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Extreme-mass-ratio inspirals will be prized sources for the upcoming space-based gravitational-wave
observatory Laser Interferometer Space Antenna (LISA). The hunt for these is beset by many open
theoretical and computational problems in both source modeling and data analysis. We draw attention here
to one of the most poorly understood: the phenomenon of nonlocal correlations in the space of extreme-
mass-ratio-inspiral signals. Such correlations are ubiquitous in the continuum of possible signals
(degeneracy) and severely hinder the search for actual signals in LISA data. However, they are unlikely
to manifest in a realistic set of putative signals (confusion). We develop an inventory of new analysis tools
in order to conduct an extensive qualitative study of degeneracy—its nature, causes, and implications.
Previously proposed search strategies for extreme-mass-ratio inspirals are reviewed in the light of our
results, and additional guidelines are suggested for the scientific analysis of such sources.
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I. INTRODUCTION

A. Background

In gravitational-wave (GW) astronomy, source modeling
and data analysis come together on the manifold of possible
signals that is described by a given waveform model and
analysis setting. Our intuition and knowledge of such
signal spaces guides the development of techniques and
strategies in GW scientific analysis: for example, local
correlations in signal space might be used to perform
approximate inference via the Fisher information, while the
global structure of these correlations has utility in the fitting
of numerical waveform data for the construction of faster
approximate models. Many such modeling and analysis
methods have been developed in the forge of contemporary
ground-based observing [1]; most will be highly relevant, if
not directly transferable, to sources for near-future milli-
hertz observatories such as the planned European Space
Agency-NASA mission Laser Interferometer Space
Antenna (LISA) [2]. However, the nature of signal space
—and thus the optimal approach to adopt in scientific
analysis—remains poorly understood for one particular
class of millihertz source.
Extreme-mass-ratio inspirals (EMRIs) are the late-stage

orbits of astrophysical binaries with a small mass ratio
ϵ≲ 10−4. They arise as the capture of stellar-mass compact

objects (white dwarfs, neutron stars, or black holes) by
massive black holes in galactic nuclei [3] and will be an
important class of source for the LISA detector [4,5]. The
GW signals from EMRIs that involve central black holes of
∼105−107M⊙ can persist throughout the planned four-year
lifetime of the LISA mission, typically with ∼105 observ-
able cycles. At the same time, most EMRIs will likely
exhibit extreme periapsis precession and Lense-Thirring
precession since the motion occurs deep in the strong field
of the rotating central mass; those that are formed through
traditional capture channels may also enter the LISA
sensitivity band with high eccentricity [6]. These effects
endow EMRI signals with rich harmonic content over their
many cycles.
With their combination of signal longevity and strong-

field complexity, EMRIs (and their intermediate-mass-ratio
cousins with 10−4 ≲ ϵ≲ 10−2) have no analog in any other
channel of GW astronomy. Our best EMRI waveform
models will be constructed through black-hole-perturbation
theory and multiscale approaches [7,8] to leverage the
extreme mass ratio and slow evolution, but the long
duration of expected signals places exacting constraints
on the accuracy and efficiency of calculations. Overcoming
the theoretical and computational challenges in EMRI
forward modeling remains an open and active area of
research, with several promising recent developments
[9–12]. In the inverse direction, the extraction and char-
acterization of EMRI signals in LISA data has to contend
with the information volume of the signal space, which is
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20–30 orders of magnitude larger than in the case of
comparable-mass binaries [13,14]. Further understanding
of the signal space has been limited by the lack of suitable
modeling and analysis tools; little is known about its global
correlation structure, or the representativeness of the simple
proxy models [15–17] used to date.

B. Definition of key concepts

The structure of correlations in the EMRI signal space is
relevant to LISA scientific analysis in two distinct ways:
confusion and degeneracy. All three of these terms are
commonly and loosely used in the GWand LISA literature
to refer to a variety of related concepts. Here we shall define
them more concretely for the purposes of this work (and, it
is hoped, for future use by the community). Given a
waveform model h∶Θ → D with some fixed sampling
rate and duration, the canonical noise-weighted cross-
correlation h·j·i [18] between two signals h1;2 ≔ hðθ1;2Þ
in the signal space S ≔ h½Θ� defines an inner product on
the ambient data space D of fixed-length time/frequency
series (in which S can be treated as an embedded
submanifold). Of frequent interest is the normalized
cross-correlation, or overlap Ωð·; ·Þ; this can be interpreted
as (the cosine of) the angle between h1;2 in D and serves as
a natural measure of signal similarity in that space. We will
informally use the term “correlation” to mean the overlap
rather than the cross-correlation and further qualify the
correlation between h1;2 as local if it is accompanied by a
“small” distance between h1;2 in S (equivalently, between
θ1;2 in Θ). See Sec. II B for the explicit definitions of h·j·i,
Ω, and locality.
Confusion refers to the presence of non-negligible

correlations among a finite set of putative signals in the
LISA data stream. It is a defining feature of the full LISA
catalog, which comprises many resolvable and unresolv-
able signals across multiple source types, and it provides
the primary motivation for the LISA global fit—a gov-
erning strategy to account for the multitude of correlated
signals by searching for and characterizing them at the
same time. The main contributor to global confusion is the
Galactic population of compact binaries, as there are
millions of such sources whose signals will form a fore-
ground of astrophysical noise in the LISA band [19]. In the
case of EMRIs, extreme estimates for the number of
subthreshold signals will also reduce the effective sensi-
tivity of LISA, potentially quite significantly [20,21].
Confusion between specific classes of source (e.g., a single
EMRI and the Galactic-binary foreground) has been
studied in some depth as well. In [22], analytic arguments
from large-deviations theory are used to show that when
analyzing resolvable signals of a given source type, a
combination of unresolvable signals from a different source
type can be well approximated as Gaussian noise.
Our focus in this work is more on self-confusion, where

the signals under consideration are due to members from a

single class of source, i.e., all sources (signals) are well
described by points in the domain (image) of a single
waveformmodel. The archetypal example of self-confusion
is again provided by the Galactic binaries. Each source is
described by a narrow band signal, so any signal-space
correlations are effectively local; the problem is then one of
resolving individual signals, with leading treatments
employing the transdimensional sampling of a multisource
likelihood [23]. Self-confusion is less of an immediate
problem for EMRIs because of their highly uncertain event
rates [4]. It has yet to be established whether self-confusion
might occur for a realistic number (≲104) of detectable
signals, but common intuition is that it will not, due to the
sheer volume of the signal space. This is largely borne out by
the results of an idealized calculation that we present in
Sec. III.
We use the term “degeneracy” to mean the presence of

non-negligible and nonlocal correlations in the continuous
signal space of a given waveform model. The nonlocal
condition excludes its more informal usage in GW data
analysis to describe extensive but essentially local regions
of high correlation. Degeneracy manifests as disjoint
secondary maxima in the overlap surface Ωðhinj; ·Þ over
the model parameter space, where the overlap is between a
reference signal injection hinj and the signal template at
each point. We will also exclude from our definition the
characteristic sinc-like “ringing” of the overlap surface near
the injection, as this is generally low-amplitude and still
relatively local. Degeneracy does not affect the narrow
band Galactic binaries, or massive-black-hole mergers with
their rapid evolution and merger-dominated signal-to-noise
ratio (SNR). It is a unique issue for EMRIs and has
significant implications even in the case of a lone EMRI
signal in the data.
EMRI degeneracy occurs when different and nonlocal

combinations of the source-intrinsic parameters result in
similar values for a subset of the three initial fundamental
frequencies, as well as their starting time derivatives up to
some order (see Sec. IV B 1). This causes the phasing of the
dominant harmonic mode in both the injection and the
degenerate template to be aligned for much of the inspiral
duration. Such a criterion is highly improbable for a
realistic set of putative signals, but we show in Sec. IV
that it is satisfied in a surprisingly large number of disjoint
regions across the space of all possible signals. An align-
ment of dominant and subdominant modes can also cause
degeneracy [24,25]—but to a lesser extent since the relative
distribution of mode amplitudes must also be similar for
two signals to have a high overlap. This latter case might
become more relevant when extrinsic parameters are
considered (again, see Sec. IV B 1).
Early hints of degeneracy in the EMRI signal space arose

during the Mock LISA Data Challenges [26], where partic-
ipants either reported the presence of a few secondary peaks
in the posterior surface, or misidentified one of them as the
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primary peak (even with fairly localized priors). At SNRs
above the common estimate of 20 for the EMRI detection
threshold [17], these posterior secondaries are exponentially
suppressed relative to the primary peak. However, they can
pose practical difficulties for “uninformed” search and
inference algorithms if the overlap against the injection at
their locations is high, and/or if they are unexpectedly distant
from the primary peak, and/or if they are inordinately
numerous. Such information about the nature of secondaries
has remained unavailable thus far; the global (log-)likelihood
surface is extremely challenging tomap out even for a single
injection, much less a globally representative set of injec-
tions. This is in turn due to the computational limitations of
existing waveformmodels, as well as standard sampling and
clustering methods being ill suited to the task of high-
dimensional mapping and visualization.

C. Synopsis of results

In this work, we investigate both confusion and degen-
eracy for EMRI signals, within the setting of LISA data
analysis. The confusion study in Sec. III is the more
straightforward of the two, as it is a conventional calcu-
lation that makes use of existing tools, and its results are
perhaps somewhat unsurprising. We examine the pairwise
overlaps among a set of N detectable two-year signals,
whose source parameters are distributed according to a
simple astrophysical model (modified by selection based
on some SNR threshold). For astrophysically realistic
estimates of N, we conclude that self-confusion is unlikely
to pose a problem for the extraction and characterization of
EMRI signals. No signal in a set of N ≈ 200 should
resemble any of the others beyond a ∼1% overlap level,
while the root-mean-square correlation among signals is
approximately constant at ∼0.1% for N ≲ 200.
The bulk of this work is devoted to an extensive (but by

no means comprehensive) study of EMRI degeneracy. Such
a study is hindered by several factors: (i) the computational
cost of generating analysis-length waveforms, even with
simple proxy models; (ii) the focus of modern sampling
algorithms on optimization and density estimation rather
than mapping; (iii) the general difficulty of clustering and
visualizing high-dimensional data; and (iv) the intricate
structure in the overlap surface that borders on noise in any
region away from the injection parameters (which turns out
to make the problem of localizing, counting, or even
defining “secondaries” somewhat ill posed). To overcome
or at least circumvent these difficulties, we introduce
various new tools (see Sec. II) such as a stripped-down
version of a fast semirelativistic model [17], an approxi-
mation to the inner product h·j·i, an exploratory sampling
density for the recovery of high-overlap points, and a
bespoke algorithm for the clustering of such points into
approximately disjoint secondaries.
With these tools, we are able to unambiguously dem-

onstrate the existence of degeneracy in the EMRI signal

space for signals as long as two years and can also shed
some light on the severity and prevalence of secondaries.
Our study is detailed in Sec. IV; we map out the overlap
surface Ωðhinj; ·Þ for a single representative injection at
varying magnification levels, from a starting region that is
tightly centered on the posterior bulk to a final region
whose Euclidean volume is≳1012 times larger. We find that
secondaries exhibit varying degrees of connectivity to one
another and take on an assortment of shapes and scales with
no immediately discernible global patterns. However,
both their number density and their overlap against the
injection appear to fall off with distance from the injection.
Furthermore, case studies of specific secondaries also
indicate that the posterior surface in those regions is
unlikely to resemble the posterior corresponding to an
actual injection at the same location.
In Secs. V and VI, we discuss the implications of our

qualitative findings for EMRI data analysis, broadly review
previously proposed search strategies, and provide our own
suggestions to guide future work. We identify pathological
scenarios that might arise from the unfortunate interaction
of degeneracy with detector noise or the presence of
multiple actual signals, but argue that they are highly
improbable. Thus the main issues we foresee are practical
in nature: the computational difficulty of stochastic search
and the verification of candidate signals. Past research on
EMRI data analysis has mostly attempted to address the
former, with some degree of success; here we propose
several complementary strategies to tackle both issues,
informed by the results of our confusion and degeneracy
studies. These take the form of post hoc vetoes for
candidate signals, as well as a modified “veto likelihood”
that is designed for search.

II. INVENTORY OF TOOLS

A. Waveform and response models

Fully relativistic EMRI waveform models that are both
efficient and extensive enough for data-analysis studies are
still under active development. The current state of the art
for efficiency-oriented waveforms is a fast model describ-
ing eccentric inspirals in Schwarzschild spacetime [10],
whose frequency evolution is accurate up to leading
adiabatic order in the mass ratio ϵ. In terms of extensive-
ness, recent work has introduced several models for various
classes of inspirals in Kerr spacetime: eccentric and
equatorial with adiabatic evolution [27], fully generic
(i.e., eccentric and inclined) with a post-Newtonian (PN)
approximation to adiabatic evolution [28], and fully generic
with adiabatic evolution [29]. Such techniques will soon be
combined to construct fast and fully generic adiabatic Kerr
models—these in turn are precursors to the accurate,
efficient, and extensive postadiabatic models [30] that
will enable us to achieve the EMRI-related science goals
of LISA.

NONLOCAL PARAMETER DEGENERACY IN THE INTRINSIC … PHYS. REV. D 106, 124046 (2022)

124046-3



None of the existing models from above are suitable for
the present work, which requires large-scale Monte Carlo
simulations along with a sufficiently representative depic-
tion of the full Kerr signal space. We instead employ a
semirelativistic model for fully generic Kerr inspirals,
which combines adiabatic-fitted frequency evolution [31]
with Newtonian instantaneous amplitudes (in the Peters-
Mathews formalism [32]). This model is known as the
augmented analytic “kludge” (AAK) [17]; it is based
largely on an influential earlier construction for LISA
data-analysis studies [15], but correctly accounts for
relativistic frequencies [33]. We refer the reader to [17]
for a full description of this model, along with a short
review of its kludge predecessors [15,16].
As our study on EMRI confusion involves a straightfor-

ward analysis with an unambiguous answer, it is worth
doing with slightly more “realistic” tools. There we use the
AAK waveform integrated with a fast model for the time-
delay-interferometry (TDI) [34] response hA;E;T of LISA to
the signal, as implemented in [25,35]. In the degeneracy
part of this work, we opt instead for the much simpler long-
wavelength LISA response hI;II [36] (essentially, approxi-
mating LISA as a point detector relative to the gravitational
wavelength). One reason is that the AAK–TDI model was
only developed well after the start of our investigation—but
in any case, the choice of response model should not
significantly alter the structure of source-intrinsic degen-
eracy, which is our focus here. This is due to the weak
coupling between intrinsic and extrinsic parameters, as
discussed in Sec. IVA.
The full AAK model (i.e., including LISA response) is

parametrized by a set of 14 source parameters, which can
be further partitioned into the intrinsic parameters

θint ≔ ðμ;M; a=M; p0=M; e0; ι;Φ0; γ0; α0Þ ð1Þ

and the extrinsic parameters

θext ≔ ðθK;ϕK; θS;ϕS; DÞ; ð2Þ

where all quantities are dimensionless. Explicitly:
(i) ðμ;MÞ are the detector-frame component masses in

solar masses and with ϵ ¼ μ=M ≪ 1;
(ii) a is the Kerr spin length scale for the central mass;
(iii) ðp0; e0; ιÞ are the quasi-Keplerian semilatus rectum,

eccentricity, and inclination for the osculating geo-
desic to the inspiral at reference time t0;

(iv) ðΦ0; γ0; α0Þ are phase angles describing the position
of the small mass at reference time t0;

(v) ðθK;ϕKÞ are polar and azimuthal angles describing
the spin orientation in ecliptic coordinates;

(vi) ðθS;ϕSÞ are polar and azimuthal angles describing
the sky location in ecliptic coordinates;

(vii) D is the luminosity distance in Gpc.

