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We exploit an ambiguity somewhat hidden in Noether’s theorem to derive systematically, for relativistic
field theories, the stress-energy tensor’s improvement terms that are associated with additional spacetime
symmetries beyond translations. We work out explicitly the cases of Lorentz invariance, scale invariance,
and full conformal invariance. The main idea is to use, directly in the translation Noether theorem, the fact
that these additional symmetries can be thought of as suitably modulated translations. Compared to more
standard derivations of the improvement terms, ours (1) unifies all different cases in a single framework,
(2) involves no guesswork, (3) yields the desired algebraic properties (symmetry and/or tracelessness) of
the stress-energy tensor off-shell, and (4) unifies the translation Noether theorem with those of the
additional spacetime symmetries, yielding at the same time both the improved stress-energy tensor and the
additional Noether currents.
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I. INTRODUCTION: AMBIGUOUS CURRENTS
FROM AN AMBIGUOUS THEOREM

Noether’s theorem relates continuous symmetries to
conservation laws. For local field theories, it yields one
locally conserved current for each independent symmetry
generator. However, the conserved currents one derives
from the theorem are notoriously ambiguous, for two main
reasons:
(1) First, given a current Jμ that is conserved “on-

shell”—that is, on solutions of the equations of
motion—one can always add to it a contribution
of the form

ΔJμ ≡ ∂αΣαμ; Σαμ ¼ −Σμα; ð1Þ

where Σαμ is any local functional of the fields that
is antisymmetric in α and μ. Such an addition is
conserved “off-shell”—that is, on any field configu-
ration, regardless of whether this solves the equa-
tions of motion or not. Moreover, it does not
contribute to the global charge associated with the
current, Q≡ R

d3xJ0, because, using the antisym-
metry of Σαμ and assuming the fields vanish suffi-
ciently fast at spatial infinity, one has

Z
d3xΔJ0 ¼

Z
d3x∂iΣi0 ¼ 0: ð2Þ

So, the two currents, Jμ and J0μ ¼ Jμ þ ΔJμ, obey
equivalent conservation laws and yield the same
global charge.

(2) Second, since the current Jμ is only conserved on-
shell anyway, one can add to it contributions that
vanish on-shell. At the classical level, this does not
modify the value of Jμ or of Q on solutions of the
equations of motion, and so it does not modify the
associated conservation laws either. At the quantum
level, this modifies the Ward identities in the contact
terms only, since the equations of motion are obeyed
in correlation functions up to contact terms.

These two ambiguities are routinely exploited in the case of
spacetime symmetries, to “improve” the current associated
with spacetime translations, the stress-energy tensor Tμν: if
the theory has spatial rotational invariance, Tij can be made
symmetric; if the theory also has Lorentz invariance, the
full Tμν can be made symmetric [1,2]; if the theory further
has scale invariance, Tμν can be made traceless up to a total
divergence [3–5]; finally, if the theory has full conformal
symmetry, Tμν can be made fully traceless [3–5]. Notice
that these algebraic properties of symmetry and trace-
lessness are generically only valid on-shell; however, we
can always make them valid off-shell by adding suitable
terms of the type discussed in item 2 above.
For the purposes of what follows, it is instructive to trace

the ambiguities discussed above back to Noether’s theorem:
it is the theorem itself that is ambiguous. To see this, let us
review how the theorem usually works. From now on,
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we will be using ϕðxÞ to denote a generic multiplet of (real)
fields, not necessarily scalars, and the dot “·” to denote the
contraction of indices in field space. We assume that we
have an action S½ϕ� that is invariant under some continuous
symmetries, enumerated by a,

ϕ → ϕþ ϵaΔa; ð3Þ

where ϵa are constant infinitesimal parameters, which we
will always keep up to first order only, and Δa are given
local functionals of the fields. To be precise, let us say
that under (3) the Lagrangian density changes by a total
derivative,

L → Lþ ϵa∂μF
μ
a; ð4Þ

where Fμ
a are some functionals of the fields. Then, the

theorem goes, let us see how the Lagrangian density
changes if we make ϵa in (3) spacetime dependent,
ϵa ¼ ϵaðxÞ. To first order in ϵa, the variation must take
the form

δL ¼ ϵaðxÞ∂μFμ
a þ ∂μϵ

aðxÞGμ
a þ ∂μ∂νϵ

aðxÞGμν
a þ � � � ; ð5Þ

where the G’s are suitable functionals of the fields, and
usually the series in derivatives of ϵa truncates at finite
order. For example, for a Lagrangian with at most N
derivatives on a single field, the series usually truncates at
∂
Nϵa order. Notice that if one sets ϵa to a constant, only the
first term survives, and one goes back to Eq. (4). If we now
integrate δL over spacetime we get the variation of the
action for generic ϵaðxÞ. Restricting to functions ϵaðxÞ that
go to zero at infinity, we can integrate all derivatives of ϵa

by parts and end up with

δS ¼
Z

d4xδL ¼
Z

d4xϵaðxÞ∂μJμa ðoff-shellÞ; ð6Þ

where Jμa are whatever functionals of the fields emerge from
the procedure just described. This defines the Noether
currents. The last step is to recognize that Eq. (3) for
generic ϵaðxÞ vanishing at infinity is a particular field
variation that vanishes at infinity, but on-shell the action
should be stationary for all field variations that vanish at
infinity. So, on-shell one must have

∂μJ
μ
a ¼ 0 ðon-shellÞ: ð7Þ

Why are we saying that such a procedure is ambiguous?
The ambiguity of item 1 above is easy to spot: Adding to Jμa
identically conserved terms of the form (1) does nothing
to the integrand in (6), precisely because such terms are
identically conserved. The ambiguity of item 2 instead is
more subtle to unveil, but more relevant for what follows. It
has to do with the very first step of the Noether procedure,

when we make ϵa spacetime dependent: it is usually
assumed that corresponds to replacing (3) simply with

ϕ → ϕþ ϵaðxÞΔa; ð8Þ

but, in fact, in the theorem as we just described it, nowhere
are we using this specific form of the transformation. The
only property that we are using is that the x-dependent
transformation that we perform should reduce to the
symmetry (3) in the limit in which ϵa are constants.
Then, instead of (8), we could use [6]

