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In recent years there has been an increased interest in neural networks, particularly with regard to their
ability to approximate partial differential equations. In this regard, research has begun on so-called physics-
informed neural networks (PINNs) which incorporate into their loss function the boundary conditions of
the functions they are attempting to approximate. In this paper, we investigate the viability of obtaining the
quasinormal modes (QNMs) of nonrotating black holes in four-dimensional space-time using PINNs, and
we find that it is achievable using a standard approach that is capable of solving eigenvalue problems
(dubbed the eigenvalue solver here). In comparison to the QNMs obtained via more established methods
(namely, the continued fraction method and the sixth-order Wentzel, Kramer, Brillouin method) the PINN
computations share the same degree of accuracy as these counterparts. In other words, our PINN
approximations had percentage deviations as low as ðδωRe; δωImÞ ¼ ð<0.01%; <0.01%Þ. In terms of the
time taken to compute QNMs to this accuracy, however, the PINN approach falls short, leading to our
conclusion that the method is currently not to be recommended when considering overall performance.
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I. INTRODUCTION

In recent years there has been an increased interest in the
use of neural networks (NNs) as functional approximators
[1–3]. The interest lies in the fact that NNs are versatile as
demonstrated in their success in various applications such
as natural language processing, image recognition and,
more recently, scientific computing [4–6]. In scientific
computing, they have been shown to be robust and data-
efficient solvers of partial differential equations that govern
diverse systems studied in mathematics, science, and
engineering [4]. In general, NNs can be trained once
and used in a variety of situations that are within the scope
of the problem it was trained on. The advantage of applying
a trained NN is that it expedites the computation of later
solutions whereas, by contrast, more traditional numerical
approximating methods would require an inefficient proc-
ess beginning from scratch each time a solution is derived.
Furthermore, NNs are also natively parallelizable, which
adds to their higher computational efficiency compared to
other numerical approximations.
A new technique has recently been developed to assist in

creating NNs that can act as functional approximators,
which takes inspiration from boundary type problems
where the boundary conditions of the function are used
to solve for the underlying function as is; namely, physics-
informed neural networks (PINNs) [4,7]. In this regard, we

are interested in determining if these types of NNs could be
used to compute the quasinormal modes (QNMs) of black
holes. The QNMs of black holes have been studied for
many years and it is well known that they are correlated to
the parameters of the black holes that generate them, and as
such, they act as a telltale sign to probe the properties of
black holes [8–10].
Over the years numerous techniques have been used to

determine the numerical values of black holes using the
radial equations that govern the perturbations of black holes
[9]. Some examples are the Wentzel, Kramer, Brillouin
(WKB) method, asymptotic iteration method (AIM), and
the continued fraction method (CFM) [11–13]. Although
all of these approaches have been successful in solving the
radial equations of black holes to determine the numerical
values of the QNMs, they do have computational limi-
tations [8]. The WKB, in particular, becomes progressively
difficult to apply when more accurate results are needed
since achieving this requires painstaking derivations of
higher-order approximations. In this work, we intend to
show that PINNs can potentially supplement the extant
techniques as a new alternative method for obtaining the
black hole QNMs, with its unique advantages and limi-
tations. Furthermore, we will compare the accuracy of
PINNs to the already established methods and test their
generalizability when applied to black hole perturbations
equations.
Our motivation for using the equations of QNMs to test

the usefulness of PINNs is that the equations that govern
the QNMs are based on only a few parameters, namely a
black hole’s physical properties, and their boundary
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conditions are well defined for the system. As such, the
boundary conditions act as a regularization mechanism that
sufficiently limits the space of admissible solutions and
contributes to the NN’s stability [4]. Furthermore, in
astrophysical circles, there has been an increased interest
in black hole QMNs given the recent landmark detections
of gravitational waves at the VIRGO and LIGO detec-
tors [14,15].
The paper is set out in the following manner. In the next

section, we describe the equations that govern the QNMs
for various space-times. In Sec. III we present the currently
accepted methods for determining the QNMs and proceed
to touch on the new PINN approach in Sec. IV. Finally, in
Secs. V and VI, we discuss the results obtained from
applying PINNs and compare them to the QNMs obtained
from the canonical methods.

II. THE RADIAL PERTURBATION EQUATIONS
OF BLACK HOLES

In this section, we will derive the equations required to
determine the numerical value of QNMs beginning with the
simplest space-times and then building up to more complex
ones, which will eventually be encoded into the numerical
methods. We begin with the Schwarzschild metric:

A. The asymptotically flat Schwarzschild solution

We consider scalar-type perturbations (and later, electro-
magnetic, Dirac, and gravitational perturbations) then in
order to derive the radial equations required to determine
the QNMs we begin by considering the equation of motion,
which is given by the Klein-Gordon equation [16,17]

∂μ∂
μΦþm2Φ¼ 1ffiffiffiffiffijgjp ∂μð

ffiffiffiffiffi
jgj

p
gμν∂νΦÞ þm2Φ¼ 0; ð2:1Þ

where Φ is a scalar field with mass m perturbing the black
hole’s space-time as given by the metric g. In the case of the
Schwarzschild black hole, the metric is given as

ds2 ¼ −fdt2 þ 1

f
dr2 þ r2ðdθ2 þ sin2 θdϕÞ; ð2:2Þ

where f ¼ 1–2M=r is the metric function, with M and r
representing themass of the blackhole and the radial distance
from the center of the black hole, respectively. The last two
terms on the right-hand side of this equation represent the
metric of a 2-sphere [16]. As r → ∞, we expect to recover a
weak-field approximation of the metric wherein the compo-
nents of the metric tensor can be decomposed into the flat
Minkowski metric tensor ημν plus a small perturbation
jhμνj ≪ 1; that is gμν ≈ ημν þ hμν [16].
Considering the massless form of the Klein-Gordon

equation, where m ¼ 0 in Eq. (2.1), and plugging in it
the metric given in Eq. (2.2) we obtain

1ffiffiffiffiffijgjp ∂μð
ffiffiffiffiffi
jgj

p
gμν∂νΦÞ

¼ −
�
1 −

2M
r

�
−1 ∂2Φ

∂t2

þ 1

r2
∂

∂r

�
r2
�
1 −

2M
r

�
∂Φ
∂r

�

þ 1

r2 sin θ
∂

∂θ

�
sin θ

∂Φ
∂θ

�
þ 1

r2sin2θ
∂
2Φ
∂ϕ2

¼ 0: ð2:3Þ

In this explicit form, we can derive the equation of
massless scalar fields in the Schwarzschild background in
terms of the radial coordinate r via a separation of variables
[18]. By mapping the resulting one-dimensional differential
coordinate into an infinite domain given by a tortoise
coordinate, x, we find [11,19]

d2ψ
dx2

þ fω2 − VðrÞgψ ¼ 0; ð2:4Þ

where

VðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3

�
; ð2:5Þ

fðrÞ ¼ dr
dx

¼
�
1 −

2M
r

�
−1
: ð2:6Þ

Here n, l, and m are the principal, multipole, azimuthal,
and numbers, respectively [9]. The tortoise coordinate maps
the location of the event horizon of the Schwarzschild black
hole from r ¼ 2M (in geometric units) to x ¼ −∞. As such,
it maps the space from a semi-infinite domain to an infinite
one. Note that Eq. (2.4) is quite similar in form to the one-
dimensional time-independent Schrödinger equation, but in
this case, VðrÞ is the effective potential for a which scalar
field perturbs an asymptotically flat Schwarzschild metric
[13,18]. The QNM frequencies, ω, are complex-valued
solutions to Eq. (2.4), which is a non-Hermitian problem,
unlike the Schrödinger equation [10]. For asymptotically flat
astrophysical black holes, the eigenfunctions, ψ , that solve
this equation have asymptotic behavior governed by [13]

ψðxÞ ¼
�
e−iωx; x → −∞
eþiωx; x → þ∞

: ð2:7Þ

Transforming from the infinite domain of the tortoise
coordinate to the finite domain of a new variable,
ξ ¼ 1–2M=r, it can be shown that Eq. (2.4) takes the
form [13]

χ00 ¼ λ0ðξÞχ0 þ s0ðξÞχ; ð2:8Þ
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where

λ0ðξÞ ¼
4Miωð2ξ2 − 4ξþ 1Þ − ð1 − 3ξÞð1 − ξÞ

ξð1 − ξÞ2 ; ð2:9Þ

s0ðξÞ ¼
16M2ω2ðξ − 2Þ − 8Miωð1 − ξÞ − lðlþ 1Þ þ ð1 − s2Þð1 − ξÞ

ξð1 − ξÞ2 ; ð2:10Þ

and χðξÞ is a complex-valued scale factor. The boundary
conditions have been incorporated into Eq. (2.8). The
importance of this transformation is that it maps the domain
from one that is infinite, i.e., −∞ < x < þ∞ to one that is
finite, i.e., 0 ≤ ξ < 1. As such, it is now possible to numeri-
cally solve the perturbation equation since the domain is now
finite and the QNM boundary conditions are implicitly
accounted for.
For electromagnetic field perturbations of Schwarzschild

black holes, the same Schrödinger-like radial equations are
obtained by following the same procedure for deriving the
massless scalar fields. However, in this case, the equation of
motion considered is the source-free Gauss-Ampère law of
Maxwell’s equations [16,20],

