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We investigate the low-temperature behavior of a system in a spontaneously broken symmetry phase
described by a Euclidean quantum λφ4

dþ1 model with quenched disorder.We study the effects of the disorder
linearly coupled to the scalar field using a series representation for the averaged generating functional of
connected correlation functions in terms of the moments of the partition function. To deal with the strongly
correlated disorder in imaginary time, we employ the equivalence between the model defined in a
d-dimensional space with imaginary time with the statistical field theory model defined on a space Rd × S1

with anisotropic quenched disorder. Next, using stochastic differential equations and fractional derivatives,
we obtain the Fourier transform of the correlation functions of the disordered system at tree level. In one-
loop approximation, we prove that there is a denumerable collection of moments of the partition function
that can develop critical behavior. Our main result is that, even with the bulk in the ordered phase, there are
many critical compactified lengths that take each of the moments of the partition function from an ordered to
a disordered phase. This is a sign of generic scale invariance emergence in the system.
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I. INTRODUCTION

The aim of this work is to discuss with quantum field
theory techniques quenched disorder effects in systems at
low temperatures in the spontaneously symmetry-broken
phase. The classical and quantum descriptions of physical
systems in the presence of quenched disorder are of funda-
mental importance. Static disorder, for instance, is present in
many condensed-matter systems, such as disordered metals,
impure semiconductors, and classical or quantum spin
systems [1–4]. The effects of random couplings on sec-
ond-order phase transitions ind-dimensional systems, driven
by thermal and disorder fluctuations, are controlled by the
Harris criterion [5]. Under coarse-graining fluctuations,
which is a standard approach in the treatment of disordered
systems, one can identify two distinguished behaviors of the
system’s criticality under disorder. Namely, if the correlation

length exponent of the pure system ν satisfies the inequality
ν ≥ 2

d, the effects of the disorder may be disregarded on the
physics of large length scales. Otherwise, if ν < 2

d the
disorder-induced fluctuations modify the critical behavior.
In the latter case, the critical exponentsmust change under the
coarse-graining procedure.
A prototype model that can be studied as a continuous

field in the presence of a random field is the binary fluid in
a porous medium [6]. When the binary-fluid correlation
length is smaller than the porous radius, one has a system
for studying finite-size effects in the presence of a surface
field. When the binary fluid correlation length is much
larger than that of the porous radius, the random porous can
exert a random field effect. In the latter case, one can also
introduce boundaries and thereby obtain a Casimir-like
effect [7], known as the statistical Casimir effect [8–10].
Recent experimental and theoretical advances havedriven

increased interest in low-temperature physics and quantum
phase transitions [11–15]. Two questions dominate the
interest in the low-temperature physics of systems with
quenched disorder [16–19]: (1) What is the effect of
randomness in models at low temperatures in symmetry-
broken phases? (2) What is the link between nonlocality
(driven by anisotropic disorder) and the appearance of
generic scale invariance in systems with continuous and
discrete symmetry? We recall that generic scale invariance
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refers to power-law decay of correlation functions in macro-
scopic regions of the system. It is well known that models
with continuous symmetry can exhibit generic scale invari-
ance due to the Goldstone theorem [20]. Nevertheless, even
in the case of discrete symmetry, the presence of quenched
disorder also leads to generic scale invariance. Such behav-
ior is in accord with Garrido et al. [21], who claim that a
necessary, but not sufficient, condition for generic scale
invariance is an anisotropic disorder. Later on, Vespignani
and Zapperi [22] showed that the breakdown of locality is
essential to the emergence of generic scale invariance. By
now, it is a well-known fact that low temperatures in
quenched disordered systems drive spatial nonlocality. As
such, one can rephrase the two questions with a single one:
what is the link between low temperatures and generic scale
invariance in systems with a quenched disorder?
In this work, we discuss the effects of a disorder field in a

Euclidean quantum scalar λφ4
dþ1 model at low temperatures

in the broken symmetry phase. Criticality in this model is
induced mainly by quantum and disorder fluctuations. The
extreme situation, in which thermal fluctuations are absent,
characterizes a quantum phase transition. In this case, the
ground states of the system change in some fundamental
way tuned by nonthermal control parameters [23–26]. For
systems with quenched disorder, the physical quantity of
interest is the disorder-averaged free energy [27,28]. The
random fields are described assuming some probability
distribution on the space of realizations of the disorder. To
calculate the disorder average, different methods are used in
the literature, such as the replica method [29,30], dynamic
theories [31,32], and supersymmetric approaches [33].
Another way to find the quenched free energy is the
distributional zeta-function method [34–40], which is the
methodwe use in the present work to analyze the restoration
of a spontaneously broken symmetry due to quantum and
disorder effects. This field theorymethod allows us to obtain
in a natural and unified way, locality breaking and generic
scaling invariance due to an anisotropic quenched disorder.
In the distributional zeta-function method, the disorder-
averaged free energy is represented by a series of moments
of the partition function. In general, this leads to a complex
free-energy landscape. However, a previous work [41]
pointed out that at criticality, a single moment dominates
the series, a feature that allows us to concentrate the analysis
on that single moment of the averaged free energy. Here, we
discuss how an anisotropy in the disorder changes the
simpler scenario arising from an isotropic disorder.
To discuss quantum fluctuations effects in a system with

the disorder in the broken symmetry phase at low temper-
atures, one can use the imaginary-time formalism [42–44].
To study the low-temperature behavior of the model, since
the disorder is strongly correlated in imaginary time, we use
the equivalence between a disordered Euclidean quantum
λφ4

dþ1 model with a classical model defined in a Rd × S1

space with anisotropic quenched disorder. This model with

a spatially nonuniform disorder has some similarities with
the McCoy-Wu random Ising model [45,46], an anisotropic
two-dimensional classical Ising model with random
exchange along one direction but uniform along the other;
see also Refs. [47–49]. Next, using stochastic differential
equations and fractional derivatives, we obtain the Fourier
transform of the correlation functions of the disordered
system at the tree-level approximation. Going further, we
implement a one-loop approximation to show that in the set
of moments that define the quenched free energy, there is a
denumerable collection of moments that can develop
critical behavior induced by quantum and disorder-induced
fluctuations. With the bulk of the system in the ordered
phase, a large number of critical compactified lengths take
each of these moments from an ordered to a disordered
phase. We demonstrate the link between the nonlocality
and generic scale invariance for a system with quenched
disorder.
We structure the paper as follows. In Sec. II we revise an

analytical regularization procedure that we use to regularize
divergences appearing in the one-loop calculations. We
exemplify the application of the regularization procedure
with a pure (no disorder) scalar field model in the broken
symmetry phase. We review the distributional zeta-function
method in Sec. III. We use a simple model, the random-mass
scalar fieldmodel, to illustrate the essential steps to obtain the
disorder-averaged free energy with the method. Section IV
starts the original work of the paper. We obtain the disorder-
averaged free energy for the model of interest, the Euclidean
quantum λφ4

dþ1 model with additive, anisotropic quenched
disorder. The average free energy is given as a series of the
moments of the partition function, each of which is charac-
terized by an effective action of a multiplet of fields. The
effective actions contain nonlocal terms generated by the
anisotropic disorder. In Sec. V, we obtain dynamic correla-
tion functions for the fields of a given moment. To obtain the
correlation functions, we employ stochastic differential
equations with additive white noise, with each equation
driven by the effective action of the corresponding moment.
To deal with the nonlocal terms that appear in these
equations, we employ the method of fractional derivatives.
In Sec. VI, we compute in the one-loop approximation the
effect of the disorder on the mass in the symmetry-broken
phase. We also show numerical results for the mass for
different values of the parameters of the model. We present
our conclusions in Sec. VII. The paper still contains one
Appendix, inwhichwedetermine the set of criticalmoments.
Throughout the paper we use ℏ ¼ c ¼ kB ¼ 1 units.

