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It has long been debated whether gravity should be quantized or not. Recently, the authors in [Sci. Rep.
6, 22777 (2016); Proc. Natl. Acad. Sci. U.S.A. 106, 3035 (2009)] discussed the inconsistency between
causality and complementarity in a Gedankenexperiment involving the quantum superposition of massive/
charged bodies, and Belenchia et al. [Phys. Rev. D 98, 126009 (2018); Int. J. Mod. Phys. D 28, 1943001
(2019)] resolved the inconsistency by requiring the quantum radiation and vacuum fluctuations of
gravitational/electromagnetic field. Stimulated by their works, we reanalyze the consistency between the
two physical properties, causality and complementarity, according to the quantum field theory. In this
analysis, we consider a Gedankenexperiment inspired by [Sci. Rep. 6, 22777 (2016); Proc. Natl. Acad. Sci.
U.S.A. 106, 3035 (2009); Phys. Rev. D 98, 126009 (2018); Int. J. Mod. Phys. D 28, 1943001 (2019)], in
which two charged particles coupled with a photon field are in a superposition of two trajectories. First, we
observe that causality is satisfied by the retarded propagation of the photon field. Next, by introducing an
inequality between visibility and which-path information, we show that the quantum radiation and vacuum
fluctuations of the photon field ensure complementarity. We further find that the Robertson inequality
associated with the photon field leads to the consistency between causality and complementarity in our
Gedankenexperiment. Finally, we mention that a similar feature appears in the quantum field of gravity.
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I. INTRODUCTION

The unification of quantum mechanics and general
relativity is a fundamental unsolved problem in theoretical
physics. Despite all the efforts that have been made, the
exact theory of quantum gravity has not yet been completed.
Moreover, we do not even know whether gravity really
follows the principle of quantum mechanics or not [1–3].
Recently, testing the quantum nature of gravity has attracted
significant interest in theoretical physics, stimulated by the
proposal by Bose et al. [4], and Marlleto and Vedral [5]. The
Bose-Marlleto-Vedral (BMV) proposal suggests that quan-
tum entanglement due to the Newtonian potential between
two masses can be an evidence of quantum gravity, which
can be tested by a tabletop experiment (see also [6]).
Inspired by their works [4,5], Newtonian entanglement
was evaluated in experimental proposals for matter-wave
interferometry [7,8], mechanical oscillators [9,10], optome-
chanical systems [11–14], hybrid systems [15–18], etc.
However, there is room for arguments to understand what
the detection of the Newtonian entanglement means, e.g.,

how the Newtonian entanglement is related to the quantum
field theory of gravity and gravitons [19–24].
We revisit the entanglement generation in the BMV

proposal in the framework of the quantum field theory
by focusing on a paradox in a Gedankenexperiment,
which was previously analyzed in Refs. [24–28]. In the
Gedankenexperiment (see Fig. 1), Alice prepares a particle
in a superposition of spatially localized states separated by
a distance L and starts to recombine her particle at a time
t ¼ t0 to observe its interference. The recombination
process is performed during a time TA. Bob, who is at a
distance D (≫ L) from Alice, can choose whether to
release a particle at the time t ¼ t0. When Bob released
his particle, after a time TB, he measures his particle to
determine the strength of the Newtonian/Coulomb force
induced by Alice’s particle and gains information about
which path her particle took. The actions of Alice and Bob
after the time t ¼ t0 occur in spacelike separated regions
(D > TA and D > TB). If Bob acquires any which-path
information from his measurement, the state of his particle
must be entangled with Alice’s particle. This leads to the
correlation between Alice and Bob. Then, because of the
correlation due to the entanglement, Alice’s particle cannot
be in a perfect coherent superposition when Bob measures
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his released particle. This is the result of complementarity.
However, when Bob does not release his particle, Alice’s
particle can maintain perfect coherence. Bob’s choice affects
the coherence of Alice’s particle. Since Alice and Bob
perform their actions in a spacelike separated region, it is
impossible for Bob’s measurement to have any effect on
Alice’s result owing to causality. This leads to the apparent
violation of causality or complementarity. This paradox was
first discussed in Refs. [25,26], and the authors in
Refs. [24,27,28] claimed that the paradox can be resolved
by Alice’s limitation in maintaining coherence due to the
emission of entangling gravitons/photons during the process
of recombination of her particle and Bob’s limitation in
acquiring which-path information due to the vacuum fluc-
tuations of gravitational/electromagnetic field (for a brief
review, see Sec. II). The most important implication made by
the above mentioned authors is that the existence of a
quantum gravitational field and gravitons may be necessary
to solve the paradox.
In this study, we reanalyze the paradox rigorously by

estimating the feasibility of the measurements by Alice and
Bob. We use the theoretical model developed in [29], in
which we investigated entanglement generation between a
pair of charged particles in a superposition of spatially
localized states based on quantum electrodynamics. We
demonstrate that the causality in our model is automatically
satisfied by the retarded propagation of the photon field.
Furthermore, by estimating the visibility measured by Alice
and the distinguishability in Bob’s measurement, we show
that the complementarity in our model is protected by the
radiation and vacuum fluctuations of the photon field.
Additionally, we prove that the complementarity is guar-
anteed by the Robertson inequality for the photon field,
which reflects the noncommutativity of a quantized field.
From the analogy between electromagnetic dynamics and
general relativity, we mention that a similar feature may
appear in quantum gravitational fields.
The remainder of this paper is organized as follows.