Fμν
;ν ¼

1ffiffiffiffiffijgjp ∂νð
ffiffiffiffiffi
jgj

p
FμνÞ ¼ 0; ð2:11Þ

where Fμν is the electromagnetic field tensor. Applying the
components of the electromagnetic field tensor Fμν, we can
determine the radial perturbation equation from Maxwell’s
equations:

∂

∂t
Fμt þ 1

r2
∂

∂r
ðr2FμrÞ þ 1

sin θ
∂

∂θ
ðsin θFμθÞ þ ∂

∂ϕ
Fμθ ¼ 0:

ð2:12Þ

We can simplify the equations with indices μ ¼ θ and
μ ¼ ϕ to obtain the Schrödinger-like perturbation equa-
tions. In short, we arrive at

−
∂
2a0ðt; rÞ
∂t2

þ f2
∂
2a0ðt; rÞ
∂r2

−
flðlþ 1Þ

r2
a0ðt; rÞ ¼ 0;

ð2:13Þ

where a0ðt; rÞ represents the electromagnetic field pertur-
bations. Thus, if we have a0ðt; rÞ ¼ a0ðrÞeiωt, converting
to tortoise coordinates we retrieve Eq. (2.4), where ψðrÞ ¼
a0ðrÞ and VðrÞ ¼ lðlþ 1ÞfðrÞ=r2 is the effective poten-
tial of an asymptotically Schwarzschild black hole per-
turbed by an electromagnetic field. For gravitational
perturbations, the equations have the same form except
for the effective potential VðrÞ. References [20,21] outline
concisely the steps for arriving at the wave equations for

these direct metric perturbations on a Schwarzschild
black hole.

B. The Schwarzschild (anti-)de Sitter solution

We shall also consider asymptotically curved space-
times that are solutions to Einstein’s equations with a
nonzero cosmological constant. The cosmological con-
stant, denoted by Λ, encodes the curvature of space-time
via the relation Λ ¼ �3=a2, where a is the cosmological
radius [22,23]. The metric in this case is

ds2 ¼ −
�
1 −

rs
r
−
Λr2

3

�
dt2

þ
�
1 −

rs
r
−
Λr2

3

�−1
dr2 þ r2dΩ2: ð2:14Þ

With this metric as a starting point, the radial perturba-
tion equation derived for a four-dimensional (anti-)de Sitter
Schwarzschild black hole is the same form as Eq. (2.4) but,
with a more general effective potential given as [13]

VðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ ð1 − s2Þ

�
2M
r3

−
ð4 − s2ÞΛ

6

��
;

ð2:15Þ

where fðrÞ ¼ 1–2M=r − ðΛr2Þ=3 is the metric function for
(anti-)de Sitter Schwarzschild space-times and s ¼ 0; 1=2,
1 and 2 denote the spins of scalar, Dirac, electromagnetic,
and gravitational fields, respectively.

C. Near extremal Schwarzschild and Reissner-
Nordström-de Sitter solutions

A final case we shall consider are Reissner-Nordström-
de Sitter black holes, albeit in the near extremal case. The
metric of a Reissner-Nordström-de Sitter black hole is [22]

ds2 ¼ −
�
1 −

rs
r
þ r2Q

r2
−
Λr2

3

�
dt2

þ
�
1 −

rs
r
þ r2Q

r2
−
Λr2

3

�−1
dr2 þ r2dΩ2; ð2:16Þ

where rs ¼ 2M (the Schwarzschild radius) and r2Q ¼ Q2=
4πϵ0. Generally, when solving radial perturbation
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equations, the nature of the effective potentials preclude
applying a direct, analytical approach to deriving exact
QNMs [11]. However, in special cases, such as this one
involving near extremal Schwarzschild and Reissner-
Nordström-de Sitter black holes, the effective potentials
can be transformed to yield differential equations with
known analytic solutions [9].
To obtain the effective potentials of nonrotating black

holes in the near extremal (anti-)de Sitter case, we consider
the relevant metric function, fðrÞ ¼ 1–2M=r − Λr2=3. The
solutions to fðrÞ ¼ 0 are rb and rc, which are the black
hole’s event horizon and the space-time’s cosmological
radius, respectively (where rc > rb). For r0 ¼ −ðrb þ rcÞ,
the metric function can be given as [23]

fðrÞ ¼ 1

a2r
ðr − rbÞðrc − rÞðr − r0Þ; ð2:17Þ

where a2 ¼ r2b þ rbrc þ r2c and 2Ma2 ¼ rbrcðrb þ rcÞ.
The surface gravity, κ, associated with the black hole event
horizon r ¼ rb is defined as [23]

κ ¼ 1

2

df
dr

����
r¼rb

¼ ðrc − rbÞðrb − r0Þ
2a2rb

: ð2:18Þ

In the near extremal de Sitter case, the cosmological
horizon rc of the space-time is very close (in the coordinate
r) to the black hole horizon rb so that ðrc − rbÞ=rb ≪ 1,
and the following approximations apply [23]:

r0 ∼ −2r2b; a2 ∼ 3r2b; M ∼
rb
3
; κ ∼

rc − rb
2r2b

:

ð2:19Þ

Also since the domain of r is within (rb, rc) and rb ∼ rc,
we find that r − r0 ∼ rb − r0 ∼ 3r0. In turn the metric
function Eq. (2.17) becomes

f ∼
ðr − rbÞðrc − rÞ

r2b
: ð2:20Þ

With this new form of the metric, the relation between
the tortoise coordinate and the radial coordinate (2.6)
reduces to

r ¼ rce2κx þ rb
1þ e2κx

: ð2:21Þ

Substituting this expression for r into the fðrÞ equa-
tion (2.17), we find the expression for fðxÞ as [23]

fðxÞ ¼ ðrc − rbÞ2
4r2b cosh

2ðκxÞ : ð2:22Þ

With this metric function, the effective potential of a near
extremal Schwarzschild-de Sitter black hole is an inverted
Pöschl-Teller potential [23]:

VðxÞ ¼ V0

cosh2ðκxÞ ; ð2:23Þ

where V0 ¼ κ2lðlþ 1Þ for massless scalar and electro-
magnetic perturbations and V0 ¼ κ2ðlþ 2Þðl − 1Þ for
gravitational perturbations. With the effective potential in
this form, the perturbation equation (2.4) can now be solved
analytically to derive the QNMs of near-extremal
Schwarzschild-de Sitter black holes.
For astrophysical near-extremal de Sitter black holes, the

asymptotic behavior of the solution is similar to that of an
asymptotically flat Schwarzschild black hole equation (2.7);
considering that they force the solution near the event
horizon (cosmological horizon) not to generate outgoing
(incoming) waves.
Considering the boundary conditions for astrophysical

black holes, Eq. (2.7), Ref. [24] determined the analytic
expressions of the QNM eigenfunctions and eigenfrequen-
cies [22–24] as

ψðxÞ ¼ ½ξðξ − 1Þ�iω=2κ · 2F1

×

�
1þ β þ i

ω

κ
;−β þ i

ω

κ
; 1þ i

ω

κ
; ξ

�
; ð2:24Þ

ω

κ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
lðlþ 1Þ − 1

4

�s
− i

�
nþ 1

2

�
; n ¼ Zþ

0 ;

ð2:25Þ

where ξ−1 ¼ 1þ exp ð−2κxÞ and β ¼ −1=2þ ð1=4−
V0=κ2Þ1=2.
Extending from near extremal Schwarzschild-de Sitter

black holes, Ref. [22] showed that an inverted Pöschl-Teller
potential can also be used to represent the effective
potential of Reissner-Nordström black holes perturbed
by scalar fields. This is due to the fact that for any de
Sitter black hole in the near extremal limit, the metric
function fðrÞ is given as [22]

fðrðxÞÞ ¼ ðr2 − r1Þκ1
2 cosh2 κ1x

þOðδ3Þ; ð2:26Þ

where δ ¼ ðr2 − r1Þ=r1, κ1 is the surface gravity at the
horizon, r1 and r2 are two consecutive positive roots of
fðrÞ, and x is the tortoise coordinate whose domain lies
within (r1, r2).
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For both Schwarzschild and Reissner-Nordström-de
Sitter cases, the terms r1 and r2 are the event and
cosmological horizons, respectively, with r2 > r1. In the
near extremal limit where r2 ∼ r1, the metric function for a
near-extremal Reissner-Nordström-de Sitter black hole
would take the same form as Eq. (2.22). Therefore, when
considering the near extremal limit, nonrotating black holes
share the same mathematical expression for the metric
function, which in turn results in the same expression for
the effective potential, Eq. (2.23). From that, we can infer
that the corresponding analytic expressions for QNMs of a
near extremal Reissner-Nordström-de Sitter black holes are
the same as for Schwarzschild-de Sitter black holes as
given by Eqs. (2.24)–(2.25).

