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We describe general features of formation and disappearance of regular spherically symmetric black
holes in semiclassical gravity. The allowed models are critically dependent on the requirement that the
resulting objects evolve in finite time according to a distant observer. Violation of the null energy condition
is mandatory for this to happen, and we study the properties of the necessary energy-momentum tensor in
the vicinity of the apparent horizon. In studies of the kinematics of massive test particles, it is found that the
escape from a black hole is possible only on the ingoing trajectories when the particles are overtaken by the
contracting outer apparent horizon. Tidal forces experienced by geodesic observers, infalling or escaping,
are shown to be finite at the apparent horizon, although this is not true for nongeodesic trajectories.
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I. INTRODUCTION

Black holes are particularly elegant solutions of the
Einstein equations. They introduce nontrivial causal struc-
ture into spacetime [1–4]. About 100 ultracompact objects
are identified as astrophysical black holes [5]. Black holes
are domains of strong gravity, arguably the ones that are
most accessible to observation. They may exemplify the
conceptual tension between quantum mechanics and gen-
eral relativity. They also may provide some clues about
quantum gravity. Given all these different roles, it is still
unclear if they are played by the one and the same actor. In
fact, the variety of definitions of black holes matches this
diversity of the roles [6].
It is useful to adapt the terminology of Ref. [7] that

distinguished between the mathematical and physical black
holes. A mathematical black hole is a solution of the
Einstein equations of classical general relativity. It is the
source of our ideas about what are the typical black hole
features. The most well known of them is the event
horizon, which for the Schwarzschild black hole is located
at the gravitational radius rg ¼ 2GM=c2. It separates an
interior spacetime containing a singularity from the outside
observers.
All current observational data can be explained within

this paradigm. However, an event horizon is a global
teleological construct and is not accessible to local observ-
ers [8,9]. On the other hand, a trapped spacetime region
from which currently nothing, not even light, can escape—
a crucial black hole property—constitutes what one would

reasonably regard as a physical black hole (PBH). A
trapped region is a domain where both ingoing and out-
going future-directed null geodesics emanating from a
spacelike two-dimensional surface with spherical topology
have negative expansion [1,10]. The apparent horizon is the
outer boundary of the trapped region (here and elsewhere,
we use the same name for both the 2D entity on a particular
time slice and its 3D development; Ref. [11] collects
various relevant definitions).
It turns out that a careful analysis of the consequences of

this definition, together with two natural assumptions (that
we describe below in Sec. II), provide a strong constraint on
the near-horizon behavior of the possible models [11]. In
this work, we extend the previous results to identify several
black hole properties that are important both for resolving
conceptual issues and for modeling ultracompact objects.
We assume the validity of semiclassical gravity. That

means we use classical notions such as horizons and
consider test particles with well-defined trajectories. The
semiclassical Einstein equations

Gμν ≔ Rμν −
1

2
gμνR ¼ hT̂μνiω ≕Tμν ð1Þ

describe the dynamics. Here the standard left-hand side is
equated to the expectation value of the renormalized
energy-momentum tensor (EMT). The latter represents
both the collapsing matter and the created excitations of
the quantum fields.
Apart from assuming the validity of the semiclassical

gravity, we make two further assumptions [11]. First, we
assume the weakest form of the cosmic censorship con-
jecture. Usually, it is a statement that event horizons
obscure spacetime singularities. Here we assume only that
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all curvature scalars that are built from polynomials of
components of the Riemann tensor are finite in some
neighborhood of the apparent horizon [12].
Second, we assume that the trapped region forms at a

finite time of a distant observer (which we refer to as Bob)
[12]. This is the only possible interpretation of regular black
holes—transient trapped regions without the event horizon
and singularity. Formulation of the information loss prob-
lems requires both the Hawking radiation and the transient
event horizon. Existence of the latter implies that the
apparent horizon forms in finite time of Bob as well [13].
The resulting analysis is based on self-consistency

[11,12]. We study the semiclassical properties of the
near-horizon geometry that follow from its existence that
is subject to the two above assumptions. In particular, no
global aspects of the spacetime structure, nature of the state
ω or presence of the Hawking radiation are assumed. We
restrict the discussion to spherical symmetry. Because of
its simplifying assumptions, the self-consistent approach
results in a nearly complete description of the near-horizon
geometry and physics.

The rest of this paper is organized as follows. First, we
review the properties of PBHs in Sec. II. We also present
the necessary conditions that any model of a regular black
hole should satisfy. We discuss the classification of the
EMT in Sec. III. In Sec. IV we present some peculiar
aspects of escaping massive test particles from a black hole.
We consider the tidal forces experienced by an observer
(Alice) in the vicinity of the apparent horizon in Sec. V.
We use the ð−þþþÞ signature of the metric and work in

units where ℏ ¼ c ¼ G ¼ 1. Derivatives of a function of a
single variable are marked with a prime: r0gðtÞ≡ drg=dt,
r0þðvÞ≡ drþ=dv, etc. Derivatives with respect to the proper
time τ or the affine parameter λ are denoted by the dot:
_r ¼ dr=dτ. We refer to a distant stationary observer as Bob
and a traveling observer in the vicinity of the apparent
horizon as Alice.