In Sec. II, we briefly review the paradox in the
Gedankenexperiment by following Refs. [27,28]. In
Sec. III, we demonstrate that causality is not violated.
In Sec. IV, we show that complementarity is satisfied for
two charged particles coupled with a photon field.
Section V is devoted to the summary and conclusion. In
Appendix A, we derive Eqs. (11) and (20). In Appendix B,
we prove the inequality in visibility and distinguishability.
In Appendix C, we present the proof of the statement in
(35). Throughout this study, we used the natural units
with c ¼ ℏ ¼ 1.

II. A BRIEF REVIEW OF THE
GEDANKENEXPERIMENT

In this section, we review the paradox of the
Gedankenexperiment addressed in Refs. [24–28]. As is
shown in Fig. 1, Alice and Bob are separated by a distance

D. Their particles interact via the Newtonian/Coulomb
potential. Alice’s particle with a spin is in a superposition of
spatially localized states separated by a distance L, which
was prepared through a Stern-Gerlach apparatus, and an
interference experiment is performed during a time TA. In
contrast, Bob chooses whether his particle is released or
trapped at a time t ¼ t0. If Bob releases his particle, it
moves under the gravitational/electromagnetic potential
created by Alice’s particle. After a time TB, he measures
the position of his particle.
Assuming the regimes D > TA and D > TB, in which

Alice and Bob perform their actions in spacelike separated
regions, we can consider the following two incompatible
arguments.

(i) If causality holds, Alice can observe the interference
pattern of her particle regardless of whether Bob
measures his particle.

(ii) If complementarity holds, Bob’s measurement of his
particle should lead to the decoherence of Alice’s
particle.

Arguments (i) and (ii) seem to contradict each other, and
thus the paradox appears.
The authors in Refs. [24,27,28] claimed that this para-

dox is resolved by the quantum radiation of gravitons/
photons emitted by massive/charged particles and the
vacuum fluctuations of gravitational/electromagnetic
fields. The quantum radiation from Alice’s particle causes
the decoherence of her particle, and then the interference
experiment fails. In other words, this entangling radiation
limits the maintenance of coherence in Alice’s experi-
ment. The presence of the vacuum fluctuations limits the
ability to obtain the which-path information of Alice’s
particle for Bob’s measurement. The two effects, the
decoherence due to quantum radiation and the limitation
of which-path information due to vacuum fluctuations are
key to resolving this paradox [24,27,28].
In the following two sections, we reanalyze the con-

sistency between causality and complementarity by

FIG. 1. Setup for the Gedankenexperiment introduced by
[27,28].
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assuming a situation similar to that in Fig. 1. This is an
extension of a previous study [29], which investigated the
effect of vacuum fluctuations of a photon field on the
electromagnetic version of the BMV proposal. This work is
based on the quantum electromagnetic dynamics; however,
our result can be reinterpreted for the quantized gravita-
tional field, as discussed in Sec. V.

III. CONSISTENCY OF CAUSALITY

In this section, we show that Bob’s particle does not
affect Alice’s particle because of the causality satisfied for
D > TA and D > TB. We first introduce the model of two
charged particles (Alice’s particle and Bob’s particle)
coupled with a photon field developed in Ref. [29]. The
total Hamiltonian of our system is composed of the local
Hamiltonians of each charged particle ĤA and ĤB, the free
Hamiltonian of the photon field Ĥph, and the interaction
term V̂ as

Ĥ ¼ ĤA þ ĤB þ Ĥph þ V̂;

V̂ ¼
Z

d3xðĴμAðxÞ þ ĴμBðxÞÞÂμðxÞ; ð1Þ

where ĴμA and ĴμB are the current operators of each particle
coupled with the photon field operator Âμ. We consider the
following initial condition

jΨð0Þi ¼ 1

2
jCiAðj↑iA þ j↓iAÞjCiBðj↑iB þ j↓iBÞjαiph; ð2Þ

where j↑ijðj↓ijÞ are the spin degrees of freedom of the
charged particle jwith j ¼ A;B, and jCiA and jCiB denote
the localized particle wave function of A and B, respec-
tively. The photon field is in a coherent state jαiph with

jαiph ¼ D̂ðαÞj0iph. j0iph is the vacuum state satisfying
âμðkÞj0iph ¼ 0 for annihilation operator of the photon field

âμðkÞ, and D̂ðαÞ is the unitary operator called a displace-
ment operator defined as

D̂ðαÞ ¼ exp

�Z
d3kðαμðkÞâ†μðkÞ − H:c:Þ

�
; ð3Þ

where the complex function αμðkÞ characterizes the ampli-
tude and phase of initial photon field. The form of the
complex function αμðkÞ is restricted by the auxiliary
condition in the BRST formalism [29]. The coherent state
jαiph is interpreted as a state in which there is a mode of the
electromagnetic field following Gauss’s law due to the
presence of charged particles (See Appendix A of
Ref. [29]). For t < 0, the charged particles A and B are
localized around each trajectory, whose states are described
by jCiA and jCiB, respectively. Then the photon field for
t < 0 is not in a quantum superposition and behaves

classically. In this case the states of A and B are uncorre-
lated with the photon field. Now, we assume that each
particle is manipulated through an inhomogeneous mag-
netic field (jCijj↑ij → jψLijj↑ij; jCijj↓ij → jψRijj↓ij) to
create spatially superposed states with jψLijj↑ij, and
jψRijj↓ij, which is understood as the Stern–Gerlach effect
discussed in [4,27]. In our Gedankenexperiment shown in
Fig. 2, each particle is spatially superposed at different
times. In the following, jCijj↑ij and jCijj↓ij are repre-
sented by jLij and jRij with j ¼ A;B for simplicity. The
initial state is rewritten as

jΨð0Þi ¼ 1

2
ðjLiA þ jRiAÞðjLiB þ jRiBÞjαiph; ð4Þ

We note that jRiA (jRiB) and jLiA (jLiB) are the states of
wave packets localized around classical trajectories. After
each particle has passed through an inhomogeneous mag-
netic field, the states jLij and jRij are regarded as the
localized states of the particle j ¼ A;B around the left
trajectory and the right trajectory shown in Fig. 2, respec-
tively. We assume that the current operators ĴμiIðxÞ ¼
eiĤ0tĴμi ð0; xÞe−iĤ0t in the interaction picture with respect
to Ĥ0 ¼ ĤA þ ĤB þ Ĥph are approximated using the
classical currents as