III. ESTABLISHED NUMERICAL METHODS FOR
DETERMINING QNMs

The perturbation equations of near extremal nonrotating
black holes are among a few known cases with exact QNMs
as solutions. As we shall use these equations to measure the
accuracy of the PINN approach applied in the context of
QNMs. More generally, though, the radial perturbations
equations of Schwarzschild and Reissner-Nordström black
hole perturbations are difficult to solve analytically, though
not as challenging as cases involving rotating black holes,
which require a more arduous investigation. Therefore,
approximation techniques have been employed in the past
to determine QNMs. We outline here a few prominent
techniques used in the literature on black hole QNMs.

A. Ferrari and Mashhoon approach

Reference [24] showed the connection between the
QNMs of black holes and the bound states of inverted
black hole effective potentials. The effective potential,
denoted byU in Ref. [24] is parametrized by some constant
p and is invariant under the transformations p → p0 ¼
ΠðpÞ and x → −ix, as in

Uð−ix;p0Þ ¼ Uðx;pÞ: ð3:1Þ

By considering x → −ix, the Schrödinger-like perturba-
tion equation (2.4) transforms to

d2ϕ
dx2

þ ð−Ω2 þ UÞϕ ¼ 0; ð3:2Þ

where ϕðx;pÞ ¼ ψð−ix;p0Þ and ΩðpÞ ¼ ωðp0Þ. The QNM
boundary conditions then become

ϕ → expð∓ΩxÞ; as x → �∞: ð3:3Þ

In this new form, the problem has become a bound state
problem with the original black hole effective potential
inverted to −U. The transformed boundary conditions,
Eq. (3.3), now correspond to vanishing states at both

infinities as expected for bound state problems. After
solving this problem to find Ω and ϕ, the corresponding
QNMs can then be found using inverse transformations:

ωðpÞ ¼ ΩðΠ−1ðpÞÞ; ψðx;pÞ ¼ ϕðix;Π−1ðpÞÞ: ð3:4Þ

The values of ω, that are determined from the bound
states Ω, are known as proper QNMs. Reference [24]
demonstrated this approach using an inverted Pöschl-Teller
potential to approximate the effective potential of a
Schwarzschild black hole. The former was used because
the bound states of a Pöschl-Teller potential are well known
and could then provide approximate analytic formulas for
the QNMs of the Schwarzschild black hole [24].

B. WKB Method

The WKB method is a semi-analytic technique that has
been used to approximately solve the radial equation of
black hole perturbations since 1985, as first proposed by
Schutz and Will [25], where they computed the QNMs of
an asymptotically flat Schwarzschild black hole. It had
already been established as an approximating technique for
solving the time-independent Schrödinger equation.

C. Continued fraction method

In a 1985 paper [12], Leaver put forward the method of
continued fractions (previously used to compute the elec-
tronic spectra of the hydrogen molecule ion) to compute the
QNM spectra of both stationary and rotating black holes.
Overall, this approach was found to be very accurate for
higher-order n modes, especially after the improvement
made by Nollert [26]. It has been used in the context of
Schwarzschild, Kerr, and Reissner-Nordström black
holes [8,12,27].

D. Asymptotic iteration method

The AIM is another semi-analytic technique for solving
black hole perturbations. In the context of black hole
QNMs, this approach was developed by Ref. [13] who
made improvements to a more traditional algorithm to
make it markedly more efficient. In Ref. [13] the improved
AIMwas used to compute of QNMs for cases involving (A)
dS, Reissner-Nordström and Kerr black holes. In later
research, it was used to calculate QNMs of general
dimensional and nonsingular Schwarzschild black holes
[28,29]. Compared to other extant approximation tech-
niques, the improved AIM was shown to be as accurate as
Leaver’s CFM [13].

IV. PHYSICS-INFORMED NEURAL NETWORKS

As briefly recapped above, there are several techniques
that already exist for solving radial equations in order to
obtain the QNMs of black holes. To supplement them, we
now introduce PINNs as an alternative to these methods.
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Firstly, we introduce the idea of deep neural networks and
how they can act as universal function approximators. We
then introduce PINNs and how they can be used to solve
ordinary differential equations (ODEs) and partial differ-
ential equations (PDEs).

A. Deep neural networks

Deep neural networks are a system of interconnected
computational nodes loosely based on biological neural
networks and, mathematically, can be formulated as com-
positional functions [6,30]. In contrast to shallow neural
networks, which are networks with just a single hidden
layer, these NNs are composed of two or more hidden
layers [3]. In many applications, the latter are favored
because they are capable of replicating the complexity of
functions and, at the same time, generalize well to unseen
data better than shallow models [31].
Of several available types of structures (or architectures)

of deep neural networks, the simplest and most common
one is the feed-forward neural network (FNN).
Definition 4.1.—The FNN is comprised of neurons that

hold single numerical values (called activations) combine to
form aNNN LðxÞ that is a series ofL layerswithNl neurons
in thelth layer. There areL − 1 hidden layers,N0 number of
neurons in the input layer (l ¼ 0) andNL number of neurons
in the output layer (l ¼ L). The transformations combining
the neurons in the (l − 1)th layer to those in the lth layer are
weight matrices and bias vectors Wl ∈ RNl×Nl−1 and
bl ∈ RNl , respectively. With these transformations, a
FNN is generally structured as follows [30]:

input layer∶ N 0ðxÞ ¼ x ∈ RN0 ;

hidden layers∶ N lðxÞ ¼ σðWlN l−1ðxÞ þ blÞ ∈ RNl ;

for 1 ≤ l ≤ L − 1;

output layers∶ N LðxÞ ¼ σðWlN L−1ðxÞ þ bLÞ ∈ RNL;

where σ denotes nonlinear activation functions that operate
onWlN l−1ðxÞ þ bl element-wise. Examples of frequently
used activation functions are the hyperbolic tangent (tanh)
and the logistic sigmoid 1=ð1þ e−xÞ. Given that these are
nonlinear functions, this makes values at each of the output
nodes nonlinear combinations of the values at the nodes in
the hidden and input layers [32].
Key seminal research on NNs, such as Refs. [33–35], has

shown that deep neural networks are universal function
approximators. That is to say, when NNs have a sufficient
number of neurons they can approximate any function and
its partial derivatives [30], though in practice this is
constrained by the limit in the size of NNs that can be
set up before they lead to overfitting. In such cases, the NN
model gives the illusion of a good model that captures the
underlying pattern in data, while a true test of its accuracy
by means of exposing it to an unseen test dataset reveals a

fallible model that gives poor predictions and a high
generalization error [3,30]. In general, training deep NNs
entails minimizing a loss function that measures the
deviation of its approximations from the expected solu-
tions. Analogous to linear least squares regression, the loss
function is minimized via tuning of the many parameters in
the deep neural network (which are the elements of its
weight matrices and bias vectors) with the effect of steering
their approximations closer to the target functions.
Mathematically, the weights and biases are tuned accord-

ing to the equations

wl
jk → wl

jk −
η

m

X
x

∂Cx

∂wl
jk

; ð4:1Þ

blj → blj −
η

m

X
x

∂Cx

∂blj
; ð4:2Þ

where Cx is the loss function of the FNN computed for a
single training example x that is taken from a mini batch of
m training examples, which in turn are taken from a
training dataset with n samples. These equations govern
stochastic gradient descent optimization, an algorithm that
entails randomly selecting different mini batches from the
training dataset of n examples until all of them are
exhausted (this constitutes one epoch of training). In
Eqs. (4.1) and (4.2), η is a small, positive parameter known
as the learning rate. Ultimately, the Adam optimizer is
employed in our investigation of PINNs. It is a standard
optimization algorithm that extends from classical methods
of stochastic gradient descent [3,36].