Henceforth we will abuse the symbol θ to denote any
ordered combination of these parameters, as long as the
specific parameters in question are clear from context.
There are several points to note about this choice of

parametrization. First, the distinction between intrinsic and
extrinsic EMRI parameters can be somewhat arbitrary and
also depends on whether one is working in the modeling or
analysis context. It is a largely semantic distinction, though,
and here we take more of a modeling viewpoint (as opposed
to [17])—but note that the sets fp0; e0; ιg and fΦ0; γ0; α0g
each technically have one observer-dependent degree of
freedom, corresponding to temporal translation and spatial
rotation, respectively. Second, the inclination angle used
is ι ≔ tan−1ð ffiffiffiffi

Q
p

=LzÞ rather than I ≔ π=2 − sgnðLzÞθmin
(where ðQ;Lz; θminÞ are the Carter constant, the projection
of angular momentum onto the spin axis and the turning
point of polar motion). Usage of the latter is becoming
standard in the modeling community, but ι ≈ I across much
of the Kerr geodesic space [37]. The rate of change for ι due
to GW radiation is also generally small [38] and is
thus approximated as zero in the AAK model. Finally,
future postadiabatic models are likely to have a qualita-
tively similar parametrization, apart from: (i) the time
evolution of ðM; aÞ [8], which would simply change
ðM; aÞ → ðM0; a0Þ; and (ii) secular or resonant effects
due to the spin of the small mass [39–44], although more
detailed studies are required to determine how measurable
this quantity will be with LISA.
The AAK model is efficiency oriented, with a computa-

tional wall time of ∼10 s for a two-year signal sampled at
0.1 Hz. While this is adequate for the confusion study, our
investigation of EMRI degeneracy calls for multiple
Monte Carlo simulations, each with up to billions of
template evaluations (if this seems excessive, recall that
our aim here is high-resolution mapping—not search or
inference). For the degeneracy study, we thus rely on an
amplitude-and-phase representation of the AAK model,
further stripped down to just four strong harmonic modes.
Although the semirelativistic and quadrupolar AAK wave-
form falls well short of realistic harmonic content, this still
reduces the number of modes by about an order of
magnitude. The amplitude and phase trajectories also vary
smoothly over the radiation-reaction timescaleM=ϵ and are
downsampled by a factor of ≳103 for direct use in an
approximate inner product (see Sec. II B). With these
simplifications, the wall time for a single template evalu-
ation (plus typical operations on said template) is slashed
to ≲10 ms.
An explicit description of harmonic modes in the AAK

model will depend on the specific choice of harmonic basis.
The model is constructed from Keplerian orbits with
artificially induced precession; this is reflected in the phase
parametrization ðΦ; γ; αÞ, where Φ is the quasi-Keplerian
mean anomaly and ðγ; αÞ are two precession-related angles.
Data-analysis studies that involve the AAK (and its
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predecessor [15]) typically use the frequencies ð _Φ; _γ; _αÞ as
the harmonic basis, where _γ þ _α and _α are the rates of
periapsis and Lense-Thirring precession, respectively. The
phases ðΦ; γ; αÞ have a simple relation to the fundamental
phases ðφr;φθ;φϕÞ, i.e., the generalized coordinates asso-
ciated with the action-angle variables for Kerr geodesic
motion [45]:

ðφr;φθ;φϕÞ ¼ ðΦ;Φþ γ;Φþ γ þ αÞ: ð3Þ

Another harmonic basis is thus provided by the Kerr
fundamental frequencies ðωr;ωθ;ωϕÞ—the derivatives of
ðφr;φθ;φϕÞ with respect to coordinate time. We choose the
latter basis for this work. The phase and angular frequency
of a mode ðm; k; nÞ are given, respectively, by

φmkn ≔ mφϕ þ kφθ þ nφr; ð4Þ

ωmkn ≔ mωϕ þ kωθ þ nωr; ð5Þ

where ω is used here and henceforth to denote dimension-
ful frequencies with units of Hz.
For illustrative purposes, we introduce here the reference

signal injection hinj that is used in the degeneracy study of
Sec. IV; its intrinsic parameters are

θinj ¼ ð10; 106; 0.5; 9.5; 0.2; π=6; 0; 0; 0Þ; ð6Þ

with randomly chosen extrinsic parameters. The masses
and spin are assigned “central” values in the LISA-relevant
range, while the initial semilatus rectum is fixed by
requiring that the small mass plunges (reaches the Kerr
separatrix) at time tp ¼ t0 þ 2 y. We focus on low-to-
moderate starting eccentricity, due to the trimming of
modes, and examine the slightly inclined prograde case.
Over its two-year duration, much of the power in the signal
is contributed by the four modes

m ¼ 2; k ¼ 0; − 1 ≤ n ≤ 2; ð7Þ

and, in particular, by the (2,0,0) mode. This can be
visualized through the time-frequency plots in Figs. 1
and 2, for the hI channel of the long-wavelength response
hI;II.
The exact AAK implementation used in this work is that

from the now-discontinued EMRI Kludge Suite (v0.5.2)
[46], which is largely faithful to the original presentation in
[17]. During the course of this work, an updatedAAKmodel
with 5PN evolution [27] and graphics processing unit (GPU)
support was included in the Fast EMRI Waveforms
software package that will house the next-generation of
EMRI models [47,48]. The AAK–5PN waveform features
several improvements, such as exact fundamental frequen-
cies (rather than their PN expansions) and an evolving
inclination, and is also significantly accelerated over the

CPU version in [46]. Future follow-up studies without the
approximations made in this work will likely employ that
model, or a relativistic 5PNmodel [28] that is currently being
implemented within [48]. However, our present approach is
still an order of magnitude faster than the GPU generation
and manipulation of templates at full sampling resolution—
and more importantly, we do not expect our main results to
change qualitatively for other EMRI models (see extended
discussion in Sec. IV B 3).

B. Similarity measures

In GW data analysis, the detection of a signal h in noisy
time-series strain data x ¼ hþ n relies on the linear
filtering of x against a signal template that matches h. If
the detector noise n is approximated as a zero mean and
stationary process, then this matched-filtering procedure
can be expressed as a noise-weighted cross-correlation

FIG. 1. Spectrogram of reference signal (hI channel only) with
intrinsic parameters (6). Short-time Fourier amplitude (gray scale
value) is in log scale. Overlaid in red are frequency trajectories for
the four strong harmonic modes (7).

FIG. 2. Linear-scale cross sections of the spectrogram in Fig. 1,
at two years/ three months / one day before plunge. The four
modes (7) are mostly representative of the signal, but strong
sidebands become more resolvable in the final months.
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hxjhi ≔ 4Re
X
χ

XfN
f>0

δf
x̃χðfÞ�h̃χðfÞ

Sn;χðfÞ
; ð8Þ

where the outer sum is over all independent data channels χ
(for this work, χ ¼ A;E;T or χ ¼ I; II); fN is the Nyquist
frequency; δf is the frequency resolution; overtildes denote
discrete Fourier transforms (multiplied by the time reso-
lution δt); and Sn;χ is the one-sided power spectral density
of the channel noise nχ (provided here by analytic models
that correspond to the science requirements for the LISA
mission [49–51]). The noise assumptions and the form of
Eq. (8) give rise to the identities

E½hnjai� ¼ 0; ð9Þ

E½hnjaihnjbi� ¼ hajbi; ð10Þ

valid for all time series a, b with the same length as n.
Equation (8) satisfies the conditions for an inner product

on the data space D of fixed-length time/frequency series,
which unlocks a useful geometric picture of other common
concepts in GW data analysis. For one, the overlap between
two signals h1;2 is simply their normalized inner product, or
the cosine of the angle between them in D:

Ωðh1; h2Þ ≔
hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p : ð11Þ

The optimal SNR of a signal template h is its norm:

ρoptðhÞ ≔
E½hxjhi�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½hnjhihnjhi�p ¼
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
; ð12Þ

and its detection SNR is the scalar projection of x on h:

ρdetðhÞ ≔
hxjhiffiffiffiffiffiffiffiffiffiffiffihhjhip : ð13Þ

Maximum-likelihood estimation with the standard GW
likelihood LðθjxÞ (see Sec. II C) boils down to distance
minimization between x and the signal space S in D:

θML ¼ argmin
θ

hx − hðθÞjx − hðθÞi: ð14Þ

Finally, the Fisher information matrix IðθinjÞ [52] for
LðθjxÞ ∝ pðxjθinjÞ coincides precisely (component-wise)
with the pullback by hðθÞ of the flat metric on D:

½IðθinjÞ�ij ¼ h∂ihðθÞj∂jhðθÞijθinj : ð15Þ

This geometric picture extends to the concept of
local correlations in signal space and thus to that of
degeneracy—the presence of non-negligible and nonlocal

correlations. From the informal definition in Sec. I B, the
correlation between two signals is local if there is a “small”
distance between their corresponding points in parameter
space Θ (with respect to the pullback metric at one of the
points). To make this slightly more concrete, we will say
that two parameter points θ1;2 are local with respect to each
other if their metric distance in Θ approximately equals the
Euclidean distance in D between their associated signals
h1;2, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθ1 − θ2ÞTIðθ1 − θ2Þ

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh1 − h2jh1 − h2i

p
; ð16Þ

where I is also approximately invariant: Iðθ1Þ ≈ Iðθ2Þ. In
other words, h1;2 are local if they coexist in a region where
the signal manifold is nearly flat. From a data-analysis
perspective, the definition (16) holds in a region around the
maximum-likelihood parameters, where the likelihood is
near-Gaussian, and to a lesser extent in the immediate
vicinity of this region, with decaying likelihood oscillations
in parameter directions that affect frequency. Degeneracy
on the other hand occurs when the specific embedding hðθÞ
admits (regions of) signals that have high overlap against
some hinj ∈ S, but whose parameters are nonlocal to the
neighborhood of θinj ∈ Θ.
The inner product h·j·i is defined for time series at full

sampling resolution and can be computationally unwieldy
even without accounting for the cost of template gener-
ation. For the degeneracy study in Sec. IV, we introduce an
approximation to h·j·i that acts directly on amplitude and
phase trajectories from the AAKmodel. Beyond its original
partial decomposition into harmonic modes of only radial
motion, the AAK waveform with LISA response hI;II is
more fully decomposed as

hIðtÞ þ ihIIðtÞ ¼
X
j

AjðtÞ exp ðiφjðtÞÞ; ð17Þ

where 1 ≤ ðj ≔ nþ 2Þ ≤ 4 is a reindexing of the four
strong modes (7), and Aj is a complex amplitude for mode j
[46]. The mode phasing φj is obtained from the time
integration of frequency trajectories ωjðtÞ, whose avail-
ability also allows us to fold the noise weighting of h·j·i
directly into the time-domain signal [15]. Using overbars to
denote noise-weighted quantities, h̄I;II is given by the
analog of Eq. (17) with Aj → Āj, where

ĀjðtÞ ≔
AjðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SnðfjðtÞÞ

p ; ð18Þ

i.e., the mode amplitudes at time t are essentially reduced
by the noise estimate Sn ≔ Sn;I ¼ Sn;II at the corresponding
instantaneous mode frequencies fj ≔ ωj=ð2πÞ.
In the above representation, the mode amplitude and

phase trajectories are smooth enough to be downsampled
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significantly. For our degeneracy study, we consider a
signal injection specified by the source parameters (6), with
an analysis duration of T ¼ tp − t0 ¼ 2 y and a fixed
trajectory time step of Δt ¼ T=103. All injection-template
comparisons are performed on the common analysis
interval ft∶t0 ≤ t ≤ t0 þ Tg, using the same trajectory
timestamps. Note that φj is technically ill defined at a
set of times in this interval for templates that plunge before
t0 þ T, but we also have Aj ¼ 0 at those times. An
approximation to the noise-weighted inner product h·j·i
between two signals h, h0 is then defined as

ðhjh0Þ ≔ Re
X
jj0

X
t∈τjj0

ΔtĀjðtÞ�Ā0
j0 ðtÞ; ð19Þ

τjj0 ≔ ft∶jφjðtÞ − φ0
j0 ðtÞj < 1g; ð20Þ

with τjj0 being the set of times at which mode j is “in
phase” with mode j0. The phase tolerance value of 1 in
Eq. (20) is chosen such that ð·j·Þ gives an upper envelope
for h·j·i between two sinusoidal signals, as it varies with the
difference in their frequencies (see Fig. 3). More generally,
we have

ðhjh0Þ ≳ 2
X
χ¼I;II

Xt0þT

t¼t0

δth̄χðtÞh̄0χðtÞ ≈ hhjh0i: ð21Þ

Since Eq. (19) is undefined for general time series in the
data space D, it is not strictly an inner product, but rather
approximates the restriction of h·j·i to the signal space S.
For convenience, however, we will call ð·j·Þ the approxi-
mate “inner product” and h·j·i the full inner product. The
approximate inner product is only used in the degeneracy
study of Sec. IV and even there only in bulk calculations,
for which the full inner product would be unfeasible.
Qualitative results obtained with ð·j·Þ are verified with
h·j·i if practical; e.g., after a set of high-overlap points from

sampling has been distilled to a smaller set of representative
points by clustering, we report their overlaps with respect to
h·j·i. Thus we will, in general, refer to both ð·j·Þ and h·j·i
simply as the inner product and will only distinguish
between them (and in derived quantities such as the
overlap) if important qualitative differences arise due to
the approximation.