II. PHYSICAL BLACK HOLES

The self-consistent approach is best illustrated by the
example of regular black holes (RBHs). Figure 1(a) is a
sketch of a generic regular black hole, and Fig. 1(b)

(a) (b)

FIG. 1. Schematic Carter-Penrose diagram for depicting formation and evaporation of a conventional RBH (a) and a RBH that is
treated as a PBH (b). The trajectory of a distant observer, Bob, is indicated in green and marked by the initial B. The dashed gray lines
correspond to outgoing radial null geodesics that reach the future null infinity Iþ, and the dotted lines represent the ingoing radial null
geodesics. The asymptotic structure of a simple RBH spacetime coincides with that of Minkowski spacetime. An immediate
neighborhood of r ¼ 0 never belongs to the trapped region. (a) The outer (132, dark blue) and inner (142, dark red) apparent horizons
are indicated according to the invariant definition of Eq. (18). These also correspond to the largest and the smallest roots of fðv; rÞ ¼ 0.
This RBH has smoothly joined inner and outer horizons [14,15]. The quantum ergosphere is indicated by the light gray shading. One of
the hypersurfaces r ¼ const is shown as a curved line that connects i− and iþ and goes through the trapped region. The null energy
condition (NEC) is satisfied along the segment (413). The segments (14) and (23) are timelike. (b) RBH treated as PBH with the outer
(dark blue) and inner (dark red) apparent horizons. The points f and d represent the events of formation and disappearance of the trapped
region. The equal time hypersurface Σtf is shown as a dashed orange line connecting r ¼ 0 and i0. The outer and the inner horizons are
timelike (membranes).
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illustrates the features that necessarily arise when this
putative object is treated as a physical black hole.
A general spherically symmetric metric in Schwarzschild

coordinates is given by [1,10]

ds2 ¼ −e2hðt;rÞfðt; rÞdt2 þ fðt; rÞ−1dr2 þ r2dΩ2; ð2Þ

where r is the circumferential radius and dΩ2 is the
area element on a unit two-sphere. These coordinates
provide geometrically preferred foliations with respect to
Kodama time [10]. Some of the derivations become more
transparent when they are expressed in radiative coordi-
nates. Using the advanced null coordinate v, the metric is
written as

ds2 ¼ −e2hþfðv; rÞdv2 þ 2ehþdvdrþ r2dΩ2: ð3Þ

The Misner-Sharp (MS) mass Cðt; rÞ=2≡Mðt; rÞ is invar-
iantly defined [10,16] via

∂μr∂μr ≔ fðt; rÞ≕ 1 − C=r; ð4Þ

and thus Cðt; rÞ≡ Cþðvðt; rÞ; rÞ. The functions hðt; rÞ and
hþðv; rÞ play the role of integrating factors in coordinate
transformations [11], such as

dt ¼ e−hðehþdv − f−1drÞ: ð5Þ

For the Schwarzschild metric C ¼ 2M ¼ const and h≡ 0,
while the coordinate v becomes the ingoing Eddington-
Finkelstein coordinate.
The trapped region corresponds to the spacetime domain

f ≤ 0. The Schwarzschild radius rgðtÞ is the largest root of
fðt; rÞ ¼ 0. Because of the invariance of C, it is invariant in
the sense that rgðtÞ≡ rþðvðt; rgÞÞ. Hence the outer appar-
ent horizon is located at the Schwarzschild radius rg
[10,16], justifying the definition of the black hole mass
as 2MðvÞ ¼ rþðvÞ. Despite the fact that the apparent
horizon is observer dependent in general, in spherically
symmetric spacetimes, it is invariantly defined in all
foliations that respect this symmetry [16].
It is convenient to introduce the effective EMT

components

τt ≔ e−2hTtt; τr ≔ Trr; τrt ≔ e−hTr
t : ð6Þ

In spherical symmetry, the three Einstein equations (for the
components Gtt, Gr

t , and Grr) are

∂rC ¼ 8πr2τt=f; ð7Þ

∂tC ¼ 8πr2ehτrt ; ð8Þ

∂rh ¼ 4πrðτt þ τrÞ=f2: ð9Þ

Relationships between the EMT components in the ðt; rÞ
and the ðv; rÞ coordinates and the corresponding forms of
the Einstein equations are given in Appendix A 1. We use
the singular nature of the Schwarzschild coordinates at
the apparent horizon to extract information about the EMT.
To ensure the finite values of the curvature scalars, it is
sufficient to work with

T ≔ ðτr − τtÞ=f; T ≔ ððτrÞ2 þ ðτtÞ2 − 2ðτrt Þ2Þ=f2;
ð10Þ

where the contribution of Tθ
θ ≡ Tϕ

ϕ is disregarded, and then
to verify that the resulting metric functions do not introduce
further divergences [11].
Thus, the three effective EMT components either

diverge, converge to finite limits, or converge to zero in
such a way that the above combinations are finite. One
option is the scaling

τt ∼ fkE; τr ∼ fkP; τrt ∼ fkΦ ; ð11Þ

for some powers ka > 1, a ¼ E;P;Φ. Another involves
convergence or divergence with the same k ≤ 1. For PBHs,
only solutions with k ¼ 0, 1 are relevant.
The k ¼ 0 solution leads to the leading terms of the

metric functions

C ¼ rg − 4
ffiffiffi
π

p
r3=2g ϒ

ffiffiffi
x

p þOðxÞ; ð12Þ

h ¼ −
1

2
ln
x
ξ
þOð ffiffiffi

x
p Þ; ð13Þ

where ξðtÞ is determined by choice of the time variable, and
the higher-order terms are matched with the higher-order
terms in the EMT expansion [11,17]. The consistency
condition that is given by the Einstein equation (8) results
in the relationship

r0g=
ffiffiffi
ξ

p
¼ 4ϵ�

ffiffiffiffiffiffiffi
πrg

p
ϒ; ð14Þ

where ϵ� ¼ �1 corresponds to the expansion and con-
traction of the Schwarzschild sphere, respectively. The
contracting Schwarzschild sphere that allows for a regular
description in the ðv; rÞ coordinates corresponds to a black
hole of diminishing mass. The case r0g > 0 allows for a
regular description in the ðu; rÞ coordinates, where u is the
retarded null coordinate and corresponds to an expanding
white hole. In the ðv; rÞ coordinates, the black hole metric
is described by

