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Unruh DeWitt (UDW) detectors are important constructs in studying the dynamics of quantum fields in
any geometric background. Curvature also plays an important role in setting up the correlations of a
quantum field in a given spacetime. For instance, massless fields are known to have large correlations in de
Sitter space as well as in certain class of Friedmann-Robertson-Walker (FRW) universes. However, some of
the correlations are secular in nature while some are dynamic and spacetime dependent. An Unruh DeWitt
detector responds to such divergences differently in different spacetimes. In this work, we study the
response rate of Unruh DeWitt detectors which interact with quantum fields in FRW spacetimes. We
consider both conventionally as well as derivatively coupled Unruh DeWitt detectors. Particularly, we
consider their interaction with massless scalar fields in FRW spacetimes and nearly massless scalar fields in
de Sitter spacetime. We discuss how the term which gives rise to the infrared divergence in the massless
limit in de Sitter spacetime manifests itself at the level of the response rate of these Unruh DeWitt detectors
in a wide class of Friedmann spacetimes. In order to carry out this study, we make use of an equivalence that
exists between massless scalar fields in FRW spacetimes with massive scalar fields in de Sitter spacetime.
Further, we show that while the derivative coupling regulates the divergence appearing in de Sitter
spacetime, it does not completely remove them in matter dominated universe. This gives rise to large
transitions in the detector which can be used as a probe of setting up of large correlations in late time era of
the universe as well. We also apply the results of these otherwise formal analyses to the coupling of
hydrogen atoms with gravitational waves. We show that the coupling of hydrogen atoms with gravitational
waves takes a form that is similar to derivatively coupled UDW detectors and hence has significant
observational implications as a probe of late time revival of quantum correlators.
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I. INTRODUCTION

Unruh DeWitt (UDW) detectors are quantum probes that
follow classical trajectories in spacetime while measuring
effects of quantum correlations of a background field on
quantum systems [1]. Other than their classical motion in
spacetime, they have an internal quantum structure with
discrete quantum levels. These detectors couple to quantum
fields and the coupling of a detector with a quantum field
can cause the detector to make transitions between its
internal quantum levels. The probability amplitude for a
detector to undergo these transitions depends crucially
upon the state of the quantum field and the trajectory of
the detector in spacetime. The coupling of particle detectors
with quantum fields (and hence the probability amplitude)
senses the correlations of quantum field in the state in
which it is placed and the response of the detector along any
particular trajectory also encapsulates in it the fact that the

particle content of a quantum field in any state is an observer
dependent quantity [2,3]. Different particle detectors differ
from each other by their internal quantum structure (i.e.,
whether it is a two-level system [3,4], a quantum harmonic
oscillator [5,6], etc.), their interaction with the field (i.e.,
whether it employs a monopole coupling, a derivative
coupling [7–12], etc.) and other things like whether they
are operative for a finite time [13] or indefinite time or has
some other form for the switching function [14] or whether
they are taken to be point sized or they have some finite
spatial size [15–18], etc. Though particle detectors have been
traditionally used to study quantum field theory content in
noninertial settings or classical gravitational settings [2,3],
etc, they have also been employed to investigate quantum
effects of gravity on sensitive observables such as the
entanglement between two entangled UDW detectors with
different types of relative motion between them [19,20] (for
more on observer dependent entanglement, refer to [21] and
references therein).
Interaction of electromagnetic waves with atoms can

be modeled by UDW type coupling [22,23] and hence
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quantum optical setups can be used to test the predictions
obtained by analyzing UDW type couplings. For example,
one can try to test the prediction that detectors moving
along inertial trajectories in flat spacetime have a vanishing
response rate whereas a UDW detector sees a thermal
response rate when it follows a uniformly accelerating
trajectory in flat spacetime [2,3]. In addition to the
investigation of UDW detectors in flat spacetime, it is also
important as well as interesting to analyze how curvature
contributes to the response rate of UDW detectors in curved
spacetimes [24]. One natural arena where curvature is
present in the analysis is that of the evolution of our own
universe where different epochs can be approximated by
Friedmann-Robertson-Walker (FRW) spacetimes. In fact,
the quantum dynamics of metric fluctuations over these
spatially homogeneous and isotropic background FRW
spacetimes play an important role in shaping the present
day universe the way we observe it [25]. Quantum field
theories in FRW spacetimes have been studied extensively
[1,26–32] and they provide important insights into the
formal aspects of QFT as well as into our universe. A
number of past studies, Refs. [33–38], have also analyzed
the behavior of quantum fields in FRW spacetimes by
coupling them to UDW type particle detectors. For exam-
ple, [33] studies the response rate of UDW detector which
are coupled with real quantum scalar fields in the conformal
as well as massless case in de Sitter spacetime, [37] studies
the response rate for quadratically coupled complex scalar
fields again in both conformal as well as massless cases in
de Sitter spacetime, [35] studies the transition probability
for conformal vacua in FRW spacetimes. One important
and well-known feature of quantum fields in a class of
FRW spacetimes is that their Wightman functions have
infrared divergences [32,39–44]. Such a divergence has a
root in the fact that massless fields in power law FRW
universes are conformally equivalent to massful fields in de
Sitter spacetime, which may harbor such divergences in
correlations. It has been argued recently [45] that potential
divergences in correlation functions strongly enhance the
UDW responses to reveal small acceleration dependence.
Therefore, we expect that the infrared divergences in FRW
spacetimes should also lead to enhancement of the UDW
response rates. With this motivation, we seek to investigate
the coupling of UDW detectors with quantum fields in
FRW spacetimes.
First, we consider the conventional Unruh DeWitt type

coupling where there is a monopole coupling between
the field and the operator which causes the transitions in the
internal quantum space of the detector [3]. In this case,
the response rate of transition between quantum states of
the detector is related to the Wightman function of the
quantum field in the considered spacetime. Therefore, the
behavior of the correlations of quantum field between
spacetime points along the trajectory of the detector is
imprinted in the expression of the transition response rate.

In the case of de Sitter spacetime, we consider nearly
massless scalar fields and place them in the Bunch Davies
vacuum [40]. The Wightman function of a scalar field in de
Sitter spacetime has an infrared divergence [42–44,46] in
the mass going to zero limit. The term corresponding to the
infrared divergence has no spacetime dependence and it
provides a dominant secular contribution to the response
rate of the detector.
We also consider massless scalar fields in radiation

dominated spacetime and matter dominated spacetimes
to study detector response in other epochs of cosmological
expansion. For these cases, we make use of an equivalence
between massless scalar fields in FRW spacetimes with that
of massive scalar fields in de Sitter spacetime [32,47,48].
Using this equivalence, we place massless scalar fields in
FRW spacetimes in the Bunch Davies like vacuum of the
corresponding massive scalar field in de Sitter spacetime.
The Wightman function of massless fields in matter
dominated cases inherit the infrared divergence of the de
Sitter spacetime but now with a time dependent conformal
factor multiplying the divergent term [32,47]. Thus, we find
that the term corresponding to the infrared divergence
provides the dominant contribution to the transition
response rate. For radiation dominated case, the massless
scalar field correlator does not possess any such infrared
divergent term and hence provides finite detector response.
The analysis shows that the infrared divergences of

the de Sitter and matter dominated spacetimes manifest
themselves in the detector response. However, in de Sitter
spacetime the divergence of correlators is sometimes
argued to be originated from breaking of de Sitter sym-
metry [40,42] and any physically sensible result should be
free of any divergences. A line of argument to that end is to
regard only those operators as physical which are infrared
finite. For example, [49] argues that the shift invariant
operators like the differences of the field operators, deriv-
atives of fields etc., are to be regarded as true physical
observables as they are infrared finite for massless scalar
fields in de Sitter spacetime. Similarly, the derivatives
present in the stress energy operator also render it infrared
finite for the de Sitter spacetime [50]. Keeping these
arguments in mind, we look at the response of more
“physical” derivatively coupled UDW detectors.
In the derivative coupling case, the detector couples to

the derivative of the field with respect to the proper time
along the trajectory [7]. For this case, the response rate of
transition between quantum states of the detector depends
upon the double derivative of the Wightman function of the
field with respect to the proper time at different points along
the detector’s trajectory [7,51]. In the case of de Sitter
spacetime, under the action of the derivatives, this term
goes away as the infrared divergent term in the Wightman
function for nearly massless scalar fields does not have any
spacetime dependence. Thus the transition response rate
of derivatively coupled UDW detector for nearly massless
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scalar fields in de Sitter spacetime remains finite. However,
in the case of massless scalar fields in matter dominated
spacetimes, the infrared divergent term has time depend-
ence and it does not vanish under the action of derivatives
with respect to the detector’s proper time and provides the
dominant contribution to the response rate. Thus, even
though the derivative coupling could cure the infrared
divergence of the de Sitter spacetime, this does not happen
for the matter dominated spacetimes. Using this we argue
that the realistic physical systems, e.g., the derivatively
couple UDW detectors are expected to capture the revival
of quantum correlations in the matter dominated era of the
universe.
In addition to these formal analyses of UDW detectors

and derivatively coupled UDW detectors for quantum
scalar fields in the considered spacetimes, we investigate
the scenario of the coupling of hydrogen atoms with
gravitational waves where a derivatively coupled UDW
like coupling occurs. Following the treatment given in
[52,53], we consider the interaction of a nonrelativistic
hydrogen atom (whose center of mass is moving along
some timelike classical trajectory) with the curvature of the
spacetime. Considering gravitational wave perturbations
over the homogeneous and isotropic FRW backgrounds,
one can find the form of the above interaction term upto to
leading order in gravitational perturbations. The interaction
between gravitational waves and hydrogen atom has the
form of a generalized derivatively coupled UDW detector.
For this setting, the above analysis of the response rate of
derivatively coupled UDW detector in matter dominated
spacetimes can be carried over and the implications of the
dominant infrared term on the transition of the electron of
the atom between its different atomic states can be inves-
tigated. Such an analysis also provides a potential avenue to
look for observational signatures of quantized gravitational
waves. The rest of the paper is divided in four sections.
In Sec. II, we consider conventional UDW detectors for

scalar fields in de Sitter, radiation-dominated and matter-
dominated spacetimes and calculate the response rate for
them. In Sec. III, we perform a similar analysis as is done
in Sec. II but for derivatively coupled UDW detectors. In
Sec. IV, we consider a specific UDW coupling where the
detector couples with the stress energy tensor of the field. In
this section, we also look at the dynamics of a hydrogen
atom in FRW spacetimes with and without gravitational
wave perturbations which harbors a derivatively coupled
UDW detector like structure. In Sec. V, we summarize the
results obtained in this paper and their implications.

