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We show that the H0 tension can be alleviated in the framework of Horndeski/generalized Galileon
gravity. In particular, since the terms depending on G5 control the friction in the Friedmann equation, we
construct specific subclasses in which it depends only on the field’s kinetic energy. Since the latter is small
at high redshifts, namely at redshifts which affected the CMB structure, the deviations from ΛCDM
cosmology are negligible, however as time passes it increases and thus at low redshifts the Hubble function
acquires increased values in a controlled way. We consider two models; one with quadratic and one with
quartic dependence on the field’s kinetic energy. In both cases we show the alleviation of the tension,
resulting to H0 ≈ 74 km=s=Mpc for particular parameter choices. Finally, we examine the behavior of
scalar metric perturbations, showing that the conditions for absence of ghost and Laplacian instabilities are
fulfilled throughout the evolution, and we confront the models with Supernovae type Ia and cosmic
chronometer data.
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I. INTRODUCTION

The Standard Model of cosmology, namely Λ cold dark
matter (ΛCDM) plus inflation in the framework of general
relativity, proves to be very efficient in describing the
Universe evolution, both at the background and perturba-
tion levels [1,2]. However, theoretical issues such as the
cosmological constant problem and the nonrenormalizabil-
ity of general relativity, as well as the possibility of a
dynamical nature for the late-time acceleration, led to the
appearance of various extensions and modifications. In
general these belong to two classes. In the first class one
maintains general relativity as the underlying gravitational
theory but adds extra components, such as the dark energy
sectors [3,4]. In the second class one constructs modified
theories of gravity, which possess general relativity as a
particular limit but which in general provide the necessary
extra degree(s) of freedom that can drive the Universe
acceleration [5–7].

Recently, an additional motivation in favor of extensions/
modifications of the concordance cosmology has appeared,
namely, the need to incorporate tensions such as the H0

and σ8 ones. The former arises from the fact that the
Planck Collaboration estimation for the present day cosmic
expansion rate is H0 ¼ ð67.27� 0.60Þ km=s=Mpc [8],
which is in tension at about 4.4σ with the 2019 SH0ES
Collaboration (R19) direct measurement, i.e., H0 ¼
ð74.03� 1.42Þ km=s=Mpc, obtained using the Hubble
Space Telescope observations of 70 long-period Cepheids
in the Large Magellanic Cloud [9] (note that combination
with gravitational lensing and time-delay data increases the
deviation at 5.3σ [10]). Additionally, the σ8 tension is related
to the parameterwhich quantifies thematter clusteringwithin
spheres of 8h−1 Mpc radius, and the possible deviation
between the cosmic microwave background (CMB) estima-
tion [8] and the SDSS/BOSS measurement [11–13]. If these
tensions are not a result of unknown systematics, which at
least concerning the H0 one seems progressively less
possible to be the case, then one should indeed seek for
alleviation in extensions of the standard lore of cosmology.
In principle one has two main directions to alleviate the

H0 tension. On one hand we could alter the Universe
content and interactions while maintaining general
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relativity as the gravitational theory [14–50], and on the other
hand we could seek for a solution in modified gravity. Since
the second direction maintains the advantages that modified
gravities bring related to renormalizability and early- and
late-time acceleration, it might be preferable. Furthermore,
since theH0 tension implies that the Universe expands faster
than whatΛCDM cosmology predicts, in order to alleviate it
one should seek for amodified gravity that qualitatively leads
to “less gravitational power” at intermediate and late times.
Hence, during the last five years many models of modified
gravity have been proposed as candidates for the potential
alleviation of the H0 tension [51–76].
In this work we are interested in alleviating the H0

tension in the framework of Horndeski gravity. Horndeski
gravity [77], which is equivalent to generalized Galileon
theory [78–80], is the most general four-dimensional
scalar-tensor theory with one propagating scalar degree
of freedom, that has second-order field equations and thus
is free from Ostrogradski instabilities [81]. Hence, by
choosing suitable subclasses of the theory we can obtain
a cosmological behavior that is almost identical with that of
ΛCDM at early times, but which at intermediate times
deviates from it due to the weakening of the gravitational
interaction, thus alleviating the tension (see also [82,83] for
a different approach on the problem using cubic covariant
Galileon formulation).
The plan of thework is the following: In Sec. II we present

Horndeski gravity, providing the background cosmological
equations as well as the conditions for pathologies absent at
the perturbation level. In Sec. III we construct specific
subclasses of Horndeski gravity that can alleviate the H0

tension, we compare them to ΛCDM behavior, and we
confront them with Supernovae type Ia (SNIa) and cosmic
chronometer (CC) data. Finally, in Sec. IV we give a
summary of the results and we conclude.