C. Sampling densities

Of central importance in GW inference is the standard
Whittle likelihood function LðθjxÞ ∝ pðxjθinjÞ (with the
distinction between the random argument θ and the fixed
quantity θinj being explicitly highlighted). As in Eq. (8), we
take the data as x ¼ hinj þ n with zero mean and stationary
noise, but here n is additionally assumed to be a Gaussian
process [53]. The natural logarithm of L (informally, the
“log-likelihood”) is given by

ln LfullðθjxÞ ≔ −
1

2
hx − hðθÞjx − hðθÞi: ð22Þ

Functional form notwithstanding, Eq. (22) describes a non-
Gaussian density function on the parameter space Θ;
however, from the definition of locality (16), a Gaussian
approximation to L is reasonably valid in the local
neighborhood of θML from Eq. (14). Since Eq. (22) is
defined in terms of the full inner product h·j·i, we will refer
to it in the context of this work as the full (log-)likelihood.
The full likelihood is not used in our studies beyond the

initial validation of an approximate likelihood, which is
simply given by Eq. (22) with h·j·i → ð·j·Þ:

ln LappðθjxÞ ≔ −
1

2
ðx − hðθÞjx − hðθÞÞ: ð23Þ

With the reduced cost of both the template-generation
and inner-product operations, Lapp is ≳103 times faster to
evaluate than Lfull. Efficiency considerations aside, Eq. (23)
also facilitates the degeneracy study in Sec. IV by smooth-
ing out local oscillations in the posterior surface, such that
the maxima identified by our algorithms are generally due
to nonlocal correlations. By design, the profile of Lapp over
Θ corresponds roughly to the upper envelope of Lfull; this
relation is not exact as depicted for the inner products in
Fig. 3 since the signals here have evolving frequency, and
the log-likelihood contains normalization terms in addition
to the inner product.
For conceptual ease, let us consider the specific noise

realization n ¼ 0 without much loss of generality, such
that x ¼ hinj lies in the signal space S with SNR
ρinj≔ρoptðhinjÞ¼ρdetðhinjÞ. Equation (23) may be written as

ln LappðθjxÞ ¼ ρinjρθΩðx; hðθÞÞ −
1

2
ðρ2inj þ ρ2θÞ; ð24Þ

FIG. 3. Full (black) and approximate (red) inner product
between cos ðωtÞ and cos ðω0tÞ over duration T ¼ 1, as a function
of accumulated phase difference ðω − ω0ÞT. Vertical red dashed
line indicates specified phase tolerance of 1.
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where ρθ ≔ ρoptðhðθÞÞ. In the tail regions of the likelihood,
where E½Ωðx; hÞ� ≈ 0, we see that Lapp ∼

∝ exp ð−1=2ρ2θÞ is
dominated by large-scale gradients arising from the slow
variation of ρθ over Θ [relative to ðxjhðθÞ]. As these
gradients can hinder a global analysis of intrinsic parameter
degeneracy, it is useful to introduce a matched-SNR version
of Lapp, with templates that have been renormalized to
match the injection SNR:

ln LmatchðθjxÞ ≔ ρ2injðΩðx; hðθÞÞ − 1Þ: ð25Þ

This matched-SNR likelihood is proportional to the overlap
surfaceΩðhinj; ·Þ over Θ; in the vicinity of θinj, we also have
Lmatch ≈ Lapp. Our degeneracy study leverages the absence
of large-scale SNR gradients in Eq. (25) to search more
effectively for secondary peaks in Lmatch (and the overlap
surface), which then have the same locations as secondaries
in Lapp (and the posterior surface). This is because the
intrasecondary variation of ρθ is generally small, as
opposed to its intersecondary variation.
As it turns out, straightforward sampling of the matched-

SNR likelihood is unsuitable for finding, resolving, and
visualizing secondaries in Lmatch; even if these secondaries
were cleanly localized and separated (they are not), they
would be exponentially suppressed at realistic values of
ρinj ≳ 10 and contiguously congealed at artificially lowered
values—or high temperatures, in the language of annealing
Markov-chain Monte Carlo (MCMC) methods [54,55].
Our solution is to introduce an exploratory “likelihood”
that is used only for global exploration and to obtain a large
set of high-overlap points for follow-up clustering analysis.
This is given by Lmatch with both injection and template
normalized to unit SNR, plus artificially suppressed tails:

ln LexplðθjxÞ ≔
1

ρ2inj
lnLmatchðθjxÞ þ rampðθjxÞ; ð26Þ

rampðθjxÞ ≔ 100 min fΩðx; hðθÞÞ − 0.5; 0g: ð27Þ

Equation (26) is designed to reduce the volume in the tail
regions of the matched-(unit-)SNR likelihood, so as to
better locate and flesh out individual secondaries. The exact
specifications of the ramp function (27) are empirically
chosen, and not necessarily optimal. While we will con-
tinue referring to Eq. (26) as a (Bayesian) likelihood, it can
no longer be linked to a natural probabilistic statement
based on noise and signal assumptions. This last point also
holds true for a veto likelihood that we propose as a
mitigation of EMRI degeneracy, but whose presentation we
delay until Sec. VI (as it is a consequence, rather than
component, of the degeneracy study).

D. Clustering algorithm

With the exploration aspect of signal-space mapping
covered by the stochastic sampling of the exploratory
likelihood in Sec. II C, the remaining analysis boils down
to visualizing and making sense of the resultant high-
dimensional data. Central to this is the task of clustering.
Some of the commonly used sampling algorithms in GW
data analysis [56–58] employ in-built clustering to aid
convergence on multimodal distributions; this form of
clustering is more of an intermediate means to an end,
with the byproduct set of identified “clusters” being of
limited utility for realistic examples. A specialized cluster-
ing algorithm is required here, but the main off-the-shelf
options are unsuitable as well. Centroid-based methods
such as k-means clustering [59] and its many variants use
geometric proximity to define cluster membership. They
typically require the number of clusters to be prespecified
and are thus immediately inadequate for our purposes.
Density-based methods [60] perform clustering based on
the density of points in the data set. In this context, they
would rely on the sampler being able to populate secon-
daries in the correct proportion—which is, in general,
nontrivial to guarantee even for “clean” multimodal dis-
tributions. Such methods also tend to rely on arbitrarily
tuned criteria for cluster membership, which can signifi-
cantly affect the cluster count itself.
We introduce here a bespoke clustering algorithm that

can be classified as a connectivity-basedmethod [59]. For a
general signal space, the overlap between two signals
provides a measure of connectivity between their associ-
ated parameter points. It can thus be used directly in
clustering applications; for example, to group posterior
samples in multisource transdimensional-MCMC searches
for Galactic-binary signals in LISA data [23], by assigning
sample points to the same cluster if there is a high overlap
between their associated templates. This works well for
resolving sources in the absence of parameter degeneracy
because it agrees with the natural measure of connectivity
defined by the metric distance (16) in Θ (which is required
for sensible results). When nonlocal correlations are
present, this sort of clustering might instead be used as a
veto for spurious source candidates that arise due to
secondaries (see Sec. VI A).
In the context of our degeneracy study, however, an

alternative notion of connectivity is required. As discussed
in Sec. II C, the key quantity in the understanding of
posterior secondaries is the overlap function Ωðhinj; ·Þ. We
are not restricted to the overlap information in the raw data
set that is obtained by sampling Lexpl since our access to a
generative model for the overlap can be used to provide
additional information during clustering. Let us first define
the connection l between two points θ1;2 ∈ Θ: a vector of l
equally spaced evaluations of Ωðhinj; ·Þ along the connect-
ing line between θ1;2 (inclusive). We set l ¼ 7 in our
algorithm, which is empirically determined to be the
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minimum value required for satisfactory convergence of
results. The connection l is then used to construct a
symmetric premetric d on parameter space, satisfying only
dðθ1; θ2Þ ≥ 0, dðθ1; θ1Þ ¼ 0 and dðθ1; θ2Þ ¼ dðθ2; θ1Þ
[61]. This premetric is defined as

dðθ1; θ2Þ ≔ 1 −
miniliðθ1; θ2Þ

minfl1ðθ1; θ2Þ;llðθ1; θ2Þg
; ð28Þ

such that two points with “predistance” zero have no
intermediate point with a lower overlap value than either.
With the existence of a premetric, we may define various

degrees of “connectedness” for use in the clustering
algorithm.Wewill say that two points are strictly connected
if they have a predistance d ¼ 0, that they are connected if
d < 0.5, and that they are not connected if d ≥ 0.5. The
additional category of being connected, rather than only
strictly connected or not strictly connected, is required in
our algorithm to handle intrasecondary structure. In other
words, we are defining secondaries as disjoint clusters of
points that are uniquely connected to some representative
point (generally a cluster maximum), instead of simply
calling all local maxima secondaries (because these can and
often do coexist in contiguous regions of high overlap).
Since we will only be clustering high-overlap points with
Ωðhinj; ·Þ ≳ 0.5, any two connected points will have no
intermediate point with Ωðhinj; ·Þ ≲ 0.25, which admits an
interpretation of connectedness in terms of absolute over-
lap. The predistance between two points also depends more
strongly on their overlap values when d ≥ 0.5, such that
disconnected points with higher overlaps tend to be “further
apart.” This allows connectedness to be used in locating
cluster maxima, in addition to the more obvious function of
determining cluster membership.
Using the above definitions of connectedness as a notion

of connectivity leads to a clustering problem with a
significant degree of noise. In graph-theory terms, this is
because the graph for a set of parameter points (vertices)
and their pairwise connectedness (edges) has high vertex
connectivity [62] and cannot be partitioned into disjoint
subgraphs without removing a large number of vertices.
Another issue is that standard connectivity-based algo-
rithms are generally computationally expensive, with their
complexity scaling as OðN2Þ or worse for a data set of size
N—for example, if one were to compute the full similarity
matrix of pairwise predistances for use in spectral-cluster-
ing methods [63]. To combat these difficulties, we take a
greedy approach [64] to the identification of candidate
nodes (representative points for clusters), with global and
local steps to ensure that these nodes pick out any clear
maxima without the need for full-blown optimization.
Another design objective is for the algorithm to run in
OðNÞ rather than OðN2Þ time. A single iteration of our
clustering algorithm is described below in pseudocode:

(1) At the ith iteration, there exists an ði − 1Þ × N
matrix containing the predistance of all points in
the data set to each of the existing i − 1 nodes. Each
point has a minimal predistance to the set of existing
nodes. (For the set of nodes themselves and the
points that are strictly connected to them, this
minimal predistance will be zero.) Choose the point
with the largest minimal predistance as the prelimi-
nary ith node. This is the point that is “least
connected” to the existing nodes, and the process
of finding it is akin to a global-search step.

(2) Compute the predistance of all points to the pre-
liminary ith node.

(3) Define the strict ith cluster as the set of points that
are strictly connected to the preliminary node and
not connected to any of the existing i − 1 nodes.
Choose the point in the strict ith cluster with the
highest overlap value as the actual ith node. This
process is akin to a local-maximization step.

(4) If the preliminary ith node is not the same point as
the actual ith node, then “recenter” the cluster by
computing the predistance of all points to the
actual ith node. In principle, the actual node might
still not be the highest-overlap point in its cluster
after recentering; however, additional recentering
steps are found to offer marginal gain for their cost.

(5) Append the list of predistances for the ith node to the
predistance matrix as a new row.

(6) Compute the cluster coverage, which is the fraction
of points that are connected to at least one of the
existing i nodes. If the coverage equals unity, then
end the algorithm. Defining the stopping criterion in
terms of being connected rather than strictly con-
nected causes the cluster count to depend on the
arbitrary connectedness threshold d ¼ 0.5, but this
just corresponds to setting a limit on what is defined
as a clear cluster—which is never fully avoidable in
any nontextbook clustering task.

The only special iteration is the initial one, where both
the preliminary and actual nodes in steps 1 and 3 are simply
chosen to be the point in the data set with the highest
overlap value Ωðhinj; ·Þ. Computing new rows of the
predistance matrix in steps 2 and 4 dominates the algorithm
cost, which thus scales as OðNÞ times the number of
identified nodes. With the final predistance matrix in hand,
it is straightforward to construct a set of clusters post hoc.
The final (strict) cluster for each node is defined as the set
of points that are (strictly) connected to the node and not
(strictly) connected to any of the other nodes. Note that the
strict cluster here differs slightly from that defined in step 3,
where the short list of candidates for the actual node is more
stringent by design. For illustrative purposes, we provide
in Fig. 4 a heuristic example that depicts the application of
the algorithm to an artificial one-dimensional overlap
surface.
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Our clustering algorithm uses information about
Ωðhinj; ·Þ beyond the original data set, and thus its perfor-
mance does not rely strongly on the distribution of the data.
The number and composition of clusters are both robust to
the choices of connection length l≳ 7 and initial node
(provided it is close to a local maximum), with variations in
the results that are far smaller than errors due to imperfect
sampling. Nontrivial structure in the high-dimensional
overlap surface can be unearthed even from relatively
small data sets with N ≲ 104, as demonstrated particularly
clearly in Sec. IVA 5. Although the algorithm was devel-
oped for our specific purposes, it essentially only requires
the surface under examination to be evaluable separately
from the data and thus might find utility in more general
clustering applications. In the degeneracy study of Sec. IV,
we employ it both for large-scale mapping to identify
disjoint secondary regions of high overlap and for localized
mapping in these regions to resolve and visualize the finer
structure.

III. CONFUSION STUDY

Before turning our attention to correlations in the con-
tinuous space of possible signals, we seek to address a
simpler (two-part) question: For an astrophysically realistic
set of EMRI signals in LISA data, (i) how correlated are the
most correlated pair of signals; and (ii) how does the overall
degree of correlation among the set vary with the size of the
set? The answer to this bears on both EMRI search and

inference; large overlaps between actual signals will hinder
their resolution during search and will necessitate a com-
bined inference of their source parameters. This in turn
affects the design of data-analysis strategies, as well as the
prospects of EMRI science. The conclusion of our study is
unequivocal, at least for a middle-ground estimate of 200
detectable signals—self-confusion is unlikely to be an issue
for EMRIs.

A. Astrophysical model

Models for the astrophysical population of EMRIs that
LISA will observe are weakly constrained by existing
knowledge and thus span a broad range of predictions.
Some of the main uncertainties lie in the massive-black-
hole mass function, in the fraction of such black holes
hosted in dense stellar cusps, as well as in the intrinsic rate
of EMRI formation per massive black hole [4]. In this
work, we consider a population of detectable sources from
a single representative model since the distribution of these
sources is dominated by detector-specific selection effects
anyway. Furthermore, our intuition a priori is that the
results of the confusion study will be virtually independent
of model choice, as they are simply determined by the
intrinsic nature of signal space—specifically, the large
information volume expected to be retained by any astro-
physically restricted subspace.
We now define a population model that corresponds

approximately to M1 from [4], which is often used as a
representative model in LISA Science Group work-package
studies (e.g., [65]). Our model specifies independent
distributions for each of the AAK parameters (1) and
(2), but with the source-frame masses ðμ0;M0Þ and redshift
z in place of the detector-frame masses ðμ;MÞ and
luminosity distance D. The map ðμ0;M0; zÞ → ðμ;M;DÞ
is given by the usual relations

μðμ0; zÞ ¼ ð1þ zÞμ0; MðM0; zÞ ¼ ð1þ zÞM0; ð29Þ

as well as [66]

DðzÞ ¼ ð1þ zÞ
Z

z

0

dz0
c

Hðz0Þ ; ð30Þ

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −ΩΛÞð1þ zÞ3 þ ΩΛ

q
; ð31Þ

with c=H0 ¼ 4280 Mpc and ΩΛ ¼ 0.7.
The probability density of the joint distribution for θ is

the product of the individual parameter densities pðθiÞ,
which are supported on the corresponding sets Δθi ⊂ R (to
consolidate notation, Δθi can have measure zero). These
sets are listed in Table I for each source parameter; note the
reparametrization of all polar angles to their cosine values.
With the exception of M0 and z, all parameters are either
fixed to, or distributed uniformly, on Δθi. Although the

FIG. 4. Application of the clustering algorithm to an artificial
one-dimensional overlap surface and a data set of N ¼ 5 high-
overlap points (with zero-based index). At the first iteration, point
0 (the injection) is the identified node, and the cluster coverage is
0.2. At the second iteration, point 2 (Ω ¼ 0.78) is the preliminary
node with largest minimal predistance d ¼ 0.95; note that this is
neither the point with the next highest overlap, nor the point with
the largest metric distance. Point 1 (Ω ¼ 0.82) is the actual node
after recentering, and the cluster coverage is 0.8 (points 2 and 3
are both connected to point 1). At the third iteration, point 4 is the
identified node with largest minimal predistance d ¼ 0.88 (to
point 0), and the algorithm terminates with a cluster coverage of
1. Color grouping of points indicates the final clusters for
each node.
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initial semilatus rectum is chosen as p0 ¼ 11M for all
sources (to accommodate retrograde inspirals), each is
assumed to be observed for T ¼ 2 y, i.e., their evolution
is extended backward in time from the reference time t0 ¼
0 if they plunge before t0 þ T. Near-spherical inspirals with
e0 ≈ 0 are excluded from the analysis for technical reasons,
as well as near-equatorial (cos ι ≈�1) or near-polar
(cos ι ≈ 0) ones.
Following M1 from [4], the density for M0 is almost

independent of redshift and thus taken to be [67]

pðM0Þ ∝ ðM0Þ−1.31ΔM0 ðM0Þ; ð32Þ

where 1Δθi denotes the indicator function of Δθi. Finally,
for the redshift itself, we have [68]

pðzÞ ∝ DðzÞ2 _σðzÞ
ð1þ zÞ3HðzÞ 1ΔzðzÞ; ð33Þ

where _σðzÞ is the EMRI event rate per unit proper time, per
unit comoving volume. The variation of _σ is neglected in
our model, since it is highly uncertain to begin with, and is
also expected to be nearly constant at low redshifts of z≲ 2
(where most detectable events occur).