II. CONVENTIONAL UDW DETECTORS

In this section, we consider the response rate of a
conventional Unruh DeWitt detector that couples with
massless scalar fields in FRW spacetimes. A conventional
Unruh DeWitt detector couples with a quantum field by the
following type of interaction term [1,3]:

Hint ¼ cμ̂ðτÞχðτÞϕ̂ðxðτÞÞ; ð1Þ

where μ̂ðτÞ is the detector term which governs the tran-
sitions within the internal quantum structure of the detector
and ϕ̂ðxðτÞÞ is a quantum field which the detector is
coupled to. Here τ represents the proper time of the
detector along its classical timelike trajectory, xðτÞ, and
χðτÞ is a real-valued switching function which decides how
the detector is turned on and off [13,54].
Let us consider the case when detector makes a transition

from some state j0iD to another state jΩiD which have
energies 0 and Ω, respectively and the field starts in some
state, jψi, while it is allowed to go to any final state which
are traced over. The transition probability for this case,
in first order time-dependent perturbation theory [1], is
given by

P0→Ω ¼ c2jDhΩjμ̂ð0Þj0iDj2
ZZ

dτ1dτ2χðτ1Þχðτ2Þe−iΩðτ1−τ2ÞGðxðτ1Þ; xðτ2ÞÞ; ð2Þ

where Gðxðτ1Þ; xðτ2ÞÞ ¼ hψ jϕ̂ðxðτ1ÞÞϕ̂ðxðτ2ÞÞjψi is the two point function of the quantum field in the state jψi.
For a switching function operating uniformly over τi to τf, the transition probability is given by

P0→Ω ¼ c2jDhΩjμ̂ð0Þj0iDj2
Z

τf

τi

Z
τf

τi

dτ1dτ2e−iΩðτ1−τ2ÞGðxðτ1Þ; xðτ2ÞÞ: ð3Þ

As motivated above that we want to investigate the role of
the curvature of cosmological space and the divergent
structure of correlations of quantum fields in a class of
these spacetimes on the response rate of UDW detectors, we
specialize to Friedmann spacetimes. We consider the case in
which the UDW detector moves along comoving trajectories

for which the spatial coordinates are fixed and the comoving
time is the proper time. Thus, we can go to the conformal
coordinates in which dτ ¼ aðηÞdη, where aðηÞ denotes the
scaling factor of the FRW spacetime under consideration,
i.e., ds2 ¼ a2ðηÞð−dη2 þ dx⃗2Þ. The probability amplitude,
expressed in conformal coordinates, is given by
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P0→Ω ¼ c2jDhΩjμ̂ð0Þj0iDj2
Z

ηf

ηi

Z
ηf

ηi

dη1dη2e−iΩðτðη1Þ−τðη2ÞÞaðη1Þaðη2ÞGðxðη1Þ; xðη2ÞÞ; ð4Þ

where ηi and ηf are the values for the conformal coordinate
corresponding to the τi and τf, respectively. We now
make a change of variables and introduce new coordinates
η̃≡ ðη1 þ η2Þ=2 and Δη≡ η1 − η2. For any fixed
η̃ ∈ ðηi; ðηi þ ηfÞ=2Þ, we have η2 ∈ ðηi; 2η̃ − ηiÞ and
Δη ∈ ð−2ðη̃ − ηiÞ; 2ðη̃ − ηiÞÞ. Similarly, for any fixed value

of η̃ ∈ ððηi þ ηfÞ=2; ηfÞ, we have η2 ∈ ð2η̃ − ηf; ηfÞ and
Δη ∈ ð−2ðηf − η̃Þ; 2ðηf − η̃ÞÞ.
Using Eq. (4) and going to the ðη̃;ΔηÞ coordinates, we

find that the rate of transition probability with respect to η̃,
for η̃ ∈ ðηi; ðηi þ ηfÞ=2ÞÞ, is given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dP0→Ω

dη̃
¼

Z
2ðη̃−ηiÞ

−2ðη̃−ηiÞ
dðΔηÞe−iΩðτðη̃þðΔηÞ=2Þ−τðη̃−ðΔηÞ=2ÞÞ

× Gðxðη̃þ ðΔηÞ=2Þ; xðη̃ − ðΔηÞ=2ÞÞaðη̃þ ðΔηÞ=2Þaðη̃ − ðΔηÞ=2Þ; ð5Þ

whereas for η̃ ∈ ððηi þ ηfÞ=2; ηfÞ, the rate of transition probability is given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dP0→Ω

dη̃
¼

Z
2ðηf−η̃Þ

−2ðηf−η̃Þ
dðΔηÞe−iΩðτðη̃þðΔηÞ=2Þ−τðη̃−ðΔηÞ=2ÞÞ

× Gðxðη̃þ ðΔηÞ=2Þ; xðη̃ − ðΔηÞ=2ÞÞaðη̃þ ðΔηÞ=2Þaðη̃ − ðΔηÞ=2Þ: ð6Þ

In order to analyze the case of interest, i.e., massless
scalar fields in power-law type FRW spacetimes, we make
use of an equivalence [32,47,48] according to which a
massless scalar field in an FRW spacetime with scaling
factor, aðηÞ ¼ ðHηÞ−q, can be mapped to a massive scalar
field in de Sitter spacetime with m2 ¼ H2ð1 − qÞð2þ qÞ.
One also finds that the Wightman functions in the two
equivalent settings are related by the following relation

GFRWðx1; x2Þ ¼ ðHη1Þq−1ðHη2Þq−1GdSðx1; x2Þ; ð7Þ

for more details, refer Appendix A. 2 of [32].
As for the state in the corresponding de Sitter spacetime

is concerned, we take that to be the Bunch-Davies vacuum
[40] for which the Wightman function1 is given by

GdSðx1; x2Þ ¼
H2

16π2
Γ
�
3

2
þ ν

�
Γ
�
3

2
− ν

�
2F1

×

�
3

2
þ ν;

3

2
− ν; 2; 1 −

y
4

�
; ð8Þ

where

yðx1; x2Þ ¼
−ðη1 − η2 − iϵÞ2 þ ðx⃗1 − x⃗2Þ2

η1η2
; ð9Þ

and ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− m2

H2

q
.

From the formula that, m2 ¼ H2ð1 − qÞð2þ qÞ, we see
that the square of the mass is positive only for the cases in
which q ∈ ½−2; 1Þ. We consider only those FRW space-
times which have q belonging to this range. Since aðηÞ ¼
ðHηÞ−q, we see that η ∈ ð0;∞Þ corresponds to expanding
spacetimes for q ∈ ½−2; 0�, whereas for q ∈ ½0; 1Þ, η ∈
ð−∞; 0Þ corresponds to expanding spacetimes. Let us
briefly look at the response rate for UDW detectors that
remain operative for the full time range of these spacetimes.
We argue in Appendix A that the infinite time response rate
with respect to η̃ has the following dependence on Ω and H

1

c2jDhΩjμ̂ð0Þj0iDj2
dP0→Ω

dη̃
∝ ðΩH−qÞ 1

1−q: ð10Þ

From this expression, we see that, for q ∈ ð−2; 0Þ, the
exponent of H is positive and hence the response rate
increases with increasing H. While for q ∈ ð0; 1Þ, the
exponent of H is negative and the response rate decreases
with increasing H. In fact, the Ricci scalar for FRW
spacetimes is given by R ∝ H2q and we conclude that,
for q ∈ ð−2; 0Þ, it increases with decreasing H while, for
q ∈ ð0; 1Þ, it increases with increasing H. Hence, the
behavior of the response rate and the Ricci scalar with
respect to H (for an FRW spacetime) are opposite of each

1Though we are considering Bunch Davies vacuum here, one
could also consider other physically well-behaved normalizable
states [55]. Such well-behaved states also share the divergent
Bunch Davies correlator structure in addition to their own
characteristic features which, however, do not significantly alter
the characteristics used in our analysis [48,55,56].
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other. Another important point to notice is that the response
rate gets most enhanced with Hð> 1Þ for q ¼ −2 whereas
for Hð< 1Þ, it is for q ¼ 1 case that the response rate is
most significantly enhanced with H. As we see below that
the infrared divergent factors in de Sitter and matter
dominated spacetimes cause very fast transitions, the above
conclusion implies that for these cases, the H dependence
also contributes maximally to the response rate compared
to the other considered spacetimes.
In a standard cosmological setting the universe remains

in a given phase only for a finite time, thus it will be
worthwhile to consider the finite time response rates for
different cosmological eras as we do next.

A. Nearly massless scalar fields in de Sitter spacetime

First, let us look at the behavior of the response rate of
UDW detectors that couple with nearly massless scalar
fields in de Sitter spacetime. By nearly massless scalar
fields, we mean that ν ¼ 3=2 − δ, where δ ≪ 1. Since for
scalar fields in de Sitter spacetime, the Wightman function

is known to suffer from infrared divergences in the mass
going to zero limit [42–44,46], we expect the response rate
(which depends upon the Wightman function) to also show
similar infrared divergence. To be more precise, we note
that the Wightmann function, as a power series in mass δ, is
given by [32]

GdSðZðx; x0ÞÞ ¼
�

H2

16π2

��
2

δ
þ 4

y
− 4 − 2 lnðyÞ þ 4ln2þOðδÞ

�
; ð11Þ

and using the formula Eq. (5), we see that the response rate of transition, for η̃ ∈ ðηi; ðηi þ ηfÞ=2Þ, is given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dPdS

0→Ω
dη̃

¼ 1

16π2

Z
2ðη̃−ηiÞ

−2ðη̃−ηiÞ
dðΔηÞ

�
η̃þ ðΔηÞ=2
η̃ − ðΔηÞ=2

�iΩ
H 1

ðη̃2 − ðΔηÞ2=4Þ

×

�
2

δ
−
4ðη̃2 − ðΔηÞ2=4Þ

ðΔη − iϵÞ2 − 4 − 2 ln

�
−

ðΔη − iϵÞ2
ðη̃2 − ðΔηÞ2=4Þ

�
þ 4 ln 2þOðδÞ

�
: ð12Þ

Using the expression Eq. (6), we obtain a similar formula
for the response rate when η̃ ∈ ððηi þ ηfÞ=2; ηfÞ. We notice
that, for the above integral, the integrand has poles at
ðΔηÞ ¼ �2η̃; iϵ and the interval over which the integral is
performed does not include the �η̃ poles. The above
integral, for any term in the integrand, can be easily seen
to be finite in value by enclosing the contour in the lower
half plane (as shown in Fig. 1) and noting that the value of
the above integral is just equal to the integral of the above
integrand along the part of the contour lying in the lower
half plane, with no contribution coming from the pole lying
in the upper half plane. The value of the integral of the

above integrand along the part of the contour lying in the
lower half plane is finite as the integral is a proper integral
(By proper integral, we mean that the integral is over a
finite interval and the integrand never diverges for any point
along the interval and hence, these integrals are always
finite). Since the integral along the curved part is a proper
integral, the integral of all terms appearing in the above
expression are finite. With these facts in hand, we see that
the dominant contribution to the above expression in the
δ → 0 limit comes from the 1=δ term. Hence, for δ very
close to zero, the most dominant term to the response rate is
given by

1

c2jhΩjμ̂ð0Þj0ij2
dPdS

0→Ω
dη̃

¼ 1

δ

�
1

8π2

Z
2ðη̃−ηiÞ

−2ðη̃−ηiÞ
dðΔηÞ

�
η̃þ ðΔηÞ=2
η̃ − ðΔηÞ=2

�iΩ
H 1

ðη̃2 − ðΔηÞ2=4Þ
�
þOðδ0Þ: ð13Þ

From the above expression, we see that the response rate
of transition for a UDW detector coupled with nearly
massless scalar fields in de Sitter spacetime manifests the
same infrared divergence as the Wightman function [see

Eq. (11)] for these fields. Thus, as the mass of the field
decreases further, the transitions within a UDW detector
occur at more faster rate. Before we turn to the case of
massless scalar fields in radiation dominated spacetime, let

FIG. 1. The chosen contour does not contain the poles inside it.
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us mention some previous works which have take up
similar studies.
A number of previous works have analyzed the dynam-

ics of quantum scalar fields in de Sitter spacetime by
coupling them with UDW detectors. For example, [33] has
calculated the infinite time response rate (with respect to
cosmic time) of UDW detectors (moving along comoving
trajectories) coupled with scalar fields in de Sitter space-
time. Reference [57] studies UDW detectors in open
quantum systems framework and place the scalar field in
states other than the Bunch Davies like vacua. [58,59]
consider UDW detectors along static and free falling
trajectories coupled with conformally coupled scalar fields
in de Sitter spacetime and analyze them again in the open
quantum systems framework. Reference [37] calculates the
response rate of UDW detectors (moving along comoving
trajectories) which are quadratically coupled with complex
scalar fields (placed in alpha vacua) in de Sitter spacetime.
We extend the analysis into other FRW spacetimes which
mimic different epochs of expansion of the universe.