II. HORNDESKI GRAVITY

In this section we briefly review Horndeski gravity, or
equivalently generalized Galileon theory. We first give
the corresponding general action, and by applying it in a
cosmological framework we extract the background
Friedmann equations. Additionally, we give the perturba-
tion equations around such a background, and we provide
the conditions for the absence of instabilities.

The most general Lagrangian with one scalar degree of
freedom coupled to curvature terms, with second-order
field equations is [77,84,85]

L ¼
X5
i¼2

Li; ð1Þ

with

L2 ¼ Kðϕ; XÞ; ð2Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð3Þ

L4¼G4ðϕ;XÞRþG4;X½ð□ϕÞ2− ð∇μ∇νϕÞð∇μ∇νϕÞ�; ð4Þ

L5 ¼ G5ðϕ; XÞGμνð∇μ∇νϕÞ

−
1

6
G5;X½ð□ϕÞ3 − 3ð□ϕÞð∇μ∇νϕÞð∇μ∇νϕÞ

þ 2ð∇μ∇αϕÞð∇α∇βϕÞð∇β∇μϕÞ�; ð5Þ

where ∇μ is the covariant derivative and □ the
d’Alembertian. In the above expressions R is the Ricci
scalar and Gμν the Einstein tensor, while the functions K
and Gi (i ¼ 3, 4, 5) depend on the scalar field ϕ and its
kinetic energy X ¼ −∂μϕ∂μϕ=2. Moreover, Gi;X and Gi;ϕ

(i ¼ 3, 4, 5) denote the partial derivatives of Gi in terms of
X and ϕ, i.e., Gi;X ≡ ∂Gi=∂X and Gi;ϕ ≡ ∂Gi=∂ϕ. Hence,
the total action of the theory will be

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLþ LmÞ; ð6Þ

where g is the metric determinant, and Lm accounts for the
matter content of the Universe, which corresponds to a
perfect fluid with energy density ρm and pressure pm.
We consider an expanding universe described by a flat

homogeneous and isotropic Friedmann-Robertson-Walker
(FRW) geometry with metric

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð7Þ

with aðtÞ the scale factor. Varying the action (6) with
respect to the metric, and imposing the above FRW form
we obtain the two generalized Friedmann equations,

2XK;X − K þ 6X _ϕHG3;X − 2XG3;ϕ − 6H2G4 þ 24H2XðG4;X þ XG4;XXÞ − 12HX _ϕG4;ϕX

− 6H _ϕG4;ϕ þ 2H3X _ϕð5G5;X þ 2XG5;XXÞ − 6H2Xð3G5;ϕ þ 2XG5;ϕXÞ ¼ −ρm; ð8Þ

K − 2XðG3;ϕ þ ϕ̈G3;XÞ þ 2ð3H2 þ 2 _HÞG4 − 8 _HXG4;X − 12H2XG4;X − 4H _XG4;X − 8HX _XG4;XX

þ 2ðϕ̈þ 2H _ϕÞG4;ϕ þ 4XG4;ϕϕ þ 4Xðϕ̈ − 2H _ϕÞG4;ϕX − 4H2X2ϕ̈G5;XX − 2Xð2H3 _ϕþ 2H _H _ϕþ3H2ϕ̈ÞG5;X

þ 4HXð _X −HXÞG5;ϕX þ 4HX _ϕG5;ϕϕ þ 2½2ð _HX þH _XÞ þ 3H2X�G5;ϕ ¼ −pm; ð9Þ
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where dots mark derivatives with respect to t, and where we
have defined the Hubble parameter H ≡ _a=a. Additionally,
varying (6) with respect to ϕðtÞ leads to its equation of
motion, namely

1

a3
d
dt

ða3JÞ ¼ Pϕ; ð10Þ

where

J ≡ _ϕK;X þ 6HXG3;X − 2 _ϕG3;ϕ − 12HXG4;ϕX

þ 6H2 _ϕðG4;X þ 2XG4;XXÞ
þ 2H3Xð3G5;X þ 2XG5;XXÞ
þ 6H2 _ϕðG5;ϕ þ XG5;ϕXÞ; ð11Þ

Pϕ ≡ K;ϕ − 2XðG3;ϕϕ þ ϕ̈G3;ϕXÞ
þ 6ð2H2 þ _HÞG4;ϕ þ 6Hð _X þ 2HXÞG4;ϕX

− 6H2XG5;ϕϕ þ 2H3X _ϕG5;ϕX: ð12Þ

Finally, the system of equations closes by considering the
matter conservation equation