B. Physics-informed neural networks

Inspired by deep neural networks, PINNs follow the
same modus operandi as traditional NNs. Similar to tradi-
tional NNs, PINNs are trained through gradient-descent
optimization, whereby the partial derivatives of the loss
function (with respect to the network’s weight and biases)
are minimized by tuning the weights and biases of the FNN.
However, the difference is in the constraints that are
embedded within the loss function of the PINNs which
enable them to solve PDEs. These constraints are the PDEs
themselves (or the governing equations) and their associ-
ated initial/boundary conditions [37].
Autodiff is a technique that is used in PINNs to compute

the partial derivatives of the NN approximations and thus
embed the governing PDEs and associated boundary con-
ditions in the loss function.Given that it facilitates “meshless”
numerical computations of derivatives, it endowsPINNswith
several advantages over traditional numerical discretization
approaches for solvingPDEs (such as the finite difference and
finite element methods) that can be computationally expen-
sive due to complex mesh generation [6,30,38].
For example, Refs. [6,30] demonstrated the advantage

of applying NN-aided techniques over using traditional
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mesh-based techniques to approximate solutions with steep
gradients. The latter give rise to unphysical oscillationswhen
the meshes have low resolution, hence higher resolutions are
required to remove these undesirable oscillations, which can
be prohibitively expensive and lead to excessive execution
times [6]. Remarkably, the same level of accuracy that is
achieved by higher resolution meshes (in mesh-based
schemes) can be achieved more efficiently in PINNs. In
such cases, PINNs could be a viable alternative for solv-
ing PDEs.
It is worth noting that derivatives of Padé approximations

can be utilized as an alternative to PINNs and autodiff, which
is a part of the PINN algorithm. They have indeed been
applied in extensions of the WKB method in computing
black hole QNMs [28]; therefore, the focus has been to
compare their performance (and that of other established
approaches in black hole QNMs) with the novel PINNs in
this physical context.
The basic structure of PINNs can be divided into two

components [30,38]:
(i) A deep neural network with a particular architecture,

such as a FNN. It represents the NN approximation
of the PDE’s solution [Fig. 1 (left)].

(ii) A loss function that measures the deviation of the
FNN solution from the physical constraints of the
problem [Fig. 1 (right)]. The NN learns the solution
of the PDE through gradient-based optimization, an
algorithm that minimizes the loss function through
an iterative tuning of the weights and biases in the
deep neural network.

In general, to expand on the methodology, PINNs solve
PDEs that are parametrized by λ, satisfied by a dependent
variable [39] uðxÞ, and are expressed generally as [30]

f

�
x;

∂u
∂x1

;…;
∂u
∂xd

;
∂
2u

∂x1∂x1
;…;

∂
2u

∂xd∂xd
; λ

�
¼ 0 on Ω;

ð4:3Þ

where x ¼ ðx1;…; xdÞ defined on a domain Ω ⊂ Rd.
Along with a given PDE are its boundary conditions:

Bðu;xÞ ¼ 0 on ∂Ω; ð4:4Þ

where Bðu;xÞ stands for Dirichlet, Neumann Robin or
periodic boundary conditions. Note that both steady-state
and dynamic systems can be solved using PINNs; where,
for the latter, time t is considered to be special component
of x and Ω contains the time domain. As such, initial
conditions are treated as a type of Dirichlet boundary
condition on the spatiotemporal domain [30].
Remark 4.1.—It is worth noting the special nature of

PINNs compared to traditional NNs, particularly in the case
of classification and regression problems. While many
FNNs are typically data-driven and highly dependent on
labeled datasets, PINNs, however, are suitable within the
scant data regime provided the physical laws governing a
system are known [38]. In fact, PINNs are unsupervised
and learn from based purely on the PDEs and boundary
conditions in the case of forward problems and eigenvalue
problems. The goal of forward problems is to find the
dependent variable uðxÞ for every x provided λ are known
parameters. Eigenvalue problems are more challenging
because both uðxÞ and λ are unknown. In the case when
PINNs utilize a labeled dataset these are inverse problems,
where the goal is to determine λ given a dataset (which can
be small) of uðxÞ at given points x ⊂ Ω.

1. The PINN algorithm for solving PDEs

PINNs follow these steps when solving forward, inverse
and eigenvalue problems [30]:
(1) Build a neural network ûðx; θÞ with parameters θ:

The neural network ûðx; θÞ takes in x as input and is
a surrogate of the function uðxÞ that satisfies the
governing PDE and boundary/initial conditions.

FIG. 1. A schematic of a typical PINN. For the sake of illustration, a well-known hyperbolic type PDE (one-dimensional wave
equation), ∂2ψ=∂t2 − λ∂2ψ=∂x2 ¼ 0, and initial/boundary conditions ψ ¼ gDðx; tÞ are embedded in the loss function.
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Whereas, θ ¼ fWl;blg1≤l≤L is a set of all weight
matrices and vectors in the neural network [30].

(2) Specify the training dataset T : In the case of forward
and eigenvalue problems, we specify a dataset of
“unlabeled” randomly distributed points in the
domain (also known as residual points). The points
within the T f ⊂ Ω are used to restrict the NN
approximation ûðx; θÞ to satisfy the physics imposed
by the PDE. Similarly, the boundary points of the
spatiotemporal domain T b ⊂ ∂Ω are used to restrict
the NN to satisfy the physics represented by the
initial/boundary conditions. For inverse problems,
since λ is missing from the PDE, a “labeled” dataset
of uðxÞ, denoted by T o, is required in addition.

(3) Specify a loss function by adding the weighted
Euclidean norm of the PDE, boundary conditions,
and other regularization functions: In general, the
loss function of PINNs will be given as [30]

Lðθ; T Þ ¼ wfLfðθ; T fÞ þ wbLbðθ; T bÞ
þ wrLrðθ; T rÞ; ð4:5Þ

where wf, wb, wr are weights and still θ ¼
fWl;blg1≤l≤L, with l specifying a hidden layer
as defined in Sec. IVA [5]. Additionally Lf and Lb

are loss terms due to the PDE and initial/boundary
conditions, respectively:

Lfðθ; T fÞ ¼
1

jT fj
X
x∈T f

				f
�
x;

∂û
∂x1

;…;
∂û
∂xd

;
∂
2û

∂x1∂x1
;…;

∂
2û

∂xd∂xd
; λ̂

�				2
2

; ð4:6Þ

Lbðθ; T bÞ ¼
1

jT bj
X
x∈T b

kBðû;xÞk22; ð4:7Þ

where the circumflex in û and λ̂ denotes that these are the
NN’s approximations of the dependent variable and any
unknown PDE paramters of inverse problems. The loss
term Lr represents regularization functions in general. For
example, for forward problems this term is left out while for
inverse problems it is the error between the NN approx-
imations and a “labeled dataset” of uðxÞ:

Lfðθ; T fÞ ¼
1

jT rj
X
x∈T r

kuðxÞ − ûðxÞk22: ð4:8Þ

(4) Train the FNN towards the optimal weights and
biases θ� by minimizing the loss function Lðθ; T Þ:
The goal of training is to optimize θ, û and λ̂ such
that we have

θ�; û�; λ̂� ¼ argminθ;u;λLðθ; û; λ̂; T Þ ð4:9Þ

Note that the loss function is highly nonlinear and
nonconvex with respect to θ, thus gradient-descent
optimizers such as Adam are often used during
training. The disadvantage of a nonconvex optimi-
zation problems is the difficulty to find unique
solutions compared to traditional numerical methods
of solving PDEs [30].

Remark 4.2.—Two important differences between
PINNs and typical NNs are worth noting. Firstly, the
former has the approximate function ûðxÞ bound by the

domain Ω where the governing PDE is defined. Secondly,
PINNs learn from their own predictions (which is to say the
governing PDEs and initial/boundary conditions are suffi-
cient to optimize ûðxÞ, with respect to θ. The “unlabeled”
dataset of points randomly selected from Ω are split into
training and validation/test sets, which is not done in some
variations of PINNs such as the eigenvalue solvers (see
Sec. IV B 3) since the FNN hyperparamters are fixed. In the
case of inverse problems, when a dataset of the true values
of uðxÞ is available, part of that dataset can be used for
validating the approximate ûðxÞ by computing the L2

relative error, one example of a test metric.
In the following, we discuss two examples of Python

libraries which have been employed to construct PINNs;
namely, DeepXDE [30] and Pytorch [7].