B. Monte Carlo analysis

Let us consider a set of N detectable EMRIs, obtained in
practice by applying a minimum-SNR cutoff to a suffi-
ciently large set of ≥N sources that is distributed according
to the population model in Sec. III A. Each simulated
source is described by a random draw from the joint
distribution in Table I; its associated optimal SNR is
computed using the AAK–TDI waveform model [35] from
Sec. II A and the full inner product (8) with a noise model
corresponding to the LISA science requirements. We adopt
the standard SNR-threshold value of 20 [17], which results

in a detection efficiency of 0.06. A set of N ¼ 200
detectable sources is simulated for this study, as a middle
ground between estimates of ∼1 and ∼104 such sources
from a range of astrophysical models [4,17]. Their signals
are visualized as a population in Fig. 5, where only the time
evolution of the representative (dominant) frequency ωϕ=π
is plotted for each signal.
For this (and any) set of N independent and identically

distributed EMRIs, we may define a vector-valued statistic
vN of pairwise overlaps, i.e., vN is a vector comprising
Np ≔ NðN − 1Þ=2Þ components, each taking a value
within the interval ½−1; 1�. Note the important conceptual
distinction between the components of vN and the sequence
of overlaps for Np pairs of independent identically distrib-
uted (IID) sources; the latter is itself a set of IID random
variables, but does not relate to the question at hand (except
in the trivial case N ¼ 2). The sampling distribution of the
statistic vN is intractable—analytically and even numeri-
cally for modest N. Nevertheless, a single realization
of vN still provides some insight into the matter of
EMRI self-confusion. Figure 6 shows a histogram of the

FIG. 5. Time evolution of representative frequency ωϕ=π over
two years, for 200 detectable sources drawn from the population
model in Sec. III A with a SNR threshold of 20.

TABLE I. Source-parameter extents and distributions for the
simple astrophysical-population model in Sec. III A.

θi Δθi Distribution

μ0 f10g Fixed
M0 ½3; 30� × 105 Eq. (32)
a=M f0.99g Fixed
p0=M f11g Fixed
e0 (0, 0.2] Uniform
cos ι ð−1; 0Þ ∪ ð0; 1Þ Uniform
Φ0 ½−π; π� Uniform
γ0 ½−π; π� Uniform
α0 ½−π; π� Uniform
cos θK ð−1; 1Þ Uniform
ϕK ½−π; π� Uniform
cos θS ð−1; 1Þ Uniform
ϕS ½−π; π� Uniform
z (0, 4.5] Eq. (33)

FIG. 6. Histogram of the 19900 pairwise-overlap values for the
200 detectable signals depicted in Fig. 5.
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Np ¼ 19900 pairwise-overlap values for our set of 200
sources. (We reiterate that this histogram cannot be
construed as a sampling distribution since the components
of vN are not IID.) As might be expected, the set of overlaps
is tightly and symmetrically centered about zero, with a
“standard deviation” of 0.001 and a maximum absolute
value of 0.012. This addresses the first part of our question:
in a set of ≈200 detectable sources, we expect no two of
their signals to have a ≳1% resemblance.
The above root-mean-square overlap value of 0.001 may

be explained by the following order-of-magnitude estimate.
First, idealize each of the EMRI signals visualized in Fig. 5
as comprising only its depicted dominant harmonic mode
(2,0,0), with time-evolving frequency f ≔ ωϕ=π. Pairs of
signals whose frequency trajectories do not cross have an
approximately vanishing overlap, while the overlap value
for those that do cross is largely determined by the length of
time that both signals are concurrently oscillating at similar
frequencies, i.e., some interval centered on the instant of
crossing. This duration is given by τ ≈ jΔ _fj−1=2, where Δ _f
is the difference in the frequency derivatives of the two
signals at the crossing time. At leading order in a PN
expansion, _f for a binary-inspiral signal is ð3=8Þðf=TmÞ,
where Tm (≲T ¼ 2 y) is the time to merger from frequency
f. For a typical (crossing) pair of signals in Fig. 5, Δ _f then
falls within an order of magnitude of ð3=8Þðfc=TÞ
(where fc is the crossing frequency), so let us simply
say that jΔ _fj ≈ fc=T. Finally, the overlap is approximately
τ=T ≈ ðfcTÞ−1=2. Since fc falls between 10−3 Hz and
10−2 Hz for the vast majority of signal pairs in Fig. 5,
we recover an estimated overlap of ∼10−3 as expected.
For the second part of our question, it is useful to form

the matrix MN of pairwise overlaps (including self-
overlaps) for a set ofN sources. Thismatrix has unit diagonal
elements and off-diagonal elements corresponding to the
components of vN . Thus it is effectively a correlation matrix
for the set of sources (viewed as random variables), and
various standard matrix norms can provide different sum-
mary notions of the overall correlations among the set; e.g.,
the Frobenius norm jj·jjF (the vector norm of the vectorized
matrix), or the spectral norm jj·jjS (the largest eigenvalue of
the matrix). We use such norms to examine the behavior of
MN as sources are incrementally added to a starting pop-
ulation, whichwe take to be a subset of 30 detectable sources
from our full set of 200. More precisely, we consider nested
subsets of our full set such that MN is a submatrix ofMNþ1

for N ranging from 30 to 199.
An adjusted Frobenius norm ðjjMN jj2F − NÞ1=2 (essen-

tially just jvN j) is plotted in the top panel of Fig. 7, as a
function of N from 30 to 200. We bound the observed
sequence of norms by two other sequences for hypothetical
MN , where the root mean squares of the off-diagonal
terms are held constant at f0.9; 1.1g × 10−3. A linear trend
is evident, which indicates that the root mean square of

pairwise overlaps remains approximately constant at
≈0.001 as the number of sources is raised from 30 to
200. As N → ∞, linear scaling will not hold as the set of
signals saturates the (astrophysically restricted) signal
space. This can be made more intuitive by examining
the spectral norm of MN (bottom panel of Fig. 7), which
would be unity for a completely uncorrelated set of sources.
A large jump in jjMN jjS occurs when a signal with high
overlap against any of the previous ones is added to the
set. This occurrence naturally becomes more frequent as
N → ∞ and is what drives the eventual superlinear scaling
of overall correlation against N. The value of N at which
superlinear scaling becomes an issue (say, leading to a root-
mean-square overlap of≳0.1) remains undetermined due to
computational constraints, although we conjecture that
such a scenario will not arise for astrophysically relevant
values of N ≲ 104.

C. Discussion

As context, we now briefly describe how the present
work relates to some previous studies on EMRI confusion
noise. The spectral density of the effective noise from
unresolvable EMRI signals in LISA data was first estimated
in [20], in order to quantify its impact on LISA’s ability to
detect sources of other types—principally, Galactic binaries

FIG. 7. Matrix norms for the pairwise overlaps among N of the
200 detectable signals in Fig. 5, for 30 ≤ N ≤ 200. Top: Adjusted
Frobenius norm, indicating that the root-mean-square overlap is
approximately constant at ≈0.001. Bottom: Spectral norm,
illustrating how the overall correlation of the set is driven by
individual signals. The largest jump coincides with the addition
of a signal that raises the maximum absolute overlap among the
set (dashed purple line).
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and massive-black-hole mergers. Since EMRI event rates as
functions of the source parameters were (and remain)
poorly understood, the analysis relied on assumptions
based on the theoretical models available at the time; the
resultant noise curve was then multiplied by a range of
overall rate factors (for different classes of compact objects
from white dwarfs to black holes) to give approximate
bounds on the potential impact of an EMRI confusion
background. The main conclusion of [20] is that unresolv-
able EMRIs will likely be a significant contributor to
LISA’s noise budget and, for the highest event rates, might
actually dominate the total noise at frequencies where
detector noise is minimal.
More recently, an updated analysis of EMRI confusion

noise for LISAwas performed with several key differences
[21]: (i) the current LISA baseline noise curve is used, with
a trough that is located at higher frequencies; (ii) the
assumed scaling of event rates with the central mass is
based on newer numerical simulations; and (iii) the EMRI
confusion noise curve is computed for a range of astro-
physical population models in the literature. While the
updated noise curves differ in shape from that found in
[20], the study arrives at the same basic conclusion: EMRI
confusion noise will be significant for LISA and might be
dominant at its most sensitive frequencies if EMRI event
rates are on the high end of estimates. In both [20,21], the
stochastic process nEMRI that describes the sum of unre-
solvable signals from an astrophysical EMRI background is
treated as approximately Gaussian. This assumption of
near-Gaussianity is largely justified by the study in [22];
there, the Edgeworth expansion and large-deviations theory
are used to show that the distribution of the cross-corre-
lation between nEMRI and a Galactic-binary or massive-
black-hole-merger signal template is indeed very close to
Gaussian.
The above papers all deal with sums of N unresolvable

EMRI signals and their impact on searches for resolvable
signals. In our confusion study, we are instead concerned
with the distinguishability of a set of N resolvable signals,
which can be described summarily by the root mean square
of their pairwise overlaps. These two concepts are of course
related, but quite distinct. To draw a connection between
them, consider the mean square of the unnormalized cross-
correlations (rather than overlaps) between some normal-
ized template and N unresolvable signals with some
astrophysical distribution of subthreshold SNRs. This
quantity times N is then approximately the variance in
the detection SNR of that template due to the associated
EMRI confusion noise and thus will be significant if it is
≳1. We do not include such an analysis in this work,
although sums ofN resolvable signals are explicitly studied
in Sec. VA 2. There, however, the focus is on how often
such sums have a higher cross-correlation with some
completely separate template than with any individual
template in the sum.

IV. DEGENERACY STUDY

In this study, we examine a single representative signal
injection with intrinsic source parameters given by Eq. (6)
and delve deeply into the tail structure of its associated
posterior distribution. The bulk properties of secondaries in
the posterior will no doubt vary for different injections
across the parameter space. Instead of attempting to
characterize the entire statistical manifold of posterior
distributions (which will provide conclusions that are
model specific to a greater extent), we focus here on using
our sole posterior to build up general strategies for EMRI
posterior mapping. This is largely uncharted territory; for
example, even visualizing the local posterior around
secondaries turns out to be quite counterintuitive (see
Secs. IVA 4 and IVA 5). Also, our results indicate that
our original aim of localizing and counting secondaries (in
order to estimate their coverage of parameter space) is not
particularly well posed. Nevertheless, we expect that the
qualitative statements we are able to make from this study
will, in general, be model independent and thus represen-
tative of the EMRI signal space. Various arguments to that
end are put forth in Sec. IV B.

A. Mapping analysis

We restrict our analysis to the six intrinsic parameters,

θ ¼ ðlg μ; lg M; a=M; p0=M; e0; cos ιÞ; ð34Þ

and the associated six-dimensional subspaces of Θ and S,
for fixed values of the remaining parameters. (Note the
reparametrization ðμ;M; ιÞ → ðlg μ; lg M; cos ιÞ.) This is
motivated partly by computational constraints and partly
by our initial focus on the degeneracy in frequency
evolution—which is most strongly determined by these
six parameters. We have verified from a sampling of the
full-dimensional (approximate) posterior that local cova-
riances between the sets of intrinsic and extrinsic EMRI
parameters are low, at least in the case of the simple long-
wavelength response used here. This is also observed in a
more recent but unrelated EMRI study [69]. In other words,
the conditional posterior for the intrinsic parameters (given
fixed extrinsic parameters) is locally not too dissimilar from
the marginal posterior. Nonlocally, additional degrees of
degeneracy might arise due to the interplay of intrinsic and
extrinsic parameters; this possibility is discussed briefly in
Sec. IV B 1.
The three phase angles ðΦ0; γ0; α0Þ are also excluded

from consideration in our mapping analysis. With only the
four strong harmonic modes from Eq. (7), the stripped-
down AAK model loses all sidebands due to Lense-
Thirring precession and thus its ability to constrain α0.
For simplicity, we set the other two phase angles to zero in
the injection and all templates, such that the phasing in all
signals lines up at time t0 ¼ 0 (the initial time in the
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degeneracy study). This alignment essentially forces any
crossing of mode phasing between two signals to occur at
the earliest time, which generally maximizes their overlap
over ðΦ0; γ0Þ—even if the signals are nondegenerate since
the frequencies for the four modes (7) take on their minimal
values at that time. An inclusion of ðΦ0; γ0Þ in the analysis
would likely reveal a small degree of additional degeneracy
in those parameter directions, but this would not signifi-
cantly alter the intrinsic degeneracy observed here (as
initial phasing does not affect frequency evolution in this
simple model).
We explore the signal space over a variety of hyper-

rectangular regions in (the six-dimensional subspace of) Θ,
centered on θinj from Eq. (6). To be explicit here, the
injection parameters in the form of Eq. (34) are

θinj ¼ ð1; 6; 0.5; 9.5; 0.2; 0.866Þ; ð35Þ

with the signal renormalized to an optimal SNR of 20.
Results are presented for three regions in particular: a
starting region around the primary posterior peak, another
with 10 times its extent in each parameter direction, and a
third with ∼100 times its extent. In the latter two regions,
we obtain a set of representative locations for secondary
peaks in the overlap surface; from the line of reasoning
given in Sec. II C, these correspond almost exactly to
secondaries in the actual posterior for the full likelihood
(with a flat or diffuse prior). Two high-overlap secondaries
are further singled out as case studies, where we directly
map out the (approximate) posterior in their vicinity,
instead of the overlap surface. A summary plot that depicts
the relative scales and locations for all of these analyses is
provided at the end of Sec. IVA.
Throughout the degeneracy study, we employ a combi-

nation of different implementations for the two main
classes of stochastic sampling algorithms used in GW data
analysis: nested sampling (as implemented in PolyChord
[57] and Dynesty [58]) and parallel-tempering MCMC
(as implemented in PTMCMCSampler [70]). The primary
motivation for this redundancy is to provide a cross-
algorithm and cross-implementation validation of our
sampling results, where feasible. For the posterior sampling
(using Lapp) in Secs. IVA 1, IVA 4, and IVA 5, we run the
samplers to the point of convergence—typically deter-
mined by built-in stopping criteria, but also easily verified
through cross-sampler checks. Convergence to the target
distribution is less relevant for the exploratory searches in
Secs. IVA 2 and IVA 3. There we simply seek to obtain
∼105−106 independent samples from Lexpl, a large fraction
of which correspond to signals with Ωðhinj; ·Þ > 0.5 [since
that is the threshold used in Eq. (27)]. For the most
extensive searches in Sec. IVA 3, this can require ≳109

likelihood evaluations.