ĴμAIðxÞjPiA≈JμAPðxÞjPiA; ĴμBIðxÞjQiB≈JμBQðxÞjQiB; ð5Þ

FIG. 2. Configuration of our model. LA and LB are each
separation of a spatial superposition of particles A and B, andD is
a distance between Alice’s system and Bob’s system. TA is a
timescale recombining particle A, and particle B in Bob’s system
is superposed during a time TB. Here, we assume the regimes
D > TA and D > TB. Particle A takes the right or left path jRiA
(jLiA) and induces the retarded photon field along each path (as
shown in the dashed red or blue line). The retarded field affects
particle B moving the left or right path jLiB and jRiB.
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JμAPðxÞ ¼ eA

Z
dτ

dXμ
AP

dτ
δð4Þðx − XAPðτÞÞ;

JμBQðxÞ ¼ eB

Z
dτ

dXμ
BQ

dτ
δð4Þðx − XBQðτÞÞ; ð6Þ

where Xμ
APðτÞ and Xμ

BQðτÞ with P;Q ¼ R;L represent the
trajectories of each particle with coupling constants eA and
eB. Note that these approximations are valid for the
following two assumptions [29,30]: the first assumption is
that the de Brogile wavelength is smaller than the wave-
packet width of particle. The second assumption is that the
Compton wavelength λC of the charged particle is much
shorter than the wavelength of photon field λph (for example,
the wavelength of photon field emitted from charged
particle) (λC ≪ λph). The initial state evolves as follows:

jΨðTÞi ¼ exp½−iĤT�jΨð0Þi

¼ e−iĤ0TT exp

�
−i

Z
T

0

dtV̂IðtÞ
�
jΨð0Þi

≈ e−iĤ0T
1

2

X
P;Q¼R:L

jPiAjQiBÛPQjαiph

¼ 1

2

X
P;Q¼R:L

jPfiAjQfiBe−iĤphTÛPQjαiph; ð7Þ

where Tð> TAÞ is the total timescale while particle A is
spatially superposed. We used the approximations given

by (5) in the third line. jPfiA ¼ e−iĤAT jPiA and jQfiB ¼
e−iĤBT jQiB with P;Q ¼ R;L are the states of charged
particles A and B, which moved along the trajectories P
and Q, respectively. The unitary operator ÛPQ is given by

ÛPQ ¼ T exp

�
−i

Z
T

0

dt
Z

d3xðJμAP þ JμBQÞÂI
μðxÞ

�
; ð8Þ

where T denotes the time ordering, and ÂI
μ is the photon field

operator in the interaction picture. For convenience, we
rewrite the state given in (7) as

jΨðTÞi ¼ 1

2

X
P;Q¼R:L

jPfiAjQfiBe−iĤphTÛPQjαiph

¼ 1ffiffiffi
2

p jRfiAjΩRiB;ph þ
1ffiffiffi
2

p jLfiAjΩLiB;ph; ð9Þ

where we defined

jΩPiB;ph ¼
1ffiffiffi
2

p
X
Q¼R;L

jQfiBe−iĤphTÛPQjαiph: ð10Þ

The vector jΩPiB;ph describes the composite state of particle
B and the photon field when particle A moves along the
trajectory P. The quantum state of particle A is obtained by
tracing out the degrees of freedom of particle B and the
photon field:

ρA ¼ TrB;ph½jΨðTÞihΨðTÞj�

¼ 1

2

�
1 1

2
e−ΓAþiΦAðe−i

R
d4xðJμAR−JμALÞABRμ þ e−i

R
d4xðJμAR−JμALÞABLμÞ

� 1

�
; ð11Þ

where we used the basis fjRfiA; jLfiAg to represent the
density operator, and � is the complex conjugate of the
ðR;LÞ component. Aμ

BQðQ ¼ R;LÞ is the retarded photon
field caused by charged particle B,

Aμ
BQðxÞ ¼

Z
d4yGr;μ

νðx; yÞJνBQðyÞ; ð12Þ

with the retarded Green’s function,

Gr
μνðx; yÞ ¼ −i½ÂI

μðxÞ; ÂI
νðyÞ�θðx0 − y0Þ: ð13Þ

The quantities ΓA and ΦA are

ΓA ¼ 1

4

Z
d4xd4yðJμARðxÞ − JμALðxÞÞðJμARðyÞ

− JμALðyÞÞhfÂI
μðxÞ; ÂI

μðyÞgi; ð14Þ

ΦA ¼
Z

d4xðJμARðxÞ−JμALðxÞÞAμðxÞ−
1

2

Z
d4xd4yðJμARðxÞ

−JμALðxÞÞðJνARðyÞþJνALðyÞÞGr
μνðx;yÞ; ð15Þ

where h·i denotes the vacuum expectation value and AμðxÞ
is defined in Appendix A. The derivation of the density
operator ρA is presented in Appendix A. The quantity ΓA
characterizes the decoherence effect due to the radiation of
the on-shell photon emitted by particle A [24,29]. The result
(11) with the retarded photon field Aμ