II. ANALYTIC REGULARIZATION OF THE
ONE-LOOP APPROXIMATION IN A SCALAR

FIELD MODEL

The aim of this section is to review the analytic
regulation method that we use in Sec. VI to discuss the
local restoration of a low-temperature broken symmetry in
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a model with quenched disorder. To present the method, we
discuss temperature effects in the low-temperature broken
symmetry phase of a real scalar field model without the
disorder. The model contains self-interaction vertices
ρ0φ

3 þ λ0φ
4 and is defined on a Rd × S1 space. We study

the one-loop thermal corrections to the renormalized
squared mass of the model. The contribution from the
λ0φ

4 vertex is a tadpole diagram, and the contribution of
the ρ0φ3 vertex is a bubble with two vertices. We name the
latter a self-energy contribution.
In the imaginary-time formalism, the action functional

SðϕÞ is given by the Euclidean action [50–52]:

SðϕÞ ¼ 1

2

Z
β

0

dτ
Z

ddx

�
ϕðτ;xÞ

�
−

∂
2

∂τ2
− Δþ μ20

�
ϕðτ;xÞ

þ λ

2
ϕ4ðτ;xÞ

�
: ð1Þ

Here we omit a subscript 0 indicating an unrenormalized
field and coupling constant. The perturbative renormaliza-
tion consists of the introduction of additive counterterms
related to δm2, Z1, and Z2. The partition function is given
by the functional integral

Z ¼
Z

½dϕ�e−SðϕÞ; ð2Þ

where ½dϕ� ¼ Q
τ;x dϕðτ;xÞ is a functional measure. The

field variables satisfy the periodicity condition ϕð0;xÞ ¼
ϕðβ;xÞ, where β is the reciprocal temperature. All the finite
temperature n-point Schwinger functions (or Euclidean
correlation functions) can be expressed as moments of this
measure:

hϕðτ1;x1Þ � � �ϕðτn;xnÞi¼
1

Z

Z
½dϕ�

Yn
i¼1

ϕðτi;xiÞe−SðϕÞ: ð3Þ

As usual, to generate the correlation functions of the
model by functional derivatives, one can introduce an
external source, defining the generating functional of
correlation functions ZðjÞ. From this functional, one can
define the generating functional of connected correlation
functions WðjÞ. Performing a Legendre transform one gets
the generating functional ΓðφÞ of vertex functions. The
renormalization conditions are imposed over the vertex
functions. Starting from a new model with a negative sign
of the mass squared ðμ20 → −μ20Þ it is possible to show that
quantum and thermal effects restore the symmetry broken
at the tree level ðϕ → −ϕÞ, where the ground state is
unique. Above the critical temperature, one can write the
thermal correction to the mass squared as

m2
RðβÞ ¼ −μ20 þ δμ2 þ Δm2ðβÞ; ð4Þ

where δμ2 is the usual mass counterterm that must be
introduced in the renormalization procedure to obtain a

finite result. The situation of temperatures below the critical
temperature will be discussed in the following. The result of
symmetry restoration is easily obtained at the one-loop
level. We note that beyond perturbation theory, one can use
the Dyson-Schwinger equation to obtain a nonperturbative
result [53]. To study spontaneous symmetry breaking
beyond the tree level, it is well known that for a transla-
tionally uniform system, one can use the effective potential,
the free energy per unit volume [54]. However, since our
aim is to investigate a model with a spatially nonuniform
disorder, another method must be used.
Let us suppose that the system is in the ordered phase, at

low temperatures, with some nonzero vacuum expectation
value v ¼

ffiffiffiffiffiffiffiffiffi
μ20=λ

p
, using the quantum field theory termi-

nology. Shifting the field as φ ¼ ϕ − v, the new theory
has an effective mass squared m2

0 ¼ 3λv2 − μ20 and self-
interaction vertices ρ0φ

3 and λ0φ
4, where ρ0 ¼ 2λv and

λ ¼ λ0. In the case of a continuous second-order phase
transition, one has to find the corrections to the mass. The
one-loop correction for the spontaneous symmetry-broken
phase can be easily discussed. Tadpole and bubble dia-
grams give the first nontrivial contributions, we denote
them Δm2

1ðβÞ and Δm2
2ðβÞ:

m2
RðβÞ ¼ m2

0 þ δm2
0 þ 3Δm2

1ðβÞ þ 9Δm2
2ðβÞ; ð5Þ

where 3 and 9 are symmetry factors, and δm2
0 is a

d-dependent mass counterterm.We omitted a d dependence
in the ΔmðβÞ functions to lighten the notation. Let us first
discuss the tadpole contribution.
Different procedures are used in the literature to evaluate

the Matsubara sum of the tadpole. One can use a method
where the Matsubara frequency sum separates into temper-
ature-independent and temperature-dependent parts. An
alternative procedure is to use a mix between the dimen-
sional and analytic regularization procedures [55–58]. Here
we will use an analytic regularization procedure, where the
number of dimensions of the space is not a complex
continuous variable [59]. A detailed study comparing an
analytic regularization procedure and a cutoff method in the
Casimir effect can be found in Refs. [60–63]. The analytic
regularization procedure aims to replace divergent integrals
with analytic functions of certain regularization parameters.
We denote the thermal contribution from the tadpole, after

analytic continuation, by Δm2
1ðβ; μ; sÞjs¼1. Performing the

angular part of the integral over the continuous momenta of
the noncompact d-dimensional space, for s ∈ C, theΔm2

1ðβÞ
quantity can be written as Δm2

1ðβ; μ; sÞ, where

Δm2
1ðβ;μ; sÞ ¼

λðμ; sÞβ
2dþ1π

d
2
þ1Γðd

2
Þ

×
Z

∞

0

dppd−1
X
n∈Z

�
πn2 þ β2

4π
ðp2 þm2

0Þ
�−s

;

ð6Þ
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with λðμ; sÞ ¼ λ0ðμ2Þs−1, where μ has mass dimension.
The function Δm2

1ðβ; μ; sÞ is defined in the region where
the above integral converges, ReðsÞ > s0.
The self-energy contribution to the mass,Δm2

2ðβÞ, can be
obtained from the tadpole as

Δm2
2ðβÞ ¼

�
−
ρ2ðμ; sÞ
λðμ; sÞ Δm2

1ðβ; μ; sÞ
�
s¼2

; ð7Þ

where ρðμ; sÞ ¼ ρ0ðμ2Þs−2. Therefore, one can concentrate
on the Δm2

1ðβ; μ; sÞ function.
After a Mellin transform and reordering of some quan-

tities, we can write Δm2
1ðβ; μ; sÞ as

Δm2
1ðβ; μ; sÞ ¼

λðμ; sÞ
2πΓðd

2
ÞΓðsÞ

�
1

β

�
d−1 Z ∞

0

dr rd−1

×
Z

∞

0

dt ts−1
X
n∈Z

e−ðπn2þr2þm2
0
β2=4πÞt; ð8Þ

where we made the change of variable r2 ¼ β2p2=4π.
The integral over r is straightforward. We represent the sum
over n ∈ Z by ΘðvÞ:

ΘðvÞ ¼
X
n∈Z

e−πn
2v; ð9Þ

which is an example of a modular form. Then, we split the t
integral into two:

Δm2
1ðβ; μ; sÞ ¼ Cdðβ; μ; sÞ

�Z
1

0

dt ts−
d
2
−1e−m

2
0
β2t=4πΘðtÞ

þ
Z

∞

1

dt ts−
d
2
−1e−m

2
0
β2t=4πΘðtÞ

�
; ð10Þ

with Cdðβ; μ; sÞ defined as

Cdðβ; μ; sÞ ¼
λðμ; sÞ
4πΓðsÞ

�
1

β

�
d−1

: ð11Þ

Next, by making a change of variable t → 1=t in the first
integral and using the modular property of the Θ function,

ΘðvÞ ¼ 1ffiffiffi
v

p Θ
�
1

v

�
; ð12Þ

one can write Δm2
1ðβ; μ; sÞ as a sum of four integrals:

Δm2
1ðβ; μ; sÞ ¼ Cdðβ; μ; sÞ½2Ið1Þd ðβ; sÞ þ 2Ið2Þd ðβ; sÞ

þ Ið3Þd ðβ; sÞ þ Ið4Þd ðβ; sÞ�; ð13Þ

where

Ið1Þd ðβ; sÞ ¼
Z

∞

1

dt ts−
d
2
−1e−m

2
0
β2t=4πψðtÞ; ð14Þ

Ið2Þd ðβ; sÞ ¼
Z

∞

1

dt t−sþd
2
−1
2e−m

2
0
β2=4πtψðtÞ; ð15Þ

Ið3Þd ðβ; sÞ ¼
Z

∞

1

dt ts−
d
2
−1e−m

2
0
β2t=4π; ð16Þ

Ið4Þd ðβ; sÞ ¼
Z

∞

1

dt t−sþd
2
−1
2e−m

2
0
β2=4πt; ð17Þ

in which ψðvÞ is given by

ψðvÞ ¼
X∞
n¼1

e−πn
2v ¼ 1

2
½ΘðvÞ − 1�: ð18Þ

Now we can use the standard result that a function that is
analytic on a domain Ω ⊂ C has a unique extension to a
function defined in C, except for a discrete set of points.
Using the fact that ψðtÞ ¼ Oðe−πtÞ as t → ∞, the integrals

Ið1Þd ðs; βÞ and Ið2Þd ðs; βÞ represent everywhere regular func-
tions of s for m2

0β
2 ∈ Rþ. The upper bound ensures

uniform convergence of the integrals on every bounded
domain in C. On the other hand, at low low temperatures,

the integrals Ið3Þd ðs; βÞ and Ið4Þd ðs; βÞ are finite too.
Therefore, one can take the limit s → 1 to obtain the
tadpole contribution to the thermal correction to the mass.
Note that the thermal correction from the self-energy
contribution is also finite; recall that to obtain this con-
tribution we have to evaluate the four integrals for s ¼ 2.
We stress that these results are valid only in the low-
temperature situation.
We note that we are left with an ultraviolet divergence

that needs to be normalized. The divergence comes from
the integral Ið4Þd ðβ; sÞ. The renormalization is done by
introducing a mass counterterm of the form −δm2

0 ¼
Cdðβ; μ; sÞIð4Þd . This is a temperature-dependent counter-
term coming from the subtraction at zero momentum of the
self-energy diagram. Going beyond one-loop approxima-
tion, one can show that the counterterms of a finite
temperature field theory are the same as the zero temper-
ature theory. The final result is then:

Δm2
1ðβÞ ¼ Cdðβ; 1Þ½2Ið1Þd ðβ; 1Þ þ 2Ið2Þd ðβ; 1Þ

þ Ið3Þd ðβ; 1Þ þ Ið4Þd ðβ; 1Þ�; ð19Þ

Δm2
2ðβÞ ¼ −Cdðβ; 2Þ

ρ20
μ2λ0

½2Ið1Þd ðβ; 2Þ þ 2Ið2Þd ðβ; 2Þ

þ Ið3Þd ðβ; 2Þ þ Ið4Þd ðβ; 2Þ�: ð20Þ

Finally, the critical temperature of this pure system is
given by the value of β for which the mass squared m2

RðβÞ
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vanishes. Figure 1 presents the numerical results for for
d ¼ 3 as a function of m0 and selected values of λ0.

III. DISTRIBUTIONAL ZETA-FUNCTION
METHOD

The aim of this section is to review the distributional
zeta-function method [34,35] used to obtain the disorder-
averaged free energy. We use a simple Ginzburg-Landau
type of model to explain how the distributional zeta-
function method works. Specifically, we employ the
random-mass model with a λϕ4 term and show how one
can obtain the free-energy landscape of the model. The
simplicity of the random-mass model stems from the fact
that the disorder average modifies only this non-Gaussian
term in the effective action, as explained in Ref. [37].
The partition function of the model for one disorder

realization in the presence of an external source jðxÞ is
given by

Zðj;hÞ¼
Z

½dϕ�exp
�
−Sðϕ;hÞþ

Z
ddþ1xjðxÞϕðxÞ

�
; ð21Þ

where ½dϕ� ¼ Q
x dϕðxÞ is a functional measure, and the

action functional in the presence of the disorder is

Sðϕ; hÞ ¼ SðϕÞ þ
Z

ddþ1xhðxÞϕ2ðxÞ: ð22Þ

Here, SðϕÞ is the pure-system action of the Ginzburg-
Landau type, and hðxÞ is a quenched random field.
In a general situation, one can model a disordered

medium by a real random field hðxÞ in Rd with
E½hðxÞ� ¼ 0 and covariance E½hðxÞhðyÞ�, where E½� � ��
specifies the mean over the ensemble of realizations of
the disorder. As in the pure-system case, one can define
the generating functional of connected correlation func-
tions for one disorder realization, Wðj; hÞ ¼ lnZðj; hÞ, or
the system’s free energy for one disorder realization.

From Wðj; hÞ, one can obtain the quenched free energy
by performing the average over the ensemble of all disorder
realizations.
The physical quantity of interest is the disorder-averaged

free-energy functional E½Wðj; hÞ�:

E½Wðj; hÞ� ¼
Z

½dh�PðhÞ lnZðj; hÞ; ð23Þ

where ½dh� ¼ Q
x dhðxÞ is a functional measure and

½dh�PðhÞ is the probability distribution of the disorder
field. For a general disorder probability distribution, the
distributional zeta function, ΦðsÞ, is defined as [34,35]

ΦðsÞ ¼
Z

½dh�PðhÞ 1

Zðj; hÞs : ð24Þ

For s ∈ C, this function is defined in the region where the
above integral converges. One defines the complex expo-
nential n−s ¼ expð−s log nÞ for log n ∈ R. As proved in
Refs. [34,35], ΦðsÞ is defined for ReðsÞ ≥ 0. Therefore, the
integral is defined in the half-complex plane, and an
analytic continuation is unnecessary. We have that

E½Wðj; hÞ� ¼ −
dΦðsÞ
ds

����
s¼0þ

; ReðsÞ ≥ 0: ð25Þ

Using the Euler’s integral representation for the gamma
function, we get

ΦðsÞ ¼ 1

ΓðsÞ
Z

½dh�PðhÞ
Z

∞

0

dt ts−1e−Zðj;hÞt: ð26Þ

The series expansion of the exponential in the previous
integral has a uniform convergence for each h in the domain
½0; a�. To perform the integration term by term, we need to
split the integral into the contribution that is uniformly
convergent, t ∈ ½0; a�, and into the one that is not. The first
contribution is a sum over all the integer moments of the
partition function, E½Zkðj; hÞ�, while the second one is a
constant which can be taken small as desired.
Therefore, one can show that the average free energy can

be represented by the following series of the moments of
the partition function [34]:

E½Wðj; hÞ� ¼
X∞
k¼1

ð−1Þkþ1ak

kk!
E½ðZðj; hÞÞk�

− lnðaÞ − γ þ Rða; jÞ; ð27Þ

where a is a dimensionless arbitrary constant, γ is the Euler-
Mascheroni constant [64], and jRðaÞj given by

Rða; jÞ ¼ −
Z

½dh�PðhÞ
Z

∞

a

dt
t
e−Zðj;hÞt: ð28Þ

FIG. 1. The squared mass as a function of ðm0βÞ−1, for different
values of the coupling constant λ0 for d ¼ 3. We set μ2 ¼ m2

0.
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For large a, jRðaÞj is small; therefore, the dominant
contribution to the average generating functional of con-
nected correlation functions is given by the moments of
the partition function of the model. We absorb a in the
functional measure and assume it is large.
We assume a Gaussian form for the probability distri-

bution of the disorder field ½dh�PðhÞ:

PðhÞ ¼ p0 exp

�
−

1

2ϱ2

Z
ddþ1xðhðxÞÞ2

�
; ð29Þ

where ϱ is a positive parameter and p0 is a normalization
constant. In this case, we have a delta-correlated disorder:

E½hðz;xÞhðz0; yÞ� ¼ ϱ2δdðx − yÞ: ð30Þ

After integrating the disorder, one obtains that each
moment of the partition function E½Zkðj; hÞ� can be
written as

E½Zkðj; hÞ� ¼
Z Yk

i¼1

½dϕðkÞ
i �e−SeffðϕðkÞ

i ;jðkÞi Þ; ð31Þ

where SeffðϕðkÞ
i ; jðkÞi Þ is obtained via the coarse-graining

procedure, a standard procedure in the literature [3,4]. In

the above equation the superscript (k), in ϕðkÞ
i , identifies

the term of the series expansion given by Eq. (27) and the
subscript i is the component of the kth multiplet. TheQ

k
i¼1½dϕðkÞ

i � represents a product of functional measures.
Specifically, for a Ginzburg-Landau model with λϕ4 and

ρϕ6 terms, after performing the disorder average, one
obtains the effective action [37]:

SeffðϕðkÞ
i Þ ¼

Z
ddþ1x

Xk
i¼1

�
1

2
ϕðkÞ
i ðxÞð−Δþm2

0ÞϕðkÞ
i ðxÞ

þ 1

4

Xk
j¼1

gijðϕðkÞ
i ðxÞÞ2ðϕðkÞ

j ðxÞÞ2þ ρ

6
ðϕðkÞ

i ðxÞÞ6
�
;

ð32Þ

where the coupling constants gij are given by gij ¼
ðλδij − ϱ2Þ. The ϕ6 term is necessary to stabilize a ground
state for the system since the disorder average introduces a
ϕ4 term with negative coupling for large moments of the

partition function. If, for simplicity, we use ϕðkÞ
i ðxÞ ¼

ϕðkÞ
j ðxÞ, the effective action takes the form:

SeffðϕðkÞ
i Þ ¼

Z
ddþ1x

Xk
i¼1

�
1

2
ϕðkÞ
i ðxÞð−Δþm2

0ÞϕðkÞ
i ðxÞ

þ 1

4
ðλ− kϱ2ÞðϕðkÞ

i ðxÞÞ4þ ρ

6
ðϕðkÞ

i ðxÞÞ6
�
: ð33Þ

At this moment one comment is in order. Using such a
choice for the functional space, the calculations are
simplified. Also we recover the expected behavior of the
free-energy landscape discussed in the literature. In other
words, the series over k describes a multi-valley structure,
which is a typical feature of glassylike phases in complex
systems.
The next section starts with the main topic of this work,

the low-temperature behavior of a scalar field model with
quenched disorder. Our main interest is situations where the
thermal fluctuations are negligible and disorder-induced
and quantum fluctuations dominate.

IV. EUCLIDEAN QUANTUM λφ4
d + 1 MODEL

WITH QUENCHED DISORDER

We consider a scalar field model with a λφ4
dþ1 interaction

defined in a Rd × S1 space. The aim is to discuss the
model’s broken symmetry phase at low temperatures in
the presence of disorder linearly coupled disorder. In the
imaginary-time formalism, the action of the model is
given by

Sðϕ; hÞ ¼ SðϕÞ þ
Z

β

0

dτ
Z

ddxhðxÞϕðτ;xÞ; ð34Þ

where SðϕÞ is the pure-system action, given in Eq. (1).
Using the distributional zeta-function formalism,

reviewed in the previous section, one can find the imagi-
nary-time effective action for each moment of the partition
function in the presence of the external source. The new
field variables appearing in those moments are also
assumed to satisfy the periodicity condition in imaginary

time, i.e., ϕðkÞ
i ð0;xÞ ¼ ϕðkÞ

i ðβ;xÞ. Defining again φi ¼
ϕi − v, one obtains the traditional spontaneous sym-
metry-breaking scenario discussed in the previous section.
In Euclidean scalar quantum field theories, finite temper-

ature effects and periodic boundary conditions in one of the
spatial dimensions are on the same footing. That is, the
scalar theory defined on a Rd × S1 space is formally
equivalent to the thermal scalar field theory since the
momentum variable associated with one of the spatial
coordinates runs over discrete values multiples of 2π=L,
where L is the length of one of the compactified spatial
dimensions, which is similar to the Matsubara frequencies
when one replaces L with β.
The behavior of a system in which quantum and disorder

fluctuations dominate can be described either by a
d-dimensional Euclidean quantum field theory (with
β → ∞) or a statistical field theory in (dþ 1) dimensions.
In this work, we use this equivalence to avoid potential
confusion with the extra time variable in the stochastic
differential equations used to describe temporal evolution
of the system. In addition, we assume that the disorder
field is strongly correlated in the compactified dimension
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(imaginary time). This assumption implies in a nonuniform
disorder field hðz;xÞ in the (dþ 1)-dimensional classical
Euclidean field theory. We assume hðz;xÞ delta correlated:

E½hðz;xÞhðz0; yÞ� ¼ ϱ2δdðx − yÞ: ð35Þ

In this case, we get a (dþ 1) Euclidean space with fields
obeying periodic boundary conditions in one spatial coor-
dinate. As in the finite temperature case, the series repre-
sentation of the quenched free energy leads to one effective
action for each moment of the partition function, namely,

SeffðφðkÞ
i ; jðkÞi Þ ¼ 1

2

Z
L

0

dz
Z

ddx

�Xk
i¼1

�
φðkÞ
i ðz;xÞ

�
−

∂
2

∂z2
− Δþm2

0

�
φðkÞ
i ðz;xÞ þ ρ0ðφðkÞ

i ðz;xÞÞ3 þ λ0
2
ðφðkÞ

i ðz;xÞÞ4
��

−
1

2

Z
L

0

dz
Z

ddx
Xk
r;s¼1

φðkÞ
r ðz;xÞjksðz;xÞ −

ϱ2

2L2

Z
L

0

dz
Z

L

0

dz0
Z

ddx
Xk
r;s¼1

φðkÞ
r ðz;xÞφðkÞ

s ðz0;xÞ; ð36Þ

with φðkÞ
i ð0;xÞ ¼ φðkÞ

i ðL;xÞ and jðkÞi ð0;xÞ ¼ jðkÞi ðL;xÞ.
One sees that the last term in this expression is spatially
nonlocal. Such a nonlocal contribution also appears in other
models. For example, using renormalization group tech-
niques and the replica trick in a random-mass model,
Refs. [65,66] find nonisotropic scaling behavior. In our
approach, because the disorder is anisotropic, we find
similarly that the critical behavior of the system is different
for the compactified and noncompactified directions.
In order to avoid unnecessary complications, and for

practical purposes, we assume the following configuration
of the scalar fields ϕðkÞ

i ðτ;xÞ ¼ ϕðkÞ
j ðτ;xÞ in the function

space and also jðkÞi ðτ;xÞ ¼ jðkÞl ðτ;xÞ∀ i; j. For simplicity

we redefined ϕ0ðkÞ
i ðτ;xÞ ¼ 1ffiffi

k
p ϕðkÞ

i ðτ;xÞ and λ00 ¼ λ0k. All

the terms of the series have the same structure and one
minimizes each term of the series one by one.
In the next section, we use the fact that the pure model

can be formally expanded in a perturbative series starting
from the Gaussian model. We evaluate the temporal
correlation of the disordered model in the Gaussian
approximation (ρ0 ¼ 0 and λ0 ¼ 0).