_ρm þ 3Hðρm þ pmÞ ¼ 0: ð13Þ

Having obtained the background equations of motion,
one can proceed to the investigation of perturbations
[85–87]. In this work we are interested in the scalar
perturbations, and specifically on the conditions of absence
of ghosts and Laplacian instabilities, in order to ensure that
our solutions are cosmologically viable. In particular, in
order for Horndeski/generalized Galileon theory to be free
from Laplacian instabilities associated with the scalar field
propagation speed one should have [85]

c2S ≡ 3ð2w2
1w2H − w2

2w4 þ 4w1w2 _w1 − 2w2
1 _w2Þ

w1ð4w1w3 þ 9w2
2Þ

≥ 0: ð14Þ

Similarly, for the absence of perturbative ghosts one should
have [85]

QS ≡ w1ð4w1w3 þ 9w2
2Þ

3w2
2

> 0: ð15Þ

In the above expressions we have set

w1 ≡ 2ðG4 − 2XG4;XÞ − 2XðG5;X
_ϕH −G5;ϕÞ; ð16Þ

w2 ≡ −2G3;XX _ϕþ 4G4H − 16X2G4;XXH

þ 4ð _ϕG4;ϕX − 4HG4;XÞX þ 2G4;ϕ
_ϕ

þ 8X2HG5;ϕX þ 2HXð6G5;ϕ − 5G5;X
_ϕHÞ

− 4G5;XX
_ϕX2H2; ð17Þ

w3 ≡ 3XðK;X þ 2XK;XXÞ
þ 6Xð3X _ϕHG3;XX − G3;ϕXX −G3;ϕ þ 6H _ϕG3;XÞ
þ 18Hð4HX3G4;XXX − 5X _ϕG4;ϕX þ 7HG4;XX

−HG4 − G4;ϕ
_ϕþ 16HX2G4;XX − 2X2 _ϕG4;ϕXXÞ

þ 6H2Xð2H _ϕG5;XXXX2 − 6X2G5;ϕXX − 18G5;ϕ

þ13XH _ϕG5;XX − 27G5;ϕXX þ 15H _ϕG5;XÞ; ð18Þ

w4 ≡ 2G4 − 2XG5;ϕ − 2XG5;Xϕ̈: ð19Þ

We mention here that a negative sound speed square should
be definitely avoided, however a sound speed square larger
than one does not necessarily imply pathologies and
acausal behavior [88,89].
Lastly, we mention here that in Horndeski theories the

gravitational-wave speed is in general different than 1,
namely than the light speed. In particular, we have [85]

c2T ≡ w4

w1

≥ 0; ð20Þ

and as we can see from (16) and (19) the G5 terms may
have an effect according to the cosmological evolution.

III. ALLEVIATING THE H0 TENSION

In the previous section we presented the cosmological
equations in the framework of Horndeski/generalized
Galileon gravity. In this section we desire to use particular
subclasses of the theory in order to obtain an alleviating of the
H0 tension. Our strategy is the following: since the simplest
model in Horndeski cosmology is ΛCDM one, arising from
G4 ¼ 1=ð16πGÞ,K ¼ −2Λ ¼ const, andG3 ¼ G5 ¼ 0, we
want to introduce deviations which will be negligible at high
redshifts, in which CMB structure is formed, but that will
play a role at low redshifts, in which direct Hubble mea-
surements take place. In particular, since it is known that the
terms depending on G5 affect the friction term on the scalar
field [90–97], we could consider G5 functions depending
only on the kinetic energy X in a way that their effect is
negligible at high redshifts while being gradually important
in a controlled way at low redshifts.
Having these in mind, in the following we will consider

G4 ¼ 1=ð16πGÞ and G3 ¼ 0, which are also the case in
ΛCDM cosmology, and we will impose a simple scalar
field potential and standard kinetic term. Hence
K ¼ −VðϕÞ þ X, and we will consider the G5 term to
depend only on X, namely G5ðϕ; XÞ ¼ G5ðXÞ. In this case,
the Friedmann equations (8) and (9) become

H2 ¼ 8πG
3

ðρDE þ ρmÞ; ð21Þ

_H ¼ −4πGðρDE þ pDE þ ρm þ pmÞ: ð22Þ
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In these equations we have defined an effective dark energy
sector with energy density and pressure respectively,

ρDE ¼ 2X − K þ 2H3X _ϕð5G5;X þ 2XG5;XXÞ; ð23Þ

pDE ¼ K − 2XG5;Xð2H3 _ϕþ 2H _H _ϕþ3H2ϕ̈Þ
− 4H2X2ϕ̈G5;XX; ð24Þ

and thus the dark-energy equation of state parameter
becomes

wDE ≡ pDE

ρDE
: ð25Þ

Note that the scalar-field conservation equation (10)
becomes simply

_ρDE þ 3HðρDE þ pDEÞ ¼ 0: ð26Þ

As we mentioned above we want to make our model to
coincide with ΛCDM cosmology at high redshifts. Thus, it
proves convenient to use the redshift z ¼ −1þ a0=a as the
independent variable, fixing the current scale factor a0 ¼ 1

