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Bounce corrections to gravitational lensing, quasinormal spectral stability,
and gray-body factors of Reissner-Nordstrom black holes
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Gravitational lensing in the weak field limit, quasinormal spectra, and gray-body factors are investigated
in the Reissner-Nordstrom spacetime corrected by bounce parameters. Using the Gauss-Bonnet theorem,
we analyze the effects of bounce corrections to the weak gravitational deflection angle and find that the
divergence of the deflection angle can be suppressed by a bounce correction in the Reissner-Nordstrom
spacetime. We also notice that the bounce correction plays the same role as the Morse potential in the
deflection angle. Moreover, we derive the perturbation equations with spin-dependent effective potentials
and discuss the quasinormal spectral stability. We observe that the quasinormal spectra have the same
behavior in large bounce parameters for different multiple numbers and they decrease significantly if the
bounce parameter is much bigger than the charge. We further study the transmission probability of particles
scattered by the effective potentials and reveal that the bounce correction introduced into the Reissner-
Nordstrom spacetime increases the gray-body factors of perturbation fields.
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I. INTRODUCTION

The singularity problem of a spacetime has always been
a topic of great concern in general relativity (GR) and black
hole physics. The singularity theorem established by
Hawking and Penrose [1] claims that the singularities
are an inevitable feature of Einstein’s theory. However, it
is commonly believed that such singularities are indeed
nonphysical objects occurred in classical theories of gravity
and the occurrence of singularities is considered to be an
indicator that GR should be modified and generalized to a
quantum theory. Following the early quantum arguments of
Sakharov [2] and Gliner [3] that the singularities could be
avoided by the quantum influence of matter sources, i.e.,
replacing the black hole singularity with a de Sitter core,
Bardeen and others proposed [4-9] various modifications
of the Schwarzschild black hole, see, for instance, some
comprehensive review articles [10,11] on regular black
holes. In addition, some excellent and lively arguments
have been suggested [12—15] in the construction of regular
black holes in GR.

More recently, there has been a renewed interest for the
search of alternatives to classical black holes in GR. The
research originates from a bounce parameter associated
with the Plank scale introduced by Simpson and Visser [16]
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in the modification of the Schwarzschild black hole. A
great variety of solutions based on bounce and quantum
corrections have been obtained [17-21], which provides us
with the treatment for the singularities of black holes. All of
these black hole mimickers are globally free from curvature
singularities. Especially, the black-bounce family passes all
weak-field observational tests, and it smoothly interpolates
regular black holes and traversable wormholes. In this
paper, we focus our attention on the bounce corrections at
the interface between the Reissner-Nordstrom black hole
and a regular black hole.

It is well known that GR describes how matter distorts
the spacetime around it. The gravitational lensing occurs
when a huge amount of matter creates a gravitational field
distorting the light from a source. As a significant phe-
nomenon, the gravitational lensing can reflect the distri-
bution of matter, such as galaxy clusters [22-25], dark
matter [26-28], dark energy [29-31], black holes [32-38],
and wormbholes [39—42], etc. Gibbons and Werner applied
[43] the Gauss-Bonnet theorem to develop an alternative
approach with a global feature to gravitational lensing
theories. With the help of this feature, we consider the weak
deflection limit and treat light rays as spatial geodesics of
the optical geometry. One of our main aims is to clarify the
effects of bounce parameters on the gravitational deflection
angle in the Reissner-Nordstrom black hole.

Additionally, quasinormal modes (QNMs) have been
studied [44—48] in a wide range of issues in the context of
GR and alternative theories of gravity. QNMs are usually
used to depict the stability of black holes perturbed by an
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external field, and also contain the information of gravi-
tational waves. The fundamental mode is the least damped
and long lived mode in a ringdown signal and is more likely
to be used to test the (in)stability of black holes. On the
other hand, the gray-body factors encode [49] information
about the horizon structure of black holes theoretically
and modify the quasinormal spectra experimentally. For
estimating effectively the transmission probability of radi-
ations from a black hole’s event horizon to its asymptotic
region, we need to investigate the gray-body factors of
perturbations. We derive the perturbation field equation
with a spin-dependent effective potential and deter-
mine the quasinormal spectra numerically. Moreover, we
calculate the gray-body factors of waves scattered by
effective potentials. Here we focus on the effects of
bounce parameters introduced in the Reissner-Nordstrom
black hole.

The outline of this paper is as follows. In Sec. II we
review briefly the properties of the black-bounce-Reissner-
Nordstrom geometry and describe the main aspects of
bounce corrections. Next we apply in Sec. III the Gauss-
Bonnet theorem to the gravitational lensing in the weak
field limit and investigate the gravitational deflection angle
corrected by bounce parameters. We derive the master wave
equation with a spin-dependent effective potential under
the massless scalar and electromagnetic field perturbations
in Sec. IV. We then calculate the quasinormal spectra
and discuss the spectral stability in Sec. V. The bounce
corrections to the gray-body factors of perturbation fields
are computed in Sec. VI. Finally, we give our conclusions
in Sec. VII. Appendices A and B include the detailed
calculations of quasinormal spectra in terms of the Leaver’s
method.

II. REISSNER-NORDSTROM GEOMETRY
CORRECTED BY BOUNCE PARAMETERS

A regularizing procedure has recently been introduced
[19] into Reissner-Nordstrom black holes, which does not
generate [8,9,50] a traditional regular black hole, such as
the Bardeen’s or Hayward’s. This procedure gives rise to a
one-parameter modification of the Reissner-Nordstom
black hole of general relativity, and can be obtained
as an exact solution to the Einstein equations sourced
by a combination of a minimally coupled phantom scalar
field and a nonlinear electrodynamics field. The action
reads [51],

S= [ VEREARA 260,000 -2V(8) - L(F). (1)

where £(F) is the Lagrangian density of gauge-invariant
nonlinear electrodynamics with 7 = F, F* and € = —1
for a phantom scalar field. The Lagrangian density and the
potential of a phantom scalar field ¢(x) take the following
forms,

_ 12ma® 20%[3(2¢%/ F)"/? - 4a?]
A =seamn T e 0 P
and
Vi) = 220 omasecd =500, ()

15a*

where m is mass of the black-bounce, ¢ magnetic charge of
free nonlinear electrodynamics, Q electric charge param-
eter, and a the bounce parameter of the charged black-
bounce, respectively.