BQ of particle B implies
that the effect of particle B can propagate to Alice’s system.
However, in the spacelike case D > TA and D > TB (see
Fig. 2), the photon field induced by particle B does not reach
particle A, i.e., Aμ

BQðxÞ ¼ 0. Thus, the density operator (11)
becomes
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ρA ¼ 1

2

�
1 e−ΓAþiΦA

e−ΓA−iΦA 1

�
: ð16Þ

This result indicates that the process of charged particle B
during the time TB does not affect the interference experi-
ment on charged particle A by causality. Note that, given the
law of charge conservation, we also have to consider the
contribution from charged particle B before the time TB.
Even by considering this, we can see that the density
operator ρA does not depend on influences from spacelike
separated regions. In the derivation of the above equations,
for simplicity, we only discussed the contribution from
particle B during the time TB. In the next section, we
confirm that the paradox does not appear from the view-
points of visibility and distinguishability.

IV. CONSISTENCY OF COMPLEMENTARITY

In this section, we introduce the visibility VA of charged
particle A and the distinguishability DB which quantifies
the which-path information of particle A acquired through
charged particle B. These two quantities are useful for
expressing complementarity. Additionally, we discuss the
relationship with the Robertson inequality in the last
subsection. According to Refs. [31,32], the visibility VA
and the distinguishability DB satisfy the inequality,

V2
A þD2

B ≤ 1: ð17Þ

This inequality expresses the complementarity: if the
distinguishability is unity, DB ¼ 1, the visibility VA van-
ishes, and if the visibility is unity, VA ¼ 1, the distinguish-
ability DB vanishes. In Appendix B, we present a simple
proof of the above inequality by using the definitions of
visibility and distinguishability described in the next
subsection A.

A. Visibility and distinguishability

We introduce the visibility VA of charged particle A
defined as

VA ¼ 2jAhLf jρAjRfiAj; ð18Þ

where ρA is the reduced density operator of particle A given
in Eq. (11). The visibility VA describes the extent to which
the coherence of charged particle A remains when Alice
performs an interference experiment. Using Eq. (11), we
have

VA ¼ e−ΓA

���� cos
�
ΦAB

2

�����; ð19Þ

where ΦAB ¼ R
d4xðJμAR − JμALÞΔABμ with ΔAμ

B ¼
Aμ
BR − Aμ

BL. For the case D > TA and D > TB, the retarded
photon field induced by charged particle B during time TB is

zero (Aμ
BQ ¼ 0, with Q ¼ R;L). Then, the visibility is

simply written as VA ¼ e−ΓA with ΓA, which quantifies
the decoherence effect due to the radiation of photon field
emitted from particle A.
Next, we introduce the distinguishability computed from

the state of charged particle B. Tracing over particle A and
the photon field from the state given in (7), we obtain the
state of particle B:

TrA;ph½jΨðTÞihΨðTÞj� ¼
1

2
Trph½jΩRiB;phhΩRj�

þ 1

2
Trph½jΩLiB;phhΩLj�

¼ 1

2
ρBR þ 1

2
ρBL; ð20Þ

where we defined ρBP ¼ Trph½jΩPiB;phhΩPj� with P ¼ R;L
in the second line. The density operator ρBP describes the
state of particle B when particle A moves along the
trajectory P. The distinguishability DB which characterizes
how Bob can distinguish the trajectory of particle A from
the state of particle B is defined as

DB ¼ 1

2
TrBjρBR − ρBLj; ð21Þ

where TrjÔj ¼ P
i jλij is given by the eigenvalues λi of a

Hermitian operator Ô. The distinguishability is nothing but
the trace distance between the density operators ρBR and
ρBL [33]. If the distinguishability vanishes,DB ¼ 0, and the
two density operators ρBR and ρBL are identical. This means
that Bob cannot know which trajectory particle A has taken
from the state of particle B. However, if DB ¼ 1, the
density operators ρBR and ρBL are orthogonal to each other
(ρBRρBL ¼ 0). Then, by measuring the state of particle B,
Bob can guess which trajectory particle A has passed
through. In this sense, the distinguishability DB quantifies
the amount of which path information of particle A. The
general property of the trace distance is presented in [33],
and the meaning of the distinguishability mentioned above
was discussed in [32].
Using the expression for the density operator ρBP

presented in Appendix A, we obtain the eigenvalues of
the density operator ρBR − ρBL as

λ� ¼ � 1

2
je−ΓBþiΦB−i

R
d4xðJμBR−JμBLÞARμ

− e−ΓBþiΦB−i
R

d4xðJμBR−JμBLÞALμ j

¼ �e−ΓB

���� sin
�
1

2

Z
d4xðJμBR − JμBLÞΔAAμ

�����; ð22Þ

where ΔAμ
A ¼ Aμ

AR − Aμ
AL with
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Aμ
APðxÞ ¼

Z
d4yGr;μ

νðx; yÞJνAPðyÞ; ð23Þ

and ΓB and ΦB are

ΓB ¼ 1

4

Z
d4xd4yðJμBRðxÞ − JμBLðxÞÞðJμBRðyÞ

− JμBLðyÞÞhfÂI
μðxÞ; ÂI

μðyÞgi; ð24Þ

ΦB ¼
Z

d4xðJμBRðxÞ− JμBLðxÞÞAμðxÞ−
1

2

Z
d4xd4yðJμBRðxÞ

− JμBLðxÞÞðJνBRðyÞ þ JνBLðyÞÞGr
μνðx; yÞ: ð25Þ

The quantity ΓB characterizes the dephasing effect induced
by the vacuum fluctuations of the photon field around
particle B (see subsection B or Refs. [29,34,35]). The
distinguishability is computed as