ϕ → ϕþ ϵaðxÞΔa þ ∂μϵ
aðxÞΦμ

a þ ∂μ∂νϵ
aðxÞΦμν

a þ � � � ;
ð9Þ

where the Φ’s are arbitrary functionals of the fields.
By definition of functional derivatives, these new terms
in the transformation of ϕ modify the variation of the
action (6) by

δS⊃
Z

d4x
δS
δϕ

· ½∂μϵaðxÞΦμ
aþ∂μ∂νϵ

aðxÞΦμν
a þ���� ðoff-shellÞ:

ð10Þ

Integrating by parts all derivatives of ϵa and comparing
to (6), we see that the current gets new contributions of the
form

Jμa ⊃ −
δS
δϕ

· ½Φμ
a − ∂νΦ

μν
a þ � � �� ðoff-shellÞ; ð11Þ

which clearly vanish on-shell.
So, in summary, both ambiguities discussed above are

inherent features of Noether’s theorem itself. The second
one—the one we just discussed—is more interesting, in
that it ties new terms in the current to a modification of how
the fields are declared to transform under the spacetime-
modulated version of the symmetry. This will allow us
to derive systematically, directly from the theorem, the
improvement terms for the stress-energy tensor that are
associated with spacetime symmetries beyond translations.
As we now explain, the main idea is to tailor, each time, the
translation Noether theorem to the particular additional
symmetry one wants to exploit.
Note added in revised version: Brauner, Torrieri, and

Yonekura have brought to our attention Refs. [7–9], which
also explore ambiguities in Noether’s theorem and use
them to derive, in a systematic way, a number of desired
properties for the conserved currents. The overlap of our
work with those papers is, in fact, substantial, especially
with Ref. [8]. We plan to analyze the connection more
closely in the near future.
Notation and conventions: We use natural units

(ℏ ¼ c ¼ 1) and the “mostly minus” signature for the
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metric throughout. For Lorentz generators, we use the
same normalization as [4,5], which differs from that of
Weinberg [2], J μν

here ¼ −iJ μν
Weinberg. When addressing scale

and conformal invariance, we keep the spacetime dimen-
sionality D generic. Otherwise, we work in D ¼ 4.

II. THE MAIN IDEA

We want to improve Noether’s theorem for spacetime
translations, exploiting the ambiguities discussed above,
especially the second one. This, as we saw, is related to
modifying the transformation properties of the fields as
in (9). We then have to ask under what condition we can
gain something by considering (9), perhaps with some
judicious choice of the Φ functionals, instead of the
apparently simpler (8).
In fact, for internal symmetries, we see no general benefit

of using (9) in place of (8). On the other hand, for
translations, we can make use of the fact that other possible
spacetime symmetries, such as Lorentz invariance, scale
invariance, and conformal invariance, can in fact be thought
of as very specific spacetime-modulated translations. For
instance, an infinitesimal Lorentz transformation of con-
stant parameter ωμν ¼ −ωνμ, shifts the coordinates by

xμ → x0μ ¼ xμ þ ωμ
νxν ðLorentzÞ; ð12Þ

which is formally a spacetime modulated translation

xμ → x0μ ¼ xμ þ ϵμðxÞ; ð13Þ

with parameter

ϵμðxÞ ¼ ϵμLðxÞ≡ ωμ
νxν: ð14Þ

(“L” for “Lorentz.”) Notice that the index a of the
infinitesimal parameters now becomes the spacetime
index, ϵa → ϵμ.
Our fields transform under a translation of constant

parameter ϵμ as

ϕðxÞ → ϕðxÞ − ϵμ∂μϕðxÞ ðtranslationsÞ; ð15Þ

and usually we would run the translation Noether theorem
by generalizing this to

ϕðxÞ → ϕðxÞ − ϵμðxÞ∂μϕðxÞ; ð16Þ

for generic ϵμðxÞ, which yields the so-called canonical
stress-energy tensor. But, in alternative, we can notice that
since under a Lorentz transformation of constant parameter
ωμν the fields transform as

ϕðxÞ→ϕðxÞ−ωμ
νxν∂μϕðxÞ−

1

2
ωμνJ μν ·ϕðxÞ ðLorentzÞ;

ð17Þ

we can run Noether’s theorem for translations with a
“Lorentz-friendly” version of (9):

ϕðxÞ → ϕðxÞ − ϵμðxÞ∂μϕðxÞ −
1

2
∂μϵνðxÞJ μν · ϕðxÞ: ð18Þ

Such a transformation rule has the property that for a very
specific ϵμðxÞ—Eq. (14)—it corresponds to a symmetry of
the action: Lorentz invariance. This implies that the stress-
energy tensor one derives running Noether’s theorem in
this way will have an additional property besides con-
servation. In particular, as we will see, the fact that Eq. (14)
corresponds to the most general ϵμðxÞ that has constant,
antisymmetric first derivatives, will force the stress-energy
tensor to be automatically symmetric, off-shell.
This of course matches the standard conclusion—

Lorentz implies a symmetric Tμν—but in our procedure
there is no guesswork involved: by making the translation
Noether theorem sensitive to Lorentz invariance, we
automatically get a symmetric stress-energy tensor. And,
contrary to the standard Belinfante procedure, nowhere do
we have to use the equations of motion. Of course, this
means that the Belinfante stress-energy tensor differs from
ours by terms proportional to the equations of motion. As
we tried to emphasize in the Introduction, such an ambi-
guity is to be expected on general grounds.
This is the basic idea that we will try to exploit. As usual,

the devil is in the details, so let us see explicitly how these
work out in the case of Lorentz, scale, and conformal
invariance.