B. Massless scalar fields in radiation
dominated spacetime

Let us consider the case of a massless scalar field in
radiation dominated universe which is understood to
succeed the inflationary near de Sitter phase. For this case

the scale factor, aðηÞ ¼ ðHηÞ, i.e., q ¼ −1. Thus, the mass
of the corresponding scalar field in de Sitter spacetime is
ðm2=H2Þ ¼ 2 and the Wightman function for this case is
given by

Gradðxðη1Þ; xðη2ÞÞ ¼ ðH2η1η2Þ−2
H2

4π2yðxðη1Þ; xðη2ÞÞ
¼ −ðH2η1η2Þ−1

1

4π2ðη1 − η2 − iϵÞ2 :

ð14Þ

This case is not just conformally related to a massive scalar
field in de Sitter spacetime by the above discussed
equivalence but it is also conformally related to a massless
scalar field in flat spacetime (see Chap. 3 of [1]). In fact, we
see that the above Wightman function of massless scalar
field in radiation dominated spacetime is conformally
related to the Wightman function of a massless scalar field
in flat spacetime. For the radiation dominated case, the
comoving time and the conformal time coordinates are
related by the relation ð2HtÞ12 ¼ Hη. Using the above
expression for the Wightman function and the relation
between comoving and conformal coordinates, we find that
the transition probability for this case is given by

Prad
0→Ω ¼ −

c2jDhΩjμ̂ð0Þj0iDj2
4π2

Z
ηf

ηi

Z
ηf

ηi

dη1dη2e−
iΩH
2
ðη2

1
−η2

2
Þ 1

ðη1 − η2 − iϵÞ2 : ð15Þ

Now we use the formula, Eq. (5), for rate of transition with respect to η̃ and obtain that, for η̃ ∈ ðηi; ðηi þ ηfÞ=2Þ, it is
given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dPrad

0→Ω
dη̃

¼ −
1

4π2

Z
2ðη̃−ηiÞ

−2ðη̃−ηiÞ
dðΔηÞe−iΩHη̃ðΔηÞ 1

ðΔη − iϵÞ2 : ð16Þ

One obtains a similar formula for η̃ ∈ ððηi þ ηfÞ=2; ηfÞ by
using the expression Eq. (6). It is clear, from the form of
the above expression, that the response rate for massless
scalar fields in radiation dominated spacetime is similar
to that for flat spacetime except for the fact that the Ω
dependence in flat spacetime is replaced by ΩHη̃ in
radiation case. The above integral is over a finite interval
with a pole at iϵ lying in the upper half Δη complex plane.
Like in the previous subsection, we close the contour from
the lower half Δη complex plane and hence the contour
does not contain any pole inside it. Thus, the value of the
above integral along the specified interval on the real line
is equal to the integral along the curved part of the contour
which lies in the lower half plane. Thus, we see that the
response rate for a UDW detector coupled with a massless
scalar field in radiation dominated spacetime is finite and

there is no substantial enhancement. Now we analyze the
case of massless scalar fields in nearly matter dominated
spacetimes.

C. Massless scalar fields in nearly matter
dominated spacetimes

In this subsection, we look at the behavior of the
response rate for UDW detectors which couple with
massless scalar fields in nearly matter dominated space-
times. Since for nearly matter dominated spacetimes, i.e.,
for q ¼ −2þ δ where δ ≪ 1, the mass of the correspond-
ing scalar field in de Sitter spacetime is given by

m2

H2
¼ ð1 − qÞð2þ qÞ ¼ ð3 − δÞδ ≈ 3δ; ð17Þ
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and approaches to zero in the δ going to zero limit which
maps massless in matter dominated case to massless in de
Sitter, we expect that the response rate for nearly matter
dominated spacetimes inherit the infrared divergence
behavior from their counterpart of nearly massless fields

in de Sitter spacetime. To investigate this case, let us write
down the Wightman function of massless scalar fields
in nearly matter dominated spacetimes which, using
Eqs. (7)–(9) and (17), is given by

Gmatterðxðη1Þ; xðη2ÞÞ ¼ ðH2η1η2Þ−3þδ

�
H2

16π2

��
2

δ
þ 4

y
− 4 − 2lnðyÞ þ 4ln2þOðδÞ

�
: ð18Þ

Using the relation between comoving and conformal coordinates, i.e., ðð3 − δÞHtÞ 1
3−δ ¼ ðHηÞ, in nearly matter dominated

spacetimes and the formula Eq. (5), we see that the rate of transition probability, for η̃ ∈ ðηi; ðηi þ ηfÞ=2Þ, is given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dPmatter

0→Ω
dη̃

¼ 1

16π2

Z
2ðη̃−ηiÞ

−2ðη̃−ηiÞ
dðΔηÞe−iΩH2ð3η̃2þðΔηÞ2=ð4ÞÞðΔηÞ

3
1

ðη̃2 − ðΔηÞ2=4Þ

×

�
2

δ
−
4ðη̃2 − ðΔηÞ2=4Þ

ðΔη − iϵÞ2 − 4 − 2 ln

�
−

ðΔη − iϵÞ2
ðη̃2 − ðΔηÞ2=4Þ

�
þ 4 ln 2

−
2iΩH2ðη̃þ ðΔηÞ=2Þ3

3

�
1

3
− logðHðη̃þ ðΔηÞ=2ÞÞ

�

þ 2iΩH2ðη̃ − ðΔηÞ=2Þ3
3

�
1

3
− logðHðη̃ − ðΔηÞ=2ÞÞ

�
þOðδÞ

�
: ð19Þ

Different terms in the integrand have same type of pole structure as in the de Sitter case and hence we can argue the
finiteness of each term in the above expression just as we have done for the de Sitter case. We see that the leading order term
in the δ → 0 limit is given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dPmatter

0→Ω
dη̃

¼ 1

δ

�
1

8π2

Z
2ðη̃−ηiÞ

−2ðη̃−ηiÞ
dðΔηÞe−iΩH2ð3η̃2þðΔηÞ2=ð4ÞÞðΔηÞ

3
1

ðη̃2 − ðΔηÞ2=4Þ
�
þOðδ0Þ: ð20Þ

From the above expression, we see that the rate of
transitions for a UDW detector which couples with mass-
less scalar fields in nearly matter dominated spacetimes is
dominated by the 1=δ term in the δ → 0 limit. Thus, for δ
being close to zero, we expect that the transitions within the
internal quantum states of a UDW detector would take
place at a rapid rate. As mentioned before, this behavior of
a conventionally coupled UDW detector in this case finds
its origin in the infrared divergence of the corresponding
nearly massless scalar fields in de Sitter spacetime. In
fact, if we look at the Eqs. (7) and (8) for the Wightman
function of a massless scalar field in FRW spacetimes
with q ∈ ½−2; 1�, we expect that a UDW detector should
experience very fast transitions between its quantum states
as one approaches both q ¼ −2 and q ¼ 1 cases which is
what we have seen in this and the previous subsection. In
order to demonstrate the behavior of UDW detectors in
the considered spacetimes with q ∈ ð−2; 1Þ, we plot the
response rate expression, Eq. (5), for the Wightman
function Eq. (8) as a function of q for specific values of
ηi, ηf, η̃, Ω, and H. For example, Fig. 2(a) shows the
variation of response rate as q is varied between ð−2; 0Þ and
Fig. 2(b) shows the variation of the response rate as q is

varied between (0,1). As expected, we observe from the
figures that the response rate remains finite except for the
cases when q approaches the values −2 and 1
We have seen above that the infrared divergence of

massless scalar fields in de Sitter spacetime manifests itself
at the level of response rate of UDW detectors. In fact, all
the quantities that involve the Wightman function can be, in
general, expected to contain these infrared divergences.
These divergences have been a subject of much discussion
[41–44,60,61]. The fact that one cannot have a well-defined
vacuum state for a massless scalar field in de Sitter
spacetime which enjoys the full de Sitter symmetry is well
known and in order to find physically sensible results for
this case a number of suggestions have been made in the
literature [61,62]. For example, to obtain results free of
infrared divergences, sometimes less symmetric states are
considered as vacua for massless scalar fields in de Sitter
spacetime [40,42,46,60]. Another line of thought regarding
the possible resolution of these infrared divergences is to
argue that only those operators be considered physical,
which are infrared finite. For example, [49] suggests that
one should consider only shift invariant operators, like the
differences of the field operators and derivatives of the field
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operators, etc., as true physical observables do not suffer
from infrared divergences. Introduction of a small mass not
only regularizes the correlator into one containing a finite
(but large) constant term, it further removes this constant
term from any physical operators. For instance, [50] points
out that the stress energy expectation does not suffer from
infrared divergence because it contains derivatives which
remove the infrared divergences (or the large constant terms
in small mass limit). On the basis of these previous
considerations, we expect that if we consider more
“physical” derivatively coupled UDW detectors, then the
corresponding response rates should be free of infrared
divergences. In fact, there have been previous works which
have considered derivatively coupled UDW detectors in
order to deal with the infrared divergences that appear in
different contexts [7,10,51]. Motivated by this, in the next
section, we consider the case of derivatively coupled UDW
detectors which couple to massless scalar fields in FRW
spacetimes. We will see that even though the infrared
divergence for de Sitter spacetime does not contribute to the
response rate of these detectors, the infrared divergence
present in a matter dominated spacetime still contributes to
the response rate of these detectors. Even for a nearly
matter dominated era, the correlation function contains a
large term multiplied to the conformal factor through which
it survives under derivative actions. Potential presence of
such divergent terms in correlators in a matter dominated
era leads to observable signatures such as a large response

rate of the derivatively coupled UDW detectors, which we
see next.