Varying Eq. (1) with respect to the metric yields
Einstein’s equations,

Gu=-Ty (4)
and varying the action with respect to ¢ and F,,, respec-
tively, gives the field equations,

2eV, Vi + d‘;—gﬁ) =0, (5)
and
V,(L(F)F*) =0. (6)

The stress-energy tensor is a combination of the stress-
energy tensor of the scalar field and that of the nonlinear
electromagnetic field,

T, = Tp[¢) + T;[F. (7)
where T} [¢] and T} [F] take the forms,
Ty(¢] = 2€0,00' ¢ — 8, (eg" 0,0, — V(¢)).  (8)
and

L 1
T[] = =252 F, P + S 8.L(F). 9)

Here the phantom scalar field, ¢(x), reads
x
¢(x) = £ tan~!' = + const. (10)
a

Now we can write the nonzero components of the stress-
energy tensor by using Egs. (2), (3), and (7)—(10),

at + a? <—4m\/m +20% + r2) - 0?r?
T% == (az + r2>3 ’

(11)
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T, = , 12
r @+ ) (12)
a* + a? <r2 - m\/m) + Q%r?
T — 70 — — . a3)

(a*> + )3

In a four dimensional static and spherically symmetric
spacetime, by considering the following line element,

ds* = —f(r)d?® + f~'(r)dr* + h*(r)dQ?,  (14)

and substituting it into G%, we can find the shape function
by solving Egs. (4)—(6) with the aid of Egs. (11)—(13),

2m 0?
f(r)zl_m+r2+az’ hz(l’)zr2+a2' (15)

This one-parameter modification of Reissner-Nordstrom
black holes, Egs. (14) and (15), is also called a black-
bounce-Reissner-Nordstrom, charged black-bounce, or
Reissner-Nordstom-Simpson-Visser (RN-SV) spacetime
which gives either a charged regular black hole or a
traversable wormhole. Whether it is a regular black hole
or a wormhole depends on the value of the bounce
parameter a. Due to the high degree of mathematical
tractability, this class of geometries is labeled as “bounce.”
The introduction of bounce parameters was partly inspired
and motivated by Kazakov and Solodukhin’s work [5] on
the quantum deformed Schwarzschild spacetime. The
quantum corrections to theories of gravity may completely
change the gravitational equations and the corresponding
geometry at the Planck scale. This will lead to a deforma-
tion due to quantum excitations of the metric and matter
fields. The RN-SV spacetime proposed by Simpson and
Visser [16] is based on Kazakov and Solodukhin’s results
and the parameter a in the RN-SV spacetime is often
identified with a deformation parameter related to the
Planck scale.

Several properties of the black-bounce family have been
well tested [52—-54]: (i) The black-bounce family is globally
free from curvature singularities. (ii) It passes all weak-field
observational tests. We note that the radial coordinate
expands to the entire real domain, r € (-0, +0), so a
coordinate speed of light can be defined [16,46] in terms of
the radial null curves (ds> = 0 and df = dgp = 0),

dr 2m 0?
=—|=1- 1
c(r) dr r2+a2+r2+a2’ (16)

and the area of a sphere at radial coordinate r takes the
following form in this spacetime,

A(r) = 4zh*(r). (17)

The area is minimized at the wormhole throat and one can
find the location of the throat by the condition,

A'(ry) =0, (18)

where r, is the location of the throat. Then hy = h(ry)
corresponds to the radius of the wormhole throat. Now we
classify this geometry into three types:

(i) a<m=++/m?>—Q* and |Q| <m, there exists

one outer/inner horizon at =

j:\/(m + /m?* — 0%)? — a?. In this case, we obtain

ElrhER*: c(rh)ZO. (19)

The coordinate speed of light is zero and the light
cannot escape from the horizon. This geometry is
clearly a charged regular black hole with a standard
outer/inner horizon.

(i) a =m £ +/m?>— Q% and |Q| < m, there exists one
extremal horizon at r, = 0. Hence, we know

dr, =0: ¢(ry) =0. (20)

The geometry corresponds to one extremal charged

regular black hole. Alternatively, it is called a one-

way charged traversable wormhole with one ex-
tremal null throat located at ro = 0.

(i) a > m =+ +/m*>— Q% and |Q| < mor|Q| > m, there

exist no horizons. We have

Vré€ (—o0,+00): c(r) #0. (21)

The light can travel across the entire domain. So this

geometry is a two-way charged traversable worm-
hole with the radius, & = a.

III. GRAVITATIONAL LENSING
IN THE WEAK FIELD LIMIT

In this section, we present an investigation to the
gravitational lensing in a charged black-bounce using
the Gauss-Bonnet theorem. The fact that the Gauss-
Bonnet theorem can be used for characterizing lensing
features has been demonstrated [43] by Gibbons and
Werner who applied the Gauss-Bonnet theorem to a static,
spherically symmetric, and perfect non-relativistic fluid in
the weak deflection limit as a simple model of gravita-
tional lens. The intrinsic geometric and topological
properties of a surface are linked by the Gauss-Bonnet
theorem,

/A KdS + AD xkdt + Zai —2my(D).  (22)
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Here the first term represents the integral of Gaussian
curvature K over a compact oriented surface D with Euler
characteristic number y(D). The second term is the
integral of geodesic curvature x over the boundary of D
and «; denotes the exterior angle at the ith vertex. In the
center of lens without singularity the Euler characteristic
number equals one, y(D) = 1. The optical metric of the
charged black-bounce can be derived from the null
geodesic, ds? = 0, in the equatorial plane (0 = /2),

|

2m  —a® + 3m* + 307
Kr——+ ¢ +

4 — dr? L (Pra)de?
- 2m n 0% \? 1— 2m n Q?
VArE Pta VEra Prd
(23)

The Gaussian curvature of the optical metric can be
calculated,

10ma® — 6mQ> N 2a* = 15a*°m?* — 124*Q? + 20*

1”3 1”4 rS

N —85ma* + 112ma>Q? N 36ma* +27a*Q* — 10a2Q*  287ma*Q? N 28a*Q*

70

457 I

The specific domain D denoting the weak deflection
lensing geometry is bounded by a circular curve Cy and a
geodesic y from the source to an observer. So its boundary
0D consists of two parts: The geodesic y and a circular
curve Cgr. We note that the geodesic curvature along the
geodesics vanishes, ie., k(y) =0. If the source and
observer are located at an infinite distance from the lens,
for the circular curve Cy :=r(@) = R = const., the geo-
desic curvature can be defined as

k(Cg) = ‘VCRCRlv (25)
where C r 1s the tangent vector of C. The integral over the
boundary can be reduced to be