[therefore _H ¼ −ð1þ zÞHðzÞH0ðzÞ where primes denote
derivatives with respect to z]. Introducing, as usual, the
matter density parameter through Ωm ≡ 8πGρm

3H2 , we can
express the Hubble function in the case of ΛCDM
cosmology as

HΛCDMðzÞ≡H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3 þ 1 −Ωm0

q
; ð27Þ

with H0 the Hubble parameter at present and Ωm0 the
present value of the matter density parameter.
Hence, we want to suitably choose G5ðXÞ forms in

order for the HðzÞ obtained from (21), (23) to coincide
with HΛCDMðzÞ of (27) at z ¼ zCMB ≈ 1100, namely
Hðz → zCMBÞ ≈HΛCDMðz → zCMBÞ, but give Hðz → 0Þ >
HΛCDMðz → 0Þ. In the following subsections we will con-
sider two subcases of the G5ðXÞ term separately. For
simplicity, from now on we focus on the dust matter case,
i.e., we imposepm ¼ 0,while for the scalar-potentialwithout
loss of generality we choose K ¼ −V0ϕþ X.

A. Model I: G5ðXÞ= ξX2

The first model we consider is the one with
G5ðXÞ ¼ ξX2, i.e., G5 has a quadratic dependence on
the field’s kinetic energy. In this case (23) and (24)
respectively become

ρDE ¼
_ϕ2

2
þ V0ϕþ 7ξH3 _ϕ5; ð28Þ

pDE ¼
_ϕ2

2
− V0ϕ − ξ _ϕ4ð2H3 _ϕþ 2H _H _ϕþ5H2ϕ̈Þ: ð29Þ

As described above we chose the model parameter V0 and
the initial conditions for the scalar field in order to obtain
HðzCMBÞ ¼ HΛCDMðzCMBÞ and Ωm0 ¼ 0.31 in agreement
with [98], and we leave ξ as the parameter that determines
the late-time deviation from ΛCDM cosmology.
In Fig. 1 we depict the normalized HðzÞ=ð1þ zÞ3=2 as a

function of the redshift, for ΛCDM cosmology and for
our model with various choices of ξ. As we can see, indeed
our model coincides with ΛCDM cosmology at high and
intermediate redshifts, while at small redshifts the proposed
Model I gives higher values. In particular, the present-day
value H0 depends on the model parameter ξ, and it can be
around H0 ≈ 74 km=s=Mpc for ξ ¼ 1.3 (in H0 units, i.e.,
where the ΛCDM H0 is 1). Specifically, the tension can be
alleviated at 3σ if 1.2 < ξ < 1.7. Hence, we can see that
this particular subclass of Horndeski/generalized Galileon
gravity can alleviate the H0 tension due to the effect of the
kinetic energy dependent G5 term. Specifically, at early
times the field’s kinetic term is negligible and hence the
G5ðXÞ terms do not introduce any deviation from ΛCDM
scenario; however, as time passes they increase in a
controlled and suitable way in order to make the
Hubble function, and thus H0 too, increase. Note that,
since H0 ≈ 10−61 in Planck units, the fact that V0 ¼ 0.08
and ξ ¼ 1.3 in H0 units implies that V0 ≈ 0.5 × 10−61 and
ξ ≈ 8 × 10365 in Planck units (in Planck units we obtain
characteristic values of _ϕ and ϕ around 10−60), which is
the expected scale for the quantities of a scenario that
describes the Universe acceleration (ξ has dimensions of
½M�−9 i.e., ξ1=9 ∼ 1040 GeV−1).
Let us make a comment here on the specific mechanism

behind the tension alleviation. In general, the alleviation of
the H0 tension or/and the σ8 tension, is a complex issue,
and it usually arises as a collective result of many effects. If
one remains in the class of late-time modification (without

FIG. 1. The normalized HðzÞ=ð1þ zÞ3=2 in units of km/s/Mpc
as a function of the redshift, for ΛCDM cosmology (black solid)
and for Model I with V0 ¼ 0.08 and with G5ðXÞ ¼ ξX2, for ξ ¼
1.5 (green dotted), ξ ¼ 1.3 (red—dashed) and ξ ¼ 1 (blue
dashed-dotted), in H0 units. We have imposed Ωm0 ≈ 0.31.
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examining possible early-time solutions, as it is the aim
of this work) then one efficient mechanism is to have
wDE < −1 at some recent redshift, since a “phantom” dark
energy implies “faster” expansion. Nevertheless, this
requirement is efficient but not necessary, since the decrease
of the effective Newton’s constant at intermediate redshifts is
also an efficient mechanism [71,99] (see also the discussion
in the recent review [100]), since “weaker” gravity implies
“faster” expansion. In the models proposed in the present
work, although many terms are involved, the alleviation of
the tension arises from such a decreased effective Newton’s
constant, brought about in turn by the friction term. In
particular, in Horndeski theories we have [101,102]