III. DERIVATIVELY COUPLED
UDW DETECTORS

In this section, we analyze derivatively coupled UDW
detectors. A derivatively coupled UDW detector is just like
the conventional UDW detector except for the form of the
interaction with the quantum field which, in this case, is
given by the following Hamiltonian [7]

Hint ¼ cμ̂ðτÞχðτÞ_xσ∇σϕ̂ðxðτÞÞ

¼ cμ̂ðτÞχðτÞ d
dτ

ϕ̂ðxðτÞÞ; ð21Þ

where all the terms have the same meaning as in the
previous section and d

dτ ϕ̂ðxðτÞÞ is the derivative of the
quantum field with respect to the proper time along
the classical trajectory of the detector. Here dot in _xσ also
represents the derivative with respect to the proper time. If
we, again, consider the case in which the detector makes a
transition from some state j0iD to another state jΩiD which
have energies 0 and Ω, respectively, and the field starts in
some state jψi while it is allowed to go to any final state,
then the transition probability for this case, in first order
perturbation theory, is given by

P0→Ω ¼ c2jDhΩjμ̂ð0Þj0iDj2
ZZ

dτ1dτ2e−iΩðτ1−τ2Þχðτ1Þχðτ2Þ
d
dτ1

d
dτ2

Gðxðτ1Þ; xðτ2ÞÞ: ð22Þ

As in the previous section we are ultimately interested in FRW spacetimes. Therefore, we can go to the conformal
coordinates, i.e., dt ¼ aðηÞdη, and the above expression becomes
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FIG. 2. Variation of the response rate for a conventionally coupled UDW detector as a function of q. (a) The response rate diverges as q
approaches −2; i.e., matter dominated spacetime. Similarly (b) shows that the response rate diverges as q approaches 1, i.e., de Sitter
spacetime.
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P0→Ω ¼ c2jDhΩjμ̂ð0Þj0iDj2
Z

ηf

ηi

Z
ηf

ηi

dη1dη2e−iΩðτðη1Þ−τðη2ÞÞ
d
dη1

d
dη2

Gðxðη1Þ; xðη2ÞÞ: ð23Þ

We go to the ðη̃;ΔηÞ coordinates (defined in the previous section) to express the formulas for the rate of transition
probability. For η̃ ∈ ðηi; ðηi þ ηfÞ=2Þ, the response rate with respect to η̃ is given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dP0→Ω

dη̃
¼

Z
2ðη̃−ηiÞ

−2ðη̃−ηiÞ
dðΔηÞe−iΩðτðη̃þðΔηÞ=2Þ−τðη̃−ðΔηÞ=2ÞÞ

×

��
d
dη1

d
dη2

G

�
ðxðη̃þ ðΔηÞ=2Þ; xðη̃ − ðΔηÞ=2ÞÞ

�
; ð24Þ

whereas for η̃ ∈ ððηi þ ηfÞ=2; ηfÞ, the response rate is given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dP0→Ω

dη̃
¼

Z
2ðηf−η̃Þ

−2ðηf−η̃Þ
dðΔηÞe−iΩðτðη̃þðΔηÞ=2Þ−τðη̃−ðΔηÞ=2ÞÞ

×

��
d
dη1

d
dη2

G

�
ðxðη̃þ ðΔηÞ=2Þ; xðη̃ − ðΔηÞ=2ÞÞ

�
: ð25Þ

Here ½ð d
dη1

d
dη2

GÞðxðη̃þ ðΔηÞ=2Þ; xðη̃ − ðΔηÞ=2ÞÞ� denotes that we first calculate the double derivative with respect to η1 and
η2 and then express the resultant expression in ðη̃;ΔηÞ coordinates.
Let us now analyze the behavior of the response rate for these derivatively coupled UDW detectors for the same cases that

are considered in the previous section. For this purpose, we notice (refer Appendix B) that

d
dη1

d
dη2

GFRWðxðη1Þ; xðη2ÞÞ ¼ ðH2η1η2Þq−1
�
ðq − 1Þ2 G

dS

η1η2
þ ðq − 1Þ dG

dS

dy

�ðη1 − η2 − iϵÞð−2iϵÞ
η21η

2
2

�

þ d2GdS

dy2
yððη1 þ η2Þ2 þ ϵ2Þ

η21η
2
2

þ dGdS

dy
ðη21 þ η22 þ ϵ2Þ

η21η
2
2

�
: ð26Þ

Making use of the above expression, we study the behavior
of the response rate for derivatively coupled UDW detec-
tors and compare them with the analogous behavior of the
response rate for conventional UDW detectors investigated
in the previous section.
Before we come to the finite time response rate of these

derivatively coupled UDW detectors, we discuss the Ω
and H dependences of the infinite time response rate of
these detectors. It is argued in Appendix A that the
infinite time response rate for derivatively coupled UDW
detectors in FRW spacetimes has the following Ω and H
dependences

1

c2jDhΩjμ̂ð0Þj0iDj2
dP0→Ω

dη̃
∝ Ω2ðΩH−qÞ 1

1−q: ð27Þ

Thus, we see that theΩ dependence of the response rate has
an extra Ω2 factor compared to the conventional UDW
detector coupling. But as far as theH dependence goes, it is
the same as in the case of conventionally coupled UDW
detectors. For q ∈ ð−2; 0Þ, the response rate increases with
increasing value of H whereas for q ∈ ð0; 1Þ, the response

rate decreases with increasing value of H. Since the Ricci
scalar, R ∝ H2q, this implies that for the considered space-
times, the Ricci scalar and the response rate behave
opposite to each other as a function of H. Like in the
previous section, the above expression tells that the rates
are maximally enhanced by H for de Sitter and matter
dominated cases depending upon whetherH < 1 or > 1. In
fact, in the derivatively coupling case, the proportionality
constant contains the infrared divergent term only for
matter dominated spacetime but not for de Sitter spacetime.
Hence, unlike in the previous section, it is only the matter
dominated case which shows the divergently rapid rate but
not the de Sitter case. To investigate it further, let us now
turn to the finite time response rates for these derivatively
coupled detectors.

A. Nearly massless scalar fields
in de Sitter spacetime

Let us now analyze the response rate of UDW detectors
that are derivatively coupled with nearly massless scalar
fields in de Sitter spacetime. Since it is the double
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derivative of the Wightman function that enters the
expression for the response rate, Eq. (23), and the fact
that the 1=δ term in the Wightman function, Eq. (11), does
not have any spacetime dependence, this implies that the
1=δ term (which is responsible for the divergent response
rate for conventional UDW detectors in the vanishing mass

limit of this setting) does not contribute to the expression of
the response rate for derivatively coupled UDW detectors.
To obtain the response rate, we substitute Eq. (26) in
Eq. (24) with q ¼ 1 and GdS given by Eq. (11). Doing that
we find that the rate of transition probability, for
η̃ ∈ ðηi; ðηi þ ηfÞ=2Þ, is given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dPdS

0→Ω
dη̃

¼ H2

4π2

Z
2ðη̃−ηiÞ

−2ðη̃−ηiÞ
dðΔηÞ

�
η̃þ ðΔηÞ=2
η̃ − ðΔηÞ=2

�iΩ
H 1

ðΔη − iϵÞ4 ð6ðη̃
2 − ðΔηÞ2=4Þ

þ 2ϵ2 þ 2iϵðΔηÞÞ þOðδÞ: ð28Þ

Hence, the response rate for this case does not inherit the
infrared divergence of the massless scalar fields in de Sitter
spacetime and the derivatively coupled UDW detectors do
not experience divergently fast transitions among their
internal quantum levels as the mass of the field approaches
zero. As in the previous section, we demonstrate the
behavior of the response rate for this case by numerically
plotting its expression, Eq. (28), for some specific values of

the parameters entering in the expression. To that end,
for the considered setting, Fig. 3(a) shows the variation of
the response rate as a function of the energy gap, Ω, for a
UDW detector which is derivatively coupled with a field
for which δ ¼ 0.001. In the plot, negative values of Ω
correspond to the deexcitation of the detector from higher
energy levels to the lower energy levels while the positive
values ofΩ correspond to the opposite case. The absence of
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FIG. 3. Variation of the response rate for a derivatively coupled UDW detector as a function of Ω.
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the signature of infrared divergence of massless scalar
fields in de Sitter spacetime in the above response rate is
expected for physical operators like derivative operators
[49]. But, as we will see below, the infrared divergence of
massless scalar fields in certain FRW spacetimes may still
show up even with these physical derivative couplings.

B. Massless scalar fields in radiation
dominated spacetime

In this subsection, we consider derivative coupling of
UDW detectors with massless scalar fields in radiation
dominated spacetime, i.e., q ¼ −1 case. Therefore, using
Eq. (26), we obtain

d
dη1

d
dη2

GradðxðηÞ; xðη0ÞÞ ¼ ðH2η1η2Þ−2
�
−4

H2

4π2ðη1 − η2 − iϵÞ2 −
4H2iϵðη1 − η2 − iϵÞ
4π2ðη1 − η2 − iϵÞ4

þ 2H2ððη1 þ η2Þ2 þ ϵ2Þ
4π2ðη1 − η2 − iϵÞ4 −

H2ðη21 þ η22 þ ϵ2Þ
4π2ðη1 − η2 − iϵÞ4

�
: ð29Þ

The response rate with respect to η̃, for η̃ ∈ ðηi; ðηi þ ηfÞ=2Þ, is given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dPrad

0→Ω
dη̃

¼
Z

2ðη̃−ηiÞ

−2ðη̃−ηiÞ
dðΔηÞ e

−iΩHη̃ðΔηÞ

H2π2
1

ðη̃2 − ðΔηÞ2=4Þ2
�
−

1

ðΔη − iϵÞ2 −
iϵ

ðΔη − iϵÞ3

þ ð4η̃2 þ ϵ2Þ
2ðΔη − iϵÞ4 −

ð2η̃2 þ ðΔηÞ2=2þ ϵ2Þ
4ðΔη − iϵÞ4

�
: ð30Þ

The above expression for the response rate can be argued to
be finite by using essentially the same arguments as were
used in the previous section. Thus, for a UDW detector
that is derivatively coupled with massless scalar fields
in radiation dominated spacetime, the rate of transitions
within the internal quantum states of the detector are finite
just like for a conventionally coupled UDW detector in the
similar setting. Figure3(b) shows thevariation of the response
rate as a function of the energy gap between the levels
betweenwhich the detector makes the transition. Figures 3(a)
and 3(b) clearly show that the vacuum deexcitation rate for
both de Sitter and radiation dominated spacetimes is more
prominent compared to the excitation rate.

C. Massless scalar fields in nearly matter
dominated spacetimes

In this subsection, we analyze the behavior of UDW
detectors that are derivatively coupled with massless scalar

fields in nearly matter dominated spacetimes. For this case,
the 1=δ term has, unlike the case of nearly massless scalar
fields in de Sitter spacetime, spacetime dependence and
hence it does not disappear under the action of double
time derivatives appearing in the expression of the response
rate Eq. (24) or Eq. (25). In fact, using the expression
Eq. (18) for the Wightman function and the relation
between the comoving and conformal time coordinates
for this case, i.e.,

t ¼ H2η3e−δðlnðHηÞÞ

3 − δ
¼ H2η3

3

�
1þ δ

3
− δ lnðHηÞ

�
þOðδ2Þ;

ð31Þ

in the expression Eq. (24) for the response rate, we obtain
that the response rate, for η̃ ∈ ðηi; ðηi þ ηfÞ=2Þ, is given by

1

c2jDhΩjμ̂ð0Þj0iDj2
dPmatter

0→Ω
dη̃

¼ 1

δ

�
9

8H4π2

Z
2ðη̃−ηiÞ

−2ðη̃−ηiÞ
dðΔηÞe−iΩH2ð3η̃2þðΔηÞ2=ð4ÞÞðΔηÞ

3
1

ðη̃2 − ðΔηÞ2=4Þ4
�
þOðδ0Þ: ð32Þ

From the above expression, we see that the leading order
term in the δ → 0 limit is 1=δ and it leads to very large
transition rates among the internal quantum states of a
UDW detector. Thus, the response rate for UDW detectors
which are derivatively coupled with massless fields in
nearly matter dominated spacetimes manifests the infrared
divergence of the corresponding nearly massless scalar
fields in de Sitter spacetime. This is, in contrast, to the

response rate for UDW detectors which are derivatively
coupled with nearly massless fields in de Sitter spacetime
where, as we saw, the infrared divergence of the massless
limit case is cured by the time derivatives of the Wightman
function present in the expression of the response rate
Eq. (23) and the fact that the infrared divergence, in that
case, is spacetime independent. In order to demonstrate the
behavior of the response rate for the present case, we plot
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the response rate numerically for a set of values for the
parameters which appear in its expression. Figure 3(c)
shows the variation of the response rate as a function of the
energy gap, Ω. We observe that in this case, unlike the
previous two cases where there was no symmetry between
the excitation and deexcitation behaviors, the response rate
shows similar behavior both for excitations and deexcita-
tions, at least, for small Ω. This is also apparent from the
expression Eq. (32) in which the leading order term is
invariant under the change of sign of Ω and thus we expect
that the behavior of the response rate should be invariant
under the change of sign of Ω in the δ → 0 limit. At larger
Ω, the subdominant terms grow larger and the vacuum
deexcitation again takes over breaking the Ω → −Ω sym-
metry but for small Ω, the rates are symmetric to a good
extent. Thus the derivatively coupled UDW detector with
small Ω behaves as if it is put in a large temperature
thermal bath where both excitation and deexcitation rates
are similar.
In Fig. 4 we plot the variation of the response rate as a

function of q for a set of values for other parameters that go
into the expression of the response rate for derivatively
coupled UDW detectors. We observe, as has been argued
above, that the response rate shows divergent behavior as q
approaches −2 but remains finite as q approaches 1. Like
mentioned above, this is in contrast to the behavior of the
response rate for conventionally coupled UDW detectors
for which the response rate diverges as q approaches both
−2 and 1 (see Fig. 2). This analysis of UDW detectors
which are either conventionally or derivatively coupled
with massless fields in FRW spacetimes helps us gain

important insights into the correlations of quantum fields in
FRW spacetimes and showed that such detectors effectively
capture the late time growth of quantum correlators. This
study has, until now, mostly looked at the formal aspects
of quantum fields in FRW spacetimes. In the next section,
we discuss the applicability of these results for physical
systems where UDW type of coupling arises.