III. PASSIVE VS ACTIVE, ACTION
VS LAGRANGIAN

As a preliminary step, it is useful to be precise about the
symmetries we want to consider. At least for the cases we
study here, we can think of a spacetime symmetry as a
symmetry of the action that is associated with a specific
change of coordinates,

xμ → x0μðxÞ; ð19Þ

under which the fields transform in a certain way,

ϕðxÞ → ϕ0ðx0Þ: ð20Þ

This is the so-called passive viewpoint. According to it, the
transformation above is a symmetry if the infinitesimal
action element does not change

L½ϕ0ðx0Þ�d4x0 ¼ L½ϕðxÞ�d4x; ð21Þ
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that is, if the Lagrangian density changes as

L½ϕ0ðx0Þ� ¼
���� det ∂x

∂x0

����L½ϕðxÞ�: ð22Þ

In principle we could insist on a weaker requirement—that
the action change only by boundary terms—but, at least for
standard spacetime symmetries, this subtlety happens to be
relevant only in the case of conformal transformations, and
wewill discuss it in due time. For the moment, we are going
to ignore it.
Now, it so happens that, for an infinitesimal trans-

formation, it is more convenient to adopt the so-called
active viewpoint, whereby we transform directly the fields,
evaluating all fields and derivatives at the same values of
their arguments. Writing

x0μðxÞ ¼ xμ þ ϵμðxÞ; ð23Þ

for the specific ϵμðxÞ that corresponds to the infinitesimal
symmetry we want to consider, from (22) we get

L½ϕ0ðxÞ� þ ϵμ∂μL ¼ L½ϕðxÞ� − ∂μϵ
μL; ð24Þ

where we kept terms up to first order in ϵμ. Thus, from the
active viewpoint, the spacetime transformation under study
is a symmetry of the action if the Lagrangian density
changes by a specific total derivative term [10]:

δL≡ L½ϕ0ðxÞ� − L½ϕðxÞ� ¼ −∂μðϵμLÞ: ð25Þ

We are now ready to run our improved translation Noether
theorems.

IV. IMPROVED TRANSLATION
NOETHER THEOREM

A. Generalities

For simplicity, we focus our attention on Poincaré
invariant field theories, with the field multiplet ϕ trans-
forming linearly under Lorentz symmetry, according to a
generic representation J μν, not necessarily irreducible.
Moreover, when we consider scale-invariant or conformal-
invariant theories, we assume that the fields transform
linearly under those as well. In other words, we assume that
no spacetime symmetry is spontaneously broken. As we
hope it will be clear shortly, these simplifying assumptions
are not really needed for our strategy to work, and in
principle, our analysis can be straightforwardly extended to
non-linear realizations as well.
Likewise, for simplicity we consider Lagrangian den-

sities that depend at most on the first derivatives of the
fields,

L½ϕ� ¼ Lðϕ; ∂μϕÞ: ð26Þ

In principle we could repeat our analysis with any number
of higher derivatives. Even better, in this day and age, given
the ongoing proliferation of effective field theories and
derivative expansions, it would be nicer to find a more
general functional approach that does not require specify-
ing the maximum number of derivatives entering the
Lagrangian. We leave this task for future work.
Under rigid translations, our fields transform as in (15).

We want to run the associated Noether’s theorem general-
izing that transformation law to

ϕðxÞ → ϕðxÞ − ϵμðxÞ∂μϕðxÞ − ∂μϵνðxÞΨμνðxÞ; ð27Þ

for generic ϵμðxÞ, and for a specific (field-dependent)
ΨμνðxÞ, which will change from case to case, depending
on the additional symmetries we want to consider.
The variation of the Lagrangian density is

δL ¼ ∂L
∂ϕ

· δϕþ ∂L
∂∂αϕ

· ∂αδϕ; ð28Þ

which, after some straightforward algebra, can be written as

δL ¼ −∂μðϵμLÞ − ∂μϵνT μν − ∂ρ∂μϵνSρμν ð29Þ

with

T μν ¼ Tμν
c þ δS

δϕ
·Ψμν þ ∂ρSρμν; ð30Þ

Sρμν ¼ ∂L
∂∂ρϕ

·Ψμν; ð31Þ

where Tμν
c is the so-called canonical energy-momentum

tensor—the one that emerges from the standard Noether
procedure—

Tμ
c ν ¼ ∂L

∂∂μϕ
· ∂νϕ − δμνL; ð32Þ

and the equations of motion δS
δϕ are nothing but the Euler-

Lagrange equations,

δS
δϕ

¼ ∂L
∂ϕ

− ∂μ

�
∂L
∂∂μϕ

�
: ð33Þ

Also notice that the quantity T μν differs from the canonical
stress-energy tensor, Tμν

c , by two terms: one is proportional
to the equations of motion, the other is a total derivative. As
a result, at low energies T μν reduces to Tμν

c on-shell.
According to the general logic of Noether’s theorem as

reviewed in the Introduction, for generic ϵμðxÞ the variation
of the Lagrangian density must take the form
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δL ¼ −∂μϵνTμν þ total derivatives; ð34Þ

and this can be taken as the definition of the stress-energy
tensor. To rewrite (29) as (34), we must integrate by parts
the third term. The obvious way to do this would be to write

−∂ρ∂μϵνSρμν ¼ ∂μϵν∂ρSρμν þ total derivatives; ð35Þ

but, in fact, we can be more general and keep in mind an
ambiguity related to that of item 1 in the Introduction: since
∂ρ∂μϵν is symmetric in ρ and μ, we can add to whatever
multiplies it any functional of the fields that is antisym-
metric in ρ and μ. This will prove useful for what follows.
We can thus write that, for our generalization of the
translation Noether theorem, the stress-energy tensor is

Tμν ¼ T μν − ∂ρðSρμν þ ΣρμνÞ; Σρμν ¼ −Σμρν; ð36Þ

where Σρμν is a generic functional of the fields that is
antisymmetric in ρ and μ.
Notice that, crucially, to arrive to (29) we did not drop

total-derivative terms. So, we can use the result of the last
section: for the choices of ϵμðxÞ and ΨμνðxÞ that make (27)
a symmetry transformation, only the first term in (29)
should survive. As we will see, this will typically imply
some algebraic property for T μν. One can then try to use the
ambiguity associated with Σρμν to extend that property to
the full Tμν.1 It may seem that at this point our procedure
could use some guesswork, despite our bragging about the
opposite. In practice, however, one parametrizes Σρμν as the
most general linear combination of the tensors at one’s
disposal with the right symmetries, and checks whether
there is a choice of coefficients that achieves the desired
result. Phrased in this way, this step is a linear algebra
problem and, as advertised, there is no guesswork involved.
We will see this explicitly at work in the three examples
that follow.