DB ¼ 1

2
ðjλþj þ jλ−jÞ ¼ e−ΓB

���� sin
�
ΦBA

2

�����; ð26Þ

where ΦBA ¼ R
d4xðJμBR − JμBLÞΔAAμ, and therefore, the

inequality (17) is expressed as

V2
A þD2

B ¼ e−2ΓA cos2
�
ΦAB

2

�
þ e−2ΓB sin2

�
ΦBA

2

�
≤ 1:

ð27Þ

For the caseD > TA andD > TB, the retarded photon field
of particle B vanishes (Aμ

BP ¼ 0), which leads to ΦAB ¼ 0,
and we have

V2
A þD2

B ¼ e−2ΓA þ e−2ΓB sin2
�
ΦBA

2

�
≤ 1: ð28Þ

This inequality is consistent with the existence of the
quantum radiation emitted from particle A (ΓA > 0) and the

vacuum fluctuations of the photon field around particle B
(ΓB > 0) when the causality holds. If we can remove the
two effects (ΓA ¼ ΓB ¼ 0), this inequality would be
violated as long as the retarded photon field of particle
A does not vanish (Aμ

AP ≠ 0 and then ΦBA ≠ 0). Hence, if
the two effects vanish, then complementarity is violated,
and the paradox would appear. In the following subsection,
we will discuss that the inequality (28) is never violated by
the Robertson inequality associated with the photon field.

B. Relationship with uncertainty relation

In Refs. [29,34,35], the quantity Γi (i ¼ A;B) was
evaluated as the dephasing effect due to the vacuum
fluctuations of the photon field,

h0jeiϕ̂i j0i ¼ e−h0jϕ̂
2
i j0i=2 ¼ e−Γi ; ð29Þ

with the operators ϕ̂A and ϕ̂B defined by

ϕ̂A ¼
Z

d4xðJμARðxÞ − JμALðxÞÞÂI
μðxÞ;

ϕ̂B ¼
Z

d4xðJμBRðxÞ − JμBLðxÞÞÂI
μðxÞ; ð30Þ

where ÂI
μ is the photon field operator in the interaction

picture, and JμAP and JμBQ are the charged currents of each

particle. The operators ϕ̂A and ϕ̂B describe the phase shifts
due to the quantum fluctuations of the photon field. The
variances of ϕ̂A and ϕ̂B are related to the quantities ΓA and
ΓB as follows:

ðΔϕAÞ2 ¼ h0jϕ̂2
Aj0i − ðh0jϕ̂Aj0iÞ2 ¼ 2ΓA;

ðΔϕBÞ2 ¼ h0jϕ̂2
Bj0i − ðh0jϕ̂Bj0iÞ2 ¼ 2ΓB: ð31Þ

In the following equations, we show that the product of ΓA
and ΓB has a lower bound given by the quantity ΦBA. To
observe this, we focus on the commutation relation of the
operators ϕ̂A and ϕ̂B,

½ϕ̂A; ϕ̂B� ¼
Z

d4xd4yðJμARðxÞ − JμALðxÞÞðJνBR − JνBLðyÞÞ½ÂI
μðxÞ; ÂI

νðyÞ�

¼
Z

d4xd4yðJμARðxÞ − JμALðxÞÞðJνBR − JνBLðyÞÞ½ÂI
μðxÞ; ÂI

νðyÞ�θðx0 − y0Þ

þ
Z

d4xd4yðJμARðxÞ − JμALðxÞÞðJνBR − JνBLðyÞÞ½ÂI
μðxÞ; ÂI

νðyÞ�θðy0 − x0Þ

¼ i
Z

d4xðJμAR − JμALÞΔABμ − i
Z

d4xðJμBR − JμBLÞΔAAμ

¼ −iΦBA; ð32Þ
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where we inserted the step functions θðx0 − y0Þ þ θðy0 −
x0Þ in the second line, and we changed variables as xμ ↔
yμ and indices as μ ↔ ν of the second term in the third line.
Note that the first term iΦAB ¼ i

R
d4xðJμAR − JμALÞΔABμ in

the third line vanished by assuming the case D > TA and
D > TB, where there is no retarded propagation of photon
field from Bob’s system to Alice’s system. This commu-
tation relation shows that the operators ϕ̂A and ϕ̂B do not
commute with each other because the influence of particle
A causally propagates to particle B from the far past (the
red or blue line in Fig. 2) and then ΦBA ≠ 0. Using this
commutation relation, we obtain the following Robertson
inequality as

ðΔϕAÞ2ðΔϕBÞ2 ≥
1

4
jh0j½ϕ̂A; ϕ̂B�j0ij2 ¼

1

4
Φ2

BA: ð33Þ

From (31), we get the inequality among ΓA, ΓB, and ΦBA,

ΓAΓB ≥
1

16
Φ2

BA: ð34Þ

This means that the quantities ΓA and ΓB do not vanish
simultaneously if ΦBA ≠ 0. Additionally, we can show that
the Robertson inequality (34) is a sufficient condition for
the inequality (28):

ΓAΓB ≥
1

16
Φ2

BA ⇒ e−2ΓA þ e−2ΓB sin2
�
ΦBA

2

�
≤ 1: ð35Þ

The proof of this statement is presented in Appendix C.
This result implies that the Robertson inequality among ΓA,
ΓB, and ΦBA, which reflects the noncommutative property
of the photon field, guarantees the complementarity de-
scribed by the inequality between the visibility VA and the
distinguishability DB.