2. The DeepXDE package

The DeepXDE package is customized primarily for con-
structing PINN models. To help elaborate on the DeepXDE

package, we consider here a toy problem that was discussed
in Ref. [13], which involves the same Schrödinger-like
differential equation in Eq. (2.4) but with an inverted
symmetric Pöschl-Teller potential VPTðxÞ [13]:

VPTðxÞ ¼
1

2 cosh2ðxÞ : ð4:10Þ

In the tortoise coordinate x, the domain of our problem is
infinite, i.e., x ∈ ð−∞;þ∞Þ, where the QNM boundary
conditions are given by Eq. (2.7). Via quasi-exactly
solvable theory, Ref. [40] found the exact solutions of
Eq. (2.4) with V ¼ VPT to be given as [13]
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ψnðxÞ ¼ ðcoshðxÞÞðiþ1Þ=2χnðsinhðxÞÞ; ð4:11Þ

ωn ¼ � 1

2
− i

�
nþ 1

2

�
; ð4:12Þ

where χn is a polynomial of degree n in sinhðxÞ and
n ¼ Zþ

0 .
As a first step to finding the approximate solutions using

PINNs, we need to change to a new coordinate y ¼ tanhðxÞ,
which maps the infinite domain −∞ < x < þ∞ to a finite
domain of −1 < y < þ1, so that Eq. (2.4) becomes [13]

ð1 − y2Þ2 d
2ψðyÞ
dy2

− 2yð1 − y2Þ dψðyÞ
dy

þ
�
ω2 −

1

2
ð1 − y2Þ

�
ψðyÞ ¼ 0: ð4:13Þ

In this form, numerical implementation of this problem
in PINNs becomes possible. We test the feasibility of
solving Eq. (4.13) given as an inverse problem using
DeepXDE. We specify ω as an unknown to be tuned while
the PINN undergoes training. The total loss function
Lðθ; T Þ of the PINN, in this case, is a weighted sum of
the squared Euclidean (L2-) norm of the physical con-
straints, similar to Eq. (4.5) [30]:

Lðθ;T Þ ¼ wfLfðθ;T fÞ þ wbLbðθ; T bÞ þ woLoðθ; T oÞ; ð4:14Þ

where

Lfðθ; T fÞ ¼
1

jT fj
X
y∈T f

				ð1 − y2Þ2ψ̂ 00 − 2yð1 − y2Þψ̂ 0 þ ×

�
ω̂2 −

ð1 − y2Þ
2

�
ψ̂

				2
2

; ð4:15Þ

Lbðθ; T bÞ ¼
1

2

X
y∈T b

kψ̂ðyÞ − ψbðyÞk22; Loðθ; T oÞ ¼
1

jT oj
X
y∈T o

kψ̂ðyÞ − ψðyÞk22: ð4:16Þ

Note that wf, wb, wo are weights that are typically set to one
and θ is as defined as in Sec. IV B 1. T ¼ fy1; y2;…; yjT jg
is a set which consists of all training points randomly
selected from our 1D spatial domain (−1 < y < 1). The

subset T f are points chosen from the domain to train the
FNN based on the governing equation (4.13). The subsets
T bð¼ f−1; 1gÞ; T o are the boundary points for training on
the boundary conditions, and the dataset of the true values

FIG. 2. The structure of PINN for solving Eq. (4.6).
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of the dependent variable (4.16), respectively. Training of
this PINN proceeds as outlined in Sec. IV B 1.
Figure 2 illustrates the PINN for solving this problem.

The input layer of the FNN consists of one input for
coordinate y, while the output layer has two output nodes
for real and imaginary parts of the approximate solution ψ̂ .
In building PINNs, the code we used mirrors the two-

component structure of PINNs discussed in Sec. IV B. The
code is fairly intuitive as it is a high-level representation
that closely resembles the mathematical formulation [30].
Beginning with the physics constraints, our ODE is
defined using the DeepXDE functions for executing the
first- and second-order derivatives via auto diff; that is,
dde.grad.jacobian and dde.grad.hessian,
respectively. We define ω with the function tf.
Variable and have represented it with ω̂Re and ω̂Im
in Fig. 2.
To provide Dirichlet boundary conditions and a labeled

dataset, as needed to solve our inverse problem, we define
both the real and imaginary parts of the known eigenfunc-
tion ψðyÞ that satisfies Eq. (4.13). Numerically, at the true
boundary points, y ¼ −1 and y ¼ 1, the solutionψðyÞ yields
a complex infinity. As such, a narrower domain −0.9 < y <
0.9 is specified in the definition of the domain of our problem
using the function dde.geometry.Interval(-0.9,
0.9). The exact values of ψ at these artificial boundary
points are considered to be the Dirichlet boundary condi-
tions. The DeepXDE function for defining these boundary
conditions is dde.DirichletBC. To create a labeled
dataset to train our PINN, we generate 50 equidistant points
in the domain ð−0.9; 0.9Þ and their associated exact eigen-
functions using Eq. (4.11). This dataset is the set T o
in Eq. (4.16).
At this stage, we have defined the physics constraints of

the PINN, but for completeness, we set up the deep neural
network (our surrogate model). In the code we also define a
FNN with one input node, two output nodes and three
hidden layers with 20 nodes per layer. In each of the hidden
layer nodes, we use the nonlinear activation function “tanh”

considering that it is a smooth, infinitely differentiable
function [41]. Generally for PINNs, “smooth” activation
functions are preferred over the ReLU-like nonsmooth
activation functions since the former have demonstrated
significant empirical success [42]. For this reason, the tanh
function is chosen here by default; however, it is worth noting
that (of late) adjustable, smooth function such as Swish have
proven to outperform fixed functions such as tanh in terms
of convergence rate and accuracy [41,43]. Swish is defined
by x· Sigmoid(βx), where β is a trainable parameter.
The loss function dde.Model combines the FNN with

the physical constraints to form a complete PINN. We also
add the “callback” function dde.callback in the
algorithm so as to keep track of the FNN approximations
of ω during training. Finally, our PINN model is compiled
and trained. Compilation defines the learning rate and
algorithm for optimizing our model. For training the model,
we choose 20 000 training epochs wherein the model will
be iteratively tuned based on the physics constraints.
Figure 3 displays the evolution of the loss function and
model accuracy over 20 000 epochs and compares the NN
approximation of ψðyÞ with the exact function. The PINN
algorithm in DeepXDE illustrated here works well for inverse
problems where ψ is known at some points in the domain.
However, for more general scenarios of black hole QNMs,
where both ω and ψ are unknown, we require an algorithm
capable of solving eigenvalue problems.

3. The eigenvalue solver

One such algorithm that we have investigated was
initiated in Ref. [7] to solve quantum eigenvalue problems
using unsupervised NNs (also called, data-free surrogate
models). The authors experimented with their “eigenvalue
solvers” on well-known equations in quantum mechanics;
namely, the time-independent Schrödinger equation with
an infinite square well potential and, in another case, a
quadratic potential function of a quantum harmonic oscil-
lator. Although their approach is similar to the PINNs, in
terms of embedding learning biases in the loss function,

FIG. 3. Left: plot of the train loss, test loss, and L2 relative error (test metric) over a period of 20 000 epochs. Right: plot of the NN
prediction of ψðyÞ superimposed with the true function and training points selected from the domain, −0.9 < y < 0.9.
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there is an additional feature which allows the eigenvalue
solver to scan the eigenvalue space in a scheduled manner
and progressively find several eigenvalues in a single
training.
To help visualize this approach, we consider one well-

known bound-state eigenvalue problem [44],

−
1

2
ψ 00ðxÞ þ VðxÞψðxÞ ¼ EψðxÞ; ð4:17Þ

where

VðxÞ ¼ −
λðλþ 1Þ

2
sech2ðxÞ; ð4:18Þ

which is a Pöschl-Teller potential and λ ¼ 1; 2…. We can
now change to a new coordinate u ¼ tanhðxÞ. As such,

Eq. (4.17) can be written in the form of a Legendre
differential equation:

½ð1 − u2Þψ 0ðuÞ�0 þ λðλþ 1ÞψðuÞ þ 2E
1 − u2

ψðuÞ ¼ 0;

ð4:19Þ
which is solved exactly by associated Legendre functions,
i.e.,ψðxÞ ¼ Pμ

λðtanhðxÞÞwithE¼−μ2=2 andμ¼1;2;3…;λ.
These are bound states that vanish at the boundaries of the
eigenvalue problem, i.e.,ψðx¼�∞Þ¼0 orψðu ¼ �1Þ ¼ 0.
The eigenvalue solvers in Ref. [7] are built using the

PyTorch library. To solve Eq. (4.19) using the eigenvalue
solvers, we embed them in the loss function of the NN
along with some regularization terms, similar to Eq. (4.5):

Lðθ; T Þ ¼ LODEðθ; T Þ þ Lregðθ; T Þ; ð4:20Þ

where

LODEðθ; T Þ ¼ 1

jT j
X
u∈T

�
ðð1 − u2Þψ̂ 0ðuÞÞ0 þ λðλþ 1Þψ̂ðuÞ þ 2Ê

1 − u2
ψ̂ðuÞ

�
2

; ð4:21Þ

Lregðθ; T Þ ¼ wfLfðθ; T Þ þ wELEðθ; T Þ þ wdriveLdriveðθ; T Þ: ð4:22Þ

As defined in Sec. IV B 1, T is a set of training points
randomly selected from the domain u ∈ ð−1; 1Þ. Figure 4
illustrates how the boundary conditions (i.e., a vanishing
solution at the boundary points) are enforced using a
parametric function ð1 − uÞð1þ uÞ. Note also the absence

of the observational bias term (the reason our eigenvalue
solver is called a data-free model).
In Eq. (4.22) Lreg is a weighted sum of regularization

functions, where the weights wf; wE; wdrive are typically set
to one [7]. Individually, the regularization functions are