Cþðv; rÞ ¼ rþðvÞ þ w1ðvÞyþOðy2Þ; ð15Þ
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hþðv; rÞ ¼ χ1ðvÞyþOðy2Þ; ð16Þ

where we used the freedom of redefining the v coordinate
to set hþðv; rþÞ≡ 0 and w1 ≤ 1 and χ1ðvÞ are some
functions. The condition w1 ≤ 1 is due to the definition
of the Schwarzschild radius, and as we see below, this
inequality is strict for the bulk of the black hole evolution.
Some relationships with the quantities in the ðt; rÞ coor-
dinates are summarized in Appendix A 2, and more details
are given in Ref. [11].
Two features of this solution are to be noted: the

Schwarzschild radius is a timelike hypersurface in both
cases, while the NEC is violated in its vicinity. We discuss
the latter issue more in Sec. III. Analysis of the EMT and
the metric around the smaller root rinðtÞ of fðt; rÞ ¼ 0 leads
to similar expressions. The inner horizon is also a timelike
hypersurface, but the NEC is satisfied in its vicinity.
The k ¼ 1 solutions play a role in describing the

formation of a physical black hole. The detailed properties
of these solutions can be found in [11,18]. Here we stress
the features that are needed for the understanding of
Fig. 1(b).
Let the first marginally trapped surface be denoted

by rgðtfÞ. In ðv; rÞ coordinates, it appears at some vf
at the circumferential radius rþðvfÞ that corresponds to
Bob’s ðtf ; rgðtfÞ ¼ rþÞ. For v ≤ vf, the MS mass can be
expanded as

Cðv; rÞ ¼ ΔðvÞ þ r�ðvÞ þ
X
i≥1

wiðvÞðr − r�Þi; ð17Þ

where r�ðvÞ corresponds to the maximum of DvðrÞ ≔
Cðv; rÞ − r, and the deficit function ΔðvÞ ≔ Dvðr�Þ. At the
advanced time vf the location of the maximum corresponds
to the first marginally trapped surface r�ðvfÞ ¼ rþðvfÞ and
ΔðvfÞ ¼ 0. For v ≥ vf, the MS mass ΔðvÞ≡ 0.
For v ≤ vf, we have w1ðvÞ − 1≡ 0 since the (local)

maximum of Dv is determined by dDv=dr ¼ 0. For v > vf
evaporation means r0þðvfÞ ≤ 0. Since the trapped region is
of finite size for v > vf, the maximum of Cðv; rÞ does not
coincide with rþðvÞ. As a result, w1ðvÞ < 1 for v > vf. The
NEC is violated in some vicinity of the apparent horizon,
but not at r ¼ rgðtfÞ itself, allowing a consistent matching
of the NEC-violating and the NEC-satisfying regions.
The self-consistent approach on its own cannot predict

the final state of the collapsing matter. If the ultracompact
object in question is a regular black hole, then there is also
the final event, named the disappearance of the trapped
region ðvd; rdÞ for which w1ðvdÞ ¼ 1. As both the inner and
outer horizon components are timelike, their intersection
(or intersections) cannot join smoothly in any coordinate
system, providing the coordinate-independent characteri-
zation of these events.
We can now present several important features of PBHs,

particularly their application to modeling regular black

holes. Recall that, in spherical symmetry, the apparent
horizon (and thus the notion of a trapped region) are
coordinate independent in all foliations that respect this
symmetry. A general coordinate-independent notion of the
(future) outer and inner horizons is introduced via the
condition onLie derivatives of the expansion of the outgoing
null geodesics [19]. If ϑðlÞ and ϑðnÞ are the expansions of the
future-directed outgoing and ingoing null geodesic con-
gruences, respectively, then θðlÞ ¼ 0 defines the apparent
horizon. Its components are the outer (trapping) horizon that
satisfies

LnϑðlÞ ¼ nμ∂μϑðlÞ < 0; ð18Þ

and the inner (trapping) horizon that satisfies

LnϑðlÞ > 0: ð19Þ

A generic representation of a RBH in Fig. 1(a) is distinct
from the PBH-based models in several important respects.
The outer horizon as defined invariantly via Eq. (18)
coincides with the larger root of fðv; rÞ ¼ 0. However,
the NEC is violated only along section (32) and section (24)
of the inner horizon. The roots of fðu; rÞ ¼ 0 do not agree
with the invariant definition. The inner and the outer
horizon segments join smoothly, and this is effected by
having spacelike segments of both. This smooth joining
prevents the identification of invariant events of formation
and collapse (or evaporation) of the trapped region. This
makes such models unsuitable for representing RBHs that,
among other things, have a finite lifetime according to a
distant observer.
Hypersurfaces of constant r are timelike outside the

trapped region and spacelike inside, while the opposite is
true for hypersurfaces of constant t. We illustrate these
transitions on the hypersurfaces Σt. A hypersurface
can be defined by restricting the coordinates via ΨðΣt0Þ≕
t − t0 ≡ 0. Then lμ ≔ Ψ;μ is the normal vector field [4],
which is timelike for a spacelike segment of the hypersur-
face and spacelike for a timelike segment. Using Ψ;μ, one
can define a normalized vector field that points in the
direction of increasing Ψ.
Using either ðt; rÞ or ðv; rÞ coordinates, we find that [20]

lμlμ ¼ −e−2hf−1: ð20Þ

As r → rg (and similarly at the inner apparent horizon),
l2 → 0. Thus, along Σt0 that passes through a PBH, the
normal field changes continuously. Moreover [20], at
ðt; rgðtÞÞ, the vector lμ is proportional to lμ of Eq. (A7).
Figure 1(b) shows the hypersurface Σtf that corresponds to
the formation time of the trapped region, according to Bob.
It is spacelike everywhere apart from ðtf ; rgðtfÞÞ where it
is null.
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An ostensibly innocent requirement of finite formation
time, according to Bob, has far-reaching consequences. In
this case, both rgðtÞ and rinðtÞ are timelike; they correspond
to the invariant definitions of the outer and inner horizons,
as we now show.
A direct calculation shows that the inner and outer