7 [
Qcharged black-bounce — _// KdS = _/ / Kds
D 0 Jb/sing

10 + O(a%). (24)

4

[

/ KdlZ/K(}/)dt+/ k(Cg)dt = lim k(Cg)dr.
oD 7 Cr R—oo Jcp
(26)

In the limit of R — oo, we have «(Cg)dr=
limg_, o, [k(Cg)dt] = dp. The Gauss-Bonnet theorem can

be rewritten as
T+a
/ / KdS + / dop = =.
D 0

In the weak field deflection limit, the zeroth order light
ray with impact parameter b is given by r(¢) = b/ sin ¢.
Therefore, the weak gravitational deflection angle for the
charged black-bounce can be determined by

(27)

‘Sbuunce

Lm0 sm@? e
Tp 4p? 33 4p?
N e

Aschwarzschild 5eleclmdynﬂmics

The leading order in Eq. (28) is known [43] as the
deflection angle for the Schwarzschild black hole. The
second and third terms are the contributions [55,56] from
the pure electric sources. It is clear that there exist extra
correction terms associated with the bounce parameter
labeled by Opounce- In general, for a traditional black hole
the deflection angle increases [57,58] continuously with
the decrease of the impact parameter » and it eventually
diverges. The deflection angle for the Reissner-Nordstrom
black hole as a special case (corresponding to @ = 0 in the
charged black-bounce) is shown in the left panel of Fig. 1.
However, for a > 0, we can observe that the deflection

40ma?
9h3

9ra* Q>
8b*

448ma*Q?
75b°

+O(m?,a*, 0%). (28)

[

angle is finite due to the bounce correction when the impact
parameter reduces. The deflection angle is suppressed by
the bounce correction dy,unce, Which is similar in shape to
the Morse potential,'

'"The Morse potential [59], proposed by Phillip M. Morse in
1929, describes an interaction model that consists of diatomic
molecules. It has the form, Vygee =D(1—e7)> or
Viorse = D[e=2(x=%) — 2¢=7(=%)] For a comprehensive intro-
duction and a recent application to quasinormal spectral prob-
lems, see Refs. [60] and [61], respectively.
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The deflection angle with respect to the impact parameter in the weak field limit (left), and the bounce parameter correction

with respect to the impact parameter in the charged black-bounce spacetime (right), where m = 1, Q = 1/2, and a = 1/2 are set. In the
left panel, the black dashed curve with a zero bounce correction (a = 0) corresponds to the deflection angle of the Reissner-Nordstrom
black hole. In the right panel, the solid black curve corresponds to the bounce correction with m = 1, Q = 1/2, and a = 1/2, and the
Morse potential (dashed black curve) is chosen for comparison when x, = 1, D = 1/3, and 7 = 2 are set.

Vitorse (¥) = D[e707%0) —2¢770m)], - (29)
where x is the distance between atoms, x, is the location of
the minimum potential, D is the well depth, and 7 is a
length parameter related to the width of the well. We find
that the bounce correction to the deflection angle for the
Reissner-Nordstrom black hole has the same form as the
Morse potential if we identify the distance between atoms
with the impact parameter, which is shown in the right
panel of Fig. 1. On the other hand, since the Morse potential
is asymptotically flat (corresponding to Opgunce asymptoti-
cally vanishing), the deflection angle for different bounce
parameters is almost the same when b increases. That is,
the effect of increasing b on the deflection angle is
negligible. Finally, we point out that the deflection angle
for the charged black-bounce is composed of two parts, one
is the Reissner-Nordstrom deflection angle and the other is
the bounce correction term,

(30)

Qcharged black-bounce — ¥Reissner-Nordstrom + 5b0unce-

IV. THE MASTER WAVE EQUATIONS FOR
SCALAR AND ELECTROMAGNETIC
PERTURBATIONS

In a spherically symmetric background, the evolution of
linearized perturbation fields of spin s is described [62-64]
by the master wave equation,

dZ‘Ps
dr?

+ (0? =V )¥, =0, (31)

where r, is “tortoise” coordinate defined by the relation,
dr,/dr = 1/f(r). To simplify the notation of the equation,

we have taken the s-subscript ¥, and V, where ¥, denotes
the scalar or vector field oscillating and decaying at a
complex frequency @ and V is the spin-dependent effec-
tive potential.

Consider a massless scalar (s = 0) perturbation field
propagating in a curved spacetime, its wave equation
satisfies

(V=99"0.¢) = 0. (32)

1
—
/=g H
where g and ¢* denote the determinant and inverse of g,,,
respectively. In the spacetime equipped with a time-inde-

pendent and spherically symmetric metric, Egs. (14) and
(15), we can decompose ¢(t,r,0, @) into Fourier modes,

~Weo(r
$(t.7.0,9) = Ze-mﬁ Yen(0.0),  (33)
£.m h(l")
and redefine W,_o(r) as the perturbation field,

where Y,,,(0,¢) stands for the spherical harmonics.

Substituting the decomposition Eq. (33) into Eq. (32),

we can get the master equation Eq. (31) for W,_,(r) with
c+1) 1

the effective potential,
dh(r)
Vo = — . 34
s=0 f(r){ hz(}’) + dr :| } ( )
For a linearized Maxwell (s = 1) field perturbation in the
curved spacetime, we can determine the effective potential
in a similar way to the scalar field. Alternatively, the

effective potential of spin one field can be obtained based
on the formalism developed in Ref. [65],

d

h(r)dr

[f<r>
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V1 = f(r) r(hii(t)l)] . (35)

Now we summarize the above discussions. In the four-
dimensional background with a wormhole-like metric,
Egs. (14) and (15), the massless scalar (s = 0) and electro-
magnetic (s = 1) field perturbations can be described by
the master equation Eq. (31) with the spin-dependent
effective potential,

G e

V. QUASINORMAL SPECTRA OF THE CHARGED
BLACK-BOUNCE

In the previous section, we derived the effective potential
for the massless scalar and electromagnetic field perturba-
tions in the four-dimensional background with a wormhole-
like metric given by Eqgs. (14) and (15). Now we apply the
shape function, see Eq. (15), to the spin-dependent poten-
tial Eq. (36) and compute the quasinormal spectrum in a
charged black-bounce spacetime. There are several kinds of
methods, such as the Leaver’s method [66-68], the time-
domain integration method [69], and the semianalytic
WKB method [70,71], to compute the quasinormal mode
frequencies. These methods have their own advantages and
disadvantages for different focuses. The Leaver’s method is
very accurate at a small multipole number, but it has a
disadvantage [64] compared to the WKB method, that is,
the former cannot provide an intuition about the properties
of quasinormal mode spectra. The direct integration
method is more suitable for showing the time-domain
profiles of quasinormal modes. The accuracy of the WKB
method may not be as good as that of the Leaver’s
method and the direct integration method when the multi-
pole number is small, but the WKB method is more suitable
for investigating quasinormal mode spectra as a whole. And
the improved WKB method keeps a high degree of
consistency with the Leaver’s method in accuracy even
for a small multiple number.