V. CONCLUSION

In this study, we revisited the resolution of the paradox
proposed by Belenchia et al. [27,28] in the system of a
photon field interacting with two charged particles in the
superposition states of two trajectories. The analysis based
on the quantum field theory explicitly demonstrated the
intuitively legitimate result that causality holds and that
operations on Bob’s system at a spacelike distance do not
affect Alice’s interference experiment at all by deriving
Alice’s reduced density operator. On the other hand, to find
the validity of complementarity, we first derived visibility
and distinguishability, which represent the degree of
success of Alice’s interference experiment and the degree
of distinction of Bob’s quantum state, respectively. Then,
we argued that there is an inequality between these
quantities, which is guaranteed by the Robertson inequality

associated with the noncommutative property of the photon
field (the quantized electromagnetic field). This inequality
describes the limit of complementarity in resolving this
paradox.
Thus, to resolve this paradox, the fact that the photon

field has a noncommutative property is the most important
factor in our analysis. This conclusion is applicable to
gravitational interactions. A similar analysis of the gravi-
tational version of the present paper should be performed
explicitly in future work, but the results will be inferred
with reference to our analysis, as follows. Let us consider
the massive particles A and B. According to the analogy in
Sec. IV, the phase shifts induced by the quantum fluctua-
tions of gravitational field can be described as follows:

ϕ̂g
A ¼

Z
d4xðTμν

ARðxÞ − Tμν
ALðxÞÞĥIμνðxÞ;

ϕ̂g
B ¼

Z
d4xðTμν

BRðxÞ − Tμν
BLðxÞÞĥIμνðxÞ; ð36Þ

where ĥIμν is the linearized quantum gravitational field in
the interaction picture which is the perturbation from the
Minkowski spacetime, and Tμν

iP (i ¼ A;B and P ¼ R;L) is
the energy-momentum tensor of each massive particle.
Hence the decoherence (dephasing) effects due to the
vacuum fluctuations can be characterized by

Γg
A ¼ 1

2
h0jðϕ̂g

AÞ2j0i; Γg
B ¼ 1

2
h0jðϕ̂g

BÞ2j0i; ð37Þ

and are limited by the phase shift induced by the retarded
gravitational field owing to the Robertson inequality:

Γg
AΓ

g
B ≥

1

16
ðΦg

BAÞ2; ð38Þ

where Φg
BA is defined by

Φg
BA ≡

Z
d4xðTμν

BR − Tμν
BLÞΔhAμν; ð39Þ

with the retarded gravitational field,

ΔhAμνðxÞ ¼
Z

d4yðTρσ
ARðyÞ − Tρσ

ALðyÞÞGr
μνρσðx; yÞ: ð40Þ

Note that the function Gr
μνρσðx; yÞ is the retarded Green’s

function, and the detailed formula is given in [36,37]. In the
gravitational version of our analysis, the consistency
between causality and complementarity is guaranteed by
the Robertson inequality. Repeating the discussion of
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Belenchia et al. [24,27,28], we suggest that the quantities
Γg
A and Γg

B do not vanish at the same time so that either Γg
A

or Γg
B must be caused by the on-shell gravitational radiation

from Alice’s particle A and the vacuum fluctuation of the
gravitational field around Bob’s particle B. This shows the
necessity of the noncommutative property of the gravita-
tional field related to the Robertson inequality.

ACKNOWLEDGMENTS

We are grateful for the discussions at the QUP theoretical
collaboration. We especially thank S. Iso, Y. Hidaka, J.
Soda, Y. Nambu, K. Shimada, and Y. Kuramochi for their
insightful discussions and helpful comments. Y. S. was
supported by the Kyushu University Innovator Fellowship
in Quantum Science. A. M. was supported by 2022
Research Start Program 202203. K. Y. was partially sup-
ported by JSPS KAKENHI, Grant No. 22H05263.

Note added.—Recently the authors of Ref. [38] revisited
the same paradox by assuming a simple theoretical model
so that Alice with a spin and Bob with a continuous variable
are coupled to each other through a quantized scalar field.
They focused on the quantity hΨ↓jΨ↑iϕ;B ¼ e−γAδϵðMÞ,
which denotes the interference term of Alice’s state after
tracing out the states of the scalar field ϕ and Bob’s states.
The quantity e−γA represents the decoherence due to the
vacuum fluctuations of the scalar field ϕ, while δϵðMÞ is an
overlap of the wave function of Bob’s system with M
described with the retarded Green’s function propagating
from Bob to Alice. Therefore, γA and M in their study [38]
correspond to ΓA and ΦAB, respectively. Therefore,
e−γAδϵðMÞ corresponds to the visibility function (19) in
the present study. The primary purpose of our study in the
present paper is to demonstrate that the consistency
between causality and complementarity is guaranteed by
the Robertson inequality of the quantized field in the
positions of Alice and Bob. This reflects the existence of
a gravitational field with quantum noncommutativity.

APPENDIX A: DERIVATION OF THE DENSITY
OPERATORS ρA AND ρBP

In this appendix, we derive the expression of the
density operators ρA and ρBP. To do this, we compute
Trph½jΩPiB;phhΩP0 j� as follows:

Trph½jΩPiB;phhΩP0 j�¼
1

2

X
Q;Q0¼R;L

jQfiBhQ0
f jphhαjÛ†

P0Q0ÛPQjαiph

¼1

2

X
Q;Q0¼R;L

e−ΓP0Q0PQþiΦP0Q0PQ jQfiBhQ0
f j;