horizons [defined as the roots of fðv; rÞ ¼ 0, r<þðvÞ
and rþðvÞ, respectively], correspond to the invariant
definition of Eq. (18). The lines of constant u intersect
each of these two segments only once. If we parametrize
a future-directed outgoing radial null geodesic as
ðvðλÞ; rðλÞ; 0; 0Þ, then

dr
dv

¼ 1

2
ehþðv;rÞfðv; rÞ: ð21Þ

Let us assume that this geodesic intersects rþðvÞ twice,
corresponding to the values of the affine parameter λ1 < λ2.
Then,

v1 ¼ vðλ1Þ; rþðv1Þ ¼ rðλ1Þ≕ r1; ð22Þ

v2 ¼ vðλ2Þ; rþðv2Þ ¼ rðλ2Þ≕ r2; ð23Þ

and v1 < v2, while r1 > r2 [as r0þðvÞ < 0]. Hence, Eq. (21)
requires theoutgoingnullgeodesic topass through the trapped
region f < 0 for the values of the affine parameter λ1 <
λ < λ2. However, at the apparent horizon dr=dvjrþ ¼ 0,
making it impossible for the geodesic to enter the contracting
trapped region, at least for some λ > λ1.
As both the inner and the outer components of the

apparent horizon are nonspacelike, they do not join
smoothly, and the invariance of this taxonomy allows
one to introduce well-defined events of formation and
disappearance of the trapped region.

III. EMT NEAR THE APPARENT HORIZON

In spherical symmetry Tθ
θ ≡ Tφ

φ, and the most general
form of the EMT [1,11] in an orthonormal basis attached to
a fiducial static observer is given by

T μ̂ ν̂ ¼

0
BBBB@

ρ ψ 0 0

ψ p 0 0

0 0 p 0

0 0 0 p

1
CCCCA; ð24Þ

where ρ, p, ψ , and p are functions of t and r. For k ¼ 0
solutions, components in the ðtrÞ block are sums of the
divergent

q ¼ −
ϒ

4
ffiffiffiffiffiffiffiffiffi
πrgx

p ð25Þ

and additional finite terms μi that depend on the higher-
order coefficients,

ρ ¼ qþ μ1; p ¼ qþ μ3; ψ ¼ qþ μ2: ð26Þ

Classification of the EMTaccording to the Segre-Hawking-
Ellis scheme [1,21] is based on the properties of the
Lorentz-invariant eigenvalues of T μ̂ ν̂. Among the classes
I–IV, the known classical matter distributions correspond to
classes I and II. Type IV is considered to be the most exotic,
as two of its Lorentz-invariant eigenvalues are complex
conjugates. Calculations with fields that propagate on a
given background are of type IV for [22–24] r ≤ 1.39rg.
However, once backreaction is included, in many interest-
ing scenarios, the more exotic forms of the EMT (types III
and IV) are excluded [25].
The two nontrivial Lorentz-invariant eigenvalues of the

EMT of Eq. (24) are given by

t1;2 ¼
1

2
ðμ3−μ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ1−2μ2þμ3Þðμ1þ2μ2þμ3þqÞ

p
Þ:
ð27Þ

The direct calculation (see Appendix A 2 for details),
shows that the classification at r ¼ rg ¼ rþ depends on
the sign of

ðμ1 − 2μ2 þ μ3Þq ∝ −θþr ; ð28Þ

i.e., it is determined by the sign of Θrrðv; rþÞ ¼
ehþΘv

r there.
The EMT is type II at rþ only if the metric is sufficiently

close to Vaidya, i.e., μ1 − 2μ2 þ μ3 ¼ 0.

IV. EXITING THE BLACK HOLE

The timelike nature of the retreating outer apparent
horizon of a physical black hole allows for the escape of
test particles from it. Outgoing null geodesics of Fig. 1
reach the future null infinity by crossing the outer apparent
horizon. An analysis of Sec. II shows that the entire regular
black hole is indeed the quantum ergosphere. Null geo-
desics on the Vaidya background can be reduced to a
system of the first-order equations, and for a linear case
CðvÞ ¼ r0 − αv, it allows an analytic solution [26,27].
Appendix B 2 uses the methods of Ref. [27] to describe
trajectories that start inside the trapped region.
We should note that inside the trapped region f < 0

distinction between the two families of the future-directed
radial null geodesics as “ingoing” and “outgoing” is not
determined by their local properties and, depending on the
global spacetime structure, may be purely conventional.
For a mathematical black hole, the curves v ¼ const, as
well as the outgoing null geodesics that originate inside it,
reach the singularity. For a RBH of Fig. 1(b), they cross the

MATTER AND FORCES NEAR PHYSICAL BLACK HOLES PHYS. REV. D 106, 124048 (2022)

124048-5



inner apparent horizon and reach r ¼ 0, while the outgoing
geodesics cross the outer apparent horizon and reach the
null infinity.
The motion of timelike test particles is more intricate.

To simplify the exposition, we describe the near-horizon
geometry by the Vaidya metric with r0þðvÞ < 0. The
ingoing and outgoing families inside the trapped region
satisfy the timelike condition

−f _v2 þ 2_v _r ¼ −1; ð29Þ

implying that the components of the four-velocity are
related by

_v ¼ _r�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ f

p
f

; ð30Þ

respectively, and are identified by their null limits for
j_rj → ∞. It is known [28] that the contracting outer apparent
horizon can overtake the test particle, releasing it (tempo-
rarily or permanently) from the black hole. Using the Vaidya
metric as an example, we highlight another property: in
contrast with the null case, the outgoing timelike geodesics
cannot reach the apparent horizon. Beyond some value of
the proper time τ�, rðτ�Þ < rþðvðτ�ÞÞ [that is implicitly
characterized by _v ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðv; rÞp