1. Starting region: The posterior bulk

Our starting region R0 is chosen to encompass the
Gaussian-analogous 2-σ contours of the primary posterior
peak, with some room. More precisely, we consider a
“prior” with probability density proportional to the indi-
cator function on the Cartesian product of intervals,

R0 ≔
Y
i

½θinj;i − δθi=2; θinj;i þ δθi=2�; ð36Þ

where the half-extents δθ=2 are 2–3 times larger than the
sample standard deviations. (This is then only a prior in
practice but not in principle, as it is defined post hoc.) At an
SNR of 20, suitable values for the prior extents are

δθ ¼ ð0.5; 1; 3; 15; 0.3; 5Þ × 10−3: ð37Þ

The Euclidean volume enclosed within R0 is a minuscule
fraction of the six-dimensional parameter subspace:≲10−18

since we have δθi=Δθi ≲ 10−3 for global extents Δθi
corresponding to the range of LISA-relevant signals.
The sampling of Lapp over the region R0 is extremely

straightforward, as the locality condition in Eq. (16)
ensures that Lapp is near-Gaussian. A direct visual exami-
nation of the conditional densities Lappðθijθj≠i ¼ θinj;jÞ
reveals that the non-Gaussianity takes the form of a flatter
peak and heavier tails, which is largely due to the usage of
ð·j·Þ rather than h·j·i; we refer the reader again to Fig. 3 for
intuition about why this is the case. The traditional way of
visualizing a sampled (d > 2)-dimensional posterior dis-
tribution is simply to examine plots of its dðd − 1Þ=2
bivariate marginal distributions (and the d univariate
marginals). In Fig. 8, we instead characterize the sampled
posterior using four visual indicators: (i) the maximum
a posteriori (MAP) estimate; (ii) level sets of the marginal
posterior densities pij, defined analogously to the 1-σ level
set for a bivariate Gaussian density:

n
ðθi; θjÞ∶pijðθi; θjÞ ¼ e−1=2max

ðθi;θjÞ
pijðθi; θjÞ

o
; ð38Þ

(iii) the sample mean and covariance; and (iv) a level set of
the joint posterior density p, defined analogously to the 1-σ
level set for a six-dimensional Gaussian density. This last
indicator is itself five-dimensional, so it is more conven-
iently represented by the projections of posterior samples
within the corresponding superlevel set

n
θ∶pðθÞ > e−1=2max

θ
pðθÞ

o
: ð39Þ

This whole exercise may seem somewhat trivial, as all
four visual indicators will coincide exactly when p
describes a multivariate Gaussian—the MAP estimate with
the sample mean, the marginal level sets with the 1-σ
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sample covariance ellipses, and the convex hulls of the
projected superlevel set with said ellipses. The indicators
do, however, provide a useful way of visualizing high-
dimensional non-Gaussian posteriors, especially when the
deviation from Gaussianity is severe (see Secs. IVA 4 and
IVA 5). For the posterior over R0, the incongruence of the
final indicator clearly highlights the non-Gaussianity that

would not be immediately apparent from examining tradi-
tional contour plots for the marginal distributions (essen-
tially, the second indicator). Nevertheless, the posterior
bulk appears to be relatively well behaved, i.e., unimodal as
expected. We verify this by applying our clustering
algorithm to the posterior samples in the superlevel set
(the red points in Fig. 8). All samples are not just connected

FIG. 8. Various visual indicators of posterior distribution over R0 (around the posterior bulk), computed using the approximate
likelihood and a flat hyperrectangular prior. Black triangle: MAP estimate (this agrees with the injection parameters at the prior
centroid). Solid black curves: level sets (38) of the marginal posterior densities pij (1-σ level for a bivariate Gaussian distribution).
Dashed black ellipses: 1-σ ellipses corresponding to projections of the sample mean and covariance. Red points: projections of posterior
samples in the superlevel set (39) of the joint posterior density p (1-σ level for a six-dimensional Gaussian distribution). All four visual
indicators will coincide exactly for a multivariate Gaussian distribution.
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to the MAP point, but strictly connected with a maximal
predistance of zero.

2. Starting region ×106

We now consider the Cartesian product of intervals

R1 ≔
Y
i

½θinj;i − 5δθi; θinj;i þ 5δθi�; ð40Þ

which is a six-dimensional hyper-rectangle with 106 times
the Euclidean volume of R0. It is useful to examine the
sampling of posteriors over this region for the various
likelihood functions in Sec. II C. Even in this intermediate
region, large-scale SNR gradients are already manifest in
Lapp; this shifts the posterior bulk toward certain edges of
the prior (and away from the injection parameters, even if
the sampler manages to “find” that point along the way).
When sampling from Lmatch over R1, the posterior bulk
does remain tightly centered on the injection parameters,
and the samplers we use are able to locate it without any
fine-tuning. However, no information about any seconda-
ries in the region can be gleaned from the sampled
posterior, even for Lmatch at higher annealing temperatures
(as discussed in Sec. II C).
By sampling from the exploratory likelihood Lexpl, we

obtain a large set of points in R1 whose associated signals
have a high overlap against the injection. We consider only
the subset of points with approximate overlaps of >0.5 for
clustering. The approximate overlap typically overesti-
mates full overlaps that are >0.1 by a factor of ≲3, such
that these points actually have full overlaps of ≳0.25
(which is still reasonably considered “non-negligible”).
Since we know the cluster content inR0, any points that fall
in the previously analyzed region are also removed; this is
done in Sec. IVA 3 as well, where R1 is excised instead.
We find it convenient to perform such an excision after
sampling, rather than through a modification of the prior.
The resultant set of N ≳ 105 points is generally still too
large for our clustering algorithm to handle in an acceptable
time frame—although the computational cost scales as
OðNÞ, each iteration involves template generation and thus
is more expensive than a typical step in a standard
algorithm. We further distill the set to exactly N ¼ 104

points, by sorting it in order of overlap and then down-
sampling the sequence (such that the distribution of the data
is loosely preserved).
In the region R1 (minus R0), the clustering algorithm

identifies 30 secondary nodes, with full overlap values
ranging from 0.45 to 0.72. The locations of these nodes,
projected onto each of the 15 parameter-pair planes, are
plotted in Fig. 9. It is not particularly useful to present the
actual clusters associated with the nodes, due to visual
congestion. To give a flavor of the overlap surface in this
region (and some assurance that the nodes are indeed

adequate representations of local overlap maxima), we
instead consider the six pairwise connections l among the
injection parameters and the three nodes in R1 with
the highest overlap values. These connections are shown
in the inset of Fig. 9, with an increased resolution of l ¼ 50
(see Sec. II D) for visualization purposes.
To verify the robustness of our results against the

stochastic error in sampling, we repeat the analysis on
the output of a second sampling run and compare the first
set (I) of 30 nodes to the new set (II). Set II turns out to have
the exact same count; surprisingly, however, the locations
of its nodes do not match up well with those in set I. We
seek to pair up nodes in the two sets and to determine which
pairs are more “distinct.” This is done by computing the
distance matrix of pairwise predistances between two sets
of points—not to be confused with the predistance matrix
from the clustering algorithm, which is essentially a
(partial) distance matrix between a single set of points
and itself. With the distance matrix between sets I and II in
hand (Fig. 10; left panel), it is straightforward to identify
pairs of nodes that are in one-to-one correspondence with
each other. More precisely, if node a from set I has node b
as its closest node in set II, then we demand that node a is
also the closest node in set I to node b. There are 19 such
pairs (which we index in decreasing order of set-I overlap,
such that the set-I point in pair 0 has the highest overlap
value in set I). The distance matrix may then be trimmed
accordingly and sorted by pair index, to visually indicate
the interconnectivity among the reduced set of node pairs
(Fig. 10; right panel).
The locations of the 19 node pairs and intrapair con-

nections are plotted in the top panel of Fig. 11, after
projection onto the mass-mass plane. Another surprise at
this stage is the variety of orientations and length scales on
display; all of the pairs are strictly or nearly strictly
connected (see diagonal elements of reduced distance
matrix in Fig. 10), indicating that the local maxima they
represent also take on an assortment of shapes and sizes.
While these pairs clearly correspond to secondaries in
accordance with our search criteria, we do not find any that
can be cleanly localized—i.e., where the posterior peak is
contained exclusively in a topologically connected subset
of parameter space. We will revisit the problem of trying to
localize secondaries in Secs. IVA 4 and IVA 5. For now,
we examine the connections for a couple of example node
pairs, extended outward until the (approximate) overlap
Ωðhinj; ·Þ is ≈0. These extended connections are shown in
the middle and bottom panels of Fig. 11 for both the
approximate and full overlaps, and they provide some
intuition (albeit cross sectional) as to the structure of the
overlap surface at and around secondaries.

3. Starting region ×1012 (and beyond)

A similar sampling and clustering analysis is performed
for the Cartesian product of intervals,
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R2 ≔
Y
i

½θinj;i − 50 δθi; θinj;i þ 50 δθi�: ð41Þ

Note thatR2 is truncated by the upper bound cos ι ¼ 1, and
thus the enclosed volume is ≲1012 times that ofR0. In this
large region, the direct sampling of Lmatch now presents
difficulties for the samplers; they are unable to locate the
posterior bulk either at termination, or after ∼109 likelihood
evaluations. This result likely indicates the rough scale at

which posterior sampling can become challenging without
prior localization of the source parameters (even if large-
scale SNR gradients are accounted for)—although it may
be possible to improve the performance of specific sam-
plers through further tuning.
As in Sec. IVA 2, the previous analysis region (nowR1)

is excised after sampling to avoid double-counting, and the
data set for clustering is trimmed to 104 points with
approximate overlaps of >0.5. A total of 675 secondary

FIG. 9. Locations of 30 secondary nodes (red points) identified in the intermediate region R1nR0. Relative overlap values at these
nodes are indicated by color saturation. The black square and ellipse in each panel corresponds to the plot range and dashed ellipse in
each panel of Fig. 8. Inset: the six pairwise connections among the injection parameters and the three highest-overlap nodes inR1, i.e.,
the overlap value against the injection along the corresponding colored lines in each panel.
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nodes are identified in the region R2nR1, with full overlap
values ranging from 0.23 to 0.76. Their projected locations
are shown in Fig. 12. The broad correlation structure of
secondaries in the large region—as visually indicated by
the plane convex hull for each projection of the set—
generally does not resemble that observed in Fig. 9, or the
local structure in Fig. 8 (one exception being the strong
correlation between lgM and p0=M). Another notable
feature in Fig. 12 is that the distribution of nodes appears
somewhat “patchy,” although this may be attributable to
imperfect sampling rather than the actual absence of
secondaries in some of the empty regions.
With a large set of secondary nodes from the combined

analysis in R1;2, it is natural to examine the relationship
between overlap (against the injection) and distance (from
the injection parameters) for any discernible trends. Instead
of using the Euclidean distance in parameter space Θ or the
(computationally intractable) geodesic distance in signal
space S, we consider the distance with respect to the
pullback metric at the injection parameters. This is given
componentwise by Eq. (15), where the Fisher information
IðθinjÞ is in turn approximated by the sample covariance of
the posterior bulk in Sec. IVA 1. A plot of overlap against
the injection-metric distance is shown in the inset of
Fig. 12, for the 30 set-I nodes in R1nR0 and the 675
nodes in R2nR1. There is a slight negative correlation
between overlap and distance, as well as between number
density and distance; however, these trends are not par-
ticularly pronounced (and even less so if the Euclidean
distance is used).
The results from the analysis of R2 are admittedly less

reliable than those for R1 since we do not (and cannot)
increase sampling resolution by anywhere close to the
factor of 106 that is required to compensate for the larger
volume. Even if we were able to, the size of the data set for

FIG. 11. Trimmed and sorted pairs from sets I (red) and II
(blue) of secondary nodes identified in R1. Relative overlap
values at these nodes are indicated by color saturation. Top:
projection of node-pair locations onto the ðlg μ; lg MÞ plane
(corresponding to Fig. 9, second row, second panel). Middle:
extended connection for pair 2, which has the third-highest set-I
overlap value. Bottom: extended connection for pair 15, which
has the largest extent in the mass-mass plane.

FIG. 10. Distance matrix between the two sets of secondary
nodes identified in R1. Left: raw sets with 30 nodes each. Right:
trimmed and sorted sets with 19 node pairs.
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clustering would also have to be raised accordingly for
high-resolution sampling to be meaningful. As a heuristic
assessment of sampling error and its increased impact in
extended regions, we briefly discuss our analysis of a final
region: the Cartesian product of intervals,

R3 ≔
Y
i

½θinj;i − 100 δθi; θinj;i þ 100 δθi�; ð42Þ

whose results we do not present explicitly here (although
we do use one of the identified secondary nodes as a case
study in Sec. IVA 4). Two identically initialized sampling
runs are conducted for Lexpl over this region, each with
≳106 independent samples drawn after ≳109 likelihood
evaluations. It is immediately clear from their density plots
that the two sets of posterior samples are concentrated in
very different subregions and thus that clustering will give
inconsistent results as well. This also points to a systematic

FIG. 12. Locations of 675 secondary nodes (green points) identified in the large regionR2nR1. Relative overlap values at these nodes
are indicated by color saturation. The red rectangle in each panel corresponds to the plot range in each panel of Fig. 9. Inset: full overlap
values for these nodes, plotted against their distance from the injection parameters (black point) with respect to the pullback (Fisher)
metric there. The set-I nodes shown in Fig. 9 (red points) are also included in this plot.
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undercounting of clusters, which worsens as the analysis
region is expanded. Nevertheless, the convex hulls of the
raw posterior samples from the two runs are similar in both
shape and volume (∼10−6 relative to R3), which gives a
more reliable indication of where secondaries are absent, as
well as a very conservative upper bound on their coverage
of parameter space.