A. Improved WKB method

In order to overcome the disadvantage that the WKB
method is less accurate than the Leaver’s method at a small
multiple number, we compute the quasinormal frequencies
by using the improved WKB method [72], i.e., the higher
order WKB-Padé approach in which the powerful tech-
nique of the Padé transformation greatly improves the
accuracy of computations. Incidentally, the WKB-Padé
approach has been widely used and its accuracy has been
proved [73,74] to be consistent with the Leaver’s method
up to 24 decimal places at a small multiple number. In order
to obtain a complete and accurate spectrum, we first use the

WKB-Padé approach to extract the stable quasinormal
mode frequencies which are shown in Table I for the
spin zero perturbation and Table II for the spin one
perturbation in the unit of m = 1. In the special case of
a = 0, the quasinormal frequencies for both spin zero and
spin one perturbations recover the Reissner-Nordstrom
quasinormal frequencies. Our purpose is to explore the
influence of bounce parameters on quasinormal mode
spectra. We can see from the two tables that the spectra
have the same behavior in large bounce parameters for
different multiple numbers, i.e., they become more stable
because the absolute values of imaginary parts are decreas-
ing. Moreover, we observe a significant decrease in both
the real and imaginary parts of quasinormal frequencies
when the bounce parameter is much bigger than the
charge, a > Q.

B. Leaver’s method

Before we apply the Leaver’s method to make numerical
calculations of quasinormal spectra, we have to do the
following analytical analyses because the effective poten-
tial, Eq. (36), contains the terms with fractional powers.
In order to overcome the problem, we make a coordinate
transformation, r — h, where h € [a, ). By using the
newly defined symbols,

Vh*-ad? d h
F:=]—C:73a(h2—2h+Q2), u:=—r:7,
u h dh h—q?
(37)
we rewrite the master wave equation, Eq. (31), to be
F(h)i F(h)i‘P (h)| + Vi (h)¥s(h) = 0®¥,(h)
dh dh s s s =w s ?
(38)

where the corresponding boundary conditions become

\Ps ~ eiwh* N eihthiw7 h - 0, (393_)

W o~eioh o (h—h. ),  h—h,, (39)

with the corresponding “tortoise” coordinate defined by

dh
h, = /m’ (40)

the corresponding horizons located at

hy =1++1-02, (41)

and the parameter f expressed by
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TABLE L

The fundamental (n = 0) quasinormal spectra of the spin zero field perturbation for the multipole number being from zero

to two. These frequencies are calculated by the WKB-Padé approach for various values of the bounce parameter and charge. The settings
of a and Q are shown in the leftmost column and the top row, respectively.

=0
a 0=0.1 0=03 0=05 0=07 0.9
0 0.110980 — 0.103232i  0.110781 — 0.105527i  0.115632 — 0.105541i  0.120872 — 0.105648;  0.131885 — 0.100252i
0.1 0.112182 —0.103967i  0.112576 — 0.103474i  0.114780 — 0.105693;  0.121047 —0.105530;  0.131825 — 0.100105:
0.5 0.110427 —0.102556i 0.112711 —0.101803;  0.115609 —0.102199;  0.120628 — 0.102926;  0.129820 — 0.097150i
1 0.109065 — 0.098681i  0.110501 — 0.097993;  0.113643 —0.098061; 0.121937 —0.092844i  0.120960 — 0.091151:
10 0.060418 — 0.045365i  0.060433 — 0.045425i  0.060463 — 0.045545;  0.060511 — 0.045798;  0.060730 — 0.046242i
50 0.013350 — 0.011723;  0.013350 — 0.011723;  0.013350 — 0.011725; 0.013350 — 0.011727i 0.013350 — 0.011729i
100 0.006703 — 0.005939i  0.006703 — 0.005939;  0.006703 — 0.005939;  0.006703 — 0.005940;  0.006704 — 0.005940i
500 0.001333 —0.001252i 0.001333 —0.001252i 0.001333 —0.001252i 0.001333 —0.001252; 0.001333 — 0.001252i

‘=1
0 0.293435 — 0.097715i  0.297554 — 0.098111i  0.306562 — 0.098803;  0.322807 — 0.099362i  0.352619 — 0.097170i
0.1  0.293437 — 0.097660;  0.297530 — 0.098054;  0.306549 — 0.098770i  0.322786 — 0.099276i  0.352604 — 0.097080:
0.5 0.293363 —0.096310i 0.297455 — 0.096652i  0.306454 — 0.097211i  0.322612 — 0.097510;  0.352219 — 0.094878i
1 0.293075 — 0.092018;  0.297122 —0.092166i  0.305994 — 0.092336; 0.321860 — 0.091834i  0.350633 — 0.087771i
10 0.140575 — 0.039372i  0.140634 — 0.039431;  0.140750 — 0.039545;  0.140925 — 0.039723i  0.141157 — 0.039960i
50 0.030809 — 0.010045;  0.030810 — 0.010045;  0.030810 — 0.010046;  0.030812 — 0.010048:;  0.030813 — 0.010050:
100  0.015568 — 0.005159i  0.015568 — 0.005159;  0.015568 — 0.005159;  0.015568 — 0.005159;  0.015568 — 0.005160i
500 0.003161 —0.000971;  0.003161 — 0.000971;  0.003161 —0.000971;  0.003161 — 0.000971i  0.003161 — 0.000971:

=2
0 0.484456 — 0.096812i  0.491182 —0.097219i  0.505967 — 0.097943;  0.532563 — 0.098574i  0.581959 — 0.096625i
0.1  0.484455 —0.096758i 0.491180 — 0.097162i  0.505967 — 0.097880;  0.532560 — 0.098495;  0.581952 — 0.096534i
0.5 0.484429 —0.095445i 0.491151 —0.095793;  0.505919 — 0.096387i  0.532469 — 0.096773i  0.581741 — 0.094327i
1 0.484285 — 0.091223i  0.490976 — 0.091393;  0.505677 — 0.091575i  0.532076 — 0.091155;  0.580878 — 0.087099:
10 0.227683 — 0.038247i  0.227789 — 0.038306;  0.227999 — 0.038426/  0.228315 — 0.038605;  0.228735 — 0.038845i
50 0.049895 — 0.009731i  0.049896 — 0.009732i  0.049898 — 0.009733;  0.049900 — 0.009734i  0.049903 — 0.009736i
100  0.025208 — 0.004996i  0.025208 — 0.004996;  0.025209 — 0.004996;  0.025209 — 0.004997;  0.025209 — 0.004997i
500  0.005088 — 0.000998:;  0.005088 — 0.000998:  0.005088 — 0.000998;  0.005088 — 0.000998;  0.005088 — 0.000998
TABLE II. The fundamental (n = 0) quasinormal spectra of the spin one field perturbation for the multipole number being one and

two. These frequencies are calculated by the WKB-Padé approach for various values of the bounce parameter and charge. The settings of
a and Q are shown in the leftmost column and the top row, respectively.

=1

0=0.1

0=03

0=05

0=07

0.9

0.1
0.5

10
50
100
500

0.248737 — 0.092554i
0.248775 — 0.092515i
0.249479 — 0.091299i
0.251589 — 0.087252i
0.117288 —0.035018i
0.024984 — 0.008514i
0.012579 — 0.004349i
0.002536 — 0.000896i

0.252665 — 0.093036i
0.252680 — 0.092988i
0.253353 — 0.091773i
0.255592 — 0.087477i
0.117322 —0.035059i
0.024984 — 0.008514i
0.012579 — 0.004349i
0.002536 — 0.000896i

0.261386 — 0.093936i
0.261385 — 0.093910i
0.262127 — 0.092675i
0.264437 — 0.087769i
0.117391 —0.035141i
0.024985 — 0.008515i
0.012579 — 0.004349i
0.002536 — 0.000896i

0.277399 — 0.094911i
0.277453 — 0.094885i
0.278217 — 0.093151i
0.280543 — 0.087525i
0.117493 — 0.035264i
0.024985 — 0.008516i
0.012579 — 0.004349i
0.002536 — 0.000896i

0.307983 — 0.093272i
0.308017 — 0.093179i
0.308812 — 0.091003i
0.310925 — 0.083491i
0.117629 — 0.035426i
0.024987 — 0.008517i
0.012579 — 0.004349i
0.002536 — 0.000896i

=2

0.1
0.5

10
50
100
500

0.458393 — 0.095061i
0.458411 — 0.095007i
0.458779 — 0.093713i
0.459862 — 0.089513i
0.213525 - 0.036591i
0.046268 — 0.009113i
0.023343 — 0.004667i
0.004703 — 0.000952i

0.465012 — 0.095495i
0.465028 — 0.095439i
0.465405 — 0.094089i
0.466509 — 0.089702i
0.213613 — 0.036642i
0.046269 — 0.009113i
0.023343 — 0.004667i
0.004703 — 0.000952i

0.479599 — 0.096281i
0.479616 — 0.096219i
0.480015 — 0.094740i
0.466509 — 0.089702i
0.213789 — 0.036745i
0.046270 — 0.009114i
0.023343 — 0.004667i
0.004703 — 0.000952i

0.505992 — 0.097021i
0.506003 — 0.096954i
0.506429 — 0.095219i
0.507616 — 0.089564i
0.214052 — 0.036899i
0.046272 — 0.009115i
0.023344 — 0.004667i
0.004703 — 0.000952i

0.555617 — 0.095216i
0.555636 — 0.095124i
0.556074 — 0.092898i
0.557215 — 0.085511i
0.214402 — 0.037104i
0.046275 — 0.009117i
0.023344 — 0.004668i
0.004703 — 0.000952i
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—iwh’.
2(hy —1)\/H2 —a*

Further, we construct a series solution in terms of the
h—h,
h—h_°

p= (42)

rational function, z :=

¥, =A(h o)) e, (43)
n=0
where the prefactor
A(h, ) = ehop*iozP (44)

is determined by the boundary conditions, Eq. (39).
Now we can find the recursion relations by substituting
Eq. (43) into Eq. (38). The result is a seven-term recursion
relation, as detailed in Appendix A. Next, we perform the
Leaver’s algorithms [67,75-78] for accurately calculating
the QNMs, i.e., we extract the quasinormal spectra of the
charged black-bounce by following the two ways.

TABLE III.

(1) The Hill’s determinant method. Here we set the
order of determinant to be eleven, n = 11. This
method is more effective than the continued fraction
approach because the later becomes inconceivably
complicated as the order of the continued fraction
increases. For the details, see Appendix A.

(2) The continued fraction approach. We reduce the
seven-term recurrence relation to a three-term one by
the quadruple Gaussian elimination, see Appendix B.
The three-term recurrence relation can further be
used to calculate the quasinormal spectra by the
continued fraction approach.

Tables IIT and IV show the quasinormal spectra of spin
zero and spin one field perturbations computed by the
Hill’s determinant method, respectively. They are also
checked by the continued fraction approach. In addition,
we compare them with those computed by the improved
WKB method. For the two types of spin fields, the data
from the improved WKB method and Leaver’s method
show a high-degree agreement when the bounce parameter
is getting smaller.

The fundamental (n = 0) quasinormal spectra of the spin zero field perturbation for the multipole number being from zero

to two. These frequencies are calculated by the Leaver’s method for various values of the bounce parameter and charge. The settings of a
and Q are shown in the leftmost column and the top row, respectively.