] the integral curves of
the geodesic equation can be continued only by the ingoing
geodesics.
The geodesic equations for the radial timelike geodesics

take the form,

̈r ¼ −
rþ
2r2

−
r0þ
2r

_v2; ð31Þ

v̈ ¼ −
rþ
2r2

_v2; ð32Þ

and the first term on the right-hand side of Eq. (31) is absent
for null geodesics. (Equations of motion for a general
metric are given in Appendix B 1.)
We now consider a simple model to illustrate some of the

properties of the outgoing trajectories. The model we are
going to use is that of the linearly evaporating Vaidya black
hole. We study a massive particle starting its motion from
the black hole’s interior and following an outgoing geo-
desic. As we can see from Fig. 2(a), the particle can exit the
PBH, but the gravitational attraction is enough to force it
back inside. This behavior is heavily dependent on the
initial conditions of its motion. Some initial conditions
allow particles to escape forever and reach future null
infinity, others force a reentry, as shown in Fig. 2(a), while
other particles will never escape and head toward the center.
In all of these motions, it is important to take into account
Eq. (30), which implies that inside the PBH _r ≤
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðv; rÞp

. As illustrated in Fig. 2(b), the outgoing
geodesic approaches this value until _r2 ¼ −f and then
becomes the ingoing geodesic. So a particle can only exit
the PBH following an ingoing geodesic and not an out-
going one. This behavior can be revealed by the following
simple steps.
We first note that according to Eq. (32) _v is a decreasing

function of τ and thus _vðτ1Þ > _vðτ2Þ for τ2 > τ1. On the
other hand, as both _r and f are negative inside the trapped
region, for the outgoing geodesics, the inequality

_v ¼ _rβ
f

≥
1ffiffiffiffiffiffi
−f

p ; 1 ≤ β < 2; ð33Þ

must hold. The minimum value of β ¼ 1 corresponds to the
point where _r ¼ −

ffiffiffiffiffiffi
−f

p
.

Thus, the outgoing geodesics [that starts at some rð0Þ <
rþð0Þ with some finite value of _vð0Þ], cannot exit through
rþ, as in this case fðv; r ¼ rþÞ ¼ 0 implies the divergence

(a) (b)

FIG. 2. Exit of a massive test particle from the Vaidya black hole (with the subsequent reentry). Both figures are based on the linear
evaporation law rþðvÞ ¼ rþð0Þ − αv with rþð0Þ ¼ 1 and α ¼ 0.1 The initial conditions are vð0Þ ¼ 0, rð0Þ ¼ 0.9, and
_rð0Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fð0; rð0ÞÞp

− 0.01 ¼ −0.18586. (a) Trajectory from the initial moment until the reentry. The areal radius rðτÞ (black
line) and the (outer) apparent horizon rþðvðτÞÞ (gray dashed line) are shown as functions of the proper time τ. (b) The first segment of
the trajectory until the “reversal” (the geodesic switches from being outgoing to ingoing). The areal radius derivative _r is shown as a
solid line and the limiting value −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðvðτÞ; rðτÞÞp

as a dashed gray line.
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of _v via Eq. (33). However, as it is a decreasing function
according to Eq. (32), such occurrence is impossible, and
there should be a value τ� where the geodesic changes from
being outgoing to being ingoing. It occurs continuously at
the point where

_rðτ�Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðvðτ�Þ; rðτ�ÞÞ

p
; ð34Þ

and _v ¼ 1=
ffiffiffiffiffiffi
−f

p
.

V. TIDAL FORCES

Curvature scalars are finite by construction at the
apparent horizon of a PBH. However, the absence of these
singularities (so-called parallel propagated singularities)
does not rule out a weaker form of singular behavior. In
fact, the apparent horizon is a weakly singular surface
[11,20]. For example, it is possible to find a null tetrad
where one of the Ricci spinors Φ00 or Φ22 diverge. The
energy density is finite from the point of view of an
infalling observer, geodesic or not, so long as _r < 0. On the
other hand, the energy density diverges in the proper frame
of an outgoing test particle on a nongeodesic trajectory that
approaches the outer apparent horizon.
Consider a trajectory xμAðτÞ that is implicitly given for its

entire duration inside the black hole by Eq. (34). Curiously
enough, the geodesic equation (31) is satisfied, even if
Eq. (32) is not. In this case, close to the apparent horizon,
the energy density is

ρA ¼ Tμν _x
μ
A _x

ν
A ≈

r0þ
8πrþjyj

; ð35Þ

where y ¼ r − rþ. It diverges, but the integrated energy
density remains finite. The divergence has an intuitive
explanation if one notes that the square of the four-
acceleration diverges as r → rþ.
Divergent tidal forces are one of the hallmarks of

spacetime singularities. It is a standard textbook result
[2] that the tidal forces on an infalling Alice at the horizon
of a Schwarzschild black hole are large but finite. Falling
through the apparent horizon of the Vaidya black hole is
qualitatively similar. Indeed, using the geodesic deviation
equation to determine the three components of acceleration
in the proper frame of Alice with _r ¼ 1 at the apparent
horizon (see Appendix C for the detailed description of the
frame),

D2ζðjÞ

dτ
¼ −RðτÞðjÞðτÞðkÞζðkÞ; ð36Þ

where j; k ¼ ρ; θ;ϕ, the three nonzero curvature terms are

RðτÞðρÞðτÞðρÞ ¼ −
rþðvÞ
r3

¼ −
1

r2þ
þOðyÞ; ð37Þ

RðτÞðθÞðτÞðθÞ ¼
1

2r2þ

�
1þ r0þ

4

�
þOðyÞ; ð38Þ

where y ¼ r − rþ and RðτÞðϕÞðτÞðϕÞ ¼ RðτÞðθÞðτÞðθÞ. Thus,
evaporation produces just corrections that are proportional
to the evaporation rate to the tidal force experienced by the
infalling Alice.
The result is the same if the retreating apparent horizon

overtakes the infalling particle inside the RBH. The
situation is different for a nongeodesic outgoing particle.
Consider again the trajectory that is implicitly given for its
entire duration inside the black hole by Eq. (34). Then the
two nonradial tidal force components diverge as