4. Case study A

We now examine in detail the actual posterior surface
over the vicinity of an example secondary node in R3—
specifically, the node with the highest overlap value found
outsideR2. Relative to θinj from Eq. (35), this node (labeled
A) is given by

θA − θinj ¼ ð−30; 13; 228;−53; 13;−482Þ × 10−3: ð43Þ

Its associated signal has an approximate overlap of 0.81
against the injection, but a full overlap value of only 0.39.
This is nevertheless a significant example of degeneracy,
especially considering its large injection-metric distance
from the injection parameters (≳2 × 105), and it is not
inconceivable for an uninformed search algorithm to flag
the secondary represented by node A as a separate
candidate source (with a detection SNR of ≈0.4ρinj).
The approximate likelihood Lapp is sampled over a flat-

prior region RA centered on θA, with the same extents as
R0. A traditional inspection of the marginal posterior
densities, either of their Gaussian-analogous 1-σ contours
(the solid black curves in Fig. 13) or their density plots (not
shown), presents nothing particularly out of the ordinary;
the posterior might be construed at this stage as a
moderately deformed Gaussian distribution, centered on
a point that is close to node A. We find, however, that any
attempt to localize this (or any other) secondary by simply
enlarging and recentering the prior region—“chasing” the
secondary, as we not-so-affectionately term it—turns out to
be futile. Hints as to why this is the case are provided
in Fig. 13 by the other visual indicators introduced in
Sec. IVA 1. While the sample mean and covariance are at
least somewhat consistent with the marginal 1-σ contours,
the projections of the superlevel set (points within the
Gaussian-analogous 1-σ contour for the joint posterior) are
not. The MAP estimate also falls in a location that defies
reasonable prediction.
Our findings seem to indicate that secondary A cannot be

localized; i.e., there does not exist a topologically con-
nected subset of parameter space U ∋ θA with some
neighborhood V ⊃ U such that the posterior probability
is approximately zero over VnU. We do not make this
argument rigorous, but offer an anecdotally supported
conjecture that it holds generally for all secondaries, as
well as a partial explanation for the phenomenon (see
Sec. IV B 2). Another important qualitative distinction
between the primary posterior peak and a typical secondary

might be the presence of fine structure. The posterior
surface over the region RA is not quite unimodal and
appears to comprise multiple local maxima that are
strongly, but not strictly, connected to one another. This
is inferred from the fact that the maximal predistance
between node A and all posterior samples in the superlevel
set is ≈0.1. Node A itself is at least a stationary point of the
posterior, from visual examination of the conditional
densities Lappðθijθj≠i ¼ θA;jÞ, but we are unable to rule
out the saddle point case due to severe instability in the
numerical derivatives.
As we enlarge our field of view of the secondary A by a

factor of eight (i.e., sample from Lapp over a larger flat-prior
region R0

A with extents 8 δθ), we encompass additional
local maxima that are now disconnected to one another. The
existence and proximity of these other secondaries is likely
the main impediment to the localization of secondary A;
indeed, their presence cannot even be discerned from the
traditional approach of considering only the marginal
posteriors (see solid black curves in Fig. 14). To resolve
and visualize the multiple secondaries in this region, we
again apply our clustering algorithm to all samples in the
superlevel set of the posterior over R0

A. Five nodes
(including node A) are identified, and their associated
clusters are shown grouped by color in Fig. 14. These
clusters do not exhibit a high degree of order in their spatial
structure and are also underpopulated due to increased
interconnectivity, i.e., many points in the superlevel set are
connected to more than one node, and thus do not appear in
any cluster by definition. Nevertheless, the clustering
analysis provides clear evidence of additional maxima in
the region (see inset of Fig. 14) and demonstrates how
secondaries can congeal into larger ones especially when
viewed after projection (marginalization).

5. Case study B

For our second case study, we select one of the highest-
overlap nodes found in the region R2nR1. Relative to θinj
from Eq. (35), this node (labeled B) is given by

θB − θinj ¼ ð3;−12;−54; 170; 1; 64Þ × 10−3: ð44Þ

It has a full (approximate) overlap value of 0.72 (0.89), and
its injection-metric distance from the injection parameters
is ≈8000. The analysis in Sec. IVA 4 is repeated around
θB—first in a small regionRB with the same size asR0 and
RA (Fig. 15), then in a larger regionR0

B with the same size
as R0

A (Fig. 16).
As its overlap value would indicate, the signal template

at node B strongly resembles the signal injection. The two
signals can no longer be distinguished in a plot analogous
to the inset of Fig. 13, and their dominant (2,0,0) modes
remain “in phase” over the full analysis duration (see inset
of Fig. 15). This increased resemblance over node A might
partly explain why the visual indicators in Fig. 15 are
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slightly less inconsistent with one another than in Fig. 13.
However, secondary B is still distinctly non-Gaussian, and
like secondary A it resists all attempts at localization. Fine
structure is present here as well—for all samples in the
superlevel set of the posterior over RB, the maximal

predistance from node B is ≈0.1. For the posterior over
R0

B, we see once again from Fig. 16 that the marginal
densities show only a single contiguous secondary peak
without any hints of internal structure. Clustering reveals
seven nodes (including node B) in this region; more

FIG. 13. Various visual indicators of posterior distribution over RA (a small region around secondary node A), computed using the
approximate likelihood and a flat hyper-rectangular prior. The prior extents are the same as in Fig. 8. Black square: node A (the prior
centroid). Black triangle: MAP estimate. Solid black curves: level sets (38) of the marginal posterior densities pij (1-σ level for a
bivariate Gaussian distribution). Dashed black ellipses: 1-σ ellipses corresponding to projections of the sample mean and covariance.
Red points: projections of posterior samples in the superlevel set (39) of the joint posterior density p (1-σ level for a six-dimensional
Gaussian distribution). All four visual indicators will coincide exactly for a multivariate Gaussian distribution. Inset: comparison of
phase trajectories φjðtÞ between the signal injection and the signal template at node A. Only the dominant (2,0,0) modes (third from top)
are in phase for a substantial fraction of the analysis duration.
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interestingly, it is now possible to identify clear patterns in
the shapes, sizes, and relative locations of the associated
clusters. The general existence of ordered structure in the
posterior surface is expected a priori, and its verification in
this case study also serves to demonstrate the efficacy of
our clustering algorithm.

6. Summary plot

The relative scales of the various subanalyses in
Sec. IVA are depicted by the summary plot of Fig. 17,
where the starting region R0 (along with RA;B) is unre-
solvable and represented as a point. We draw particular
attention to the secondary associated with pair 15 from

FIG. 14. Various visual indicators of posterior distribution over R0
A (a larger region around secondary node A), computed using the

approximate likelihood and a flat hyper-rectangular prior. The blue square in each panel corresponds to the plot range in each panel of
Fig. 13. Black square: node A (the prior centroid). Black points: representative nodes for four other secondaries identified inR0

A. Solid
black curves: level sets (38) of the marginal posterior densities pij. Dashed black ellipses: 1-σ ellipses corresponding to projections of
the sample mean and covariance. Colored points: clusters of posterior samples in the superlevel set (39) of the joint posterior density p.
These are the subsets of samples that are connected to each node and not connected to any of the other nodes. Inset: connection between
node A and the highest-overlap node in R0

A, i.e., the overlap value against the injection along the black line in each panel.
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Sec. IVA 2 (see bottom panel of Fig. 11). This is the pair of
nodes inR1 with the largest separation—overtly in the mass
parameters, as shown in the top panel of Fig. 11, but inmany
other parameter pairs as well. Its extended connection
indicates at least a ridgelike region of high posterior
probability relative to the immediate neighborhood and

possibly one with non-negligible width (which cannot be
determined from the connection alone). As seen in Fig. 17,
this secondary actually extends well beyondR1 and up to a
significant fraction of R2.
Our findings in Sec. IVA are clear evidence of highly

nontrivial degeneracy in the EMRI signal space—this

FIG. 15. Various visual indicators of posterior distribution over RB (a small region around secondary node B), computed using the
approximate likelihood and a flat hyper-rectangular prior. The prior extents are the same as in Figs. 8 and 13. Black square: node B (the
prior centroid). Black triangle: MAP estimate. Solid black curves: level sets (38) of the marginal posterior densities pij (1-σ level for a
bivariate Gaussian distribution). Dashed black ellipses: 1-σ ellipses corresponding to projections of the sample mean and covariance.
Red points: projections of posterior samples in the superlevel set (39) of the joint posterior density p (1-σ level for a six-dimensional
Gaussian distribution). All four visual indicators will coincide exactly for a multivariate Gaussian distribution. Inset: phase difference
between the dominant (2,0,0) modes of the signal injection and the signal template at node B, showing that the two signals are
approximately in phase over the full analysis duration.
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manifests as the presence of many posterior secondaries
with different shapes, sizes, and degrees of connectivity to
one another. While the tools we have brought to bear in the
study can provide insight into specific occurrences of
degeneracy, the cost and reliability of high-resolution
sampling (and the follow-up clustering of data) remains

the impediment to a fully global analysis. There is,
nevertheless, ample room for improvement, and the present
work provides the foundation for extended studies in the
future. Such studies will be especially relevant after
science-adequate waveform models become available
(see additional comments in Secs. IV B 3 and VII).

FIG. 16. Various visual indicators of posterior distribution over R0
B (a larger region around secondary node B), computed using the

approximate likelihood and a flat hyper-rectangular prior. The green square in each panel corresponds to the plot range in each panel of
Fig. 15. Black square: node B (the prior centroid). Black points: representative nodes for six other secondaries identified in R0

B. Solid
black curves: level sets (38) of the marginal posterior densities pij. Dashed black ellipses: 1-σ ellipses corresponding to projections of
the sample mean and covariance. Colored points: clusters of posterior samples in the superlevel set (39) of the joint posterior density p.
These are the subsets of samples that are connected to each node and not connected to any of the other nodes. Inset: connection between
node B and the highest-overlap node in R0

B, i.e., the overlap value against the injection along the black line in each panel.
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B. Interpretations

1. What actually causes degeneracy?

Broadly speaking, degeneracy arises when strong modes
in the signal injection and template have similar initial
frequencies and time derivatives of these frequencies, such
that their phasing is aligned for much of the analysis
duration. Treating the effect of initial phasing on degen-
eracy as negligible, we will find it useful to interpret any

given secondary (node) θsec as an approximate root for a
nonlinear system of equations in θ:

�
d
dt

�
k
ωjðt; θÞjt0 ≈

�
d
dt

�
k
ωj0 ðt; θinjÞjt0 ; ð45Þ

where ðj; j0Þ is a single fixed pair of general mode indices,
and the order k of the time derivative ranges from zero to
some small positive integer. (To be more precise, the

FIG. 17. Summary plot showing the various analysis subregions in Sec. IVA:R0 (black points, corresponding to the plot range in each
panel of Fig. 8);R1 (red rectangles, Fig. 9);R2 (green rectangles, Fig. 12);R3 (plot range in each panel here);RA (blue points, Fig. 13);
R0

A (blue rectangles, Fig. 14);RB (cyan points, Fig. 15);R0
B (cyan rectangles, Fig. 16). The red line in each panel indicates the projected

extent of the extended connection for node-pair 15 in Fig. 11.
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notation x ≈ y in Eq. (45) represents jx − yj < ϵ for some
given ϵðj; j0; kÞ ≪ 1.) In principle, a secondary might
satisfy a system specified by a range of pairs ðj; j0Þ, i.e.,
two or more modes are matched well between injection and
template. This is far less common in the signal space,
however, and the injection overlap is likely to be more
strongly determined by a single pair in any case.
From the results of our mapping analysis, we may draw

several anecdotal conclusions about which modes are
typically aligned between injection and template and to
what degree. For all of the 705 secondary nodes identified
in the large analysis region R2, it is the dominant mode in
both injection and template that is matched, i.e., j ¼ j0 ¼ 2
in Eq. (45), with j as defined just after Eq. (17). In other
words, only the azimuthal fundamental frequency ωϕ and
its time derivatives (up to at least second order) are
similar in the injection and these secondaries. As an
example, the fractional differences in ðd=dtÞkωr;θ;ϕ (hence-
forth denoted by overdots) with respect to the injection
values are shown in Fig. 18 for the case-study secondaries
A and B. A matched azimuthal mode of motion is a
sufficient condition for the existence of a strong secondary
(at least in the regime of low eccentricity and modest initial
separation, where j ¼ 2 is the dominant mode), and our
results seem to indicate that it is a necessary one as well.
This is not too surprising since our considered injection
has around 70–90% of its overall power in the dominant
mode and 10–20% in the second strongest (see Fig. 2); thus
the expected overlap from a perfect alignment of the
dominant modes is ≳0.7, versus ≲0.2 for the second-
strongest modes.
As highlighted in [24,25], it is also possible for sec-

ondaries to arise from the matching of different modes
between injection and template, i.e., j ≠ j0 in Eq. (45).
These are not encountered in our analysis—partly because
we do not include the sideband modes from Lense-Thirring
precession and partly because templates with a j ≠ j0
matching of modes tend to occur at greater separations
from the injection in parameter space (as the initial mode
frequencies are now different). It is also unclear whether
such secondaries will be more common than the type

observed here; while they admit additional possible com-
binations of matched modes, their prevalence really
depends on the measure of the set of approximate solutions
to Eq. (45). Nevertheless, the j ≠ j0 case (excluding strong
sidebands) is generally less of a factor for matched-SNR
searches because it does not cause secondaries that are very
pronounced. For our considered injection, the expected
overlap from a perfect alignment of the dominant and
second-strongest modes is ≲0.4.
When large-scale SNR gradients in the posterior surface

are taken into account, the relationship between the
strength of a secondary (relative to the posterior tails)
and its overlap against the injection is no longer straight-
forward. For example, consider two secondaries that
correspond to nodes θsec; θ0sec with the same injection-
overlap value, but different optimal SNRs ðρsec; ρ0secÞ ¼
ðρinj; 2ρinjÞ. The difference in log-likelihood between
θsec and a nearby tail region (where ρopt ≈ ρinj and
Ωðhinj; ·Þ ≈ 0) is half that of the difference between θ0sec
and its nearby tails (where ρopt ≈ 2ρinj). In other words,
low-overlap secondaries (be they from the j ¼ j0 or j ≠ j0
case) are more pronounced relative to the large-scale
gradients if they occur in regions of high SNR. This fact
becomes particularly relevant when extrinsic source param-
eters are added to the mix since they have a larger effect on
SNR relative to their measurement precision and thus might
lead to the (uneven) boosting of low-overlap secondaries
within a typical search region.