=0
a 0=0.1 0=03 0=05 0=07 0.9
0 0.110620 — 0.106498;  0.111981 —0.106878;  0.114866 — 0.107375i  0.119820 — 0.106704i  0.131114 — 0.098885i
0.1  0.110605 —0.106426i  0.111965 —0.106803;  0.114846 —0.107292i  0.119792 —0.106608;  0.131060 — 0.0987801i
0.5 0.110230 —0.104700:  0.111548 —0.104998;  0.114330 —0.105306i  0.119080 — 0.104303;  0.129665 — 0.096306i
1 0.108277 — 0.099859;  0.109343 —0.099928;  0.111500 — 0.099687i  0.114925 —0.097549i  0.122514 — 0.088390i
10 0.002252 — 0.048342i  0.002250 — 0.050383;  0.002262 — 0.055250i  0.002353 — 0.065750i  0.002953 — 0.097677i
50 0.000292 — 0.054529;  0.000300 — 0.056482i  0.000319 —0.061174i  0.000363 — 0.071430i  0.000522 — 0.103263i
100 0.000144 —0.054713i  0.000148 — 0.056664i  0.000157 — 0.061353i  0.000180 — 0.071604i  0.000260 — 0.103438:
500  0.000029 —0.054772i  0.000030 — 0.056723i  0.000031 — 0.061410{  0.000036 — 0.071659;  0.000052 — 0.103494i

=1
0 0.293390 — 0.097716i  0.297489 — 0.098105¢  0.306503 — 0.098777i  0.322709 — 0.099261i  0.352881 — 0.096925i
0.1  0.293388 —0.097660i  0.297487 — 0.098047i  0.306499 — 0.098713;  0.322702 —0.099188:;  0.352865 — 0.096834i
0.5 0.293330 - 0.096310i  0.297417 — 0.096641i  0.306397 — 0.097184i  0.322525 —0.097425i  0.352461 — 0.094633i
1 0.292937 — 0.092070i  0.296955 — 0.092219;  0.305761 — 0.092336i  0.321489 — 0.091690;  0.351138 — 0.086528i
10 0.019957 — 0.255472i  0.019941 — 0.261539i  0.020063 — 0.276306i  0.020877 — 0.308994;  0.002310 — 0.039827i
50  0.000296 —0.050628;  0.000304 — 0.052710i  0.000323 — 0.057679i  0.000368 — 0.068412i  0.000529 — 0.101121;
100 0.000144 —0.053744i  0.000148 — 0.055727i  0.000158 — 0.060483;  0.000180 — 0.070852i  0.000261 — 0.102904i
500  0.000029 —0.054734i  0.000029 — 0.056685:  0.000031 —0.061375i  0.000036 — 0.071629;  0.000052 — 0.103473i

=2
0 0.484454 — 0.096806i  0.491178 — 0.097212i  0.505967 —0.097931i  0.532574 —0.098547;  0.582100 — 0.096679i
0.1  0.484453 —0.096751i  0.491177 —0.097155i  0.505965 — 0.097869i  0.532571 —0.098475i  0.582092 — 0.096588i
0.5 0.484428 —0.095438:;  0.491145 —0.095787i  0.505916 — 0.096376i  0.532480 — 0.096743i  0.581888 — 0.094371i
1 0.484239 — 0.091237i  0.490921 — 0.091402i  0.505603 — 0.091561i  0.531980 — 0.091043;  0.581740 — 0.086938i
10 0.020684 — 0.192118;  0.020948 — 0.200169;  0.021635 —0.219038;  0.023363 — 0.258366i  0.030441 — 0.369276i
50 0.000293 — 0.042766i  0.000303 —0.045111;  0.000325 — 0.050640i  0.000374 — 0.062339;  0.000540 — 0.096815i
100 0.000145 —0.051803;  0.000149 —0.053849i  0.000159 — 0.058742i  0.000182 —0.069347i  0.000262 — 0.101833i
500  0.000029 —0.054656i  0.000029 — 0.056611i  0.000031 —0.061306i  0.000036 — 0.071569i  0.000052 — 0.103430i
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TABLE IV. The fundamental (n = 0) quasinormal spectra of the spin one field perturbation for the multipole number being one and
two. These frequencies are calculated by the Leaver’s method for various values of the bounce parameter and charge. The settings of a
and Q are shown in the leftmost column and the top row, respectively.

=1
a 0=0.1 0=03 Q=05 Q=07 0.9
0 0.248678 — 0.092485i  0.252617 — 0.092957i  0.261356 — 0.093822i  0.277384 — 0.094686i  0.308523 — 0.093206i
0.1  0.248708 — 0.092436:i  0.252647 — 0.092905;  0.261388 — 0.093765i  0.277418 —0.094617i  0.308558 — 0.093115i
0.5 0.249417 —0.091227i  0.253373 —0.091639i  0.262149 — 0.092364i  0.278224 — 0.092952i  0.309360 — 0.090890i
1 0.251321 — 0.087249;  0.255298 — 0.087445i  0.264102 — 0.087652i  0.280187 — 0.087125;  0.312038 — 0.082277i
10 0.039266 — 0.158839;  0.039335 — 0.162396i  0.039626 — 0.170899i  0.040654 — 0.189154i  0.045816 — 0.242896i
=2
0 0.458394 — 0.095051i  0.465012 — 0.095484i  0.479606 — 0.096265i  0.506011 —0.096997;  0.555776 — 0.095340i
0.1  0.458410 —0.094998i  0.465028 — 0.095429i  0.479622 —0.096204i  0.506029 — 0.096926i  0.555796 — 0.095248i
0.5 0.458779 —0.093704i  0.465406 — 0.094078i  0.480018 —0.094726i  0.506451 —0.095199i  0.556245 — 0.093006i
1 0.459803 — 0.089521i  0.466442 —0.089701i  0.481073 —0.089893i  0.507538 — 0.089419i  0.558181 — 0.085457i
10 0.022139 — 0.106579i  0.022917 —0.1126697  0.024702 — 0.126604i  0.028331 — 0.154274i  0.038625 — 0.224482i
50 0.006374 — 0.137041i  0.006432 — 0.141000;  0.006586 — 0.150454i otk oAk

The Leaver’s method also shows the high accuracy at a
small multipole number, but it fails to give an accurate
and stable frequency for a large bounce parameter, a, in
contrast to the improved WKB approach. This limitation
of the Leaver’s method is most likely caused by the
black-bounce model itself in which the model has
transformed from a regular black hole to a wormhole
with the vanishing horizon when the bounce parameter
becomes large. In other words, the boundary condition in
Eq. (39b) is no longer valid when no horizons exist,
that is, the effective potential V (k) has no inter-
section with the h-axis. Subsequently, the calculation
goes beyond its validity as the bounce parameter
crosses the critical value between the black holes and
wormholes.