RðτÞðθÞðτÞðθÞ ¼ −
r0þ
2rþy

þOðy0Þ: ð39Þ

VI. DISCUSSION

We studied the properties a spherically symmetric PBH
must have in the context of semiclassical gravity. An
ostensibly innocent requirement of finite formation time,
according to Bob, has far-reaching consequences. The NEC
must be violated in the vicinity of the outer apparent
horizon, but it is satisfied in the vicinity of the inner
horizon. We have well defined events of formation and
disappearance of the trapped region because both horizons
are timelike (Fig. 1). The EMT classification, according to
the Segre-Hawking-Ellis scheme on the apparent horizon,
is of type I, under certain assumptions, consistent with what
is believed to happen when backreaction is included.
In contrast with the Schwarzschild solution, both mass-

less and massive particles inside the quantum ergosphere of
a PBH are able to escape the trapped region. For massless
particles, this is evident from the timelike character of
the outer apparent horizon. A careful analysis of massive
particles’ trajectories, using the Vaidya limit as an example,
shows that they can only escape when following ingoing
geodesic trajectories. We calculated the tidal forces expe-
rienced by observers, in general, for objects of finite size.
For infalling geodesic observers, the tidal forces are finite.
This is also the case for observers inside the quantum
ergosphere, since they can only cross the outer apparent
horizon when following an ingoing geodesic and letting the
receding horizon overtake them. This is not the case for
nongeodesic observers who experience infinite tidal forces
when they try to force themselves out of the trapped region.
Furthermore, nongeodesic observers experience infinite
negative energy density in the form of a firewall [20]
when they try to escape the trapped region, something that
does not happen for geodesic observers. Despite the fact
that the apparent horizon is assumed to be regular in the
sense of finite curvature scalars, all these properties indicate
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that it possesses a mildly singular nature, manifesting itself
as infinite tidal forces and firewalls for specific observers.
Astrophysical black holes are rotating, and study of

general axially symmetric PBHs is subject of our future
research. However, a special case of the Kerr-Vaidya metric
illustrates that the violation of the NEC and a mild firewall
are not artifacts of spherical symmetry [29]. In the Kerr-
Vaidya geometry, which is of Petrov-II, the NEC is always
violated due to the type III EMT (based on the Segre-
Hawking-Ellis classification [1,21]) on the apparent
horizon. Moreover, in the equatorial plane of the Kerr-
Vaidya metric there are radial geodesics whose equations of
motion are the same as those of their counterparts in the
Vaidya metric. Thus, while we expect that the axial
symmetry introduces more complicated scenarios of
motion of test particles, they also include the results that
were described above.
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APPENDIX A: SUMMARY
OF USEFUL RELATIONS

1. Einstein equations and basic definitions

A useful relationship between the EMT components in
ðt; rÞ and ðv; rÞ coordinates is given by

θv ≔ e−2hþΘvv ¼ τt; ðA1Þ

θvr ≔ e−hþΘvr ¼ ðτrt − τtÞ=f; ðA2Þ

θr ≔ Θrr ¼ ðτr þ τt − 2τrt Þ=f2; ðA3Þ

where Θμν denotes the EMT components in ðv; rÞ coor-
dinates. We denote the limit of θv as r → rþ as θþv , etc. The
Einstein equations are then given by

∂vCþ ¼ 8πr2ehþðθv þ fθvrÞ≡ 8πr2Θr
v; ðA4Þ

∂rCþ ¼ −8πr2θvr ≡ 8πr2Θv
v; ðA5Þ

∂rhþ ¼ 4πrθr ≡ 4πrehþΘv
r : ðA6Þ

Tangents to the congruences of ingoing and outgoing radial
null geodesics (note that these designations make literal
sense only in a space with simple topology) are given in
ðv; rÞ coordinates by

nμ ¼ ð0;−e−hþ ; 0; 0Þ; lμ ¼
�
1;
1

2
ehþf; 0; 0

�
; ðA7Þ

respectively. The vectors are normalized to satisfy
n · l ¼ −1. Their expansions [1,4,30] are

ϑðnÞ ¼ −
2e−hþ

r
; ϑðlÞ ¼

ehþf
r

; ðA8Þ

respectively. Hence the (outer) apparent horizon is located
at the Schwarzschild radius rg [10,16,27], justifying the
definition of the black hole mass as [31] 2MðvÞ ¼ rþðvÞ.

2. Velocity components, EMT, and metric functions

In ðv; rÞ coordinates outside of the apparent horizon the
relationship between four-velocity components of the
timelike trajectory is

_v ¼ _rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ f

p
ehþf

; ðA9Þ

for both ingoing (_r < 0) and outgoing (_r > 0) test particles,
where f ¼ fðvðτÞ; rðτÞÞ, and hþ ¼ hþðvðτÞ; rðτÞÞ. On the
other hand, inside the trapped region f < 0 and thus to
maintain the timelike character of the trajectory,

_r ≤ −
ffiffiffiffiffiffi
−f

p
ðA10Þ

must hold. The null velocity component of ingoing
particles still satisfies Eq. (A9), with the ingoing null
geodesics _v ¼ 0 being their ultrarelativistic limit. The
future-directed outgoing trajectories satisfy

_v ¼ _r −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ f

p
ehþf

> 0: ðA11Þ

The limiting values of the EMT components in ðv; rÞ
coordinates, θþμν ≔ limr→rþ Θμν, are