IV. IMPLICATIONS

A. Stress-energy tensor coupling with detectors

Let us look at the implications of the above study to a
specific type of UDW coupling where, instead of coupling
particle detectors with the quantum field, one couples them
linearly with the stress energy tensor of the quantum field
[63], i.e.,

HI ¼ cχðτÞμ̂αβðτÞT̂αβðxðτÞÞ; ð33Þ

where μ̂αβ determines the transitions in the internal quan-
tum space of the detector and T̂αβ is the stress energy
operator of the quantum field with which the detector
couples by the above interaction Hamiltonian.
If we again consider the case in which the detector goes

from some state j0iD to another state jΩiD which have
energies 0 and Ω, respectively, and the field starts in some
state jψiwhile it is allowed to go to any final state, then the
transition probability for this case, in first order perturba-
tion theory, is given by

P0→Ω ¼ c2DhΩjμ̂αβð0Þj0iDDhΩjμ̂γδð0Þj0i�D
ZZ

dτ1dτ2e−iΩðτ1−τ2Þχðτ1Þχðτ2Þhψ jT̂αβðxðτ1ÞÞT̂γδðxðτ2ÞÞjψi: ð34Þ
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FIG. 4. Variation of the response rate for a derivatively coupled UDW detector as a function of q. (a) The response rate diverges as q
approaches −2; i.e., derivatively coupled UDW detectors manifest infrared divergence for matter dominated spacetime. However,
(b) shows that the response rate is finite for all q ∈ ð0; 1Þ, i.e., the infrared divergence of de Sitter spacetime disappears for derivatively
coupled detectors.
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Thus, we find that the transition probability (and hence, the
response rate) depends on the correlations of the stress
energy tensors between the points lying on the trajectory
of the detector. Hence, the response rate of stress energy
UDW detectors records the cumulative correlations of
stress energy operators along the trajectory of the detectors.
Such correlations of stress energy operators have also been
previously studied for FRW spacetimes but in different
contexts [47,64,65].
We now argue that the above expression leads to similar

type of conclusions that we have obtained for derivatively
coupled UDW detectors. For this purpose, we note that the
stress energy operator for a massless scalar field in an FRW
spacetime is given by

T̂αβðxÞ ¼ ∂αϕ̂ðxÞ∂βϕ̂ðxÞ −
1

2
δαβ∂

σϕ̂ðxÞ∂σϕ̂ðxÞ: ð35Þ

We can write it in the following point-split form:

T̂αβðxÞ ¼ lim
y→x

Pαβðx; yÞðϕ̂ðxÞϕ̂ðyÞÞ; ð36Þ

where

Pαβðx; yÞ ¼ ∂
ðxÞ
α ∂

ðyÞ
β −

1

2
δαβ∂

σðxÞ
∂
ðyÞ
σ : ð37Þ

The superscripts (x) and (y) have been put to denote that the
corresponding operators act only the field with the same
spacetime argument in the point-split form.
Using the above point-split form of the stress energy

tensor and taking jψi to be a vacuum state j0i, we can write
the stress energy correlator as follows

h0jT̂αβðxÞT̂γδðx0Þj0i ¼ lim
y→x

lim
y0→x0

Pαβðx; yÞPγβðx0; y0Þh0jϕ̂ðxÞϕ̂ðyÞϕ̂ðx0Þϕ̂ðy0Þj0i: ð38Þ

The four point correlator of the field operators can be written as a sum of products of Wightman functions using the Wick’s
theorem [47]. In fact, we obtain

h0jT̂αβðxÞT̂γδðx0Þj0i ¼ 2lim
y→x

lim
y0→x0

Pαβðx; yÞPγβðx0; y0ÞðGðx; x0ÞGðy; y0ÞÞ; ð39Þ

where we have dropped the UV divergent Gðx; yÞGðx0; y0Þ
term on the account of its contribution vanishing in
the computation of the UDW response rates as has been
argued in [63]. Therefore, we have derivative operators
acting on a product of Wightman functions. Thus, we have
a generalized version of the derivative coupling that we
encountered in the previous section. Earlier, we had only
time derivatives of one Wightman function determining the
transition probability and the response rate, but here in this

case we have all types of derivative operators acting on
product of two Wightman functions. Thus, if there is
any spacetime independent infrared divergent term appear-
ing in the Wightman function, then it is cured by the
derivative operators. However, the spacetime dependent
infrared divergent terms still make contributions to the
response rate and even dominate the response rates. In
order to demonstrate this, let us expand the above ex-
pression, i.e.,

h0jT̂αβðxÞT̂γδðx0Þj0i ¼
�
∂β∂

0
γGðx; x0Þ∂α∂0δGðx; x0Þ þ ∂β∂

0
δGðx; x0Þ∂α∂0γGðx; x0Þ − ηγδη

ρσ
∂α∂

0
ρGðx; x0Þ∂β∂0σGðx; x0Þ

− ηαβη
ρσ
∂ρ∂

0
γGðx; x0Þ∂σ∂0δGðx; x0Þ þ

1

2
ηαβη

μνηγδη
ρσ
∂μ∂

0
ρGðx; x0Þ∂ν∂0σGðx; x0Þ

�
: ð40Þ

If we specialize to a class of such detectors with internal states for which only hΩjμ̂00j0iD survives while all other
components cross elements are zero, what we have effectively is the energy coupled UDW detectors in which the response
rate depends upon the energy-energy correlator. For such detectors, the relevant correlator is given by

h0jT̂00ðxÞT̂00ðx0Þj0i ¼
1

2
ð∂0∂00Gðx; x0Þ∂0∂00Gðx; x0Þ þ ∂0∂

0
kGðx; x0Þ∂0∂0kGðx; x0Þ

þ ∂k∂
0
0Gðx; x0Þ∂k∂00Gðx; x0Þ þ δkpδln∂k∂

0
lGðx; x0Þ∂p∂0nGðx; x0ÞÞ: ð41Þ
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For massless scalar fields in nearly matter dominated
spacetimes, the Wightman function is given by Eq. (18),
from which we see that, since the infrared divergent term
has only time dependent factors, the spatial derivatives
remove the 1=δ term and the only term contributing 1=δ is
the all time derivatives term. Therefore, we obtain that

h0jT̂00ðxÞT̂00ðx0Þj0i ¼
1

δ2
1

128π4H8

81

ðη1η2Þ8
þOðδ−1Þ:

ð42Þ

Thus, we see that the time dependent infrared divergent
term survives the derivative operators and it contributes
dominantly to the response rate. When δ is taken very close
to zero, then the above 1=ðδÞ2 term will dominate the
response rate. In the case of nearly massless scalar fields in
de Sitter spacetime, we need to be a bit careful as there
would be a corresponding mass term in the stress energy
operator expression which would not have any derivative
operators in it. The additional mass term in the stress energy
tensor also cures the infrared divergent term as this term
would multiply the inverse mass square term of the
Wightman function in Eq. (17) and remove the divergent
characteristic arising because of the massless limit. Thus,
we conclude that, even though the technical details of
stress energy coupled UDW detectors differ from the
derivatively coupled UDW detectors of the previous
section, the remarks made in the previous section regard-
ing the contribution of infrared divergent terms to the
response of derivatively coupled UDW detectors more or
less apply to the present case of stress energy coupled
UDW detectors.

B. Coupling of hydrogen atoms
with gravitational waves

This section explores the application of the above
discussed results to the dynamics of an atom in a general
curved spacetime with spacetime metric gμν. To that end,
we follow the treatment given in [52] which assumes that
the center of mass of the atom moves along a classical
timelike geodesic. To proceed further, one then builds
Fermi normal coordinates (FNCs) around this “central”
geodesic of the center of mass (see Fig. 5). In FNCs, for a
point lying on the central geodesic, the time coordinate is
taken to be the proper time along the central geodesic and
the spatial coordinates are taken to be zero. For a spacetime
point, P, lying off the central geodesic, the time coordinate
is taken to be the proper time of point G, along the central
geodesic at which the unique spacelike geodesic from
the point, P, intersects the central geodesic orthogonally.
The spatial coordinates for point P, xi ¼ svi, where s is the
proper time along the unique spacelike geodesic from G to
P and vi is the tangent to this geodesic at pointG. Using the
above construction, the internal structure of the atom, in

the nonrelativistic limit, is shown (see Appendix C) to be
governed by the following Schrödinger equation form [52]�
i
∂

∂t
−m

�
ψ ¼

�
−

1

2m
∇2 −

ζ

r
þ 1

2
mR0l0mxlxm

�
ψ ; ð43Þ

where R0l0m are the Riemann tensor components express-
ing the curvature induced corrections to the flat spacetime
Schrödinger equation with the central Coulomb potential of
the nucleus. The curvature corrections are considered only
upto 2nd order in FNCs. The Riemann tensor components
are evaluated on the central geodesic in FNCs and can be
related to the Riemann tensor components, Rarbitrary

μνγδ , in any
arbitrary coordinate system by the relation

RFNC
abcd ¼ Rarbitrary

μνγδ e⃗μae⃗νbe⃗
γ
ce⃗δd; ð44Þ

where e⃗μa are a set of orthonormal basis parallel transported
along the central timelike geodesic. The e⃗μ0 is the tangent
vector field along the central geodesic.
In the following, the curvature effects of FRW space-

times are considered on an atom. After that by introducing
metric perturbations over FRW spacetimes, we discuss if
there are any observable effects of these perturbations on
the atom.