FIG. 4. The structure of the eigenvalue solver. Unlike the PINNs used for inverse problems in DeepXDE, these FNNs are unsupervised.
Instead, the unknown eigenpairs can be determined only from the governing equations and boundary conditions (that are enforced using
a parametric function ð1 − uÞð1þ uÞ, a “hard constraint,” to ensure they are satisfied exactly [30]).
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Lf ¼ 1

jT j
X
u∈T

1

ψ̂2
; LE ¼ 1

jT j
X
u∈T

1

Ê2
;

Ldrive ¼
1

jT j
X
u∈T

expð−Êþ cÞ; ð4:23Þ

where Lf and LE steer the learning algorithm away from
zero as a possible value for the eigenfunction and eigen-
value, respectively. For this purpose, the mathematical
form of these loss terms have the PINN approximations
(ψ̂ and Ê) inversely proportional to the loss so that as they
approach zero they are penalized by high loss values. The
crucial term in these unsupervised NNs is Ldrive, which
motivates the NN to scan through the space of eigenvalues.
This is achieved by adding within the training algorithm a
mechanism that increases the constant c in Ldrive at regular
intervals, after an arbitrary number of training epochs.
It is important to note that without the Ldrive loss

component the PINNs lack the necessary constraint to
learn other eigenvalues than the first energy level it initially
gravitates towards during training, which is often but not
always the ground energy level. In this case, the algorithm
has more limitations, similar to the original, baseline PINN
loss function [Eq. (4.5)] where forward and inverse
approaches can learn, respectively, only one of the eigen-
functions and eigenvalues at a time, and only when at least
one of the other eigenpairs is known. As a consequence, a
classification approach (with, for example, output nodes of
the PINN representing the dependent variable) may not be
applicable because the loss function will only have the
wherewithal to learn a single eigenstate in each training,
regardless of the input data since it is unlabeled and is
randomly selected from a domain where one eigenstate
cannot be separated spatially from the other solutions.
The key Pytorch functions used in defining our physics

constraints include torch.autograd, which executes
automatic differentiation to find the first and second
derivatives in LODE given by Eq. (4.21). With the physics
constraints defined, we set the structure of our FNN: 2 input

nodes, 1 output node, and 2 hidden layers with 50 nodes
each (see Fig. 4), where our chosen activation function is
the trigonometric function, sine. This activation function
has been found to greatly accelerate the NN’s convergence
to eigenstates compared to more common functions, e.g.,
sigmoid and ReLU [7,45].
Compared to the code in DeepXDE, the eigenvalue solvers

provided more flexibility when customizing the training
algorithm. The total loss function in our training algorithm
was defined according to Eqs. (4.20)–(4.23). To generate
n_train points from the domain of our example problem
u ∈ ð−1; 1Þ, we used the Pytorch function torch.
linspace. In terms of optimization, the standard Adam
optimizer is applied [36].
Ultimately, the training phase follows after all parame-

ters for training the model (such as the number of training
epochs) have been defined. In our case, we chose the
following parameters: 100 training points, 100 000 training
epochs, and a learning rate of 8 × 10−3. Figure 5 shows the
resulting NN approximations of the eigenvalues and
eigenfunctions. Note that the Ldrive is only included in
the loss function of this example, for complete demon-
stration of the method. However, it is not applied in the
QNM computations resulting in the PINNs converging on
one eigenvalue (as we will see), rather than several (as in
the many plateaus of Fig. 5). As seen in the example, the
flips between eigenvalues occur arbitrarily, without any
method of controlling when they occur. Therefore, this loss
term requires further investigation, outside this present
work, to make it less random.

V. RESULTS: QNM COMPUTATIONS
WITH THE EIGENVALUE SOLVER

The results from our investigation of the performance of
PINNs when applied to the computation of QNMs shall
now be presented, where it is important to note that,
generally for deep neural networks, there are no set rules
for customising them since they are statistical tools with
too many parameters to admit any meaningful physical

FIG. 5. Plot of the NN approximations of the ψ and −E, the Pöschl-Teller bound states. Notice that the plot of −E plateaued whenever
the NN found an eigenvalue given by −E ¼ μ2=2 for μ ¼ 1; 2; 3;…. As expected, the bound states ψðuÞ vanish at the boundary points.
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interpretability. Taking this into account in this work, we
have carried out grid-search-like experimentation of the NN
hyperparameters to discover the most optimal choices with
the best performance. Specifically, we considered a range
of values for three hyperparameters, which are the number
of training points, number of training epochs, and the
number of nodes per layer, keeping the other hyperpara-
meters (e.g., optimizer and activation function) fixed. In
this work, we have focused on computing the QNMs of a
Schwarzschild black hole in the asymptotically flat and
near extremal de Sitter cases. For the former, we considered
massless scalar, Dirac, electromagnetic and gravitational
field perturbations; while, for the latter, we only considered
massless scalar fields where the equations look the same as
near extremal Reissner-Nordström-de Sitter black holes.
Due to this, the QNMs of near extremal Schwarzschild-
de Sitter black holes can be more generally treated as the
QNMs of near extremal nonrotating de Sitter black holes.

A. Scanning hyperparameters

Figure 6 graphs the results we obtained from testing
different hyperparameter configurations for computing the
QNMs of an asymptotically flat Schwarzschild black hole
(s ¼ 0;l ¼ 2; n ¼ 0). The accuracy of the NN approxi-
mations (measured in terms of percentage deviation) and
the execution times for training our NNs have been
measured as a function of the number of training points,
number of training epochs, and number of nodes per layer.
The fixed hyperparameters were learning rate of 8 × 10−3,
2 hidden layers, and sine as the activation function.
Note that the accuracy values measure the deviation of

the NN approximations from Leaver’s QNMs, whose
precision is up to 4 decimal places [12,18]. As seen in

Fig. 6, the percentage deviations of our computations
remain the same across all hyperparameter configurations.
But for a few cases, the percentage deviations for the real
and imaginary parts of the QNMs hover around about
0.009% and −0.042%, respectively. Both these values
correspond to a 4 decimal place precision, making the
NN approximations as good as Leaver’s CFM. Note that
beyond 4 decimal places we cannot reliably determine the
accuracy of our NN approximations based on the QNMs
given in the literature [12,18].
The red cells given in the right panel of Fig. 6 correspond

to cases where the eigenvalue solvers veer from determin-
ing the QNMs with a minimum loss, which are the n ¼ 0
modes. These are few in comparison to “normal” cases
where the eigenvalue solvers converge to a loss minimizing
solution. The displayed training times and percentage
deviations were obtained by iterating the eigenvalue solver
algorithm automatically and scanning through the specified
range of hyperparameter combinations. Note that the total
loss was set as

Lðθ; T Þ ¼ LODEðθ; T Þ þ Lfðθ; T Þ; ð5:1Þ

where

LODEðθ; T Þ ¼ 1

jT j
X
ξ∈T

½χ00 − λ0ðξÞχ0 − s0ðξÞχ�2; ð5:2Þ

Lfðθ; T Þ ¼ 1

jT j
X
ξ∈T

1

χ̂2
: ð5:3Þ

Here θ, T , χ̂, and ω̂ have their definitions from Secs. II A
and IV B 1. We have considered the ODE given by

FIG. 6. The training times, in minutes (right panel) and percentage deviations (left panel) obtained for different hyperparameter
choices. To compute the QNMs of asymptotically flat Schwarzschild BHs (s ¼ 0, l ¼ 2, n ¼ 0), we tested different permutations of the
number of training points, number of neurons per layer and number of training epochs (×1000).
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Ref. [13], which is a transformation of the radial perturba-
tion equation (2.4) to a finite domain of the coordinate
ξ ∈ ð−1; 1Þ. In this form of the loss function given by
Eq. (5.1), the NN is motivated to converge on the QNMs
with the highest amplitude, jχj, because of the regulariza-
tion loss term Lf. Incidentally, it turns out that the QNM
with the highest jχj (for any given multipole number) is

the n ¼ 0 mode. This is consistent with the fact that for
black hole QNMs, the higher overtones are damped
faster [14].
Some observations from Fig. 6 are that varying the

hyperparameters, as we did, has no significant effect on the
accuracy. However, there is an increase in the training time
with the number of epochs for a fixed number of training

TABLE I. The eigenvalue solver (eigeNN) approximations of the fundamental mode (n ¼ 0, l ¼ 1;…; 3) QNMs
for massless scalar field perturbations of near extremal SdS and RNdS BHs.

n l ωExact [24] ωeigeNN (no seed) ωeigeNN (with seed)

0 1 1.322876 − 0.5i 1.322886 − 0.500004i 1.322894 − 0.500011i
(< 0.001%)(< 0.001%) (0.001%)(0.002%)

2 2.397916 − 0.5i
2.397917 − 0.500001i 2.397916 − 0.500000i
(< 0.001%)(< 0.001%) (< 0.001%)(< 0.001%)

3 3.427827 − 0.5i
3.427828 − 0.500001i 3.427828 − 0.500000i
(< 0.001%)(< 0.001%) (< 0.001%)(< 0.001%)

FIG. 7. The exact QNM wave functions [cf. Eq. (2.21)] vs the eigeNN approximations.
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points and neurons per layer. Additionally, an increase in
the number of neurons per layer also leads to a slight
increase in the training time. Therefore, to obtain a
favorable trade-off between accuracy and efficiency, one

may train for 100 000 epochs instead of 200 000 to achieve
the same level of accuracy in less time. This reduction in
training time becomes significant when running a large
batch of computations.