2. Why are secondaries non-Gaussian?

Speaking from our own experience, it is natural to hold
two related notions about the nature of EMRI degeneracy:
(i) posterior secondaries are unimodal peaks that can be
cleanly localized; and (ii) even congealed or deformed
secondaries can still be characterized as “Gaussian” around
a local maximum, with covariances given by the pullback
metric at that point (i.e., the Fisher information matrix for a
different posterior with that signal as the injection). This
intuition is largely inherited from the behavior of the
posterior bulk around the injection parameters—not just
for EMRIs, but for GW sources in general. Our mapping
analysis now provides empirical evidence that both notions
are invalid, and here we give a simple theoretical argument
to support this conclusion.
Recall from Sec. II that the standard GW log-likelihood

(22) with n ¼ 0 is proportional to the squared Euclidean
distance between signal injection and template in the data
space D (with equipped inner product h·j·i). For θ near the
global likelihood maximum θinj such that jδθinjj ≪ jθinjj
with δθinj ≔ θinj − θ, we have

ln LðθÞ ∝ hhinj − hðθÞjhinj − hðθÞi
¼ δθTinjI injδθinj þOðjδθinjj3Þ; ð46Þ

FIG. 18. Fractional differences in the fundamental frequencies
and their low-order time derivatives at time t0, for secondaries
A [Eq. (43)] and B [Eq. (44)] with respect to the injection.
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where the Fisher information I inj ≔ IðθinjÞ from Eq. (15)
is symmetric and positive definite. With an uninformative
prior, the posterior can thus be approximated as Gaussian
over a local neighborhood of θinj ∈ Θ.
An oft-overlooked subtlety is that Eq. (46) alone does

not explain why GW posteriors can strongly resemble
Gaussian distributions up to 1- or 2-σ. Over a sufficiently
small region around a maximum point, the likelihood
surface can be well described by only the leading-order
piece of Eq. (46); this does not guarantee that the associated
length scales are smaller than the region itself, which is a
requirement for the surface to “look” Gaussian rather than
flat. The other requirement is that the higher-order central
moments must be similar to the multivariate-normal values
for the leading-order likelihood. In particular, the third-
order moments that determine skewness must nearly
vanish. This is indeed satisfied in typical GW posteriors
for the intrinsic source parameters since those moments
scale approximately in size with the components of the
third-order tensor h∂θhj∂2θhi, which are ≈0 for parameters
that affect signal phasing.
Now consider a secondary likelihood maximum θsec,

with corresponding signal hsec. For θ near θsec such that
jδθsecj ≪ jθsecj with δθsec ≔ θsec − θ, we may write

ln LðθÞ∝ hhinj −hðθÞjhinj−hðθÞi
¼ hhinj −hsecjhinj−hseciþ 2hhinj−hsecjhsec −hðθÞi
þ hhsec−hðθÞjhsec −hðθÞi ð47Þ

¼ δθTsecI secδθsec þ δθTsechhinj − hsecjHseciδθsec
þOðjδθsecj3Þ þ const:; ð48Þ

where I sec ≔ IðθsecÞ and Hsec ≔ ∂
2
θhðθÞjθsec . Note that H

here denotes the Hessian tensor of the waveform model, not
to be confused with the Hessian matrix of the leading-order
likelihood (which is −I). Also, the linear-in-δθsec term in
Eq. (47) vanishes because

hhinj − hsecj∂θhðθÞijθsec ∝ ∂θLðθÞjθsec ¼ 0: ð49Þ

The third-order term in Eq. (47) includes the usual
contribution from h∂θhj∂2θhi, which is again ≈0 at θsec, but
picks up an additional piece that scales in size with the
components of hhinj − hsecj∂3θhi ≈ hhinjj∂3θhi. This quantity
generally does not vanish since hinj is not perfectly propor-
tional to hsec; although its impact on the local deviation
from Gaussianity is specific to the behavior of h at θsec, it
does indicate that secondaries with higher injection over-
laps will tend to look more Gaussian (as might be
expected). Higher-order likelihood terms aside, the local
covariance structure for a secondary is altered even at
leading order, as seen from the second term in Eq. (48).
This quadratic form is not necessarily positive definite, but

let us say that the sum of the first two terms in Eq. (48) still
is and that all higher-order terms are negligible. The inverse
covariance matrix is then not I sec as expected, but
I sec þ hhinj − hsecjHseci, which encodes the local embed-
ding curvature of the signal manifold S through its
dependence on Hsec.

3. How representative are these results?

As discussed at the start of Sec. IV, a more extensive
study of degeneracy is not really warranted at this stage
since any results obtained with existing tools will change
quantitatively for the next generation of science-adequate
EMRI waveform models—or even qualitatively, if the
nature of signal space is severely altered by distinctive
higher-order effects such as transient self-force resonances
[71–74]. Thus it is important to question the robustness of
our results to the expected differences in waveform models
and whether our conclusions are generally representative of
the EMRI signal space. In particular, might systematic
errors in PN (theoretical) or adiabatic-fitted (computa-
tional) evolution schemes introduce artificial degrees of
degeneracy that would otherwise be nonexistent in more
accurate models? Here we give a heuristic argument for
why this is unlikely.
Regardless of the underlying evolution, a sufficient

condition for a strong secondary to arise (at low eccentricity
and modest initial separation) is simply Eq. (45) with
j ¼ j0 ¼ 2 and k ≤ 2. We write this more concisely as

ðωϕ; _ωϕ; ω̈ϕÞðt0; θÞ ≈ ðωϕ; _ωϕ; ω̈ϕÞðt0; θinjÞ: ð50Þ

The time evolution of the azimuthal fundamental frequency
ωϕ (along with its radial and polar counterparts) over the
inspiral is fully described by a trajectory of osculating
geodesics GðtÞ ≔ ðpðtÞ=M; eðtÞ; ιðtÞÞ, whose governing
equations are specific to the EMRI model in question.
(Recall that the evolution of ι is only neglected in the AAK
model.) In other words, we may decouple its explicit
dependence on time: ωϕðtÞ ¼ ωϕðGðtÞÞ. Both the instanta-
neous frequency ωϕðGÞ and the trajectory GðtÞ depend
explicitly on the intrinsic source parameters θ, but the
former does so in a model-independent way (it is simply a
characteristic of Kerr geodesic motion [45]). With such a
description, we have

_ωϕðtÞ ¼ ∂ωϕðGÞ · _GðtÞ; ð51Þ

ω̈ϕðtÞ ¼ _GðtÞT · ∂2ωϕðGÞ · _GðtÞ þ ∂ωϕðGÞ · G̈ðtÞ; ð52Þ

where all dependence on θ is hidden for compactness.
We may examine the “approximate solution set” for

the underdetermined nonlinear system (50) by casting
it as an optimization problem. Some shorthand notation
is useful here: let ω0ðθÞ ≔ ωϕðt0; θÞ and δω0ðθÞ ≔
jω0ðθÞ − ω0ðθinjÞj=ω0ðθinjÞ, with analogous notation for
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the time derivatives of ωϕ. (The set fδω0; δ _ω0; δω̈0g
corresponds to the ordinate values of the green squares
in Fig. 18.) In essence, a secondary node is then simply a
point that minimizes the objective function,

fðθÞ ≔ jðδω0; δ _ω0; δω̈0ÞðθÞj; ð53Þ

for f below some unspecified threshold value.
The objective surface over parameter space will, of

course, depend on the variation of _Gðt0; θÞ and G̈ðt0; θÞ
through Eqs. (51) and (52), but the trajectories themselves
are qualitatively similar across different EMRI models—
modulo the inclusion of transient resonances, which cannot
be treated with Eq. (50) anyway. To demonstrate that
degeneracy does not arise solely from using any specific
trajectory model, let us consider the case where _Gðt0; θÞ
and G̈ðt0; θÞ are artificially assigned fixed values over
parameter space (say, their values at θinj). The objective
surface is then driven purely by the variation of ωϕ and its
partial derivatives with respect to G, but it is straightfor-
ward to verify that there still exist multiple distant minima
in f (see Fig. 19). This strongly indicates that degeneracy
occurs under generic conditions and is not merely an
artifact of the adiabatic-fitted AAK trajectories used in
our study.
While our conclusions on the nature of EMRI degen-

eracy should generalize to future waveform models, the
single signal injection that we consider is not fully
representative of injections in other regions of parameter
space. Degeneracy is expected to be most severe at low
eccentricity since the prevalence of strong posterior sec-
ondaries should be reduced when higher harmonic modes
have a larger contribution to the overall signal power, i.e.,
the injection becomes more distinctive with added degrees
of freedom to fit. Another consideration is the effect of the
analysis duration T. In regions of parameter space where
the inspiral lifetime is significantly longer than T, an
extension of the latter will also mitigate degeneracy (this
is not applicable here since all sources plunge after around
T ¼ 2 y). Finally, transient resonant “jumps” in the tra-
jectories GðtÞ will be a generically occurring feature of
models with postadiabatic evolution [71] and thus of the
true EMRI signal space; the presence of one such jump in
the signal injection effectively shifts the evolution of its
postjump part onto a different set of phase trajectories. This
again increases the complexity of the injection and should
reduce degeneracy as well.

V. IMPLICATIONS FOR DATA ANALYSIS

A. Fundamental implications

1. Interaction with detector noise

With the qualitative nature of degeneracy established in
Sec. IVA, we now turn to various implications that our

results pose for EMRI data analysis (both in a general sense
and in the context of the standing wisdom on search,
inference, and modeling approaches). The first question we
address is: How likely is it that detector noise will combine
with the signal template at a secondary node to give a
higher detection SNR than the template corresponding to
the injection? Under the standard noise assumptions laid
out in Sec. II B, the answer is straightforward—a false
determination of the best-fit template due to noise is
extremely improbable.
As in Eq. (8), let the data be x ¼ hinj þ n and further

assume that n is a zero mean and stationary Gaussian
process. From Eqs. (9), (10), and (13), the detection SNR
ρ1 of the injection template h1 ≔ hinj is normally distrib-
uted with mean ρinj and unit variance. Consider some
secondary template h2 with an injection overlap of Ω; its
detection SNR ρ2 is also normally distributed with mean

FIG. 19. Minimization of objective function (53) with constant
_GðθÞ and G̈ðθÞ, over a five-dimensional cross section of the
intermediate region R1 in Sec. IVA 2 (setting lg μ ¼ 1). Around
50 randomly drawn starting points are used, with each leading to
a different local minimum; only five of these are presented here
for clarity. Top: projection of minimum locations (colored points)
onto the ðp0=M; e0; cos ιÞ space, together with the lines connect-
ing them to the injection parameters (black triangle). Bottom:
value of objective function along the (extended) connecting lines
in the top panel.
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Ωρinj and unit variance, while the correlation coefficient
(normalized covariance) of ρ1 and ρ2 is Ω. The probability
distribution of ρ2 − ρ1 is then N ðρinjðΩ − 1Þ; 2ð1 −ΩÞÞ,
and the probability that ρ2 ≥ ρ1 is given by

Pðρ2 ≥ ρ1Þ ¼
1

2

�
1 − erf

�
1

2
ρinj

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω

p ��
: ð54Þ

Thus for threshold injections with ρinj ¼ 20, noise will lead
to false determination of the injection parameters ≳1% of
the time only if the offending secondary has an injection
overlap of ≳0.97. For the highest-overlap secondary
identified in the analysis regions of Sec. IVA (Ω¼0.76),
the probability of this occurring is ∼10−12.

2. Interaction with multiple signals

The degeneracy study of Sec. IV focuses on nonlocal
signal templates that strongly resemble a single signal
injection. We now use analytic arguments to extend our
results to the scenario where templates have non-negligible
and nonlocal correlations with the sum of two injections
(which themselves are nonlocal to each other). Let us
restrict to the case where the injections are uncorrelated
since (i) two injections with non-negligible overlap have a
sum that lies approximately in the span of either, so they
reduce effectively to the case of a single injection; and
(ii) injections with near-zero overlap are far more typical
anyway, as shown by the confusion study of Sec. III. Our
analysis remains well motivated in the uncorrelated-injec-
tion case since it is quite plausible for some template to
match the dominant mode in one injection with its own
strongest mode, while matching the dominant mode in the
other with its second strongest mode.
To pose a more precise question, let us consider two

uncorrelated injections h1;2 with optimal SNRs ρ1;2, where
ρ1 ≥ ρ2 without loss of generality. Then we ask:What is the
probability that some nonlocal template hðθÞ (i.e., a
template that is not local to either h1 or h2) has a high
enough overlap with h1 þ h2 such that its (expected)
detection SNR is ρθ ≥ ρ1? If this scenario turned out to
be even moderately likely, then clearly one would have to
design search strategies with the possibility in mind.
However, the order-of-magnitude argument we sketch
below strongly suggests that the probability of such an
occurrence is negligible.
Denoting the individual injection-template overlaps by

Ω1ðθÞ ≔ Ωðh1; hðθÞÞ and Ω2ðθÞ ≔ Ωðh2; hðθÞÞ, the detec-
tion SNR of hðθÞ given the sum of injections h1 þ h2 may
be written as ρθ ¼ Ω1ðθÞρ1 þ Ω2ðθÞρ2. Our calculation
relies on some assumptions about the functions Ω1;2ðθÞ
over parameter space, which for random θ may be
approximated as two independent and identically distrib-
uted random variables Ω1;2. Based on the overall popula-
tion of identified secondaries in Sec. IVA, we will assume
that Ω1;2 ≤ Ωmax ≈ 0.8 (beyond the local neighborhoods of

θ1;2Þ. For a lower bound on Ω1;2, note first that our formal
definition of detection SNR in Eq. (13) admits negative
values; implicitly, we are treating any template as being
fully specified by its parameters with no freedom for
maximization over phase (e.g., the translation of a template
in time is viewed as a distinct template corresponding to a
different point in parameter space). We then consider only
Ω1;2 ≥ Ωmin ≈ 0 in this calculation, which is conservative
as ρθ is constrained to be positive, and thus the probability
Pðρθ ≥ ρ1Þ is overestimated. This streamlines our argument
and connects it more naturally to results obtained with the
approximate inner product (which is also positive by
definition).
Another important assumption is to specify the proba-

bility distribution of the random variables Ω. Our mapping
analysis does not directly provide an empirical determi-
nation of the probability density function pðΩÞ, but it
enables us to posit a rough functional form for p. For
Ωmin ≤ Ω ≤ Ωmax, we write

pðΩÞ ≔ −
1

V0

dV
dΩ

; ð55Þ

where VðΩÞ is the volume of the set of points in Θ with
injection-overlap values that are ≥ Ω, and V0 ≔ VðΩminÞ.
Since Ωmin ≈ 0, V0 is of a similar order of magnitude to the
volume of the full (six-dimensional) parameter space Θ.
The function V is defined with respect to some natural
measure on Θ; we will choose a measure such that the
volume associated with a typical posterior secondary is ∼1,
give or take a few orders of magnitude (to account for the
diversity in the extents of secondaries with different
injection overlaps). This allows us to make the simplifi-
cation that VðΩÞ is given by the number of secondaries with
injection-overlap values ≥ Ω, so that dV=dΩ can be
estimated from our mapping analysis. With such a measure,
the volume of the posterior-bulk region examined in
Sec. IVA 1 is also ∼1 and thus V0 ∼ 1018 from the
discussion after Eq. (37).
The above simplification is clearly invalid for Ω≳ 0.75

(where there are no secondaries), while selection effects in
both sampling and clustering also lead to vastly lower
counts for secondaries with overlaps ≲0.5 (by design).
Nevertheless, our data for 0.5≲ Ω≲ 0.75 shows a clear
trend for dV=dΩ, which we will take to hold for
Ωmin ≤ Ω ≤ Ωmax. Let us assume that dV=dΩ is described
by a power law in the latter range and write

dV
dΩ

≔ −CΩ−α: ð56Þ

The combined set of 705 secondaries from the analyses in
Secs. IVA 2 and IVA 3 (the colored points in the inset of
Fig. 12) is distilled to a set of 251 secondaries with overlaps
>0.5; the distribution of this smaller set is fit well by
Eq. (56) with C ≈ 26 and α ≈ 7 (see Fig. 20). As it turns
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out, the results from the confusion study suggest that this
power law is a reasonable approximation over the range
Ωmin ≤ Ω ≤ Ωmax. Assuming the root-mean-square pair-
wise overlap of ∼10−3 from that study is indicative of
the injection overlap for the majority of points in the full
space, we might expect that Vð10−3Þ should be of a
similar order of magnitude to V0 ∼ 1018. This is indeed
the case: for Eq. (56) with C ¼ 26 and α ¼ 7, we find
Vð10−3Þ ≈ 4 × 1018. Conversely, we also require Ωmin ∼
10−3 such that the probability density (55) is properly
normalized on the interval ½Ωmin;Ωmax� (its integral
depends negligibly on Ωmax).
Now we define β ≔ Ω1 þ rΩ2, where r ≔ ρ2=ρ1 ≤ 1;

this random variable takes values in the interval [0, 2], and
β ≥ 1 corresponds to the case of interest ρθ ≥ ρ1. Since Ω1

and Ω2 are IID random variables, we have

pðβÞ ¼
Z

Ωmax

Ωmin

Z
Ωmax

Ωmin

dΩ1dΩ2

C2

V2
0

Ω−α
1 Ω−α

2 δðβ −Ω1 − rΩ2Þ

¼ C2

V2
0

rα−1
Z

Ωmax

Ωmin

dΩðβ − ΩÞ−αΩ−α

× ϑðβ − Ω − rΩminÞϑðrΩmax þ Ω − βÞ; ð57Þ

where δ and ϑ denote the Dirac-delta and Heaviside-theta
functions, respectively. The most conservative (largest)
estimate of the probability Pðβ ≥ 1Þ occurs for the
equal-SNR case r ¼ 1; with V0 ¼ 1018, C ¼ 26, α ¼ 7,
Ωmin ¼ 10−3, and Ωmax ¼ 0.8, we find Pðβ ≥ 1Þ ∼ 10−30.
To what extent does the above estimate for the proba-

bility Pðβ ≥ 1Þ depend on both the maximal injection
overlap Ωmax and the SNR ratio r? In Fig. 21, Pðβ ≥ 1Þ
is plotted as a function of the (minimal) mismatch 1 −Ωmax
for 0.8 ≤ Ωmax < 1 and r ∈ f1; 0.7; 0.4g. When Ωmax <
1 − 10−3, the probability scales approximately as r6