VI. GRAY-BODY FACTORS

In order to investigate the bounce corrections to the
transmission probability of particles scattered by the
effective potential, we should analyze the gray-body factors
of perturbation fields. We need to solve the wave equation
Eq. (31) with the scattering boundary conditions,

Y= Teior,
Y — pior. | Ret(ur*’

ry - —o0,

(45)

r, = 400,

where 7 and R are the transmission and reflection
coefficients, respectively. The boundary conditions allow
the incoming wave from infinity. For a given multipole
number 7, one has [71]

Al? = 1= |Ry? =T, IRo? = (1+ e72m0)~1,

(46)
where /C is determined by
602 - VO =6
K=i——— A;(K), 47
S~ M) (47)

Vy is the maximum of the potential, V{ is the second
derivative with respect to the tortoise coordinate at the
location where the potential takes its maximum, and A;’s
denote [70,74,79] the higher WKB corrections. Figure 2
shows the fact that a particle with a larger frequency (larger
energy) is more likely to pass through the potential barrier,
i.e., it has a higher gray-body factor. Additionally, a large
bounce parameter a also leads to a higher gray-body factor,
which can be seen from Fig. 2. That is, the contour of gray-
body factors moves left when a increases from zero. It is
worth noting that it seems somewhat difficult to distinguish
the contours when a < 2, which shows that the gray-body
factors are almost independent of a small bounce parameter.

However, when a increases, especially up to a > m +

/m? — Q? (the geometry is a traversable wormhole), we
can clearly observe the increased gray-body factors. In this
sense, we can conclude that the corrections of bounce
parameters to the Reissner-Nordstrom black hole lead to
increasing in gray-body factors.

124052-9



YANG GUO, CHEN LAN, and YAN-GANG MIAO

PHYS. REV. D 106, 124052 (2022)

AP
1.0j

0.8F
0.67
0.4

0.2f

A2

L = .

w
0.2 0.4 0.6 0.8 1.0 1.2

FIG. 2. Gray-body factors of spin zero (left) and spin one (right) fields with # = 2, m = 1, and Q = 0.5. The bounce parameter takes
seven different values: a = 0 (blue), a = 0.5 (yellow), @ = 1 (pink), @ = 1.5 (green), a = 2 (red), a = 5 (orange), and a = 7 (gray).

VII. CONCLUSIONS

In this work we have investigated the weak gravitational
lensing, quasinormal spectra, and gray-body factors of the
Reissner-Nordstrom spacetime corrected by bounce param-
eters. By applying the Gauss-Bonnet theorem to the optical
geometry, we find that there exists a bounce correction of
the Morse potential to suppress the divergence of the
deflection angle in the Reissner-Nordstrom spacetime.
Moreover, we derive the master wave equations with the
spin-dependent potentials for massless scalar and electro-
magnetic field perturbations. We then observe that the
spectra have the same behavior in large bounce parameters
for different multipole numbers and they decrease signifi-
cantly if a > Q. Furthermore, we compare the results
computed by the Leaver’s method with those by the
improved WKB method, and find that the quasinormal
frequencies show a high-degree agreement in the two
methods at a smaller bounce parameter for the scalar
and vector field perturbations. Finally, the results of
scattering problems suggest that the corrections of bounce
parameters introduced into the Reissner-Nordstrom space-
time lead to increasing in the gray-body factors of pertur-
bation fields.
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APPENDIX A: RECURRENCE RELATIONS

In order to find the recurrence relations, we substitute
Eq. (43) into Eq. (38) and obtain the characteristic equation
at first,

L 4p (hy —1)2(hF —d?) + hSw® =0, (Al)
which is also known as the indicial polynomial and will be
used to determine the parameter f. The root f from
Eq. (A1) must be consistent with the one from the boundary
condition, Eq. (42).

Then, we derive the other equations order by order,

7' Boco + apey = 0; (A2)
221 yoco + Prey + ajey = 0; (A3)
21 Bgco 161 + Parcy + ares = 0; (A4)
2t Loco 4 81¢y + 1260 4 Pz +azey = 0; (AS)
21 noco + &icy + 8x00 4 7303 + Pacy + ages = 0; (A6)

: Kn—6Cn—6 + Nyp-5Cn—s + gn—4cn—4 + 5n—3cn—3 + Yn—2Cn-2
+fu_1Che1 +,_i1c, =0, n>6. (A7)
The last one is a seven-term recurrence relation. The

coefficients in the above recurrence relations are given
2
as follows,

@y = 4(h, — DUE (@~ )b+ n+ 12— B, (AB)

*Note that our subscript labels of the coefficients are slightly
different from those used in Ref. [68]. In our notation all the
subscripts start from zero, n =0, 1,2, ....
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B = —=2{4a2(h, = 1)2h, [b*h, + 26> = i(h, = 1)(h, +2)o(2b +2n + 1)
+2bh, n+3bh, +4bn —3b+ hyn®+3h, n+ h e+ 2n*—3n—¢
+ 13 [4i(hy = 1)3(hy +2)0(2b +2n + 1) + (Shy — 8)ht a?
+2(hy —1)2[2(b+n)(b(hy —4) + ho(n—2) —4n +2) — h A —2(h, —1)e]]}, (A9)

Yo = W2 {4(h, = V)22 (hy (b, +8) —24) + 2b(h, (h, +8) — 24)n
+8b(hy —3)(hy — 1)+ 4(h, —2)h, A+ (hy(hy +8) —24)n% + 8(h, —3)(hy — 1)n—4(h, — 1)é]
—16i(hy — 1P w[4b((hy — )y = 3) + 4((hy — 1)y —3)n + (hy —4)h,]
464 = (hy = 2)h (hy(hy(hy (31h, — 82) + 44) + 24) — 96)]w?}
—4a*(h, —1)*{2b[h3n = 12, n + 8i(h, — 1)(2h, + 1)@ — 6k — 4n + 6]
+ D[(hy = 12)hy — 4] + [(hy — 12)h, — 4]n® + 4i(h, — D)n(8h, o + 3ik, + 4o + 3i)
+a(h, = D)[(hy = 1) (hy +2)20? +i(h (2h, +7) = 6)o + (2 — 3k, )e]}, (A10)

