-
ing the absence of mobility for isolated fractons.
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