B. Lorentz-friendly version

To begin with, consider a Poincaré-invariant field theory,
with the fields ϕ transforming according to some repre-
sentation J μν under Lorentz, as in Eq. (17). So, if we
choose the functionals Ψμν in (27) to be simply

ΨμνðxÞ ¼ Ψμν
L ðxÞ≡ 1

2
J μν · ϕðxÞ ð37Þ

(“L” for “Lorentz”), we have that for ϵμðxÞ ¼ ϵLðxÞ≡
ωμ

νxν, with constant and antisymmetric ωμν, Eq. (27)
corresponds to a symmetry transformation; that is, only
the first term in (29) should survive.

On the other hand, for these specific choices, Eq. (29)
reads

δLL ¼ −∂μðϵμLLÞ − ωμνT μν: ð38Þ

This immediately implies that T μν is symmetric, since ωμν

is the most general antisymmetric constant tensor:

T μν ¼ T νμ: ð39Þ

Keep in mind that T μν is not conserved by itself and has to
be complemented by a correction ΔTμν in order to restore
conservation. The reason behind this is that (38) is obtained
using a specific transformation, while in (34) we are using
an arbitrary ϵμ. We should then ask whether we can choose
Σ in (36) to make the rest of the stress-energy tensor,

ΔTμν ¼ −∂ρðSρμν þ ΣρμνÞ; ð40Þ

also symmetric. We parametrize Σ as the most general
linear-in-S combination of S and η tensors with the correct
antisymmetry property. Taking into account that Sρμν is, in
this case, antisymmetric in μν [because of (31) and (37)],
we write

Σρμν ¼ Σρμν
L

≡ αSνρμ þ βðSρμν − SμρνÞ þ γðSα
αρημν − Sα

αμηρνÞ;
ð41Þ

with arbitrary α, β, and γ. The only choice for which
Eq. (40) is symmetric in μ and ν is α ¼ −β ¼ 1 and γ ¼ 0.
Thus, for this choice, putting everything together we

arrive at our Lorentz-friendly version of the stress-energy
tensor:

Tμν
L ¼ Tμν

c þ 1

2

δS
δϕ

· J μν · ϕþ 1

2
∂ρ

�
∂L
∂∂ρϕ

· J μν · ϕ

−
∂L
∂∂μϕ

· J ρν · ϕ −
∂L
∂∂νϕ

· J ρμ · ϕ

�
: ð42Þ

As we proved, as a consequence of Lorentz invariance, this
is guaranteed to be symmetric, on- and off-shell:

Tμν
L ¼ Tνμ

L ðoff-shellÞ: ð43Þ

It differs from the standard Belinfante expression [1,2],
which in general is symmetric only on-shell, by the
second term on the right-hand side (rhs) of (42), which
is manifestly zero on the equations of motion.

C. Scale-friendly version

The case of scale invariance proceeds along the same
lines. Suppose that we have a scale-invariant theory in D

1For this reason, one should resist the temptation to cancel the
last term in T μν [see Eq. (30)] against the first term inside the
∂ρð� � �Þ in Eq. (36) until all the symmetries have been exploited.
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spacetime dimensions, and let us call d the matrix of
scaling dimensions of the fields. So, under a scale trans-
formation xμ → ð1þ ωÞxμ, with infinitesimal, constant ω,
the fields transform as

ϕðxÞ → ϕðxÞ − ωxμ∂μϕðxÞ − d · ϕðxÞ: ð44Þ

In order to make use of this symmetry for our purposes, we
can choose Ψμν in (27) to be

ΨμνðxÞ ¼ Ψμν
S ðxÞ ¼ 1

D
ημνd · ϕ ð45Þ

(“S” for “scale”), so that we have a symmetry when ϵðxÞ
takes the form appropriate for a scale transformation,

ϵðxÞ ¼ ϵμSðxÞ≡ ωxμ; ð46Þ

with constant ω. Plugging this particular choice of ϵðxÞ
into (29), we get

δSL ¼ −∂μðϵμSLÞ − ωT μ
μ; ð47Þ

while, for scale invariance to be a symmetry, only the first
term should survive. So, scale invariance guarantees that
T μν is traceless, off-shell:

T μ
μ ¼ 0: ð48Þ

Similar to the case of Lorentz, we now have to ask
whether we can choose Σρμν in (36) in order to extend this
property—tracelessness—to the rest of the stress-energy
tensor, Eq. (40). Since now Sρμν is proportional to ημν

[see (31) and (45)] the most general linear-in-S combina-
tion of S and η tensors with the right antisymmetry property
is simply

Σρμν ¼ Σρμν
S ≡ δðSρμν − SμρνÞ; ð49Þ

with generic δ. Equation (40) is traceless only for δ ¼
−D=ðD − 1Þ. With this choice, putting everything together
we arrive at our scale-friendly stress-energy tensor:

Tμν
S ¼ Tμν

c þ 1

D
ημν

δS
δϕ

· d · ϕ

þ 1

D − 1
∂ρ

�
ημν

∂L
∂∂ρϕ

· d · ϕ − ηρν
∂L
∂∂μϕ

· d · ϕ

�
:

ð50Þ

As a consequence of scale invariance, this is guaranteed to
be traceless, on- and off-shell,

Tμ
S μ ¼ 0 ðoff-shellÞ: ð51Þ

Before proceeding, there is a small puzzle that we need
to address. According to standard results [3–5], scale
invariance is not enough to make the stress-energy tensor
traceless. The best one can do, usually, is to make it
traceless, on-shell, up to a total divergence:

Tμ
μ ¼ −∂μVμ ðstandard resultÞ: ð52Þ

Here Vμ is a quantity known as the “virial current,” which
we will encounter and explore further in the next section.
Only if the theory enjoys full conformal symmetry can the
stress tensor be further improved to eliminate this total
divergence. In our case, there is no sign of this: scale
invariance alone guarantees that Eq. (50) is completely
traceless, off-shell. How is this possible?
The resolution of the puzzle is that Eq. (50) is not

symmetric in general. The standard result (52) assumes that
one is only considering symmetric stress-energy tensors,
such as the Belinfante one [1,2], which is symmetric on-
shell, or our version (42), which is symmetric off-shell
as well. What we just proved is that if one gives up this
requirement, in a scale-invariant theory one can make the
stress-energy tensor completely traceless, off-shell. In fact,
with hindsight, this is obvious already from Eq. (52): by
adding to Tμν the trivially conserved improvement term

1

D − 1
ðημν∂αVα − ∂

νVμÞ; ð53Þ

one can cancel the trace of Tμν at the expense of giving up
its being symmetric.