FIG. 8. Evolution of the NN approximations of the QNM frequencies during the 100 000 epoch-long training phase. These were
generated from our computations using the eigenvalue solver with no seed loss term in the loss function.
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TABLE II. The eigenvalue solver (eigeNN) approximations of the fundamental mode (n ¼ 0) QNMs given up to 4
decimal places for massless scalar field perturbations (s ¼ 0) of asymptotically flat Schwarzschild BHs.

n l ωLeaver [18] ωeigeNN (90 000 epochs) ωWKB [46] (sixth order)

0 0 0.1105 − 0.1049i 0.1106 − 0.1049i 0.1105 − 0.1008i
(0.10%)(−0.01%) (−0.03%)(−3.89%)

1 0.2929 − 0.0977i
0.2929 − 0.0977i 0.2929 − 0.0978i
(0.02%)(−0.02%) (<0.01%)(0.06%)

2 0.4836 − 0.0968i
0.4836 − 0.0968i 0.4836 − 0.0968i
(0.01%)(−0.04%) (<0.01%)(−0.04%)

TABLE III. The eigeNN approximations of the fundamental mode (n ¼ 0) QNM frequencies for Dirac field
perturbations (s ¼ 1=2).

n l ωLeaver [18] ωeigeNN (90 000 epochs) ωWKB [46] (sixth order)

0 1 0.2822 − 0.0967i 0.2822 − 0.0966i 0.2822 − 0.0967i
(0.01%)(−0.09%) (<− 0.01%)(−0.02%)

2 0.4772 − 0.0963i
0.4772 − 0.0963i 0.4772 − 0.0963i
(0.01%)(0.03%) (<0.01%)(0.05%)

3 0.6708 − 0.0963i
0.6708 − 0.0963i 0.6708 − 0.0963i

(<− 0.01%)(−0.02%) (<− 0.01%)(−0.02%)

TABLE IV. The eigeNN approximations of the fundamental mode (n ¼ 0) QNM frequencies for electromagnetic
field perturbations (s ¼ 1).

n l ωLeaver [18] ωeigeNN (90 000 epochs) ωWKB [46] (sixth order)

0 1 0.2483 − 0.0925i 0.2483 − 0.0925i 0.2482 − 0.0926i
(−0.01%) (0.01%) (−0.04%) (0.15%)

2 0.4576 − 0.0950i
0.4576 − 0.0950i 0.4576 − 0.0950i

(<− 0.01%) (< 0.01%) (<− 0.01%) (0.01%)

3 0.6569 − 0.0956i
0.6569 − 0.0956i 0.6569 − 0.0956i
(<0.01%) (0.01%) (<− 0.01%) (0.02%)

TABLE V. The eigeNN approximations of the fundamental mode (n ¼ 0) QNM frequencies for gravitational field
perturbations (s ¼ 2).

n l ωLeaver [18] ωeigeNN (90 000 epochs) ωWKB [46] (sixth order)

0 2 0.3737 − 0.0896i 0.3737 − 0.0890i 0.3736 − 0.0889i
(0.01%) (−0.05%) (−0.02%) (−0.12%)

3 0.5994 − 0.0927i
0.5994 − 0.0927i 0.5994 − 0.0927i
(0.01%) (<0.01%) (< 0.01%) (<0.01%)

4 0.8092 − 0.0942i
0.8092 − 0.0942i 0.8092 − 0.0942i
(<0.01%) (0.04%) (< − 0.01%) (−0.03%)
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FIG. 9. Evolution of the NN approximation of QNMs for an asymptotically flat Schwarzschild BH. The 90 000 epoch-long training
phase takes an average time of 12 minutes. By contrast, it takes less than 1 minute to generate the QNMs (listed in Table II) using the
sixth order WKB method.
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B. QNMs of near extremal nonrotating black holes

In our discussion of black hole perturbation equations in
Sec. II C, we have seen a special case where the effective
potential is given exactly by an inverted Pöschl-Teller
potential: namely, the near extremal Schwarzschild and
Reissner-Nordström-de Sitter black holes. In these cases,
analytic expressions of the QNMs are known and we could
reliably test the accuracy of our NN approximations
compared to the exact QNMs given as

ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
lðlþ1Þ−1

4

�s
− i

�
nþ1

2

�
; n¼ 0;1;2;… ð5:4Þ

where l and n are as defined in Sec. II A.
In Table I, the exact QNMs for n ¼ 0 and l ¼ 1;…; 3

are compared with the NN approximations (ωeigeNN). The
latter were obtained by embedding the governing differ-
ential equation of near extremal nonrotating de Sitter
black holes and extra regularization terms in the loss
function. In the last column of Table I are values that were

produced by adding to the loss function a seed value loss
term given as

Lseedðθ; ω̂; T Þ ¼ 1

jT j
X
ξ∈T

½ω̂ − ωseed�2: ð5:5Þ

The seed value loss term measures the deviation of the
NN approximations from specific n and l dependent seed
values close to the exact QNMs (i.e., accurate up to a
certain number of decimal places, e.g., 2 decimal places, in
this case). The goal of the seed loss term is to steer the NN
towards specific QNMs of the several possible differential
equation residual minimizers (or eigenstates) that exist for a
chosen multipole number l.
The plots in Fig. 7 are the NN approximations of the

eigenpairs ðω;ψÞ associated with Table I, where the first
three multipole numbers for the n ¼ 0 mode are super-
imposed. These are the QNM eigenfunctions that obey the
asymptotic behavior expected for astrophysical asymptoti-
cally de Sitter black holes [9]. Aswas pointed out previously,
this is

FIG. 10. Evolution of the NN approximation of QNMs over a 90 000 epoch-long training phase.
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ψ ∼ pure outgoing wave; x → þ∞: ð5:6Þ

More importantly, Fig. 8 shows the evolution of the real
(ωRe) and imaginary (ωIm) parts of the NN’s approxima-
tions of the QNMs as they train for 100 000 epochs. These
plots were obtained from our computations without the
seed loss term in the loss function.
Figure 8 shows that the convergence of the NN approxi-

mation (ωeigeNN) towards the expected QNMs (ωexact) given
by Eq. (5.4), occurs swiftly after training begins. Table I
and Fig. 8 indicate that the NN learns QNMs with similar
levels of accuracy for different multipole numbers, regard-
less of the presence of a seed loss term in the loss function.

C. QNMs of asymptotically flat
Schwarzschild black holes

For this scenario, we have considered perturbations of
asymptotically flat Schwarzschild black holes by massless
scalar, Dirac, electromagnetic and gravitational fields
given by Eqs. (2.4) and (2.5) in the tortoise coordinate.

Tables II–V compare our NN approximations of the QNMs
with those given in the literature for the CFM and WKB
approaches for solving the perturbation equations.
With regards to the setup of our eigenvalue solvers, the

same FNN configuration was used for all our computations.
That is, we set up 2 hidden layers, 50 nodes per layer, and
sine as the nonlinear activation function. Moreover, we
employed the Adam optimizer, set up 90 000 training
epochs and used a learning rate of 8 × 10−3. Our training
data consisted of 100 points randomly selected from the
domain ξ ∈ ½0; 1�. Note also that the percentage deviation
values given inside the parentheses in the tables are

percentage deviation

¼ jRe=Im½ωeigeNN=WKB�j − jRe=Im½ωLeaver�j
jRe=Im½ωLeaver�j

× 100: ð5:7Þ

In the plots of Figs. 9–12, the green line represents the
seed values of ω that were embedded in the loss function of
our eigenvalue solvers. Note that the NN converges towards
the expected QNMs, rather than the seed values, which are