V. LINEAR NONLOCAL STOCHASTIC
DIFFERENTIAL EQUATIONS

AND FRACTIONAL DERIVATIVES

Here we discuss the consequences of introducing ran-
domness in a quantum system at low temperatures in the
spontaneously broken phase in the model discussed above,
a statistical field theory with anisotropic disorder. Instead of
computing correlation functions directly from the func-
tional integral for the effective action in Eq. (36), we
sample the corresponding field configurations with a linear,
nonlocal stochastic partial differential equation with addi-
tive noise. This generalizes to this spatially anisotropic
nonequilibrium case, the commonly used stochastic equa-
tions in equilibrium Landau-Ginzburg theories [67–70],
allowing us to discuss the temporal behavior of the system;
see, for example, Ref. [71]. Specifically, we assume that
ξiðt; z;xÞ is a genuine Gaussian-Markovian noise:

hξðkÞi ðt; z;xÞξðkÞj ðt0; z0;x0Þi
¼ 2ϒδijδðt − t0Þδðz − z0Þδdðx − x0Þ; ð37Þ

where h� � �i means an average over all possible realizations
of the noise. The corresponding stochastic equation sam-

pling the field configurations φðkÞ
i ðt; z;xÞ with weight

SeffðφðkÞ
i ; jðkÞi Þ is then given by the generalized Langevin

equation:

∂

∂t
φðkÞ
i ðt; z;xÞ ¼ −ϒ

δSeffðφðkÞ
i ; jðkÞi Þ

δφðkÞ
i ðz;xÞ

����
φðkÞ
i ðz;xÞ¼φðkÞ

i ðt;z;xÞ

þ ξðkÞi ðt; z;xÞ: ð38Þ

This equation is similar to the one that, after a coarse-
grained procedure, describes the relaxational dynamics of
classical nonequilibrium systems. In our case, ϒ ¼ 1.
Performing the functional derivatives, the generalized
Langevin equation can be written as

∂

∂t
φðkÞ
i ðt; z;xÞþ

�
−

∂
2

∂z2
−Δþm2

0

�
φðkÞ
i ðt; z;xÞ

−
ϱ2

L2

Xk
s¼1

Z
L

0

dv0φðkÞ
s ðt;v0;xÞ ¼ ξðkÞi ðt; z;xÞþ jðkÞi ðt; z;xÞ:

ð39Þ

Once we discuss the two-point correlation function for
large values of L, the limit of integration over v0 can be
replaced from ½0; L� to ½0; z�, assuming large values z. To
deal with the nonlocal term, we employ a fractional
derivative formalism, similar to the one used in studies
of anomalous diffusion in transport processes through a
disordered medium [72]. Specifically, we use the Riemann-
Liouville fractional integrodifferential operator of order α,
Dα

a [73]. Let f ∈ L1½a; b� and 0 < α ≤ 1; then Dα
af exists

almost everywhere in ½a; b�, with Dα
af defined by [73]

RESTORATION OF A SPONTANEOUSLY BROKEN SYMMETRY IN … PHYS. REV. D 106, 125004 (2022)

125004-7



Dα
afðvÞ ¼

1

ΓðαÞ
Z

v

a
ds fðsÞðv − sÞα−1: ð40Þ

Therefore, the nonlocal term is given in terms of Dα
a as

D1
0

�
φðkÞ
i ðt; z;xÞ þ

Xk
s¼1;s≠i

φðkÞ
s ðt; z;xÞ

�
: ð41Þ

The operator Dα
af ≡ dαfðxÞ

djxjα possesses a well-defined Fourier

transform, namely,

F
�
dαfðxÞ
djxjα

�
¼ −jkjαfðkÞ; for 1 ≤ μ < 2: ð42Þ

We define the Fourier transform on the time and
spatial coordinates of a generic function gðt; z;xÞ by
g̃ðω;qz;q⊥Þ¼F t;z;x½gðt;z;xÞ�, where qz ¼ qzðnÞ ¼ nπ=L;
n ∈ Z. The Langevin equation in terms of the Fourier-
transformed functions is then given by

½−iωþ ðq2⊥ þ q2z þm2
0 þ kϱ2jqzjÞ�φ̃ðkÞ

i ðω; qz;q⊥Þ
¼ ξ̃ðkÞi ðω; qz;q⊥Þ þ j̃iðω; qz;q⊥Þ; ð43Þ

in which we again assumed for each moment of the
partition function equal field and source functions,

ϕðkÞ
i ðxÞ ¼ ϕðkÞ

j ðxÞ and jðkÞi ðxÞ ¼ jðkÞj ðxÞ. From this, one

can compute the dynamic susceptibility χðkÞ0 ðω; ; qz;q⊥Þ,
which is given by the response propagator GðkÞ

0 ðω; qz;q⊥Þ:

GðkÞ
0 ðω;qz;q⊥Þ¼

1

−iωþðq2⊥þq2z þm2
0þkϱ2jqzjÞ

: ð44Þ

Near criticality in the pure system, i.e., for ϱ ¼ 0, three
critical exponents of the Gaussian model can be obtained:
the two static exponents ν ¼ 1

2
and η ¼ 0, and the dynami-

cal exponent z ¼ 2. Using the principle of causality,
contour integration leads to the following: for the

GðkÞ
0 ðt; qz;q⊥Þ ¼ F−1

t GðkÞ
0 ðω; qz;q⊥Þ:

GðkÞ
0 ðt; qz;q⊥Þ ¼ F−1

t GðkÞ
0 ðω; qz;q⊥Þ

¼ θðtÞe−ðq2⊥þq2zþm2
0
þkϱ2jqzjÞt; ð45Þ

where θðtÞ is the Heaviside theta function. Clearly, the

function GðkÞ
0 ðt; qz;q⊥Þ decays exponentially to zero as

t → ∞.
The next step is to find the Gaussian dynamic correlation

function. Using the noise correlator in Fourier space for
large L we get

hφ̃ðkÞðω; qz;q⊥Þφ̃ðkÞðω0; q0z;q0⊥Þi
¼ ð2πÞdþ1δðωþ ω0Þδðqz þ q0zÞδðq⊥ þ q0⊥Þ
× CðkÞ

0 ðω; qz;q⊥Þ; ð46Þ

where

CðkÞ
0 ðω; qz;q⊥Þ ¼ 2ðGðkÞ

0 ðω; qz;q⊥ÞÞ2 ð47Þ

is called the dynamical structure factor. The temporal
correlation decays exponentially, with a modified relaxa-
tion rate due to the disorder. An experimental accessible

quantity is the static structure factorCðkÞ
0 ðqz;q⊥Þ, defined as

CðkÞ
0 ðqz;q⊥Þ ¼

1

2π

Z
∞

−∞
dωCðkÞ

0 ðω; qz;q⊥Þ; ð48Þ

from which one can find the correlation lengths in the
model. Since the disorder is anisotropic, the behavior of the
system is different for distinct directions. In the Gaussian
approximation in four-dimensional space, using a Fourier

representation for GðkÞ
0 ðz − z0;x − yÞ one can show that

GðkÞ
0 ðz− z0;x− yÞ ¼ 1

ð2πÞ2
1

jx− yj
Z

∞

0

dqz

× e−jx−yj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2zþm2

0
þkϱ2qz

p
cosðqzðz− z0ÞÞ:

ð49Þ

Defining the quantity ς ¼ ϱ2=2m0, we can write

GðkÞ
0 ðz − z0;x − yÞ ¼ 1

ð2πÞ2
m0

jx − yj e
−m0jx−yj

×
Z

∞

0

due
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ2kςuþ1

p

× cos ðm0uðz − z0ÞÞ: ð50Þ

It is not possible to express this integral in terms of known
functions, but we can circumvent this difficulty in the
following way. We recall that the contribution of the terms
of the series representation for the quenched free energy is
given by

E½Wðj; hÞ� ¼
X∞
k¼1

cðkÞE½ðZðj; hÞÞk�; ð51Þ

where cðkÞ ¼ ð−1Þkþ1

kk! . For small k such that kς → 0, we can
write, for large ðjx − yj2 þ jz − z0j2Þ, that the correlation
function in a specific moment is given by

GðkÞ
0 ðz − z0;x − yÞ ¼ 1ffiffiffiffiffiffiffi

8π5
p

ffiffiffiffiffiffi
m0

p
e−m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz−z0j2þjx−yj2

p

ðjz − z0j2 þ jx − yj2Þ34 : ð52Þ
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The contributions of these terms are the usual ones, for
which the bulk correlation length ξ ¼ m−1

0 can be defined.
However, since m2

0 > 0, there is no long-range order.
Nevertheless, the existence of the long-range order can
be obtained from the series representation of the quenched
free energy.
For any real number κ, let bκc denote the largest integer

≤ κ, that is, the integer r for which r ≤ κ < rþ 1. We are
interested in the critical moment of the partition function,
which is the kc ¼ b2m0

ϱ2
c moment. For this kcth moment, the

two-point correlation function has the form

GðkcÞ
0 ðz − z0;x − yÞ ¼ 1

ð2πÞ2
e−m0jx−yj

jz − z0j2 þ jx − yj2 : ð53Þ

This expression reflects the spatial anisotropy due to
disorder. In the kcth moment, it is an explicit manifestation

of generic scale invariance, as GðkcÞ
0 ðz − z0;x − yÞ presents

power-law decay in z − z0.
In the next section, we compute the mass in the one-loop

approximation with anisotropic disorder in each moment of
the partition function.

VI. DISORDER EFFECTS IN THE ONE-LOOP
CORRECTION TO THE MASS

The renormalized mass squared m2
RðL; ϱ; kÞ in the kth

moment is similar to the case discussed in Sec. II, given by
the contributions of a tadpole and a bubble diagram:

m2
RðL; ϱ; kÞ ¼ m2

0 þ δm2
0 þ 3Δm2

1ðL; ϱ; kÞ
þ 9Δm2

2ðL; ϱ; kÞ; ð54Þ

where 3 and 9 are symmetry factors, and again a mass
counterterm δm2

0 was introduced. Let us first discuss the
contribution from tadpole diagram Δm2

1ðL; ϱ; kÞ using the
analytic regularization procedure discussed in Sec. II.
For s ∈ C, Δm2

1ðL; ϱ; kÞ can be obtained by the analytic
continuation Δm2

1ðL; ϱ; kÞ ¼ Δm2
1ðL; ϱ; k; μ; sÞjs¼1, with

Δm2
1ðL; ϱ; k; μ; sÞ

¼ λðμ; sÞL
2dþ1π

d
2
þ1Γðd

2
Þ

×
Z

∞

0

dppd−1
X
n∈Z

�
πn2 þ L

2
kϱ2jnj þ L2

4π
ðp2 þm2

0Þ
�−s

;

ð55Þ

where a trivial angular part of the integral was performed,
and λðμ; sÞ ¼ λ0ðμ2Þs−1, where μ has dimension of mass.
As in the case ϱ ¼ 0 this function is defined in the region
where the above integral converges, ReðsÞ > s0. Again, the

contribution from the bubble diagram (self-energy) can be
obtained from the tadpole:

Δm2
2ðL; ϱ; kÞ ¼

�
−
ρ2ðμ; sÞ
λðμ; sÞ Δm2

1ðL; ϱ; k; μ; sÞ
�
s¼2

; ð56Þ

where ρðμ; sÞ ¼ ρ0ðμ2Þs−2.
After a Mellin transform and performing the p integral,

Eq. (53) can be written as

Δm2
1ðL; ϱ; k; μ; sÞ ¼

λðμ; sÞ
4πΓðsÞ

�
1

L

�
d−1 Z ∞

0

dt ts−
d
2
−1

×
X
n∈Z

e−ðπn2þ
L
2
kϱ2jnjþm2

0
L2=4πÞt: ð57Þ

One notices here that the anisotropic disorder introduced a
contribution involving jnj into the correlation function,
which was not present in the one-loop correction for the
pure system discussed in Sec. II; see, e.g., Eq. (8). This
means that one needs to use a strategy different from that
used in Sec. II to deal with the renormalization of the one-
loop correction in the present case. Specifically, we split the
summation into n ¼ 0 and n ≠ 0 contributions. We start
with Δm2

1ðL; ϱ; k; μ; sÞjn¼0:

Δm2
1ðL; ϱ; k; μ; sÞjn¼0 ¼

λðμ; sÞ
4πΓðsÞ

�
1

L

�
d−1

Aðs; dÞ; ð58Þ

where

Aðs; dÞ ¼
Z

∞

0

dt ts−
d
2
−1e−m

2
0
L2t=4π: ð59Þ

For some d and s, this integral has infrared divergence.
Different methods for infrared regularization have been
discussed in the literature; see, for example, Ref. [74]. Here
we implement another approach to deal with this infrared
divergence [75]. The integral Aðs; dÞ is defined for
ReðsÞ > d

2
, and can be analytically continued to ReðsÞ >

d
2
− 1 for s ≠ d

2
. We write a regularized quantity ARðs; dÞ as

ARðs; dÞ ¼
Z

1

0

dt ts−
d
2
−1ðe−m2

0
L2t=4π − 1Þ

þ
Z

∞

1

dt ts−
d
2
−1e−m

2
0
L2t=4π þ 1

ðs − d
2
Þ ; ð60Þ

which is valid for ReðsÞ > d
2
. For ReðsÞ > d

2
− 1 and s ≠ d

2
,

the right-hand side exists and defines a regularization of the
original integral. Next, we consider Δm2

1ðL; ϱ; k; μ; sÞjn≠0:
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Δm2
1ðL; ϱ; k; μ; sÞjn≠0 ¼

λðμ; sÞ
2πΓðsÞ

�
1

L

�
d−1 Z ∞

0

dt ts−
d
2
−1

×
X∞
n¼1

e−πðn2þkLϱ2n=2πþm2
0
L2=4π2Þt:

ð61Þ
We make use of the result obtained in the Appendix. In the
series representation for the free energy with k ¼ 1; 2;…,
we have that for the moments of the partition function such
that kðqÞ ¼ bð2πqL Þ 2