D. Conformal-friendly version

Before moving on to the case of full conformal invari-
ance, it is instructive to first combine the two strategies that
we adopted in the previous subsections. This will also shed
some light on the tension between tracelessness and
symmetry of the stress-energy tensor we just alluded to.
Consider then a Lorentz-invariant, scale-invariant theory.

To make use of both symmetries, we can combine theΨμν’s
in (37) and (45), and use for the translation Noether
theorem the transformation rule (27) with

ΨμνðxÞ ¼ Ψμν
S ðxÞ þ Ψμν

L ðxÞ: ð54Þ

In this case, Eq. (27) reduces to a translation for constant ϵ,
to a Lorentz transformation for ϵðxÞ as in (14), and to a
scale transformation for ϵðxÞ as in (46).
Precisely because of the same reasons as in the last two

subsections—Lorentz invariance and scale invariance—the
T μν contribution to the stress-energy tensor is both sym-
metric and traceless, off-shell:

T μν ¼ T νμ; T μ
μ ¼ 0: ð55Þ
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The question is what to do with the rest, Eq. (40). We can
first notice that, as far the μ and ν indices are concerned, our
Sρμν has the same algebraic properties as our Ψμν in (54): it
is made up of a scale part, which is pure trace, and a Lorentz
one, which is antisymmetric,

Sρμν¼Sρμν
S þSρμν

L ; Sρμν
S ∝ημν; Sρμν

L ¼−Sρνμ
L : ð56Þ

In turn, the most generic Σρμν we can add is simply the
combination of (41) and (49):

Σρμν ¼ Σρμν
L þ Σρμν

S

¼ αSνρμ
L þ βðSρμν

L − Sμρν
L Þ þ γðSLα

αρημν − SLα
αμηρνÞ

þ δðSρμν
S − Sμρν

S Þ: ð57Þ

Symmetry of ΔTμν requires α ¼ −β ¼ 1; γ ¼ δ ¼ 0 in
the equation above, while tracelessness requires
α − β − γðD − 1Þ ¼ 0; δ ¼ −D=ðD − 1Þ. The two solu-
tions of this linear algebra problem are inconsistent,
meaning one can make ΔTμν symmetric or traceless, but
not both. In either case, ΔTμν contributes a total derivative
to the stress-energy tensor. And so, in particular, if one
decides to make it symmetric, its trace will be a total
divergence, in agreement with the standard result (52).
Now, what happens in the case of full conformal

invariance? It so happens that infinitesimal special con-
formal transformations are precisely a spacetime-
modulated specific combination of Lorentz and scale
transformations of the form (54), when ϵðxÞ in (27) is
taken to be

ϵμðxÞ ¼ ϵμCðxÞ≡ bμx2 − 2b · xxμ ð58Þ

(“C” for “conformal”), with constant bμ. The derivatives of
such an ϵðxÞ are in fact a combination of a trace part and an
antisymmetric one,

∂μϵCν ¼ 2ðbνxμ − bμxνÞ − 2b · xημν; ð59Þ

as befits a (spacetime-dependent) combination of Lorentz
and scale transformations. So, if we use this ϵμðxÞ in (29),
the T μν term vanishes because of Lorentz and scale
invariance, and we are left with

δCL ¼ −∂μðϵμLÞ þ 2bμðSμα
α þ 2Sα

½μα�Þ: ð60Þ

Reasoning as before, we would be tempted to say that, if
conformal transformations are a symmetry, only the first
term should survive. But this is where the subtlety we
briefly alluded to in Sec. III becomes relevant, and so we
must finally address it.
In most common cases, even under a passive trans-

formation, the action of a (classically) conformally invari-
ant theory is not strictly invariant under conformal

transformations, but changes by a boundary term. This is
not necessarily related to the existence of Wess-Zumino
terms, as for instance that studied in [11]. Rather, it
usually happens because one is not really using the most
symmetric version of the action. To make this very explicit,
consider a free massless scalar field ΦðxÞ in four spacetime
dimensions:

S½ϕ� ¼
Z

d4x
1

2
ð∂ΦÞ2: ð61Þ

The passive version of a special conformal transformation
is

xμ → x0μ ¼ xμ þ bμx2 − 2b · xxμ;

ΦðxÞ → Φ0ðx0Þ ¼ ΦðxÞ − 2ðb · xÞΦðxÞ; ð62Þ

and it is easy to check that the action above changes by a
boundary term

d4x0
1

2
ð∂0Φ0Þ2 ¼ d4x

�
1

2
ð∂ΦÞ2 − bμ∂μðΦ2Þ

�
: ð63Þ

However, if one instead starts from the equivalent action

S̃½ϕ� ¼ −
Z

d4x
1

2
Φ□Φ; ð64Þ

that boundary term is gone:

d4x0
1

2
Φ0□0Φ0 ¼ d4x

1

2
Φ□Φ: ð65Þ

For simplicity, whenever possible, we tend to rewrite
actions in a way that they only involve up to first derivatives
of the fields, and, in fact, we have assumed just that in all of
our derivations above. So, if we insist on this assumption,
in general for conformal transformations we have to allow
that the action changes by a total derivative beyond that
of Eq. (25). This means that, for a conformally invariant
theory, the last term in (60) must be a total derivative,

Vμ ≡ Sμα
α þ 2Sα

½μα� ¼ ∂ασ
αμ; ð66Þ

for some local functional σαμ. Vμ is traditionally called the
“virial current” [4,5].
We can now go back to the form of the stress-

energy tensor, Eq. (36). We already saw that its T μν part
is symmetric and traceless, off-shell. As to the rest,
Eq. (40), we saw in (56) that Sρμν is made up of the
equivalent scale and Lorentz parts. The virial current (66)
relates these two parts. And so, for example, using (66) we
can eliminate the scale part,
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Sρμν ¼ 1