FIG. 11. Evolution of the NN approximation of QNMs during a 90 000 epoch-long training phase.
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given up to 2 decimal places. The QNM values given in
Tables I–V are in geometrical units.
In Figs. 9–12, it is clear that the eigenvalue solvers are able

to learn the expected values of ωRe and ωIm for various per-
turbation scenarios of an asymptotically flat Schwarzschild
black hole. For the fundamental mode, n ¼ 0 and various
choices of s and l, the physical constraints provided in the
loss function are sufficient to steer the NN toward the exact,
nontrivial solutions of our perturbation equations. This is
remarkable, considering the conceptual simplicity of the NN
optimization algorithm.
As is evidenced by the Tables II–V, the QNMs computed

by our eigenvalues solvers are as accurate as the values
computed with the CFM and the sixth-order WKB method.
Since we have used the QNMs from Leaver [12,18], which
are given up to 4 decimal places, as our closest approxi-
mation to an exact solution, we only confirm accuracy up to
that level. Needless to say, an ideal measure of accuracy of
our approximations would be exact QNMs obtained via
analytical methods for solving our differential equations.
Note that the QNMs obtained using the AIM (which are not

listed in the tables but can be found in Ref. [13]) were
shown to be as accurate as Leaver’s method.
Regarding the time taken by eigenvalue solvers to com-

plete executing computations, there is a significant difference
between the duration for training our NNs compared to that
of running theother approximation techniques.While it takes
around 10 minutes to run each of the 90 000 epoch-long
training sessions to solve our perturbation equations, the
computation takes much less time. For example, in the case
of theWKB and AIM techniques, many QNM values can be
computed in less than a minute. Note that this comparison is
tentative and reflects just the outcome of the present work,
which is a baseline for potential future improvements. For
example, the computational speeds of PINNs could be
enhanced by tapping into the parallelizable nature of NNs.
So far we have focused on fine-tuning the accuracy of NN
approximations as that is particularly important for black
hole QNMs.
In terms of other performance measures, the scalability

of PINNs, with regard to the ability to handle a large
number of input dimensions, is one major advantage of

FIG. 12. Evolution of the NN approximation of QNMs during a 90 000 epoch-long training phase.
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PINNs over other numerical methods. As pointed out in
Refs. [30,47], NNs overcome the curse of dimensionality
and, therefore, have the capacity to approximate high-
dimensional functions quite efficiently. This attribute jus-
tifies the potential future extension of PINNs to compute
the QNMs associated with high-dimensional perturbation
scenarios, where traditional mesh-based approximation
techniques could suffer.
Our results show signs of the expected limitations, listed in

Ref. [38], of solving PDEswithNNs that have been observed
in various applications of physics-informed machine learn-
ing. One is the fact that complicated loss functions (with
many terms in the governing equations) lead to highly
nonconvex optimization problems. As a result, the training
processmay not be sufficiently stable and convergence to the
global minimum may not be guaranteed [38].
We can see this by contrasting the results obtained from

our computations involving the relatively simple differential
equation for near extremal nonrotating black holes versus the
relatively more complex perturbation equations of asymp-
totically flat Schwarzschild black holes. For the former,
Fig. 8 shows that our NN quickly converges towards the
expected solution regardless of themultipole number, even in
the absence of a seed loss term to further constrain the
eigenvalue solvers. However, for the latter, the NN has more
difficulty converging in lower multipole number cases as
seen in Fig. 9 where the NN converges faster for l ¼ 2when
compared to l ¼ 0. In fact, without the seed loss term to
solve asymptotically flat Schwarzschild black holes, the NN
fails to converge when we have l ¼ 0, 1, 2 but does
for l > 3.
In our attempts to solve even more challenging prob-

lems, such as the perturbation equations of asymptotically
flat Reissner-Nordström and asymptotically (anti-)de Sitter
Schwarzschild black holes, the instability appears to be
more pronounced as the NNs fail to converge on the
expected QNMs for these cases. To alleviate this constraint
and broaden the scope of PDEs to be solved we will need to
add to our eigenvalue solvers some stronger constraints or
features that address instability.

VI. DISCUSSIONS AND CONCLUSION

In summary, we have explored the possibility of imple-
menting PINNs as a new technique to solve black hole
perturbation equations. We considered two variations of
PINNs built with the DeepXDE and Pytorch packages in
Python. To give some background on the underlying
physics, we began by revisiting the perturbation equations
for static, spherically symmetric black holes, particularly
asymptotically flat and (anti-)de Sitter Schwarzschild black
holes whose perturbations are described by one-dimen-
sional Schrödinger-like eigenvalue problems. Our goal was
to determine when and how PINNs can be best applied to
solve these equations, which are generally difficult to solve
analytically and compute the QNMs of black holes.

Since PINNs are extensions of deep neural networks, we
outlined NNs in Sec. IVA, in terms of their structure and
the mechanisms behind their function approximation abil-
ities. Afterwards, PINNs were described with illustrative
examples showing how physics constraints are embedded
in the loss function of a NN. These constraints include the
governing PDE, its associated boundary conditions, and
regularization functions.
Of the two variations of PINNs considered in this work,

the eigenvalue solvers were implemented to compute the
QNMs of asymptotically flat Schwarzschild and near
extremal nonrotating de Sitter black holes. Given that
the latter scenario has known exact formulas for the
QNM frequencies (given by Refs. [22–24]), we were able
to reliably validate the accuracy of our NN approximations.
We obtained QNM values with up to 6 digit accuracy and
plots showing the evolution of the NN’s approximation of
the QNMs over a 100 000 epoch training phase. The plots
showed that the NN’s approximation quickly converged
towards the expected solutions, regardless of the multipole
number l or the existence of a seed loss term in the loss
function.
Regarding the more analytically intractable problems,

we managed to solve the perturbation equations of asymp-
totically flat Schwarzschild black holes by embedding the
equations themselves, the QNM boundary conditions and a
seed loss term into the loss function of the eigenvalue
solvers. The computed QNMs have the same level of
accuracy as those obtained through Leaver’s CFM [12] or
Konoplya’s sixth order WKB method [46] (at least up to 4
decimal places as given in the literature [18]). However, in
terms of efficiency, our eigenvalue solvers take several
minutes to train, compared to the few seconds to a minute it
takes to generate accurate results using other techniques
such as the WKBmethod. We also found that the efficiency
of PINNs could be optimized by setting up the NN using
lower values in the range of values of the hyperparameters
that we tested, that is, the number of training epochs,
number of training points and number of nodes per layer.
To date, we have been able to compute only the

fundamental mode frequencies (i.e., n ¼ 0;l ≥ 0) that,
as it turns out, are the least damped, longest-lived modes
compared to higher overtones with n > 0. This is because
we have added regularization terms that simultaneously
penalize the NN for learning trivial eigenfunctions and
encourage it to learn the most energetic QNMs, which
happen to occur when n ¼ 0 for any given l. Potential
future work would seek a modification of the eigenvalue
scanning mechanism similar to that introduced by Ref. [7],
which will allow for the computation of higher overtones
for our complex-valued QNMs.
Concerning the question of the stability of PINNs as they

increase in depth, that is still very much an open problem,
in general, within the literature and is in the early stages of
investigation. When studying PINNs to mimic the analysis
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of numerical discretization techniques, convergence and
stability are related to how well the NN learns from the
physical laws embodied by the governing PDEs and initial/
boundary conditions [41]. It is well known that there is a
bias-variance trade-off that comes with choosing the right
depth of a neural network, where too deep a neural network
may lead to overfitting and inefficiency. The most recent
literature in laying out a theoretical framework for PINNs
includes Refs. [48,49] that provide formal findings regard-
ing PINNs and their convergence when dealing with linear
problems including second-order elliptic, hyperbolic, and
parabolic type PDEs. Utilizing these recent developments is
important to understand and improve on PINNs in con-
tinued use to compute QNMs.
As discussed in Sec. II A, our NNs exhibit signs of

instability which we suspect to be a result of the level of
complexity in the loss function, which makes for a highly
nonconvex optimization process [38]. This is counterintui-
tive to our initial expectation that PINNs can accurately
solve any PDE (regardless of complexity) if they are
formulated in a finite domain and their associated boundary
conditions are properly set up. This was not the case for our
attempts when applying eigenvalue solvers to the Reissner-
Nordström case. To overcome this instability in future
work, one plausible approach would be to consider the
recent work in Ref. [42] that shows that a “self-scalable”
activation function leads to PINNs which are less suscep-
tible to spurious stationary points, an obstacle in highly
nonconvex loss functions.
A final point to note concerning the limitations of

PINNs is their relative inefficiency compared to the extant
methods for computing QNMs. Further investigation
needs to be done to improve the performance of the

eigenvalue solvers as they currently do not surpass the
efficiency of established methods such as the WKBmethod
and theAIM.Overall, PINNs have not developed far enough
to be applied broadly in the study of black hole perturba-
tions. In conclusion to their seminalwork on PINNs, Ref. [4]
pointed out that this method should not be viewed as a
replacement for classical numerical methods for solving
PDEs, but rather asmethods that can bring addedmerits such
as implementation simplicity to accelerate the rate of
testing new ideas. In a similar vein, the application of
PINNs to QNMs brings at least a new angle to study the
perturbation equations, even though they are not as efficient
as canonical methods.
As is, the PINN approach may only work in computing

the fundamental QNMs of not only four-dimensional
Schwarzschild black holes, but also general dimensional
Schwarzschild black holes (described in Ref. [9]) given the
similarity of the differential equations. Despite the present
challenges (which are expected for a burgeoning method)
this approach to computing QNMs is worth pursuing
further as it demonstrates the same level of accuracy as
the leading existing methods.
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