θþv ¼ ð1 − w1Þ
r0þ

8πr2þ
; ðA12Þ

θþvr ¼ −
w1

8πr2þ
; ðA13Þ

θþr ¼ χ1
4πrþ

: ðA14Þ

The effective EMT components in the ðt; rÞ coordinates
for x ≔ r − rgðtÞ > 0 are

τt ¼ −ϒ2 þ e12
ffiffiffi
x

p þ e1xþOðx3=2Þ; ðA15Þ

τrt ¼ �ϒ2 þ ϕ12

ffiffiffi
x

p þ ϕ1xþOðx3=2Þ; ðA16Þ
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τr ¼ −ϒ2 þ p12

ffiffiffi
x

p þ p1xþOðx3=2Þ: ðA17Þ

Since f ∝
ffiffiffi
x

p
and the rhs of Eq. (9) results in a finite limit,

we have

ϕ12 ¼
1

2
ðe12 þ p12Þ: ðA18Þ

The metric functions are then given by

C ¼ rg − 4

ffiffiffiffiffiffiffi
πr3g

q
ϒ

ffiffiffi
x

p þ
�
1

3
þ 4

ffiffiffi
π

p
e12r

3=2
g

3ϒ

�
xþOðx3=2Þ;

ðA19Þ

h ¼ −
1

2
ln
x
ξ
þ
�

1

3
ffiffiffi
π

p
r3=2g ϒ

−
e12 − 3p12

6ϒ2

� ffiffiffi
x

p þOðxÞ:

ðA20Þ

By substitution into Eq. (A2), we find that the limiting
values of the effective EMT components in ðv; rÞ coor-
dinates are given by

θþv ¼ −ϒ2; ðA21Þ

θþvr ¼
p12 − e12
8

ffiffiffiffiffiffiffi
πrg

p ϒ
; ðA22Þ

θþr ¼ e1 − 2ϕ1 þ p1

16πrgϒ2
: ðA23Þ

The leading terms of the EMT components of Eq. (24) are
expressed with

μ1 ¼
4

ffiffiffi
π

p
e12r

3=2
g þϒ

24πr2gϒ
þOð ffiffiffi

x
p Þ; ðA24Þ

μ3 ¼
ffiffiffi
π

p
r3=2g ðe12 þ 3p12Þ þϒ

24πr2gϒ
þOð ffiffiffi

x
p Þ; ðA25Þ

μ2 ¼
1

2
ðμ1 þ μ3Þ þOð ffiffiffi

x
p Þ: ðA26Þ

The quantity

μ1 − 2μ2 þ μ3 ¼
ðe1 − 2ϕ1 þ p1Þ

ffiffiffi
x

p
4

ffiffiffiffiffiffiffi
πrg

p ϒ
þOðxÞ ðA27Þ

is important for the EMT classification. Using Eqs. (A23)
and (25) we find

ðμ1 − 2μ2 þ μ3Þq ¼ −
ðe1 − 2ϕ1 þ p1Þ

16πrg
∝ −θþr ; ðA28Þ

and due to Eq. (A6) Θrr ∝ Θv
r .

From Eqs. (A4) and (A21) it follows that Θr
v < 0 at the

apparent horizon. If at the outer apparent horizon Θv
r ∼ Θr

v,
then the EMT has only real Lorentz-invariant eigenvalues
and belongs to type I.

APPENDIX B: EXITING RBH

1. Equations of motion on the background
of a general spherically symmetric metric

For the general spherically symmetric metric in the ðv; rÞ
coordinates

ds2 ¼ −e2hþfðv; rÞdv2 þ 2ehþdvdrþ r2dΩ2; ðB1Þ

we have the following equations of motion for radially
moving massive particles:

v̈þ
�
ð∂vhþÞ þ ehþð∂rhþÞ þ

1

2
ehþð∂rfÞ

�
_v2 ¼ 0; ðB2Þ

̈rþ ð∂rhþÞ_r2 þ
�
−
1

2
ehþð∂vfÞ

�
_v2;

þ
�
ð∂rhþÞf þ 1

2
ð∂rfÞ

�
¼ 0; ðB3Þ

with the timelike normalization condition

−e2hþf _v2 þ 2ehþ _v _r ¼ −1: ðB4Þ

The above relations for hþ ¼ 0 and fðv; rÞ ¼ 1 − rþðvÞ=r
reduce to the geodesic equations (31) and (32) for the
Vaidya metric.

2. Outgoing null geodesics in the ingoing Vaidya metric

Here we consider the future-directed null geodesics that
are outgoing from the Vaidya black hole with r0þðvÞ < 0.
They satisfy the geodesic equation

_v ¼ 0; _v ¼ 2_r
f
; ðB5Þ

for the ingoing and outgoing geodesics.
Adapting the results of Refs. [26,27], the equations are

simplified by introducing _rþ ¼ r0þ _v and noting

̈rþ r0þ
2r

_v2 ¼ ̈rþ _r_rþ
r − rþ

¼ ̈r − _r
d
dλ

lnðr − rþÞ þ
_r2

r − rþ
:

ðB6Þ
For a nonzero _r (that is definitely true up to the apparent
horizon), it can be rearranged as
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d
dλ

ln
_r

r − rþ
¼ −

_r
r − rþ

; ðB7Þ

whose integration results in

_r
r − rþ

¼ 1

λþ c
; ðB8Þ

where c is set by the initial conditions. Hence Eq. (31) is
equivalent to

_rðλÞ ¼ rðλÞ − rþðvðλÞÞ
λþ c

: ðB9Þ

Then Eq. (B5) results in

_vðλÞ ¼ 2rðλÞ
λþ c

: ðB10Þ

The initial condition [we can choose λ ¼ 0, vð0Þ ¼ 0]
identifies the constant as

c ¼ rð0Þ − r0
_rð0Þ > 0: ðB11Þ

If the black hole evaporation rate is constant,
rþ ¼ r0 − αv, for some α > 0, then the substitution

λþ c ¼ cel ðB12Þ

results in a first-order linear system

dr
dl

¼ rðlÞ − r0 þ αvðlÞ; ðB13Þ

dv
dl

¼ 2rðlÞ; ðB14Þ

which can be rewritten in the form of matrices as

d
dl

�
r

v

�
¼

�
1 α

2 0

��
r

v

�
þ
�−r0

0

�
; ðB15Þ

with the matrix

A ¼
�
1 α

2 0

�
ðB16Þ

having eigenvalues

ω1 ¼
1

2
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8α
p Þ > 0; ðB17Þ

ω2 ¼
1

2
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8α
p Þ < 0; ðB18Þ

so one can find that the solution to the linear system is

rðlÞ ¼ 1

ω1−ω2

ðð−r0þω1rð0ÞÞeω1lþðr0−ω2rð0ÞÞeω2lÞ;