D
½ημν∂ασαρ þDSρμν

L − 2SLα
ραημν�; ð67Þ

and rewrite (40) as2

ΔTμν ¼ −∂ρ
�
Sρμν
L −

2

D
SLα

ραημν þΣρμν

�
−
1

D
ημν∂α∂ρσ

ðαρÞ:

ð68Þ

This expression, together with the tracelessness and sym-
metry of T μν, encodes conformal invariance at the level of
the stress-energy tensor. There is no reference anymore to
the transformation properties of the fields under scale
transformations because, for conformal invariant theories,
those are related to the fields’ Lorentz transformation
properties through the virial current (66).
The question now is whether one can choose an (anti-

symmetric in ρ and μ) Σρμν in such a way as to make ΔTμν

also traceless and symmetric. For vanishing σμν, the answer
is simply the same as in the Lorentz-friendly case—see
Sec. IV B:

Σρμν ¼ Σρμν
L ≡ Sνρμ

L − ðSρμν
L − Sμρν

L Þ: ð69Þ

The reason is that, as we know from that section, this choice
makes (40) symmetric, and the extra terms in (68) are
already symmetric. Moreover, as to the trace, we have

Σρμ
L μ ¼ 2SLμ

ρμ; ð70Þ

which makes the trace of the first line in (68) vanish.

For nonvanishing σμν, we can supplement Σρμν
L with total

derivative terms, which, in order not to spoil the μν
symmetry just obtained, and recalling that Σρμν must be
antisymmetric in ρ and μ and that it is acted on by a ∂ρ

in (68), should take the form

Σρμν ¼ Σρμν
L þ ∂αΞ½ρμ�½αν�; ð71Þ

where Ξ should be symmetric under the ρμ ↔ αν pair
exchange, while we are displaying the needed antisymme-
tries explicitly. The trace of (68) then is

ΔTμ
μ ¼ −∂α∂ρðημνΞ½ρμ�½αν� þ σðαρÞÞ: ð72Þ

Following the same logic as before, we parametrize Ξ as the
most general tensor with the right symmetries and con-
structed out of σ and η tensors:

Ξ½ρμ�½αν� ¼AðημνσðαρÞ þηαρσðμνÞ−ημασðνρÞ−ηνρσðμαÞÞ ð73Þ

þBðηαρημν − ημαηνρÞσββ: ð74Þ

Demanding that Eq. (72) vanish, we get A ¼ − 1
D−2 and

B ¼ 1
ðD−1ÞðD−2Þ.

Putting everything together, we find that the conformal-
friendly version of the stress-energy tensor is

Tμν
C ¼ Tμν

c þ δS
δϕ

·

�
1

D
ημνdþ 1

2
J μν

�
· ϕþ 1

2
∂ρ

�
∂L

∂ð∂ρϕÞ
J μνϕ −

∂L
∂ð∂μϕÞ

J ρνϕ −
∂L

∂ð∂νϕÞ
J ρμϕ

�

þ
�

1

D − 2
ημν∂ρ∂σσ

ðρσÞ −
1

D − 2
ð∂ν∂ρσðρμÞ þ ∂

μ
∂ρσ

ðρνÞÞ þ 1

D − 2
□σðμνÞ

þ 1

ðD − 1ÞðD − 2Þ ∂
μ
∂
νσρρ −

1

ðD − 1ÞðD − 2Þ η
μν
□σρρ

�
; ð75Þ

where σμν is related to the virial current by (66),
Vμ ¼ ∂ασ

αμ. This stress-energy tensor is guaranteed to
be symmetric and traceless, off-shell:

Tμν
C ¼ Tνμ

C ; Tμ
C μ ¼ 0 ðoff-shellÞ: ð76Þ

Before we conclude, notice that (D − 2) is showing up in
denominators in many terms. Indeed, our procedure does
not work for D ¼ 2, and this special case needs to be dealt

with separately. It is also important that the virial current be
a total derivative, as per Eq. (66). The reason is that in (75)
there are combinations such as □σðμνÞ and σρρ. These
cannot be written directly in terms of the virial current Vμ—
rather, one needs to extract the σ tensor from Vμ ¼ ∂ασ

αμ.

V. THE OTHER CURRENTS, FOR FREE

We have seen how modifying the translation Noether
theorem along the lines of Sec. IVA can make the
derivation of “improved” stress-energy tensors systematic.
The reason the strategy works is that it makes explicit use of
the fact that Lorentz, scale, and conformal transformations

2Notice that only the symmetric part of σμν enters the stress-
energy tensor.
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can be thought of as suitably modulated translations. They
are still defined by certain constant parameters, respec-
tively, ωμν, ω, and bμ. Now, suppose we wanted to run
Noether’s theorem not for translations, but for those extra
spacetime symmetries. These parameters would have to be
modulated in x in an arbitrary way to find the correspond-
ing currents. But the advantage of how we organized our
Lorentz-friendly, scale-friendly, and conformal-friendly
translation Noether’s theorems is that these can be used
directly also as Noether’s theorems for, respectively,
Lorentz, scale, and conformal transformations.3

Concretely, adopting the general transformation law (27)
for completely generic ϵμðxÞ, the Lagrangian changes as
in (34). This can be taken as the definition of the
stress-energy tensor associated with this particular imple-
mentation of Noether’s theorem. If we are running the
Lorentz-friendly version of the theorem (Sec. IV B), and we
perform an x-modulated Lorentz transformation,

ϵμðxÞ ¼ ωμ
νðxÞxν; ωμνðxÞ ¼ −ωνμðxÞ; ð77Þ

the variation of the Lagrangian density reduces to

δL ¼ −∂μðωναxαÞTμν
L þ total derivatives ð78Þ

¼ −∂μωναxαT
μν
L þ total derivatives; ð79Þ

where we used that, as a consequence of Lorentz invari-
ance, Tμν

L is symmetric, off-shell. Now, by definition,
whatever multiplies the derivatives of the ωμν parameters
in δL is the Noether current Mμνα associated with Lorentz
transformations,