ðA1Þ

where phhαjÛ†
P0Q0ÛPQjαiph ¼ e−ΓP0Q0PQþiΦP0Q0PQ with the

quantities,

ΓP0Q0PQ ¼ 1

4

Z
d4x

Z
d4yðJμP0Q0 ðxÞ − JμPQðxÞÞðJνP0Q0 ðyÞ

− JνPQðyÞÞhfÂI
μðxÞ; ÂI

νðyÞgi; ðA2Þ

ΦP0Q0PQ ¼
Z

d4xðJμP0Q0 ðxÞ − JμPQðxÞÞAμðxÞ

−
1

2

Z
d4x

Z
d4yðJμP0Q0 ðxÞ − JμPQðxÞÞðJνP0Q0 ðyÞ

þ JνPQðyÞÞGr
μνðx; yÞ; ðA3Þ

was obtained in Appendix in [29]. JμPQ ¼ JμAP þ JμBQ is
given by the currents JμAP and JμBQ of charged particles A
and B, respectively. The field AμðxÞ in (A3) is the coherent
photon field defined as

AμðxÞ ¼
Z

d3k

ð2πÞ3=2
ffiffiffiffiffiffiffi
2k0

p ðαμðkÞeikνxν þ c:c:Þ; ðA4Þ

and the complex function αμðkÞ satisfies

kμαμðkÞ ¼ −
J̃0ðkÞffiffiffiffiffiffiffi
2k0

p ðA5Þ

to guarantee the Becchi-Rouet-Stora-Tyutin (BRST) con-
dition (Appendix in [29]). Note that J̃0ðkÞ ¼ J̃0AðkÞ þ
J̃0BðkÞ is the eigenvalue of the Fourier transform of the

charged current ˆ̃J
0ðkÞ ¼ ˆ̃J

0
AðkÞ þ ˆ̃J

0
BðkÞ at the initial time

t ¼ 0. The function hfÂI
μðxÞ; ÂI

μðyÞgi is the two-point
function of the vacuum. We can compute the reduced
density operator ρA of the particle A in the basis
fjRfiA; jLfiAg as
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ρA ¼ TrB;ph½jΨðTÞihΨðTÞj�

¼ 1

2

X
P;P0¼R;L

B;phhΩP0 jΩPiB;phjPfiAhP0f j

¼ 1

4

X
P;P0¼R;L

X
Q¼R;L

e−ΓP0QPQþiΦP0QPQ jPfiAhP0f j

¼ 1

2

�
1 1

2
ðe−ΓRRLRþiΦRRLR þ e−ΓRLLLþiΦRLLLÞ

� 1

�

¼ 1

2

�
1 1

2
e−ΓAþiΦAðe−i

R
d4xðJμAR−JμALÞABRμ þ e−i

R
d4xðJμAR−JμALÞABLμÞ

� 1

�
; ðA6Þ

where B;phhΩP0 jΩPiB;ph ¼ TrB½Trph½jΩPiB;phhΩP0 j��, and � is
the complex conjugate of the ðR;LÞ component. Note that

ΓRRLR ¼ ΓRLLL ¼ ΓA; ðA7Þ

ΦRRLR ¼ ΦA −
Z

d4xðJμARðxÞ − JμALðxÞÞABRμðxÞ; ðA8Þ

ΦRLLL ¼ ΦA −
Z

d4xðJμARðxÞ − JμALðxÞÞABLμðxÞ: ðA9Þ

Here, ΓA and ΦA are defined by Eqs. (14) and (15), and the
retarded field Aμ

BQ is given in (12). The reduced density
operators ρBR and ρBL in the basis fjRfiB; jLfiBg are
given as

ρBR ¼ Trph½jΩRiB;phhΩRj�

¼ 1

2

X
Q;Q0¼R;L

e−ΓRQ0RQþiΦRQ0RQ jQfiBhQ0
f j;

¼ 1

2

�
1 e−ΓRRRLþiΦRRRL

� 1

�

¼ 1

2

�
1 e−ΓBþiΦB−i

R
d4xðJμBR−JμBLÞARμ

� 1

�
; ðA10Þ

and

ρBL ¼ Trph½jΩLiB;phhΩLj�

¼ 1

2

X
Q;Q0¼R;L

e−ΓLQ0LQþiΦLQ0LQ jQfiBhQ0
f j;

¼ 1

2

�
1 e−ΓLRLLþiΦLRLL

� 1

�

¼ 1

2

�
1 e−ΓBþiΦB−i

R
d4xðJμBR−JμBLÞALμ

� 1

�
; ðA11Þ

where we used

ΓRRRL ¼ ΓLRLL ¼ ΓB; ðA12Þ

ΦRRRL ¼ ΦB −
Z

d4xðJμBRðxÞ − JμBLðxÞÞAARμðxÞ; ðA13Þ

ΦLRLL ¼ ΦB −
Z

d4xðJμBRðxÞ − JμBLðxÞÞAALμðxÞ; ðA14Þ

where ΓB and ΦB are defined in Eqs. (24) and (25),
respectively. The retarded field Aμ

PQ is given in (23).

APPENDIX B: PROOF OF THE INEQUALITY
BETWEEN VISIBILITY AND

DISTINGUISHABILITY

We prove the inequality (17) between visibility and
distinguishability. First, we derive the visibility for the
state given in (9). The visibility of charged particle A is
calculated as

VA ¼ 2jAhLf jρAjRfiAj
¼ 2jTrB;ph½AhLf jΨðTÞihΨðTÞjRfiA�j
¼ jB;phhΩRjΩLiB;phj≡ jαj: ðB1Þ

We next evaluate the distinguishability of charged particle
B. For a trace distance Dðρ; σÞ with arbitrary density
operators ρ and σ, we use the fact that the trace-preserving
quantum operations are contractive [33]:

DðEðρÞ; EðσÞÞ ≤ Dðρ; σÞ; ðB2Þ

where E is a trace-preserving quantum operation. This
inequality means that the operation E makes it difficult to
distinguish between the two quantum states ρ and σ, i.e.,
the trace distance does not increase. Then, the distinguish-
ability is bounded as
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DB ¼ 1

2
TrBjρBR − ρBLj

¼ 1

2
TrBjTrph½jΩRiB;phhΩRj� − Trph½jΩLiB;phhΩLj�j

≤
1

2
TrBjjΩRiB;phhΩRj − jΩLiB;phhΩLjj; ðB3Þ

where the inequality (B2) was used in the third line
because the partial trace is a trace-preserving quantum
operation. To obtain the eigenvalues of the operator

jΩRiB;phhΩRj − jΩLiB;phhΩLj, we define the orthonormal
basis fjuAi; juBig using the Gram-Schmidt orthonormal-
ization as:

juAi ¼ jΩRiB;ph; juBi ¼
jΩLiB;ph − αjΩRiB;phffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jαj2
p ; ðB4Þ

where the overlap α is defined in (B1). In this basis, the
operator jΩRiB;phhΩRj − jΩLiB;phhΩLj can be rewritten as

jΩRiB;phhΩRj − jΩLiB;phhΩLj ¼ juAihuAj − ðαjuAi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj2

q
juBiÞðα�huAj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj2

q
huBjÞ

¼
0
@ 1 − jαj2 α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj2

p
α�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj2

p
−ð1 − jαj2Þ

1
A; ðB5Þ

in the orthonormal basis fjuAi; juBig. Thus, the eigenval-
ues of this matrix λA;B are

λA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj2

q
; λB ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj2

q
; ðB6Þ

and the distinguishability DB is suppressed by the sum of
these eigenvalues as follows:

DB ≤
1

2
TrBjjΩRiB;phhΩRj − jΩLiB;phhΩLjj

¼ 1

2
ðjλAj þ jλBjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj2

q
: ðB7Þ

Substituting (B1) into (B7), we find the relationship

V2
A þD2

B ≤ 1: ðB8Þ

Therefore, the visibility of charged particle A and
the distinguishability of charged particle B follow the
inequality (17).

APPENDIX C: PROOF OF THE STATEMENT
IN (35)

We first numerically demonstrate the statement in (35).
Using the Robertson inequality(34), ΓAΓB ≥ Φ2

AB=16, we
have

1 − e−2ΓA − e−2ΓB sin2
�
ΦBA

2

�

≥ 1 − e−2ΓA − e−Φ
2
BA=8ΓA sin2

�
ΦBA

2

�
¼ fðX; YÞ; ðC1Þ

where we defined the function fðX; YÞ with X ¼ e−2ΓA and
Y ¼ e−Φ

2
BA=8ΓA as follows:

fðX; YÞ ¼ 1 − X − Y sin2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ: ðC2Þ

As it is sufficient to consider that ΓA > 0 and ΦBA > 0, we
can assume that 0 < X < 1 and 0 < Y < 1.
Figure 3 shows the behavior of the function fðX; YÞ,

which is positive in the regions 0 < X < 1 and 0 < Y < 1.
Since the function fðX; YÞ is positive, the inequality
e−2ΓA þ e−2ΓB sin2 ðΦBA=2Þ ≤ 1 in (28) is satisfied.
Hence, the Robertson inequality (34) is the sufficient
condition for the inequality (28), and the statement in
(35) holds. In the following, we show that the function
fðX; YÞ is always positive in an analytic manner.
Proof.Now let derive the partial derivatives to find the

gradient for fðX; YÞ, and the results are

∂fðX;YÞ
∂X

¼−1−
Y logY sinð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logX logY
p Þcosð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logX logY
p Þ

X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p ;

ðC3Þ

FIG. 3. Behavior of the function fðX; YÞ where the region
0 < X < 1 and 0 < Y < 1.
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∂fðX;YÞ
∂Y

¼−
�
logX cosð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logX logY
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logX logY
p þ sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ
�
sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ: ðC4Þ

We are looking for the gradient is zero:

0 ¼ logX cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ; ðC5Þ

and

0 ¼ −X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
− Y logY sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ

¼ −XðlogX logYÞ − Y logYðð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
ÞÞ cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ; ðC6Þ

where we multiplied by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
in the

second line. Substituting (C5) into (C6), we obtain the
following condition

0 ¼ ðlogX logYÞð−X − Y sin2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ þ YÞ: ðC7Þ

Case 1: logX logY ¼ 0, i.e., X ¼ 1 or Y ¼ 1. When
X ¼ 1, by definition of the function fðX; YÞ, we have

fð1; YÞ ¼ 0; ðC8Þ

where we used log 1 ¼ 0 and sin 0 ¼ 0 for arbitrary value
Y. Note that when Y → 0, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
is nontrivial.

However, due to Y → 0, fð1; YÞ becomes 0. When Y ¼ 1,

fðX; 1Þ ¼ 1 − Y > 0; ðC9Þ

where we used log 1 ¼ 0 and sin 0 ¼ 0 for arbitrary values
X. Note that when X → 0, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
is also

nontrivial. However, in this case, fðX; YÞ is

lim
X→0

fðX; YÞjY¼1 ¼ 1 − sin2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ > 0: ðC10Þ

Thus, in case 1, fðX; YÞ is always positive.
Case 2: −X − Y sin2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logX logY
p Þ þ Y ¼ 0. Then

fðX; YÞ becomes

fðX; YÞ ¼ 1 − X − Y sin2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logX logY

p
Þ

¼ 1 − X > 0: ðC11Þ

Thus, in case 2, fðX; YÞ is also always positive. In either
case, fðX; YÞ ≥ 0, so the result is proven.
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