1. FRW spacetimes with no perturbation

For this analysis, the center of mass of the atom is taken
to move along comoving trajectories in a flat FRW
spacetime [with scale factor being aðηÞ]. For comoving

FIG. 5. This figure captures the construction of Fermi normal
coordinates. Here, γ is some timelike geodesic about which we
construct FNCs. P is some point in the spacetime which intersects
γ orthogonally at point G via the unique spacelike geodesic Γ. vi
are the components of the tangent vector to Γ at point G.
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observers, the spatial coordinates are fixed, i.e., xμðtÞ ¼
ðηðtÞ; ciÞ and the tangent vector field is given by

dxμ

dt
¼

�
1

a
; 0

�
: ð45Þ

A set of orthonormal bases, which are parallel trans-
ported along these comoving geodesics, can be taken as
follows:

e⃗μ0 ¼
1

a
ð1; 0; 0; 0Þ; e⃗μ1 ¼

1

a
ð0; 1; 0; 0Þ;

e⃗μ2 ¼
1

a
ð0; 0; 1; 0Þ; e⃗μ3 ¼

1

a
ð0; 0; 0; 1Þ: ð46Þ

The relevant Riemann tensor components in FNCs, using
the relation

RFNC
0l0m ¼ RCon

μνγδe⃗
μ
0e⃗

ν
l e⃗

γ
0e⃗

δ
m; ð47Þ

are given by the relation RFNC
0l0m ¼ RCon

0l0m=a
4. Using the form

of the Riemann tensor components in conformal coordi-
nates, i.e., RCon

0l0m ¼ −δlmðaa00 − a02Þ, one finds that

RFNC
0l0m ¼ −δlm

1

a4
ðaa00 − a02Þ; ð48Þ

where 0 denotes a derivativewith respect to conformal time.
Thus, the interaction Hamiltonian is given by

HI ¼ −
m
2

ä
a
r2; ð49Þ

where _denotes a derivative with respect to comoving time
coordinate.
With the above interaction Hamiltonian, the transition

probability, up to first order in perturbation theory, for the
atom to go from some state ψnlm to ψn0l0m0 under the
comsological expansion of FRW spacetimes is given by

Pψnlm→ψn0 l0m0 ¼
m2

4
jhψn0l0m0 jr2jψnlmij2

Z
ηf

ηi

dη1

Z
ηf

ηi

dη2e−iΩðtðη1Þ−tðη2ÞÞ
1

a1a2

�
a001
a1

−
a021
a21

��
a002
a2

−
a022
a22

�
; ð50Þ

where Ω ¼ En0l0 − Enl is the energy difference between the two states.
Because of the isotropic form of the interaction Hamiltonian, the transition probability is found to be zero, at least up to

the order under consideration, for the cases in which the atom makes a transition between states with different spherical
harmonics. More precisely, we see that

hψn0l0m0 jr2jψnlmi ¼
Z

dr r4R�
n0l0 ðrÞRnlðrÞ

Z Z
sin θ dθ dϕYm0�

l0 ðθ;ϕÞYm
l ðθ;ϕÞ; ð51Þ

and because of the orthonormality of the spherical har-
monics, the above integral vanishes for mismatching ðm; lÞ
and ðm0; l0Þ. Selection rules corresponding to the detector
terms like x̂ix̂k are discussed in Appendix D.
This is something that is expected because the cosmo-

logical expansion in FRW spacetimes respects the spherical
symmetry of the spatial slices for all times. Another
important thing to notice is that these transitions are caused
by the classical expansion of the FRW spacetimes, we have
not assumed anything quantum about the spacetime.
Therefore, if it is found that the quantized tensorial metric
perturbations over FRW spacetimes can cause transitions
between states of the hydrogen atoms that have different
spherical harmonics, then the observations of these tran-
sitions with non trivial change of spherical harmonics
would be a purely quantum effect.

2. Perturbed FRW spacetimes

Now let us consider the case of perturbed FRW space-
times, i.e.,

ds2 ¼ a2ðηÞðημν þ hμνÞdxμdxν: ð52Þ

The perturbation in the FRW metric results in the pertur-
bations to the comoving geodesics of the FRW spacetimes.
In fact, it can be shown (see [66]) that the set of parallel
transported orthonormal basis up to first order in h is
given by

e⃗μ0 ¼
1

a

�
1þ h00

2
; V0i

�
; ð53Þ

e⃗μi ¼
1

a

�
V0i þ h0i; δ

j
i −

hji
2
þ 1

2
ϵjki ωk

�
; ð54Þ

where V0i;ωk denote perturbations to the comoving
geodesics along with the other factors of hμν and they
are given by

V 0
0i þ

a0

a
V0i ¼

1

2
∂ih00 − h00i −

a0

a
h0i; ð55Þ
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ω0
k ¼ −

1

2
ϵijk ð∂ihoj − ∂jhoiÞ: ð56Þ

Though one can study the effect of all of scalar, vector, and
tensor perturbations, here we consider the case of gravi-
tational waves only for which h00 ¼ h0i ¼ 0 and hij is such
that hijδij ¼ 0 and δki∂khij ¼ 0. This implies that V0i ¼
ωk ¼ 0 and the perturbed vierbeins are given by

e⃗μ0 ¼
1

a
ð1; 0Þ; ð57Þ

e⃗μi ¼
1

a

�
0; δji −

hji
2

�
: ð58Þ

Thus, the tangent vector field to the perturbed geodesic is
not affected up to first order in h and hence the proper time
for the geodesic is just the cosmic time up to first order and
the spatial coordinates are also fixed up to first order in h,
i.e., xμðtÞ ¼ ðηðtÞ; ciÞ up to first order in h.
Now using these orthonormal basis vector fields,

we can convert the Reimann tensor from conformal

coordinate system to the Fermi normal coordinates by
the relation

RFNC
abcd ¼ RCon

μνγδe⃗
μ
ae⃗νbe⃗

γ
ce⃗δd: ð59Þ

Particularly,

RFNC
0l0m ¼ RCon

μνγδe⃗
μ
0e⃗

ν
l e⃗

γ
0e⃗

δ
m

¼ 1

a4
RCon
0k0p

�
δkl −

hkl
2

��
δpm −

hpm
2

�
: ð60Þ

The Riemann tensor components relevant for our purposes,
in conformal coordinates, are given (can be obtained from
expressions given in [67,68]) by

RCon
0l0m ¼ −δlmðaa00 − a02Þ − ðaa00 − a02Þhlm

−
aa0

2
h0lm −

a2

2
h00lm: ð61Þ

Using this, the relevant Riemann tensor components in the
FNCs are given by

RFNC
0l0m ¼ 1

a4

�
−δkpðaa00 − a02Þ − ðaa00 − a02Þhkp −

aa0

2
h0kp −

a2

2
h00kp

��
δkl −

hkl
2

��
δpm −

hpm
2

�

¼ 1

a4

�
−δlmðaa00 − a02Þ − aa0

2
h0lm −

a2

2
h00lm

�
þOðh2Þ: ð62Þ

Thus the above expression for the relevant Riemann
components implies that the interaction Hamiltonian is

HI ¼
m
2

1

a4

�
−δlmðaa00 − a02Þ − aa0

2
h0lm −

a2

2
h00lm

�
xlxm

¼ m
2

�
−δlm

ä
a
−

_a
a
_hlm −

1

2
ḧlm

�
xlxm ¼ m

2
Hlmxlxm:

ð63Þ

Here 0 again denotes a derivative with respect to conformal
time, η, and _ denotes a derivative with respect to comoving
time, t. Here Hlm ¼ ð−δlmðä=aÞ − ð _a=aÞ _hlm − ð1=2ÞḧlmÞ.
Now let us consider the case in which an atom makes a

transition from ψnlm to ψn0l0m0 while the tensor perturbation
starts in an initial vacuum state and is allowed to go to any
arbitrary final state. The transition probability for this case
is given by

Pψnlm→ψn0 l0m0 ¼
m2

4
hψn0l0m0 jx̂ix̂jjψnlmi�hψn0l0m0 jx̂px̂kjψnlmi

×
Z

ηf

ηi

dη1

Z
ηf

ηi

dη2e−iΩðtðη1Þ−tðη2ÞÞaðη1Þaðη2Þh0jĤijðc⃗; η1ÞĤpkðc⃗; η2Þj0i; ð64Þ

where Ω ¼ En0l0 − Enl is the energy difference between the
two atomic states and c⃗ represents the fixed spatial
coordinates for the comoving trajectory along which the
atom is moving. In the absence of hμν, we recover the case
of purely classical expansion of FRW spacetimes of the
previous subsection and hence cannot have transitions

between eigenfunctions corresponding to different spheri-
cal harmonics. However, with gravitational waves, we
expect to have transitions with nontrivial change in
spherical harmonics.
The tensor perturbations in FRW spacetimes satisfy the

following equation of motion [25]:
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h00lm þ 2
a0

a
h0lm −∇2hlm ¼ 0; ð65Þ

which is just the same equation as that of a massless
scalar field in FRW spacetimes. Using the fact that there
are only two independent polarization states of gravita-
tional waves in an FRW spacetime and they follow the
same equation of motion as that of a massless scalar
field evolving on the same FRW spacetime, one can say
that the dynamics of tensor perturbations is equivalent
to two massless scalar fields over the considered FRW
spacetime.
Using this, the Hlm can be written as

Hlm ¼ −
δlm
a4

ðaa00 − a02Þ þ 1

a4

�
aa0

2

∂

∂η
−
a2

2
∇2

c⃗

�
hlmðη; c⃗Þ:

ð66Þ

The quantized tensor perturbations can be expanded in
terms of mode functions as

ĥijðc⃗; ηÞ ¼
X
λ¼þ;×

Z
d3q⃗eijðq̂; λÞðeiq⃗:c⃗hqðηÞb̂q⃗;λ

þ e−iq⃗:c⃗h�qðηÞb̂†q⃗;λÞ; ð67Þ

where λ ¼ þ;× refer to two polarization states and c⃗ is
the constant spatial vector for the considered comoving
trajectories. The eijðq⃗; λÞ0s satisfy [25]

X
λ¼þ;×

eijðq̂; λÞeklðq̂; λÞ ¼ δikδjl þ δilδjk − δijδkl þ δijq̂kq̂l

þ δklq̂iq̂j − δikq̂jq̂l − δilq̂jq̂k

− δjkq̂iq̂l − δjlq̂iq̂k þ q̂iq̂jq̂kq̂l:

ð68Þ

Also, b̂q⃗;λ and b̂
†
q⃗;λ are the annihilation and creation operators

for a state with wave vector, q⃗, and polarization, λ. The time
dependent part, hqðηÞ, of the mode functions satisfy

h00qðηÞ þ 2
a0

a
h0qðηÞ þ q2hqðηÞ ¼ 0; ð69Þ

and hence the time evolution is independent of the direction
of thewavevector and polarization state. Let us now consider
a transition between states with different spherical harmon-
ics. For these transitions, many terms drop out. In particular,
the term proportional to δlm inHlm drops out and we see that,
using Eq. (66), the vacuum expectation of the product of
gravitational fields appearing in the formula for transition
probability is given by

lim
c⃗1→c⃗2

h0jĤijðc⃗1; η1ÞĤpkðc⃗2; η2Þj0i ¼ lim
c⃗1→c⃗2

1

a41

�
a1a01
2

∂

∂η1
−
a21
2
∇2

c⃗1

�
1

a42

�
a2a02
2

∂

∂η2
−
a22
2
∇2

c⃗2

�
h0jĥijðc⃗1; η1Þĥpkðc⃗2; η2Þj0i:

ð70Þ

Using the Fourier expansion of gravitational waves, i.e., Eq. (67) and the commutation relations between creation and
annihilation operators, one has

h0jĥijðc⃗1; η1Þĥpkðc⃗2; η2Þj0i ¼
X
λ¼þ;×

Z
d3q⃗eijðq̂; λÞepkðq̂; λÞeiq⃗:ðc⃗1−c⃗2Þhqðη1Þh�qðη2Þ

¼
Z

d3q⃗

� X
λ¼þ;×

eijðq̂; λÞepkðq̂; λÞ
�
eiq⃗:ðc⃗1−c⃗2Þhqðη1Þh�qðη2Þ: ð71Þ

Using Eq. (68) and replacing every factor of qi in it by a partial derivative with respect to spatial coordinates
outside the integral sign, the above Wightman function of gravitational waves can be written as a sum of
products of Kronecker delta’s and spatial partial derivatives acting on the Wightman function of some scalar
field, i.e.,

h0jĥijðc⃗1; η1Þĥpkðc⃗2; η2Þj0i ¼
�
δipδjk þ δikδjp − δijδpk þ δij

∂c⃗1p∂c⃗1k

∇2
c⃗1

þ δpk
∂c⃗1i∂c⃗1j

∇2
c⃗1

− δip
∂c⃗1j∂c⃗1k

∇2
c⃗1

− δik
∂c⃗1j∂c⃗1p

∇2
c⃗1

− δjp
∂c⃗1i∂c⃗1k

∇2
c⃗1

− δjk
∂c⃗1i∂c⃗1p

∇2
c⃗1

þ ∂c⃗1i∂c⃗1j∂c⃗1p∂c⃗1k

∇2
c⃗1
∇2

c⃗1

�Z
d3q⃗eiq⃗:ðc⃗1−c⃗2Þhqðη1Þh�qðη2Þ: ð72Þ

Looking at Eqs. (64), (70), and (72), we notice that the coupling of gravitational waves with atoms has a structure similar to
that of UDW detectors which are derivatively coupled with quantum fields Eq. (22). In this case, derivatives with respect to
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spatial coordinates also appear in addition to derivative with respect to time coordinate. Finally, using Eqs. (64), (70), and
(72), the transition probability between states with different spherical harmonics is given by

Pψnlm→ψn0 l0m0 ¼
m2

4
hψn0l0m0 jx̂ix̂jjψnlmi�hψn0l0m0 jx̂px̂kjψnlmi lim

c⃗1→c⃗2

Z
ηf

ηi

dη1

Z
ηf

ηi

dη2e−iΩðtðη1Þ−tðη2ÞÞ

×
1

a31

�
a1a01
2

∂

∂η1
−
a21
2
∇2

c⃗1

�
1

a32

�
a2a02
2

∂

∂η2
−
a22
2
∇2

c⃗2

��
δipδjk þ δikδjp − δijδpk þ δij

∂c⃗1p∂c⃗1k

∇2
c⃗1

þ δpk
∂c⃗1i∂c⃗1j

∇2
c⃗1

− δip
∂c⃗1j∂c⃗1k

∇2
c⃗1

− δik
∂c⃗1j∂c⃗1p

∇2
c⃗1

− δjp
∂c⃗1i∂c⃗1k

∇2
c⃗1

− δjk
∂c⃗1i∂c⃗1p

∇2
c⃗1

þ ∂c⃗1i∂c⃗1j∂c⃗1p∂c⃗1k

∇2
c⃗1
∇2

c⃗1

�Z
d3q⃗eiq⃗:ðc⃗1−c⃗2Þhqðη1Þh�qðη2Þ: ð73Þ

Let us now look at some of the implications of this result.
First, we notice that, since only the transitions between
atomic states with different spherical harmonics are con-
sidered, the contribution to the transition probability from
the classical expansion of the FRW backgrounds is not
there and such transitions are, in this sense, exclusively the
result of the quantum fluctuations of the metric perturba-
tions. To be able to say more from the above expression, the
quantum state needs to be specified in which the tensor
perturbations are placed. Since the dynamics of tensor
perturbations over an FRW spacetime is equivalent to the
dynamics of two massless scalar fields over the same FRW
spacetime, we can make use of the properties of massless
scalar fields in FRW spacetimes to analyze our case. For
example, the integral in the above expression can be taken
to be the Wightman function Eq. (7) that was used for
discussions in Secs. II and III. One can look at many
aspects of the above formula with the mentionedWightman
function but one potentially important implication are the
very fast transitions of electrons within the atomic states of
the hydrogen atom when it passes through the phases of the
universe that are nearly matter dominated. This can be
immediately seen by recalling what we have studied about
massless scalar fields in nearly matter dominated space-
times which are derivatively coupled with UDW detectors.
The fact that the 1=δ term in the Wightman function
Eq. (18) has spacetime dependence and it does not vanish
under time derivatives, implies that the 1=δ term provides
the dominant contribution to the response rate in the δ → 0
limit. This observation can have potentially important
implications in late time era of the expansion of the
universe, which we discuss in a related work.

V. SUMMARY

This work has analyzed the response rate of Unruh
DeWitt detectors that couple to quantum scalar fields in
FRW spacetimes. We have looked at the case of both
conventionally and derivatively coupled UDW detectors. In
order to carry out this task, an equivalence [32] has been
employed that exists between massless scalar fields in FRW
spacetimes with massive scalar fields in de Sitter spacetime

and the fields of FRW spacetimes have been placed in the
Bunch Davies like vacuum of the corresponding massive
scalar fields of de Sitter spacetime. We have also provided a
few examples, i.e., the stress energy coupled UDW
detectors and the interaction of hydrogen atoms with
gravitational waves in FRW spacetimes, where a deriva-
tively coupled UDW detectorlike interaction appears and
one can carry over the analysis of derivatively coupled
UDW detectors to these examples. The main results of this
work can be summarized as follows:

(i) Response rate of conventionally coupled UDW
detectors: First, we look at the coupling of a
conventional UDW detector with massless scalar
fields in FRW spacetimes and nearly massless scalar
fields in de Sitter spacetime. It has been argued that
for massless scalar fields in considered FRW space-
times, the infinite time response rate increases with
increasing H for q ∈ ð−2; 0Þ whereas it decreases
with increasing H for q ∈ ð0; 1Þ. We also consider
the finite time response rate for these cases. For
nearly massless scalar fields in de Sitter spacetime,
the term that gives rise to the infrared divergence in
the massless limit at the level of the Wightman
function manifests itself at the response rate level
and provides the dominant contribution to the
response rate in the massless limit. Since the mass-
less fields in the nearly matter dominated case are
conformally related to the nearly massless scalar
fields in de Sitter spacetime (by the equivalence
between fields in FRWand de Sitter spacetimes), the
infrared divergence of the de Sitter case is inherited
by the nearly matter dominated spacetimes and
because of this fact, the response rate of UDW
detectors coupled with massless fields in nearly
matter dominated spacetimes also possess an infra-
red divergent term that dominates the response rate
in the spacetimes going to the matter dominated
limit. We analyze the response rate of UDW detec-
tors for some other FRW spacetimes also but the
mentioned divergence occurs for the de Sitter and
matter dominated spacetimes.
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(ii) Response rate of derivatively coupled UDW detec-
tors: Next, we analyze the behavior of the response
rate of UDW detectors that are derivatively coupled
to massless scalar fields in FRW spacetimes and
nearly massless scalar fields in de Sitter spacetime. It
is found that the infinite time response rate for this
derivatively coupled case has the same dependence
on H as for the conventional UDW case. We then
take up the case of finite time response rate. Unlike
in the case of conventional UDW detectors, the term
which gives rise to infrared divergence in the
massless limit for scalar fields in de Sitter spacetime
does not contribute to the response rate. However,
for massless scalar fields in nearly matter dominated
spacetimes, the corresponding term contributes to
the response rate and leads to faster and faster
transition rates as the spacetimes approach to the
matter dominated limit. As argued above, the reason
for this is the fact that the response rate for
derivatively coupled UDW detectors depends on
the derivatives of the Wightman function and the
infrared divergent term for de Sitter case does not
have any spacetime dependence and hence it van-
ishes under the action of derivatives. Whereas for the
nearly matter dominated spacetimes, the correspond-
ing term has the spacetime dependence that survives
the derivatives and contributes dominantly to the
response rate. For this case, detectors of sufficiently
small energy gap also behave as if they are put in a
high temperature bath, to some extent. The response
rate of these detectors for other FRW spacetimes do
not show any divergences and hence, for the
considered spacetimes, it is only the matter domi-
nated spacetime for which the response rate shows
infrared divergences.

(iii) Stress-energy tensor coupled UDW detectors: One
example where the derivative UDW-like coupling
appears is the case in which the UDW detector
couples linearly with the stress energy operator,
instead of the field operator. In this case, the
transition probability (and hence the response rate)
depends on the correlations of the stress energy
operators along the trajectory of the spacetime. We
argue that, for this case, because of the derivative
operators present in the stress energy tensor, any
spacetime independent infrared divergences would
not contribute dominantly to the response rate just as
has been found for the case of derivatively coupled
UDW detectors. But the spacetime dependent infra-
red divergences of the matter dominated spacetime
would survive the action of derivative operators of
the stress energy tensor and provide the dominant
contribution to the response rate.

(iv) Interaction of hydrogen atoms with gravitational
waves: Working in the leading order in FNCs, we
consider the dynamics of hydrogen atoms in FRW
spacetimes with and without metric perturbations
and find that the interaction of hydrogen atoms with
gravitational waves takes a form similar to deriva-
tively coupled UDW detectors. From the above
analysis for FRW spacetimes with no gravitational
waves, it is seen that the classical expansion of the
FRW spacetimes can cause the transitions of elec-
trons in hydrogen atoms only between the atomic
states which have same spherical harmonics. This
result is expected as the expansion of an FRW
spacetime respects the homogeneity and isotropy
of the spatial slices of the spacetime. However, the
quantized gravitational waves over an FRW back-
ground have been shown to be able to cause
transitions also between the states which involve a
nontrivial change of angular momentum quantum
numbers. As mentioned before, the coupling of
gravitational waves with hydrogen atoms has simi-
larities with derivatively coupled UDW detectors,
therefore the results obtained for derivatively
coupled UDW detectors can be used to analyze
the response rate of hydrogen atoms which are
interacting with gravitational waves.

From this study, we see that, for massless scalar fields in
late time era particularly in nearly matter dominated
spacetimes, the transitions within the internal states of
UDW detectors for both conventional and derivatively
coupled cases occur at very rapid rate and become larger
and larger as the spacetime approach the matter dominated
limit. We have also seen that there are physical systems that
can capture these quantum effects. Previous studies have
suggested quantum backreaction to become important even
at late time phases of the evolution of our Universe [47].
Hence, these potentially important quantum effects and
probes during the late matter dominated epoch of the
evolution of our Universe should be scrutinized more
carefully and we take up this task in a subsequent work.
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APPENDIX A: INFINITE TIME RESPONSE RATE
OF UDW DETECTORS IN FRW SPACETIMES

In this Appendix we consider the infinite time response
rate of conventionally and derivatively coupled UDW detec-
tors in FRW spacetimes, i.e., aðηÞ¼ðHηÞ−q with q∈ð−2;1Þ.
By making use of the dimensional analysis, we try to find out
the dependence of the response rate on the energy gap
between the detector’s states as well as on the parameter H.