δL ¼ −∂μωναMμνα þ total derivatives: ð80Þ
Taking into account that the ω’s are antisymmetric, we
thus have

Mμνα¼1

2
ðxαTμν

L −xνTμα
L Þ; ∂μMμνα¼0 ðon-shellÞ; ð81Þ

in agreement with the standard result [1,2].
Likewise, if we are running the scale-friendly version of

the theorem (Sec. IV C), and we perform an x-modulated
scale transformation,

ϵμðxÞ ¼ ωðxÞxν; ð82Þ

the variation of the Lagrangian reduces to

δL ¼ −∂μðωxνÞTμν
S þ total derivatives ð83Þ

¼ −∂μωxνT
μν
S þ total derivatives; ð84Þ

where we used that, as a consequence of scale invariance,
Tμν
S is traceless, off-shell. By definition, whatever multi-

plies the derivatives of ωðxÞ is the Noether current Sμ

associated with scale transformations,

δL ¼ −∂μωSμ þ total derivatives: ð85Þ
We thus get

Sμ ¼ xνT
μν
S ; ∂μSμ ¼ 0 ðon-shellÞ: ð86Þ

Related to our comments at the end of Sec. IV C, notice that
this differs from the standard expression of the scale current
in a nonconformal theory,

Sμ ¼ xνTμν þ Vν ðstandard resultÞ: ð87Þ
The Vμ appearing here is precisely the same as in Eq. (52).
In fact, using the conservation of Sμ and of Tμν, from (87)
one derives (52), which shows that Eq. (52) is only valid
on-shell. Again, the difference between our result (86) and
the standard one (87) stems from our using a traceless but,
in general, nonsymmetric stress-energy tensor.
Finally, consider the conformal-friendly case (Sec. IVD).

If we choose ϵμðxÞ to be an x-modulated special conformal
transformation,

ϵμðxÞ ¼ bμðxÞx2 − 2bðxÞ · xxμ; ð88Þ
the Lagrangian changes by

δL ¼ −∂μðbνx2 − 2b · xxνÞTμν
C þ total derivatives ð89Þ

¼ −∂μbνðx2δνα − 2xνxαÞTμα
C þ total derivatives; ð90Þ

where we used that Tμν
C is symmetric and traceless, off-shell.

Following the same logic as above, we see that the Noether
current associated with special conformal transformations is

Kμν¼ðx2δνα−2xνxαÞTμα
C ; ∂μKμν¼0 ðon-shellÞ; ð91Þ

in agreement with the standard results [3–5].

VI. EXAMPLES

Let us work through a few explicit examples of the
different improvements we have presented for the trans-
lation Noether theorem.

(i) Symmetric Tμν from Lorentz invariance
We can start by taking a look at the nontrivial case

of a Dirac spinor ψðxÞ, with Lagrangian

L ¼ ψ̄ði=∂ −mÞψ : ð92Þ
The canonical stress-energy tensor is as usual not
symmetric,

Tμν
c ¼ iψ̄γμ∂νψ − ημνL: ð93Þ

3Similar ideas were exploited in [12] in the case of Galilean
invariance.
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Applying our formula (42) from the Lorentz-
friendly procedure, we get

Tμν
L ¼ iψ̄γμ∂νψ − ημνL −

i
2
ψ̄ ½J μν; γρ�∂ρψ

−
i
2
∂ρðψ̄γμJ ρνψ þ ψ̄γνJ ρμψÞ; ð94Þ

with the Lorentz generators given by

J μν ¼ 1

4
½γμ; γν�: ð95Þ

The commutator ½J μν; γρ� ¼ ðγμηνρ − γνηρμÞ fixes
the nonsymmetric part coming from the first term in
Tμν
L , while the rest of the expression is already

symmetric. With a bit of γ-matrix algebra, the final
expression becomes

Tμν
L ¼ i

2
ψ̄γðμ∂νÞψ −

i
2
∂
ðμψ̄γνÞψ

þ i
2
ημν∂ρðψ̄γρψÞ − ημνL; ð96Þ

which is manifestly symmetric, off-shell, as promised.
(ii) Traceless Tμν from scale invariance

For our scale-invariance example we may look at
scalar theories of the form

L ¼ ϕ4f

�ð∂ϕÞ2
ϕ4

�
; ð97Þ

which are scale invariant for any function f in
D ¼ 4. The canonical stress-energy tensor for such
theories is

Tμν
c ¼ 2f0∂μϕ∂νϕ − ημνfϕ4; ð98Þ

where the prime means f0 ¼ ∂Xf; X ≡ ð∂ϕÞ2
ϕ4 . Notice

thatTμν
c happens tobe symmetric, sincewearedealing

with a scalar field, but is not traceless in general.
Our prescription for a traceless stress-energy tensor

(50) (with d → 1) gives the following improved
expression for such theories:

Tμν
S ¼ 4

3
f0∂μϕ∂νϕ −

1

3
ημνf0ð∂ϕÞ2

þ 1

6
ημνϕ∂ρðf0∂ρϕÞ −

2

3
ϕ∂νðf0∂μϕÞ; ð99Þ

forwhichone can readily check that the tracevanishes
off-shell.
However, Tμν

S is not symmetric in general: the first
three terms are manifestly symmetric, but the last one
is symmetric only if f0 is a constant, that is,
only if

fðXÞ ¼ constþ const × X: ð100Þ

It is clear from (97) that this choice corresponds, in
D ¼ 4, to a conformally invariant theory.

(iii) Traceless, symmetric Tμν from conformal invariance
Up to changing the normalization of ϕ, the

conformally invariant theory mentioned above is

L ¼ 1

2
ð∂ϕÞ2 − λϕ4: ð101Þ

For such a simple theory, the virial term (66) takes
the form Vμ ¼ ϕ∂μϕ and hence σμν ¼ 1

2
ημνϕ2. Fol-

lowing (75), and given that J μν ¼ 0 for scalar fields,
the improved stress-energy tensor inD ¼ 4 becomes

Tμν
C ¼ 2

3
∂
μϕ∂νϕ −

1

6
ημνð∂ϕÞ2

þ 1

12
ημνϕ□ϕ −

1

3
ϕ∂μ∂νϕ; ð102Þ

which is manifestly symmetric and traceless, off-
shell. In fact, recalling that compared to our previous
example now we have f0 ¼ 1

2
, we see our scale-

friendly Tμν
S in (99) reduces precisely to our

conformal-friendly Tμν
C above.