5, = 4{4a>(h, — 12[b(2h2n — 4h n - 2i(h, —4)(hs — 1)(h. +2)@ — 9, — 8n +9)
+ ((hy =2)hy =40 + (hy — Dn(=9 = 2i(hy —4)(h, +2)w)
b2 ((hy = 2)h, —4) = (hy = 1)*(5¢ + 20((hy. = 4)(hy +2)o = 9i))]
V(s = 2)h 2(he — 12202 ((hy = 2)hy — 4) +4b(h, (he —2)n—3) —4n + 3)
4 3(hy = 2)h, A+ 2n(hy ((hy —2)n—6) —4n + 6) — 2(h, — 1))
—24i(h, = 1w(b((hy = 2)hy —2) + ((hy = 2)h, —=2)n—h, +1)
4 (32— (hy =2 (s = 2 (11(hy — 2 +8) — 40))ar]}, (A1)

Co =407 (hy = 1*{(hy = 2)*[(hy = 12)h; —4] = a’[h, (hy + 8) —24]}
+8b(h, — 1)2{a*[—h%(n — 16iw + 6) — 8h (n + Tiw — 3) + 24n + 40iw — 18]
by =22 [R2n = 12k, — 8i(h, ((hs — 4)hy +2) + 1w — 42 —dn + 4]}
+4(hy = 1) {(hy =2)*[(hy = 12)hy —4] = a?[hy (hy +38) = 24]}
+16(h, — 1)*n{a?[h, (=3 + 8iw) — 20ia + 9)] + 2(h, — 2)2[=2i((hy — 3)h, — Do — hy — 1]}
— w2 (hy —2)2{16a2(h, +2)*(hy — V* + [(hs = 2)h, (hy (hy (hy 31k, — 166) + 296) — 208) — 32) — 64]}
+16i(hy — 1) 0{a?[h, (2h, — 15) + 16] + (h, +2)(h, —2)3}
+16(hy — D?{(h, — De[a®(3hy —4) + (hy —2)2] + hy (h, —2)°), (A12)

e = =200y = 2) {46 (h. = 12[@(hy = 4) + (hy = 2)%(hy +2)]
+4b(h, = 1)a®(2h,n = 2i(h, —4)(h, — )@ —3h, —8n+3)
+2(hy =2)*(hyn+i(hy —4)(hy — Do+ h, +2n—1)]
+4(hy = 1)?n?[a*(hy —4) + (hy —2)*(hy +2)]
+a(h, = 1)Pn]a(=3 = 2i(h, - Dw) + 2(h, = 2)2(1 + i(h, — 4)o)]
—di(h, —4)(hy = 1) 0[~a® + (hy —2)2) = 4(h, — 1)c[~a® + (hy —2))
= 2(hy = 1)2(hy = 2%+ (Shy —2)(h, —2)°}, (A13)

and

Ky = 4(hy = 2)*(hy = 1)*[a® = (hy = 2)*)(b + n)* = (hy = 2)%?, (Al4)
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where we have set m = 1, used the relations, 1 = #(£ + 1) and € = 1 — s, and replaced Q and h_ by h, with the help of

Eq. (41) in order to simplify the notations.
The Leaver’s matrix of order n then reads

Po

vo b o«

S 11 P a
fo O 72 Ps
M@n)=|[m ¢ b6 1
Ko ™ O 33

Mn-5

Kn—s

Kn-6

and the quasinormal spectrum can be computed by the
vanishing Hill’s determinant, i.e.,

det M(n) = 0. (A16)

APPENDIX B: GAUSSIAN ELIMINATION

To utilize the continued fraction approach, we have to
reduce the recurrence relations that have more than three
terms in Egs. (A2)—(A7) to three-term ones. This can be
realized in terms of the Gaussian elimination (GE) [68,75],
where the quadruple GE, at the most, will be adopted
for Eq. (A7).

The single GE provides a six-term recurrence relation,
i.e., 7 — 6. The coefficient x,, is eliminated and Eq. (A7) is
reduced to be

/ ! / /
’1n_5€n—5 + Cn—4cn—4 + 5n—3cn—3 + Vn—2Cn—2

+ P11 + 0, =0, (B1)
where the new coefficients are given by
Mo = Mo;
Brn="FBn  n<5
Yn="Tn  n<4
8, =26,, n<3;
Gp="Cn <2 (B2)
and
a, = a,; (B3a)

a3
br : (A15)
74 Ps a5
Cn—4 5n—3 VYn-2 ﬂn—l ay—q
Mp—-4 Cn—3 511—2 Vn—1 /Bn
[
/ Kn-s .
Bp=Pn———a_, N5 (B3b)
n—=5
/! Kn—4 /
Yn =7n— 7’]/— no n>4; (B3C)
n—4
/ Kn—3 /
Sy =0———"n 23 (B3d)
n-3
! Kn—2 )
i =Cn—n,—5n, n>2; (B3e)
n-2
My = M —;7‘1 o on>L (B3f)
n—1

Similarly, the double GE provides 6 — 5. The coefficient
1, is eliminated in the recurrence relation, Eq. (B1),

1 !/ 1 /! /! _
n—-4Cn—4 + 5n—3cn—3 + Vn—2€Cn-2 +ﬂn—lcn—1 + Ay_1Cn = Ov

(B4)
where the new coefficients are given by
0 = ¢o’
=P n <4
Yn=7"n  N<3
oy =4, n<?2; (B5)
and
a), =do, (B6a)
n, 4
Br =B =2y (B6b)
n—4

124052-12



BOUNCE CORRECTIONS TO GRAVITATIONAL LENSING, ...

PHYS. REV. D 106, 124052 (2022)

/

" /_77n—3 /.

yn —in 1/ n»
n-=3

(B6c¢)

/

Mh—2 /.
11 ns
n—2

/Sl
5n - 5n'_

(B6d)

/
Mn=1 on
o O

n—1

=0 (Bée)

The triple GE 5 — 4 gives the four-term recurrence
relation,

55,3_)3cn_3 + }'5,3_)20,,_2 + ﬁ,(f_)lcn_l + af_)lc,, =0, (B7)
with
589 — a1,
Y =p n<3;
G _ . » .
v =y n<?2; (B8)
and
o) = ay; (B9a)
1
B =p-al nzx o (BOD)

1
/O =y 5?3—2 Y. n>2: (B9c)
n—2
1
s =& - 5213—)1 P x>l (B9d)
0,

n—1

Finally, after the quadruple GE 4 — 3, we obtain the
three-term recurrence relation,

) )

1+ e +alie, =0, (B10)
with
7o) =75
pY =gy, n<2; (B11)
and
o) = a’; (B12a)
G
5
g =p) -=2al nz2 (BI2b)
V-2
G
5
yh =y -2, >1.  (Bl)
yn—l
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