Geff

G
¼ 1

2
ðG4 − 2XG4;X þ XG5;ϕ − _ϕHXG5;XÞ−1; ð30Þ

and for the present Model I this exhibits a decrease as can be
seen in Fig. 2. Hence, although wDE in this scenario does not
evolve into the phantom regime, as we show in Fig. 3 (note
that contrary to tracking dark energy models [103], wDE
remains strictly negative for z ≫ 1, i.e., for 100 ≤ z < 1000
the wDE is around −0.13), the aforementioned decrease in
the effective Newton’s constant is adequate to alleviate the
tension.
Finally, we examine the stability of the obtained solution,

by investigating the sound speed square c2S given in (14)
and the quantity QS given in (15). In Fig. 4 we depict their
evolution as a function of the redshift for the background
solution given above. As we can see, the stability con-
ditions are always satisfied, and hence the obtained
solutions are free from ghost and Laplacian instabilities
(we mention that for a general G5 ≠ 0 the c2S is not
identically 1; however, for the chosen G5ðXÞ with the
chosen ξ and the imposed initial conditions we can bring it
to be almost 1 during the whole evolution). Additionally,
the value of QS for large z is close to zero. However, one

can verify that it always remains positive, and for z ≫ 1
(i.e., for z → 1000) it is around 0.005.
Lastly, in Fig. 5 we depict the corresponding gravita-

tional wave speed square c2T given in (20). As we
mentioned after (20), in Horndeski theories the G5 terms
in general lead to a gravitational-wave speed different than
1 (namely, than the light speed). In the present model, the
gravitational wave speed is not identically one; however,
for the chosen parameter value, since theG5 terms are small
compared to G4, and moreover since ϕ̈ is of the same order
of _ϕH, the gravitational wave speed is very close to 1.
Specifically, the numerical difference between cT and unity
for small z (z < 0.5) is less than ≲10−15, while for z > 1 it
becomes larger, namely around 5 × 10−10. However, this is
not in contradiction with LIGO-VIRGO bounds [104],
since both GW170817 and GW190425 neutron-star—
neutron-star merger events are at very close distances,

FIG. 2. The normalized effective Newton’s constant Geff
G given in

(30) as a function of the redshift, for Model I with V0 ¼ 0.08 and
with ξ ¼ 1.3 in H0 units.

FIG. 3. The effective dark energy equation-of-state parameter
wDE given in (25) as a function of the redshift, for Model I with
V0 ¼ 0.08 and with ξ ¼ 1.3 in H0 units.

FIG. 4. The sound speed square c2S given in (14) and the
quantity QS given in (15), as functions of the redshift for Model I
with V0 ¼ 0.08 and with ξ ¼ 1.3 in H0 units. The model is free
from ghost and Laplacian instabilities.
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namely at redshifts around 0.01, and thus strictly speaking
the observational verification of the gravitational wave
speed is only for very low redshifts (and also for the
specific frequency range of LIGO-VIRGO). In summary,
the present model is able to pass the LIGO-VIRGO bounds,
however one could still try to construct Horndeski models
that can alleviate the tension but have cT even closer to 1.

B. Model II: G5ðXÞ= λX4

The second model we consider is the one with
G5ðXÞ ¼ λX4, i.e., G5 has a quartic dependence on the
field’s kinetic energy. In this case (23) and (24) respectively
become

ρDE ¼
_ϕ2

2
þ V0ϕþ 11

2
λH3 _ϕ9; ð31Þ

pDE ¼
_ϕ2

2
− V0ϕ −

λ _ϕ8

2
ð2H3 _ϕþ 2H _H _ϕþ9H2ϕ̈Þ: ð32Þ

In Fig. 6 we presentHðzÞ=ð1þ zÞ3=2 as a function of the
redshift for ΛCDM scenario and for our model with various
choices of λ. The two models coincide at high and
intermediate redshifts, but at small redshifts Model II gives
a higher value, whileH0 depends on the model parameter λ.
Specifically, it can be around H0 ≈ 74 km=s=Mpc for λ ¼
1 inH0 units, and in general the tension can be alleviated at
3σ if 0.5 < λ < 1.2 (in Planck units we have V0 ∼ 10−61

and λ ∼ 10510, and since λ has dimensions of ½M�−17 we
acquire λ1=17 ∼ 1030 GeV−1). Thus, we observe that this
kinetic dependent subclass of Horndeski/generalized
Galileon gravity can also alleviate the H0 tension, since
the G5ðXÞ term that controls the friction term in the
Friedmann equation is negligible at high redshifts while
it increases and plays a role at low redshifts. Lastly, we
mention that the behavior of c2S and QS is similar to the one

of Fig. 4, i.e., the scenario at hand is free from ghost and
Laplacian instabilities.
We close this section by confronting the models at hand

with Supernovae type Ia (SNIa) and cosmic chronometer
cosmological data. In particular, concerning SNIa it is
known that