Notice that, compared to the more standard
improved stress-energy tensor associated with (101),

Tμν ¼ ∂
μϕ∂νϕ −

1

2
ημνð∂ϕÞ2 þ λημνϕ4

−
1

6
ð∂μ∂ν − ημν□Þϕ2 ðstandard resultÞ

¼ 2

3
∂
μϕ∂νϕ −

1

6
ημνð∂ϕÞ2 þ λημνϕ4

þ 1

3
ημνϕ□ϕ −

1

3
ϕ∂μ∂νϕ; ð103Þ

ours has a different coefficient for the ϕ□ϕ term
and, perhaps more surprisingly, has no sign of the
potential. In particular, our Tμν

C does not depend on λ.
The reason is that, as we tried to emphasize, our
expressions for improved stress-energy tensors dif-
fer from the more standard ones by terms propor-
tional to the equations of motion. For solutions of
the equations of motion, the value of the potential
can be related to that of ϕ□ϕ:

λϕ4 ¼ ϕ · λϕ3 ¼ −
1

4
ϕ□ϕ ðon-shellÞ: ð104Þ

Using this on-shell relationship, the two expressions
(102) and (103) coincide.

(iv) Electromagnetism
Finally, we may also look at the electromagnetic

field’s Lagrangian, which is Lorentz, scale, and, in
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D ¼ 4, conformal invariant. We can then apply
and compare all of the three different prescriptions.
Consider then

L ¼ −
1

4
FμνFμν: ð105Þ

The canonical stress-energy tensor is

Tμν
c ¼ ∂

νAλFλμ þ ημν

4
F2; ð106Þ

which is neither symmetric nor traceless.
The Lorentz generators for spin-1 fields are

given by ðJ μνÞρσ ¼ ηνρδμσ − ημρδνσ. Our formula
for Lorentz invariance yields the manifestly sym-
metric stress-energy tensor

Tμν
L ¼ ημν

4
F2 þ Aλ∂

ðμFνÞλ þ ∂λðAðμFνÞλÞ: ð107Þ

Our scale-friendly prescription (50) (with d → D−2
2
)

instead gives

Tμν
S ¼ ∂

νAλFλμ þ ημν

4
F2 −

D − 2

2ðD − 1Þ ∂
νðAλFλμÞ

þ D − 2

2DðD − 1Þ η
μνðAλ∂ρFλρ þD∂ρAλFλρÞ:

ð108Þ

Using ημμ ¼ D and ∂μAλFλμ ¼ −F2=2, we see that
the trace vanishes, in generic D,

Tμ
S μ ¼ 0; ð109Þ

without the use of equations of motion. However,
notice that this stress-energy tensor is no longer
symmetric.
As is well known, in D ¼ 4 the theory is also

conformally invariant. In fact, the virial term van-
ishes, and the resulting conformal-friendly stress-
energy tensor is

Tμν
C ¼ ∂ρAμ

∂
ρAν − ∂

μAρ
∂
νAρ − Aðμ

∂ρFνÞρ

þ ημν

4
Aλ∂ρFλρ; ð110Þ

which is manifestly both symmetric and traceless,
without using the equations of motion.
Notice that none of these stress-energy tensors for

the electromagnetic field is gauge invariant. This is a
common issue, and it is usually fixed, on-shell,
by adding ad hoc further improvement terms. For a
more constructive approach, somewhat similar to
ours, see instead [13] and references therein.

VII. SUMMARY AND CONCLUDING REMARKS

Despite the dryness and length of our algebra, our
strategy and findings are easy to summarize:

(i) There are ambiguities in the standard formulation of
Noether’s theorem. One of these is related to a
modification of how the fields are chosen to trans-
form in the case of a spacetime-modulated symmetry
transformation. Since spacetime symmetries beyond
translations can be thought of as suitably modulated
translations, such an ambiguity can be used to one’s
advantage, constructively, to derive directly from
the translation Noether theorem the algebraic prop-
erties of Tμν associated with said additional space-
time symmetries.

(ii) We formulated this strategy in general and applied it
to the cases of Lorentz invariance, scale invariance,
and conformal invariance. We reobtained the standard
results, albeit with some modifications: first, our
stress-energy tensors have the standard algebraic
properties (symmetry and/or tracelessness) off-shell;
second in the case of combined Lorentz and scale
invariance, we noted a tension between tracelessness
and symmetry of the stress-energy tensor. The stan-
dard choice corresponds to making the stress-energy
tensor symmetric. But we showed that there is an
equally valid choice in which the stress-energy
tensor is traceless, off-shell, but in general nonsym-
metric.

(iii) Since the additional spacetime symmetries are in-
corporated into the structure of the translation
Noether theorem, this serves as Noether’s theorem
for those additional symmetries as well, yielding
directly their associated currents in terms of the
stress-energy tensor.

Our unified framework shows that the standard
improvement terms that make the stress-energy tensor
symmetric in the case of Lorentz invariance, and traceless
in the case of scale and conformal invariance have the
same origin: they are a direct consequence of the fact that
all those additional spacetime symmetries are suitably
modulated translations.
We have already mentioned two possible extensions

of our analysis at the beginning of Sec. IVA: the case of
nonlinearly realized spacetime symmetries, and the case
of Lagrangians with higher-than-first derivatives of the
fields. Another possible extension would be to push the
starting point of our improved Noether’s theorem,
Eq. (27), to higher orders in derivatives of ϵaðxÞ. We
see no obvious use for this at the moment, but maybe
there is one, perhaps related to the question of nonlinear
realizations alluded to above. Finally, we wonder whether
the viewpoint we have put forward here can prove useful
for the ongoing conversation on scale vs conformal
invariance (see for instance the recent [14] and references
therein).
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