ðB19Þ

vðlÞ ¼ −
2r0
ω1ω2

þ 1

ω1 − ω2

��
rð0Þ − r0

ω1

�
eω1l

þ
�
−rð0Þ þ r0

ω2

�
eω2l

�
: ðB20Þ

The event horizon (Fig. 3) is found by identifying the
rays that do not reach the future null infinity Iþ. As ω2 < 0,
the second term on Eq. (B19) vanishes in the limit
l → þ∞. Hence the arrival of a null particle Iþ depends
on the sign of the coefficient of the first term of the equation
of trajectory,

δ ≔ ω1rð0Þ − r0: ðB21Þ

The null particles that at λ ¼ 0 start from the areal radius
r < rehð0Þ,

rehð0Þ ¼
r0
ω1

¼ 2rþð0Þ
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8α
p ; ðB22Þ

do not reach Iþ. By varying the initial affine parameter,
one obtains the following time-dependent expression for
this hypersurface:

rehðlÞ ¼
2rþðvðlÞÞ

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α

p : ðB23Þ

It is indeed a null hypersurface, as can be easily verified by
calculating the norm of the normal vector. Describing the
hypersurface as

Ψ ¼ r − reh ¼ 0; ðB24Þ

we find that the normal vector lμ ¼ −∂μΨ is given by

lμ ¼
�
−

2α

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α

p ;−1; 0; 0
�

ðB25Þ

and satisfies lμlμ ¼ 0. It is also worth noting that, for very
small evaporation rate α ≪ 1, one can show that the
hypersurface is approximately the separatrix [14],

reh ≈ rþð1 − 2αÞ ¼ rþ þ 2r0þrþ: ðB26Þ
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3. Turning point for the outgoing timelike geodesics

As hþ ¼ 0 at the apparent horizon, Eq. (A11) implies that
_v → þ∞ as a test particle on the outgoing timelike trajectory
approaches the apparent horizon form inside. On the other
hand, v̈ is always finite, and at the apparent horizon

v̈jrþ ¼ −
�
χ1 þ

1 − w1

rþ

�
; ðB27Þ

where we substituted the expansion of Eqs. (15) and (16)
into the geodesic equation (B2). If χ1 > 0 (i.e., the EMT
belongs to the type I), then v̈ < 0 in some vicinity of the
apparent horizon. In this case, the arguments of Sec. IV that
establish the existence of the turning point applywithout any
change.
Even when it cannot be asserted that _v is a decreasing

function of the proper time, v̈ remains finite. As a result, _v
diverges only if the outgoing timelike geodesic reaches rþ
as τ → ∞. However, it implies that v → ∞, contradicting
the assumption of finite evaporation time.

APPENDIX C: TIDAL FORCE CALCULATIONS

For a radially moving observer with the four-velocity
uA¼ð_v;_r;0;0Þ, the comoving orthogonal tetrad is formed by

eμðλÞ ¼ uμA; ðC1Þ

eμðρÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2hþf − 2ehþ _r=_v
p ð1; ehþf − _r=_v; 0; 0Þ; ðC2Þ

eμðθÞ ¼ ð0; 0; 1=r; 0Þ; ðC3Þ

eμðϕÞ ¼ ð0; 0; 0; 1=ðr sin θÞÞ: ðC4Þ
For a massive test particle falling through the appar-

ent horizon, a useful approximate expression for the
four-velocity uA can be readily obtained. We set

_r2≕ − fðv; rÞ þ E2 þ r0þðvÞgðv; rÞ; ðC5Þ

where the function gðv; rÞ is to be determined.
For a Schwarzschild black hole, the constant E repre-

sents the conserved energy per unit mass, and g≡ 0. If the
test particle starts from infinity with zero velocity, then
E ¼ 1.
Expanding in powers of y ≔ r − rþ, we have

f ¼ y=rþ þOðy2Þ; ðC6Þ
and assuming

g ¼ γðvÞyþOðy2Þ; ðC7Þ
for some function γðvÞ, we have

_r ¼ −Eþ
�
1

rþ
− γr0þ

�
y
2E

þOðy2Þ: ðC8Þ

Outside the apparent horizon,

_v ¼ _rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ _r2

p
f

; ðC9Þ

for both ingoing and outgoing geodesics. Thus,

_v ¼ _v0 þ _v1 þOðy2Þ; ðC10Þ
where

_v0 ¼
1

2E
; _v1 ¼

y
8E3

�
1

rþ
− 2γr0þ

�
; ðC11Þ

and here and in the following, we keep only the leading-
order terms in both y and r0þ.
Taking the derivative over the proper time τ and sub-

stitution into the equation of motion (32) results in the
identity

ð1 − 4E2γrþÞr0þ
16E4rþ

þOðyÞ ¼ 0; ðC12Þ

from which the leading correction coefficient

γ ¼ ∂rgðv; rþðvÞÞ ¼
1

4E2rþ
ðC13Þ

is extracted. As a result, the radial velocity in the vicinity of
the apparent horizon is approximated as

_r2 ¼ E2 þ y
rþ

�
1þ r0þ

4E2

�
þOðy2Þ: ðC14Þ

To compare the results of Sec. V with the standard
estimates of the experiences of a freely falling observer
at the black hole horizon [2], we set E ¼ 1 in the
calculations of Sec. V.

FIG. 3. The black line represents the evolution of the apparent
horizon rþðvÞ ¼ r0 − av, following a linear evaporation law, and
the gray dashed line represents the evolution of the null hyper-
surface rSðvÞ. For this diagram, the constants α and r0 are chosen
to be r0 ¼ 1 and α ¼ 0.1.
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