ϱ2
c, ðq ∈ NÞ are critical. This result is

similar to the one obtained in the Dicke model, where there
is a quantum phase transition when the couplings between
the raising and lowering off-diagonal operators and the
bosonic mode, the energy gap between the energy eigen-
states of the two-level atoms, and the frequency of the
bosonic mode satisfy a specific constrain [76–80]. Since we
are interested in critical behavior, we will restrict our
attention to the set of critical moments. This means that
one can replace the dependence ðϱ; kÞ by q, so that

Δm2
1ðL; q; μ; sÞjn≠0 ¼

λðμ; sÞ
2πΓðsÞ

�
1

L

�
d−1 Z ∞

0

dt ts−
d
2
−1

× e−πðm2
0
L2=4π2−q2Þt X∞

n¼1

e−πðnþqÞ2t:

ð62Þ
Finally, let us show that Δm2

1ðL; q; μ; sÞjn≠0 and also
Δm2

2ðL; q; μ; sÞjn≠0 are written in terms of the Hurwitz-zeta
function.Asimple calculation shows that choosingq such that
q0¼bm0L

2π c, the quantity Δm2
1ðL;q;μ;sÞjn≠0, is given by

Δm2
1ðL; q0; μ; sÞjn≠0 ¼

λðμ; sÞ
2πΓðsÞ

�
1

L

�
d−1 Z ∞

0

dt ts−
d
2
−1

×
X∞
n¼1

e−πðnþq0Þ2t: ð63Þ

With the special choice q0 ¼ bm0L
2π c we obtain the critical

value of kc, which was used to obtain Eq. (53). We interpret
this result in the following way. In the infinite number of
moments that defines the free energy, we obtain a subset of
critical moments. In this subset, there is a particular set, for
a specific value of q that generates the tree-level behavior.
Going back to the above integral, this simplification allows
one to write Δm2

1ðL; q0; μ; sÞjn≠0 as

Δm2
1ðL; q0; μ; sÞjn≠0
¼ λðμ; sÞ

2πΓðsÞ
�
1

L

�
d−1

×

�Z
∞

0

dt ts−
d
2
−1

X∞
n¼0

e−πðnþq0Þ2t − ARðs; dÞ
�
: ð64Þ

Let us analyze the quantity FdðL; q0; μ; sÞ, defined by

FdðL; q0; μ; sÞ ¼ Δm2
1ðL; q0; μ; sÞjn≠0

þ λðμ; sÞ
2πΓðsÞ

�
1

L

�
d−1

ARðs; dÞ: ð65Þ

Using a inverse Mellin transform, we can write
FdðL; q0; μ; sÞ as

FdðL; q0; μ; sÞ ¼ λðμ; sÞ
�
1

L

�
d−1 Γðs − d

2
Þπd

2
−s−1

2ΓðsÞ
× ζð2s − d; q0Þ; ð66Þ

where the Hurwitz-zeta function ζðz; aÞ is defined by

ζðz; aÞ ¼
X∞
n¼0

1

ðnþ aÞz ; a ≠ 0;−1;−2;… ð67Þ

The series converges absolutely for ReðzÞ > 1. It is
possible to find the analytic continuation, with a simple
pole at z ¼ 1. For d ¼ 3, the contribution from the tadpole
is finite, but the contribution from the self-energy is
divergent. An important formula that must be used in
the renormalization procedure is

lim
z→1

�
ζðz; aÞ − 1

z − 1

�
¼ −ψðaÞ; ð68Þ

where ψðaÞ is the digamma function defined as
ψðzÞ ¼ d

dz ½lnΓðzÞ�. Using the Hurwitz-zeta function and
the integral ARðs; dÞ, we can write

Δm2
1ðL; q0; μ; sÞjn≠0

¼ λðμ; sÞ
2ΓðsÞ

�
1

L

�
d−1

×

�
π

d
2
−s−1Γ

�
s −

d
2

�
ζð2s − d; q0Þ −

1

π
ARðs; dÞ

�
: ð69Þ

Next, we prove that for a fixed value of q0. The
renormalized squared mass vanishes for a family of L0s.
In low-temperature field theory we get the same result, i.e.,
there are critical temperatures where the renormalized
squared mass vanishes, namely,

m2
RðL; q0Þ ¼ m2

0 þ δm2
0 þ 3Δm2

1ðL; 1Þjn¼0

þ 9Δm2
2ðL; 2Þjn¼0 þ 3Δm2

1ðL; q; 1Þjn≠0
þ 9Δm2

2ðL; q; 2Þjn≠0: ð70Þ

Defining the dimensionless quantities b ¼ m0L, λ1 ¼ 3λ0,
and ρ2 ¼ ρ0

ffiffiffi
9

p
, we can write the latter equation as
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bd−1

md−3
0

−
λ1
4π

ARð1; dÞ þ
ρ22

4πμ2
ARð2; dÞ þ δm2

0

þ λ1π
d
2
−2

2
Γ
�
1 −

d
2

�
ζ

�
2 − d;

b
2π

�

−
ρ22π

d
2
−3

2μ2
Γ
�
2 −

d
2

�
ζ

�
4 − d;

b
2π

�
¼ 0: ð71Þ

Let us discuss the case d ¼ 3, in which case Eq. (71)
becomes

b2 −
λ1
4π

ARð1; 3Þ þ
ρ22

4πμ2
ARð2; 3Þ − λ1ζ

�
−1;

b
2π

�

−
ρ22

2πμ2
lim
d→3

ζ

�
4 − d;

b
2π

�
þ δm2

0 ¼ 0: ð72Þ

The contribution coming from ARðs; dÞ is irrelevant for
large m0L, as one can verify in Eq. (60). Using the identity
ðnþ 1Þζð−n; aÞ ¼ −Bnþ1ðaÞ, where the Bnþ1ðaÞ are
the Bernoulli polynomials, we rewrite the Hurwitz-zeta
function as

ζ

�
−1;

b
2π

�
¼ −

�
b2

8π2
−

b
4π

þ 1

12

�
: ð73Þ

Using Eq. (68) we fix the counterterm contribution in the
renormalization procedure. Then we have that Eq. (72)
becomes

b2 þ λ1

�
b2

8π2
−

b
4π

þ 1

12

�
þ ρ22
2πμ2

ψ

�
b
2π

�
¼ 0: ð74Þ

Since q0 ¼ b b
2πc, we can write the digamma function as

ψðq0 þ σÞ ¼ ψðσÞ þ
Xq0
q¼1

1

σ þ q
; ð75Þ

where σ is the noninteger part of b
2π. With σ < 1 we can use

a Taylor’s series and write Eq. (74) as

b2 þ λ1

�
b2

8π2
−

b
4π

þ 1

12

�

þ ρ22
2πμ2

�
−
1

σ
− γ þ π2

6
σ þHð1Þ

q0 þ σHð2Þ
q0

�
¼ 0; ð76Þ

whereHð1Þ
q0 andHð2Þ

q0 are the generalized harmonic numbers.
The above equation has zeros for different values of L.
In one-loop approximation we proved that in the set of

moments that defines the quenched free energy there is a
denumerable collection of moments that can develop
critical behavior. With the bulk in the ordered phase, in
these moments temperature or finite size effects lead the
moments from the ordered to a disordered phase. Also, in
the set of moments, there appears a large number of critical
temperatures.