2.5 log

�
L
lðzÞ

�
¼ μ≡mðzÞ −M ¼ 5 log

�
dLðzÞobs
Mpc

�
þ 25;

ð33Þ

with lðzÞ and mðzÞ the apparent luminosity and apparent
magnitude, and L and M the absolute luminosity and
magnitude, respectively, while dLðzÞobs is the luminosity
distance. On the other hand, the theoretical value of the
luminosity distance is

dL ðzÞth ≡ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ : ð34Þ

Since we know the evolution ofHðzÞ in our models, as well
as HΛCDMðzÞ, in Fig. 7 we depict the apparent minus
absolute magnitude predicted theoretically for our models
as well as ΛCDM cosmology, on top of the binned
Pantheon sample SNIa data points from [105]. As we
can see, the agreement is very good, and the proposed
models have a slightly higher accelerating behavior, as
expected.
Additionally, the CC dataset is based on the measure-

ments of HðzÞ using the relative ages of massive and
passively evolving galaxies and the corresponding estima-
tion of dz=dt [106]. In Fig. 8 we confront the theoretically
predicted HðzÞ behavior, as well as the one of ΛCDM
cosmology, with the HðzÞ CC data from [107] at 3σ
confidence level. The agreement is very good, and the

FIG. 5. The gravitational wave speed square c2T given in (20) as
a function of the redshift, for Model I with V0 ¼ 0.08 and with
ξ ¼ 1.3 in H0 units.

FIG. 6. The normalized HðzÞ=ð1þ zÞ3=2 as a function of the
redshift, for ΛCDM cosmology (black—solid) and for Model II
with V0 ¼ 1 and with G5ðXÞ ¼ λX4, for λ ¼ 0.5 (red dashed),
λ ¼ 0.9 (green dotted) and λ ¼ 1 (blue dashed-dotted), in H0

units. We have imposed Ωm0 ≈ 0.31.
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HðzÞ evolution of the proposed models lies within the
prediction of the direct measurements of the HðzÞ from the
CC data, having again a slightly higher accelerating
behavior at low redshifts, for the parameter sets
fΩm0; V0; ξg ¼ f0.31; 0.08; 1.3g and fΩm0; V0; λg ¼
f0.31; 1; 1g.
In summary, there exist regions of the free parameters

that are able to reproduce the observed Hubble function
evolution and at late times potentially alleviate the H0

tension, implying also the viability of the examined models.
Definitely, in order to conclude on whether a specific model
can alleviate the cosmological tensions, a full confrontation
with all observational datasets is required. The present

work is just an initial approach on the subject, in order to
reveal the mechanism that is able to lift the present Hubble
parameter value comparing to ΛCDM scenario (following
the general requirements of [99,100]). The detailed veri-
fication of viability for the proposed models and their
results, applying likelihood analysis and model selection
criteria on full cosmological datasets, lies beyond the scope
of the current work and will be presented in a forthcoming
project.

IV. CONCLUSIONS

The H0 tension, unless it is caused by some unknown
systematics or is related with some basic data-handling
error, may provide a strong indication towards the modi-
fication of Standard Model of cosmology. In the present
work we investigated the possibility for its alleviation
through Horndeski/generalized Galileon gravity.
In particular, knowing that the terms depending on G5

control the friction term in the Friedmann equation, we
constructed specific subclasses depending only on the
field’s kinetic energy X. Since the kinetic energy is small
at high redshifts, namely at redshifts which affected the
CMB structure, the deviations from ΛCDM cosmology are
negligible. However as time passes X increases in a
controlled way and it leads to a decrease in the effective
Newton’s constant, and thus at low redshifts HðzÞ acquires
increased values.
We considered two models, one with quadratic and one

with quartic dependence on the field’s kinetic energy. In
both cases we showed that at high and intermediate
redshifts the Hubble function behaves identically to that
of ΛCDM scenario, however at low redshifts it acquires
increased values, resulting to H0 ≈ 74 km=s=Mpc for
particular parameter choices. Hence, these subclasses of
Horndeski/generalized Galileon gravity can alleviate the
H0 tension. We mention that the above behavior is obtained
without a tuning in the initial conditions of ϕ and _ϕ (we do
not have much freedom since we set ΩDE0 ≈ 0.7 and
moreover we desire to have wDEðz ¼ 0Þ around −1).
However, the amount of tuning comes mainly in the
selection of the functions Gi’s and Kðϕ; XÞ, since only a
small subclass of them can fulfill the above requirements.
As a self-consistency test we examined the behavior of

scalar metric perturbations, showing that the conditions for
absence of ghost and Laplacian instabilities are fulfilled
throughout the evolution, and hence that the proposed
solutions are stable and free from pathologies. Finally, for
completeness we confronted the proposed models with
SNIa and CC data, as a first evidence that they are viable
and in agreement with observations.
In summary, in this pilot project we showed that the H0

tension can be alleviated in the modified gravity framework
of Horndeski/generalized Galileon theory, due to the
weakening of gravity at low redhifts by the terms depend-
ing on the scalar field’s kinetic energy. Definitely, in order