1. Conventionally coupled
Unruh DeWitt detector

Let us consider the spacetimes with q ∈ ð−2; 0Þ for
which the cosmic time is related to the conformal time by

the relation t ¼ H−qη1−q

1−q and t ∈ ð0;∞Þ for η ∈ ð0;∞Þ.
Using these relations and the formulas (4), (7), we find
that the transition probability is given by

P0→Ω ¼ c2jDhΩjμ̂ð0Þj0iDj2
Z

∞

0

Z
∞

0

dη1dη2e
iΩH

−q
ð1−qÞ ðη1−q1

−η1−q
2

ÞðH2η1η2Þ−1GdSðyðxðη1Þ; xðη2ÞÞÞ: ðA1Þ

Now defining a new variable z ¼ ΩH−qη1−q, we can pull out all the Ω and H dependence out of the integral

P0→Ω

c2jDhΩjμ̂ð0Þj0iDj2
¼

Z
∞

0

Z
∞

0

dz1dz2
ð1 − qÞ2

ðz1z2Þ
q

1−q

ðΩH−qÞ 2
1−q

ei
ðz1−z2Þ
ð1−qÞ

ðΩH−qÞ 2
1−q

H2ðz1z2Þ
1

1−q
GdSðyðxðη1Þ; xðη2ÞÞÞ

¼
Z

∞

0

Z
∞

0

dz1dz2
ð1 − qÞ2 e

−iðz1−z2Þð1−qÞ
Γð3

2
þ νÞΓð3

2
− νÞ

16π2ðz1z2Þ 2F1

�
3

2
þ ν;

3

2
− ν; 2; 1 −

y
4

�
; ðA2Þ

where yðz1; z2Þ ¼ − ðz
1

1−q
1

−z
1

1−q
2

−iϵðΩH−qÞ
1

1−qÞ2

ðz1z2Þ
1

1−q
for comoving observers. Since the only Ω and H dependences in the integral are

through the term ϵðΩH−qÞ 1
1−q which go to zero in the ϵ → 0 limit, we find that the above integral does not depend upon Ω

and H. However, the rate, say with respect to η̃ ¼ η1þη2
2

has the Ω and H dependence of the following type:

1

c2jDhΩjμ̂ð0Þj0iDj2
dP0→Ω

dη̃
¼ 1

c2jDhΩjμ̂ð0Þj0iDj2
�
∂z1
∂η̃

d
dz1

þ ∂z2
∂η̃

d
dz2

�
P0→Ω

¼ ðΩH−qÞ 1
1−qð1 − qÞ

�
z

q
q−1
1

d
dz1

þ z
q

q−1
2

d
dz2

�
P0→Ω

c2jDhΩjμ̂ð0Þj0iDj2

¼ ðΩH−qÞ 1
1−q

ð1 − qÞ
�
z

q
q−1
1

Z
∞

0

dz

�
e−i

ðz1−zÞ
ð1−qÞ

Γð3
2
þ νÞΓð3

2
− νÞ

16π2ðz1zÞ 2

F1

�
3

2
þ ν;

3

2
− ν; 2; 1 −

yðz1; zÞ
4

��

þ z
q

q−1
2

Z
∞

0

dz

�
e−i

ðz−z2Þ
ð1−qÞ

Γð3
2
þ νÞΓð3

2
− νÞ

16π2ðzz2Þ 2F1

�
3

2
þ ν;

3

2
− ν; 2; 1 −

yðz; z2Þ
4

���

¼ ðΩH−qÞ 1
1−qfðq; z1; z2Þ ∝ ðΩH−qÞ 1

1−q; ðA3Þ

where the function fðq; z1; z2Þ has no dependence onΩ and
H and it depends only on q, z1, and z2. The values of z1 and
z2 combine to give the η̃ value at which the rate is being
calculated. Similarly, for spacetimes with q ∈ ð0; 1Þ, the
response rate can be shown to have the same Ω and H
dependences.

2. Derivatively coupled Unruh DeWitt detector

Let us again consider the spacetimes with q ∈ ð−2; 0Þ. In
order to find the Ω and H dependences of response rate for
derivatively coupled cases, we make use of the following
formulas for the infinite time transition probability for
derivatively coupled UDW detectors:

P0→Ω ¼ c2jDhΩjμ̂ð0Þj0iDj2
Z

∞

0

Z
∞

0

dη1dη2

× e−iΩðτðη1Þ−τðη2ÞÞ
d
dη1

d
dη2

Gðxðη1Þ; xðη2ÞÞ: ðA4Þ

Performing the same steps as in the previous subsection and
using the formula (26) for double derivatives of the
Wightman function for FRW spacetimes, one obtains that
the response rate for derivatively coupled UDW detectors
has the following Ω and H dependences:

1

c2jDhΩjμ̂ð0Þj0iDj2
dP0→Ω

dη̃
∝ Ω2ðΩH−qÞ 1

1−q: ðA5Þ
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We obtain the same Ω and H dependences of the response
rate for spacetimes with q ∈ ð0; 1Þ.

APPENDIX B: DERIVATIVES
OF THE WIGHTMAN FUNCTION

In this Appendix, we express the double time derivative
[appearing in the expression (23) of the response rate
for derivatively coupled UDW detectors] of the FRW

Wightman function in terms of the derivatives of the de
Sitter Wightman function by using the relation (7) between
the Wightman functions in the two settings, i.e.,

GFRWðx1; x2Þ ¼ ðH2η1η2Þq−1GdSðyðx1; x2ÞÞ: ðB1Þ

Using the product rule of differentiation, we have

d
dη1

d
dη2

GFRWðxðη1Þ; xðη2ÞÞ ¼ ðH2η1η2Þq−1
�
ðq − 1Þ2 G

dS

η1η2
þ ðq − 1Þ dG

dS

dy

�
1

η1

dy
dη2

þ 1

η2

dy
dη1

�

þ
�
d2GdS

dy2
dy
dη1

dy
dη2

þ dGdS

dy
d2y

dη1dη2

��
: ðB2Þ

In conformal coordinates, the de Sitter invariant distance is
given by

y ¼ −ðη1 − η2 − iϵÞ2 þ ðΔx⃗Þ2
η1η2

: ðB3Þ

For comoving observers, we have

dy
dη1

¼ ðη1 − η2 − iϵÞð−η1 − η2 − iϵÞ
η21η2

; ðB4Þ

dy
dη2

¼ ðη1 − η2 − iϵÞðη1 þ η2 − iϵÞ
η1η

2
2

; ðB5Þ

d2y
dη1dη2

¼ −ðη1 − η2 − iϵÞðη1 þ η2 − iϵÞ þ 2ðη1 − iϵÞη1
η21η

2
2

;

ðB6Þ

dy
dη1

dy
dη2

¼ yððη1 þ η2Þ2 þ ϵ2Þ
η21η

2
2

: ðB7Þ

Using these expressions, we see that

d
dη1

d
dη2

GFRWðxðη1Þ; xðη2ÞÞ ¼ ðH2η1η2Þq−1
�
ðq − 1Þ2 G

dS

η1η2
þ ðq − 1Þ dG

dS

dy

�ðη1 − η2 − iϵÞð−2iϵÞ
η21η

2
2

�

þ d2GdS

dy2
yððη1 þ η2Þ2 þ ϵ2Þ

η21η
2
2

þ dGdS

dy
ðη21 þ η22 þ ϵ2Þ

η21η
2
2

�
: ðB8Þ

APPENDIX C: COVARIANT DIRAC
EQUATION IN FNCs

In this Appendix we follow the treatment given in [52]
and provide a very brief outline of how curvature effects are
considered for atoms in curved spacetimes. We assume that
the center of mass of an atom moves along a classical
timelike geodesic whereas the internal structure of the atom
is governed by the covariant Dirac equation for an electron
in the presence of the electromagnetic potential of the
nucleus, i.e., we have the following equation for the internal
structure of the atom:

i∇0ψ ¼ ð−ðg00Þ−1γ0mþ iðg00Þ−1γ0γi∇iÞψ ; ðC1Þ

where ψ is a four component Dirac spinor and γμ ¼ eμaΓa

are the curved spacetime gamma matrices that are related to
the flat spacetime gamma matrices, Γa, through the tetrad
basis eμa. One also has fΓa;Γbg¼−2ηab and euaeνbgμν ¼ ηab.
The covariant derivatives are given by

∇μ ¼ ∂μ −
1

8
ωab

μ ½Γa;Γb� − iqAμ; ðC2Þ

where ωab
μ ¼ eaλe

τbΓλ
τμ − eτb∂μeaτ . Here Aμ is the electro-

magnetic four potential which is determined by solving the
curved spacetime Maxwell’s equations in the presence of a
point source at the nucleus. To proceed further, we express
the above equation in Fermi normal coordinates built
around the central timelike geodesic (see Fig. 5 and the
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discussion around it) of the center of mass of the atom. The
spacetime metric up to 2nd order in these coordinates is
given as follows:

g00 ¼ −1 − R0l0mxlxm; ðC3Þ

g0i ¼ −
2

3
R0limxlxm; ðC4Þ

gij ¼ δij −
1

3
Riljmxlxm; ðC5Þ

g ¼ −1þ 1

3
ðRlm − 2R0l0mÞxlxm: ðC6Þ

Similarly, one can express the inverse metric components,
the tetrad bases and the Christoffel connections, etc., in
these coordinates up to second order in the FNCs. For more
details, refer to Refs. [52,69].
Now using the above form of the spacetime metric in the

Dirac equation and Maxwell’s equations, one can show that
the Dirac equation is given by

i∂tψ ¼
�
−iαi∂i þmβ −

ζ

r
þHI

�
ψ ; ðC7Þ

where β; αi are the Dirac matrices and HI is the curvature
induced perturbation to the flat spacetime Dirac equation in
the central Coulomb potential ζ

r. Here ζ ¼ Ze2, where e is
the electron’s charge and Z is the number of protons in the
nucleus. The expression for the interaction Hamiltonian,
HI , is given in [52].
In the nonrelativistic limit, the above Dirac equation can

be shown to go to the following Schrödinger equation
form [52]�
i
∂

∂t
−m

�
ψ ¼

�
−

1

2m
∇2 −

ζ

r
þ 1

2
mR0l0mxlxm

�
ψ ; ðC8Þ

where R0l0m are the Riemann tensor components evaluated
in FNCs along the central geodesic. In the above equation,
the curvature induced perturbations are considered only up
to 2nd order in FNCs. Here ψ is now only one component
function of space and time.

APPENDIX D: FLAT SPACETIME HYDROGEN
ATOM AND SELECTION RULES

We can solve for the energy eigenfunctions
of the unperturbed flat spacetime hydrogen

atom Hamiltonian. We find that they are given
by [70]

ψnlm ¼ RnlðrÞYm
l ðθ;ϕÞ; ðD1Þ

where Ym
l ðθ;ϕÞ are the spherical harmonics and RnlðrÞ are

the radial part of the eigenfunctions. RnlðrÞ are given by

RnlðrÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

na0

�
3 ðn − l − 1Þ!
2nððnþ lÞ!Þ3

s

× e−
r

na0

�
2r
na0

�
l
L2lþ1
nþl

�
2r
na0

�
; ðD2Þ

where L2lþ1
nþl are associated Laguerre polynomials and

a0 ¼ 1
me2. Here n, l, and m are just the hydrogen atom

quantum numbers.
Using the orthonormality of spherical harmonics and the

properties of addition of angular momenta, we find that the
selections rules for the transitions

hn0; l0; m0jxijn; l; mi

are as given in Table I.
Using the above selection rules, we can find the selection

rules for the transitions of the form

hn0; l0; m0jxixpjn; l; mi

which are given in Table II.

TABLE I. Selection rules for transitions of the type
hn0; l0; m0jxijn; l; mi.
x, y z

Δl Δm Δl Δm

�1 �1 �1 0

TABLE II. Selection rules for transitions of the type
hn0; l0; m0jxixpjn; l; mi.
x2; y2; xy; yx xz; yz z2

Δl Δm Δl Δm Δl Δm

−2; 0; 2 −2; 0; 2 −2; 0; 2 −1; 1 −2; 0; 2 0
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