VII. CONCLUSIONS

In this paper, we studied quantum and disorder fluctua-
tions in systems with quenched disorder. We employed a
Euclidean quantum λφ4

dþ1 model with the disorder linearly
coupled to the scalar field φ. We used the equivalence
between the model defined in a d-dimensional space with
imaginary time with the classical model defined on a space
Rd × S1. The physical quantity of interest, the disorder-
averaged free energy, was computed as a series of the
moments of the partition function. Each moment is char-
acterized by an effective action of a multiplet of fields. The
effective actions contain nonlocal terms generated by the
anisotropic disorder. We computed the tree-level two-point
correlation functions for the fields of a given moment
employing stochastic differential equations with additive
white noise, with each equation driven by the effective
action of the corresponding moment. We employed the
method of fractional derivatives to deal with the nonlocal
terms that appear in the stochastic equations. The two-point
correlation functions for the critical moment display spatial
anisotropy due to disorder, with manifest generic scale
invariance. Finally, we proved at the one-loop order that,
with the bulk in the ordered phase, there is a denumerable
set of moments that lead the system to the critical regime.
In these critical moments there appears a large number of
critical compactified lengths (or temperatures).
In the study of complex spatial patterns and structures in

nature, there appears the idea of self-organized criticality
[81,82]. The authors of these references suggest that fractal
structures and 1=f noise are common characteristics of
irreversible dynamics of a critical state, without a fine-
tuning of external parameters. The algebraic decay of the
correlation function in space and time for generic param-
eters is called generic scale invariance. Our Eqs. (53) and
(76), and Fig. 2 are a manifestation of generic scale
invariance in an equilibrium system.

FIG. 2. Plot of Eq. (76) as a function of b ¼ m0L for two
different values of λ0 (once ρ20 ¼ 2m2

0λ0): λ0 ¼ 1 (continuous
black) and λ0 ¼ 3 (dashed red). We set μ2 ¼ m2

0.

RESTORATION OF A SPONTANEOUSLY BROKEN SYMMETRY IN … PHYS. REV. D 106, 125004 (2022)

125004-11



A natural continuation of this work is to discuss the
random-mass model. The main difference between the
random field and the random-mass models is that after
the coarse graining, in the former the disorder modifies the
Gaussian contribution of the model, whereas in the latter
the disorder affects the non-Gaussian contribution to the
effective action. Another possibility is to discuss a model
with a continuous symmetry, where the spontaneous
symmetry breaking leads to Goldstone bosons, softy modes
that naturally manifest generic scale invariance. Both
subjects are under investigation by the authors.
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APPENDIX: THE CRITICAL MOMENTS
OF THE PARTITION FUNCTION

In this appendix we discuss the contribution coming
from particular moments of the partition function. We will
prove that these moments lead to critical domains in which
the mass m2

RðL; ϱ; kÞ vanishes. Starting from Eq. (53) and
splitting the contributions of n ¼ 0 and n ≠ 0, for opera-
tional purposes, we get

m2
RðL;ϱ;kÞ¼m2

0þδm2
0þ6Δm2

1ðL;ϱ;k;1Þjn¼0

þ18Δm2
2ðL;ϱ;k;2Þjn¼0þ6Δm2

1ðL;ϱ;k;1Þjn≠0
þ18Δm2

2ðL;ϱ;k;2Þjn≠0; ðA1Þ

where Δm2
1 is the tadpole contribution and Δm2

2 is the self-
energy contribution, with the parameters μ and s being
related to the regularization procedure. Δm2

1ðL; ϱ; k; μ; sÞ is
given by

Δm2
1ðL; ϱ; k; μ; sÞ ¼ Δm2

1ðL; ϱ; k; μ; sÞjn¼0

þ Δm2
1ðL; ϱ; k; μ; sÞjn≠0: ðA2Þ

Let us start with the Δm2
1ðL; ϱ; k; μ; sÞjn≠0 contribution,

which can be written as

Δm2
1ðL; ϱ; k; μ; sÞjn≠0 ¼

λðμ; sÞ
2πΓðsÞ

�
1

L

�
d−1

×
Z

∞

0

dt ts−
d
2
−1e−tðm2

0
−k2ϱ4=4ÞL2=4π

×
X∞
n¼1

e−πtðnþLkϱ2=4πÞ2 : ðA3Þ

This can be split into three contributions:

Δm2
1ðL; ϱ; k; μ; sÞjn≠0 ¼ −

λðμ; sÞ
2πΓðsÞ

�
1

L

�
d−1

×
X3
i¼1

IiðL; ϱ; k; μ; sÞ; ðA4Þ

where

I1ðL; ϱ; k; μ; sÞ ¼
Z

∞

0

dt ts−
d
2
−1e−tðm2

0
L2=4πÞ; ðA5Þ

I2ðL; ϱ; k; μ; sÞ ¼
Z

∞

0

dt ts−
d
2
−1e−tðm2

0
−k2ϱ2=4ÞL2=4π

×
X∞
n¼1

e−πtðn−Lkϱ2=4πÞ2 ; ðA6Þ

I3ðL; ϱ; k; μ; sÞ ¼
Z

∞

0

dt ts−
d
2
−1Θ

�
t;
Lkϱ2

4π

�

× e−tðm2
0
−k2ϱ4=4ÞL2=4π: ðA7Þ

Note that we used the theta series Θðt; αÞ in the above
integral. Recall that for an arbitrary complex number α
and also t ∈ C with ReðtÞ > 0 the theta series Θðt; αÞ is
defined as

Θðt;αÞ ¼
X∞
n¼−∞

e−πtðnþαÞ2 : ðA8Þ

It is clear that Θðt; αÞ ¼ Θðt; αþ 1Þ. One also has the
identity:

Θ
�
1

t
; α

�
¼ ffiffi

t
p X∞

n¼−∞
e−πn

2tþ2πinα

¼ ffiffi
t

p
e−πα

2=tΘðt;−iα=tÞ: ðA9Þ

We will show that one has to select a specific set k’s in the
summation of the series for the quenched free energy. Let
us split the integral into two regions. Since the theta series
Θðt; αÞ is holomorphic in the half-plane ReðtÞ > 0, the
I3ðL; ϱ; k; μ; sÞ contribution must be written as

I3ðL;ϱ;k;μ;sÞ¼Ið1Þ3 ðL;ϱ;k;μ;sÞþIð2Þ3 ðL;ϱ;k;μ;sÞ; ðA10Þ
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where Ið1Þ3 ðL; ϱ; k; μ; sÞ is given by

Ið1Þ3 ðL; ϱ; k; μ; sÞ ¼
Z

∞

1

dt t
d
2
−s−1

2e−ðm2
0
−k2ϱ4=4ÞL2=ð4πtÞ

×
X∞
n¼−∞

e−πn
2tþikLϱ2n=2; ðA11Þ

Ið2Þ3 ðL; ϱ; k; μ; sÞ ¼
Z

∞

1

dt ts−
d
2
−1Θ

�
t;
Lkϱ2

4π

�

× e−tðm2
0
−k2ϱ4=4Þ2L2=4π: ðA12Þ

The integral Ið2Þ3 ðL; ϱ; k; μ; sÞ converges absolutely for
any s and converges uniformly with respect to s in any
bounded part of the plane. Hence the integral represents an

everywhere regular function of s. Concerning integral

Ið1Þ3 ðL; ϱ; k; μ; sÞ, to guarantee the convergence we must
choose kðqÞ ¼ bð2πqL Þ 2

ϱ2
c where q is a natural number.

Therefore, in the series representation for the free energy
with k ¼ 1; 2;… we have that for the moments of the
partition function such that kðqÞ ¼ bð2πqL Þ 2

ϱ2
c, where ð2πqL Þ

are the positive Matsubara frequencies ωq, the system is
critical. This is an interesting result; there is a critical set of
moments in the series representation for the free energy,
after averaging over the quenched disorder. A more general
proof using generalized Hurwitz-zeta functions is based on
the fact that zeta-function regularization with a meromor-
phic extension to the whole complex plane needs an
eligible sequence of numbers [83].
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