FIG. 7. The apparent minus absolute magnitude predicted
theoretically for Model I with V0 ¼ 0.08 and with ξ ¼ 1.3
(red—dashed) and for Model II with V0 ¼ 1 and with λ ¼ 1
(blue dotted) inH0 units, on top of the Pantheon SNIa data points
from [105]. For comparison we depict the ΛCDM curve (black
solid) too.

FIG. 8. The HðzÞ in units of Km=s=Mpc as a function of the
redshift, for Model I with V0 ¼ 0.08 and with ξ ¼ 1.3 (red
dashed-dotted), and for Model II with V0 ¼ 1 and with λ ¼ 1
(orange dashed), in H0 units, on top of the CC data points from
[107] at 3σ confidence level. For comparison we depict the
ΛCDM curve (black solid) too. We have imposed Ωm0 ≈ 0.31.
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to obtain a more concrete verification of the above result
one should perform a full observational confrontation,
using the full datasets, namely data from SNIa, baryonic
acoustic oscillations (BAO), cosmic chronometers, redshift
space distortion (RSD), CMB shift temperature and polari-
zation, and fσ8 observations, performing also the compari-
son to ΛCDM concordance scenario using various
information criteria. Such a full and detailed analysis, lies

beyond the scope of this first work, and it is left for a future
project.
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[27] J. Solà, A. Gómez-Valent, and J. de Cruz Pérez, Phys. Lett.
B 774, 317 (2017).

[28] W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S.
Vagnozzi, and D. F. Mota, J. Cosmol. Astropart. Phys.
09 (2018) 019.

[29] F. D’Eramo, R. Z. Ferreira, A. Notari, and J. L. Bernal,
J. Cosmol. Astropart. Phys. 11 (2018) 014.

[30] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski,
Phys. Rev. Lett. 122, 221301 (2019).

[31] A. Shafieloo, D. K. Hazra, V. Sahni, and A. A. Starobinsky,
Mon. Not. R. Astron. Soc. 473, 2760 (2018).

[32] L. Lancaster, F. Y. Cyr-Racine, L. Knox, and Z. Pan,
J. Cosmol. Astropart. Phys. 07 (2017) 033.

[33] K. V. Berghaus and T. Karwal, Phys. Rev. D 101, 083537
(2020).

[34] K. L. Pandey, T. Karwal, and S. Das, J. Cosmol. Astropart.
Phys. 07 (2020) 026.

[35] S. Adhikari and D. Huterer, Phys. Dark Universe 28,
100539 (2020).

[36] D. Benisty, Proc. Sci., CORFU2021 (2022) 338 [arXiv:
1912.11124].

[37] A. Perez, D. Sudarsky, and E. Wilson-Ewing, Gen. Relativ.
Gravit. 53, 7 (2021).

[38] S. Pan, W. Yang, and A. Paliathanasis, Mon. Not. R.
Astron. Soc. 493, 3114 (2020).

[39] G. Benevento, W. Hu, and M. Raveri, Phys. Rev. D 101,
103517 (2020).

[40] A. Banerjee, H. Cai, L. Heisenberg, E. Ó. Colgáin, M. M.
Sheikh-Jabbari, and T. Yang, Phys. Rev. D 103, L081305
(2021).

[41] E. Elizalde, M. Khurshudyan, S. D. Odintsov, and R.
Myrzakulov, Phys. Rev. D 102, 123501 (2020).

[42] P. D. Alvarez, B. Koch, C. Laporte, and Á. Rincón,
J. Cosmol. Astropart. Phys. 06 (2021) 019.

PETRONIKOLOU, BASILAKOS, and SARIDAKIS PHYS. REV. D 106, 124051 (2022)

124051-8

https://doi.org/10.1142/S0218271800000542
https://doi.org/10.1142/S0218271800000542
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1016/j.physrep.2010.04.001
https://arXiv.org/abs/2105.12582
https://arXiv.org/abs/2105.12582
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1088/0034-4885/79/10/106901
https://arXiv.org/abs/1807.06209
https://arXiv.org/abs/1807.06209
https://doi.org/10.3847/1538-4357/ab1422
https://doi.org/10.1093/mnras/stz3094
https://doi.org/10.1093/mnras/stz3094
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx2630
https://doi.org/10.1093/mnras/sty506
https://doi.org/10.1093/mnras/sty506
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1016/j.astropartphys.2021.102605
https://doi.org/10.1016/j.astropartphys.2021.102605
https://doi.org/10.1103/PhysRevD.92.121302
https://doi.org/10.1103/PhysRevD.92.121302
https://doi.org/10.1088/1475-7516/2016/10/019
https://doi.org/10.1088/1475-7516/2016/10/019
https://doi.org/10.1103/PhysRevD.100.103520
https://doi.org/10.1103/PhysRevD.100.083539
https://doi.org/10.1103/PhysRevD.100.083539
https://doi.org/10.3390/universe5110219
https://doi.org/10.1103/PhysRevD.99.043543
https://doi.org/10.1103/PhysRevD.94.123511
https://doi.org/10.1103/PhysRevD.94.123511
https://doi.org/10.1103/PhysRevD.96.043503
https://doi.org/10.1103/PhysRevD.96.043503
https://doi.org/10.1103/PhysRevD.97.043513
https://doi.org/10.1103/PhysRevD.97.123004
https://doi.org/10.1103/PhysRevD.96.023523
https://doi.org/10.1016/j.physletb.2017.09.073
https://doi.org/10.1016/j.physletb.2017.09.073
https://doi.org/10.1088/1475-7516/2018/09/019
https://doi.org/10.1088/1475-7516/2018/09/019
https://doi.org/10.1088/1475-7516/2018/11/014
https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1093/mnras/stx2481
https://doi.org/10.1088/1475-7516/2017/07/033
https://doi.org/10.1103/PhysRevD.101.083537
https://doi.org/10.1103/PhysRevD.101.083537
https://doi.org/10.1088/1475-7516/2020/07/026
https://doi.org/10.1088/1475-7516/2020/07/026
https://doi.org/10.1016/j.dark.2020.100539
https://doi.org/10.1016/j.dark.2020.100539
https://doi.org/10.22323/1.406.0338
https://arXiv.org/abs/1912.11124
https://arXiv.org/abs/1912.11124
https://doi.org/10.1007/s10714-020-02781-0
https://doi.org/10.1007/s10714-020-02781-0
https://doi.org/10.1093/mnras/staa213
https://doi.org/10.1093/mnras/staa213
https://doi.org/10.1103/PhysRevD.101.103517
https://doi.org/10.1103/PhysRevD.101.103517
https://doi.org/10.1103/PhysRevD.103.L081305
https://doi.org/10.1103/PhysRevD.103.L081305
https://doi.org/10.1103/PhysRevD.102.123501
https://doi.org/10.1088/1475-7516/2021/06/019


[43] A. De Felice, S. Mukohyama, andM. C. Pookkillath, Phys.
Lett. B 816, 136201 (2021).

[44] B. S. Haridasu, M. Viel, and N. Vittorio, Phys. Rev. D 103,
063539 (2021).

[45] O. Seto and Y. Toda, Phys. Rev. D 103, 123501 (2021).
[46] J. L. Bernal, L. Verde, R. Jimenez, M. Kamionkowski, D.

Valcin, andB. D.Wandelt, Phys.Rev.D 103, 103533 (2021).
[47] G. Alestas and L. Perivolaropoulos, Mon. Not. R. Astron.

Soc. 504, 3956 (2021).
[48] E. Elizalde, J. Gluza, and M. Khurshudyan, arXiv:

2104.01077.
[49] C. Krishnan, R. Mohayaee, E. Ó. Colgáin, M. M. Sheikh-

Jabbari, and L. Yin, Classical Quantum Gravity 38,
184001 (2021).

[50] A. Theodoropoulos and L. Perivolaropoulos, Universe 7,
300 (2021).

[51] F. K. Anagnostopoulos, S. Basilakos, and E. N. Saridakis,
Phys. Rev. D 100, 083517 (2019).

[52] A. El-Zant, W. El Hanafy, and S. Elgammal, Astrophys. J.
871, 210 (2019).

[53] M. Braglia, M. Ballardini, F. Finelli, and K. Koyama, Phys.
Rev. D 103, 043528 (2021).

[54] T. Abadi and E. D. Kovetz, Phys. Rev. D 103, 023530
(2021).

[55] Y. F. Cai, M. Khurshudyan, and E. N. Saridakis, Astro-
phys. J. 888, 62 (2020).

[56] C. Escamilla-Rivera and J. Levi Said, Classical Quantum
Gravity 37, 165002 (2020).

[57] W. E. V. Barker, A. N. Lasenby, M. P. Hobson, and W. J.
Handley, Phys. Rev. D 102, 024048 (2020).

[58] D. Wang and D. Mota, Phys. Rev. D 102, 063530 (2020).
[59] M. Ballardini, M. Braglia, F. Finelli, D. Paoletti, A. A.
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