[in agreement with Eq. (57)] and ð1 − ΩmaxÞ−4.6. As
Ωmax → 1, it asymptotes instead to a maximal value of
≈4 × 10−20 for r ¼ 1. In other words, even if we assume
that the power law (56) is valid up to Ωmax ¼ 1, the
probability that β ≥ 1 is still completely negligible.
From Eqs. (55) and (56), the maximal probability value
corresponds approximately to PðΩ ≥ 0.998Þ for a single
injection-template overlap; essentially, if there exists a
template closely resembling h1 with a mismatch of
≲10−3, then virtually any h2 can push β over unity.
We started this analysis by considering in isolation the

sum of two signal injections. For a set of N injections, there
are NðN − 1Þ=2 such sums. The random variables βi
associated with these sums are, of course, correlated, but
it is conservative to treat them as IID in this context. A
plausible middle-ground estimate for the number of resolv-
able EMRI signals that might be present in the LISA data
stream is N ¼ 200, as considered in Sec. III. For such
a set of signals, the probability that any βi ≥ 1 is increased
only by a factor of ∼104 (to ∼10−26, if we take r ¼ 1 and
Ωmax ¼ 0.8). Thus it is highly improbable for the sum of
any two signals in the data to mimic a nonexistent third
signal (in the continuum of possible signals) so well that the
best-fit template actually corresponds to the latter, rather
than either of the two actual signals.
What about the possibility of three actual signals

coincidentally summing to mimic a nonexistent fourth
signal? Intuition indicates that such an occurrence is even
more improbable than the two-signal case, although an
extension of the above analysis to three signals is somewhat
nontrivial. Nevertheless, we may construct a back-of-the-
envelope argument by restricting to specific subcases of the
two scenarios. For a small set of M injections hj with
the same optimal SNR ρ, consider the probability that the

FIG. 20. Histogram of injection-overlap values for 251 signals
(with overlaps >0.5) from inset of Fig. 12. The probability
density for the histogram distribution is well fit by the power law
(56) with α ≈ 7 and is robust to the choice of bin size.

FIG. 21. Probability that the sum of two injections yields a
nonlocal template with a higher detection SNR than the optimal
SNR of either injection (i.e., the integral of Eq. (57) over the
interval [1, 2]). This is plotted as a function of the minimal
injection-template mismatch 1 − Ωmax across the signal space, for
several values of the injection-SNR ratio r.
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overlap Ωj of each injection with a given template hðθÞ is
≥ 1=M, which is a sufficient condition for ρθ ¼
ρ
P

jΩj ≥ ρ. From Eqs. (55) and (56), we have

P

�
Ω ≥

1

M

�
M
¼

�
CðMα−1 − 1Þ
V0ðα − 1Þ

�
M

: ð58Þ

With V0 ¼ 1018, C ¼ 26, and α ¼ 7 as before, we find a
probability of ∼10−31 for M ¼ 2; this is just below the
estimate of Pðβ ≥ 1Þ ∼ 10−30 for the more general treat-
ment with r ¼ 1 (as expected).
Now, for a set of N ¼ 200 actual signals in the data, we

may estimate how likely it is that anyM ≤ N signals fulfill
the above sufficient condition and then examine the ratio of
probabilities between the two representative cases M ¼ 3
and M ¼ 2. This ratio evaluates to

ðN
3
ÞPðΩ ≥ 1

3
Þ3

ðN
2
ÞPðΩ ≥ 1

2
Þ2 ≈ ð3 × 107ÞV−1

0 ¼ 3 × 10−11; ð59Þ

indicating that Pðρθ > ρÞ in the case of three signals is
infinitesimal relative to its value in the case of two signals
(which we have already established as practically negli-
gible). More generally, the ratio of probabilities between
the case of any M ≤ N and that of M ¼ 2 scales as γV2−M

0 ,
where lg γ is only slightly superlinear with M and has a
much smaller absolute gradient than −18 throughout (i.e.,
the coefficient of M in the common logarithm of the other
factor). Thus the logarithm of the ratio decreases mono-
tonically with M, which convincingly rules out the like-
lihood of any number of actual signals coincidentally
summing to mimic a nonexistent signal. In summary, we
conclude that the interaction of degeneracy with multiple
signals is unlikely to pose any fundamental difficulties for
the extraction and characterization of resolvable EMRI
signals in LISA data.

B. Search strategies

The search for signals in GW data really involves two
distinct tasks: detection, which establishes the presence of a
signal; and what we shall refer to as “identification,” which
maps the detected signal to astrophysically relevant source
parameters (approximately or otherwise). Detection tech-
nically includes the assessment of statistical significance
for candidate signals but may be treated, in principle, as
simply the attainment of some threshold value for the
detection SNR. Identification is the step that connects to
inference; it poses less of a separate issue when the
parameters have an easily invertible map to the waveform
observables (as is the case for Galactic binaries [23]), or
when standard inference techniques can already cover the
entire space of possible signals (as is the case for massive-
black-hole mergers [75,76]). For these sources and those of

ground-based observing, the task of identification is either
unnecessary or trivial, leading to the familiar dichotomy of
detection and inference (the latter is traditionally known as
“parameter estimation”).
In the case of EMRIs, detection is relatively straightfor-

ward. The presence of a signal can be uncovered with crude
waveform models, with completely phenomenological
ones, or even without models at all (see Sec. V B 2 for a
short overview of such approaches). Parameter degeneracy
may give rise to spurious candidate signals, but does not
affect detection of any actual signal itself. On the other
hand, identification becomes nontrivial since degeneracy
endows the inverse problem with a highly disjoint set of
near solutions. It remains unclear whether identification
will eventually be necessary as an independent step since a
sophisticated sampling algorithm that is well tuned to the
EMRI problem might conceivably allow inference with a
global prior; however, this has not been demonstrated
before, much less in a reliable fashion. If it proves
impractical to move directly from detection to inference,
identification will be required to provide a good initial
guess or to narrow down the prior region. Approximate
waveform models might be used in rough searches to
supply such information, but as shown in Sec. IV B 3, even
a weakly physical model can still admit a multitude of near
solutions to its inversion. If the model is overly simplistic,
then it might succeed in smoothing out the search surface,
but then may not provide sufficiently precise and/or
accurate prior localization for inference.
The search for EMRIs is further complicated by the

potential presence of more than one such signal in the data.
Transdimensional methods [77], as used in Galactic-binary
searches to find sets of signals with unspecified cardinality,
are less viable for EMRIs due to degeneracy and the greater
expense of waveformmodels. They are also not as crucial in
this context since an astrophysically realistic set of EMRI
signals is far less likely to “self-confuse” (as shown in
Sec. III). A more direct approach for EMRIs would be to
conduct a single-source search for the global best-fit
template, corresponding to the strongest signal in the data.
After performing precise inference with accurate models,
this signal is subtracted from the data, which may then be
searched for the second-strongest signal. (The same
approach might be taken for massive-black-hole-merger
signals since these are expected to be more resolvable from
one another in the time domain.) However, the search for the
strongest signal is still hindered by the presence of a second
strong signal, which would manifest in the search surface as
another set of apparent secondaries (but see Sec. VI).

1. General sampling algorithms

We now touch broadly on the implications of our results
for the two main classes of sampling algorithms that will be
important in LISA signal searches. The sampling of source
posterior distributions with these algorithms is, of course,
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a key component of inference as well, but we may view any
nonlocal aspect of inference as being part of the search
(identification) stage. Most forms of modeled search rely
on the global exploration of some search surface—not
necessarily the posterior—that is defined in terms of cross-
correlations [Eq. (13)] or residuals [Eq. (14)] between data
and template. As is well known, stochastic sampling is
required to explore such a surface for EMRIs, even without
accounting for the presence of degeneracy. This is due to
the information volume of the signal space, which rules out
grid sampling with precomputed template banks [13]. Let
us focus on the case of a single-source search for the global
probability maximum since any difficulties encountered
there are only going to be amplified for strategies that look
for multiple candidates at the same time (e.g., transdimen-
sional sampling, or the online clustering of posterior
samples).
Parallel-tempering MCMC methods [55] utilize multiple

Markov chains of “walkers” to explore variants of the
likelihood at different temperatures Ti (essentially L1=Ti),
doing so in parallel and with the exchange of information.
Such algorithms allow walkers to move more efficiently
across the search region than in traditional MCMC and thus
aid sampling convergence for complex distributions. They
are well suited to coping with the “noisy” tails of GW
likelihoods [78,79] and should also be useful for posterior-
based EMRI search. In practice, the strength and prevalence
of EMRI degeneracy, coupled with the minuscule extent of
the posterior bulk relative to the global prior, is likely to
necessitate more walkers and/or temperatures than usual.
As a rough indicator of the sort of numbers required for the
EMRI problem, we report that for the prior region R2 in
Sec. IVA 3, the posterior bulk cannot be found within 106

iterations using a standard geometric temperature ladder
[80] (with Tmax ¼ T10 ¼ ρ2inj ¼ 400), 10 walkers per tem-
perature, and an assortment of jump proposals [70]. A fine-
tuning of the ladder might be informed by exploratory
studies to determine the pertinent temperature scales in the
EMRI likelihood and to do so for a representative range of
injections across the full parameter space.
Nested sampling [81] is a more recent paradigm for

Bayesian posterior sampling and evidence calculations. It
involves the iterative replacement of a set of “live” points
with new points of higher likelihood, which provides an
exponential contraction of the prior to the posterior. In the
context of EMRI search, a very large number of live points
is needed for sufficient resolution to chance upon the region
containing the posterior bulk—which can easily be <10−12

times the size of the prior region, even for a modest degree
of prior localization. This might be computationally pro-
hibitive, and furthermore, it is not clear how to incorporate
problem-specific tuning in the proposal of new live points
(the real engine under the hood of nested sampling, which
only assumes that such points can be generated). Again, to
indicate the required sampling resolution for the prior

region R2 in Sec. IVA 3, a slice-nested-sampling imple-
mentation [57] with 104 live points fails to converge on the
posterior bulk for the (considerably smoother) likelihood
Lmatch in Eq. (25).

2. EMRI-specific methods

A small number of modeled-search methods for EMRIs
have been proposed in the literature. All of these were
developed using the earliest kludge model [15], which
supplies both the injection and the templates in each study.
Nevertheless, the basic ideas that underpin such methods
will apply to the search for realistic signals as well,
provided that models with sufficiently accurate frequency
evolution are used in the analysis. Both tasks of detection
and identification are addressed simultaneously in a mod-
eled search since each candidate signal is associated with
some high-detection-SNR template from the model, which
in turn has “known” parameters of interest (that must be
specified in order to generate the template).
Semicoherent search is a broadly applicable strategy that

is similar in effect to annealing-type sampling methods. As
sketched out for EMRIs in [13], it is a modeled search with
“flexible” templates that are phase-matched against N
segments of the data with duration T=N, rather than the
full data stream over its duration T. Note, however, that
there are several other (mis)conceptions of semicoherent
EMRI search—none of which have been described prop-
erly in the literature, if at all. The general idea of semi-
coherent filtering originates from continuous-wave
searches in ground-based observing [82,83]. In the context
of a precomputed template bank, it increases the “reach” of
each template so that the density of the bank can be
reduced. When used in stochastic searches (as required for
EMRIs), it works essentially by smoothing out the search
surface, making high-probability regions more extensive
and easier to find. In terms of its interaction with degen-
eracy, the semicoherent approach will likely congeal
secondaries and thus be useful for prior localization; the
question is whether this localization is sufficient to tran-
sition directly into inference, and if not, then how many
iterations of semicoherent search (with gradually increased
segment durations) might be required.
Another class of method that is more specific to EMRIs

exploits the fact that any point θsec with high injection
overlap generally satisfies Eq. (45) for some fj; j0; kg,
which can thus be used to inform MCMC jump proposals.
This is a central idea in [24], where the inversion of Eq. (45)
with θinj → θsec [more precisely, the minimization of the
associated objective function, as in Eq. (53)] is proposed for
combinations of the azimuthal frequency ωϕ and the Lense-
Thirring frequency ωϕ − ωθ, along with their time deriv-
atives up to second order. Only j ≠ j0 is considered in the
original proposal, which effectively puts the focus on
jumping between templates where the dominant mode in
one is aligned with a sideband of the dominant mode in the
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other; it is straightforward to extend this to include the j ¼
j0 case as well, in light of our results that highlight its
importance. Finding all minima in the objective function is
no less intractable than finding all posterior maxima, of
course, and so only a single “root” is identified per jump—
however, this may be of limited benefit if secondaries are
extremely numerous. It is shown in [24] that such jumps
help with localization to a broad region in parameter space,
but it remains unclear whether they are sufficient on their
own to cope with the denser set of secondaries, due to
intrinsic degeneracy, when homing in on the posterior bulk.
In [25], similarly constrained MCMC jump proposals are

integrated with ideas from the semicoherent approach in a
search pipeline. Shorter half-year segments of the data are
analyzed with either simplified or fully phenomenological
templates in a number of separate analysis stages, but a key
feature of the method is the inclusion of jumps that are
informed by fixing the three fundamental frequencies (and
not their derivatives), i.e., the inversion of Eq. (45) with
j ∈ fr; θ;ϕg and j ¼ j0. Segment information is combined
by tracing the evolution of candidate signals in different
segments to the same reference time t0, and the overall list
of candidates is then used to seed a localized search with
full-duration templates. The entire method is stated to
involve some degree of manual intervention and tuning.
As in the case of [24], it is demonstrated on data sets with
high-SNR injections as part of the Mock LISA Data
Challenges [26]; the final parameters reported in [25] do
not seem to agree with most of the injection parameters
within their expected uncertainties (this is only an estima-
tion on our part since no inference results are presented).
Nevertheless, the method appears to provide solid locali-
zation for follow-up analysis.
Apart from approaches that use astrophysically para-

metrized EMRI models, there is also the option of perform-
ing minimally modeled or unmodeled searches. One such
proposal [84] features a phenomenological model that is
parametrized directly by the observable quantities in the
signal: the dominant mode amplitudes (treated as constant),
the three initial fundamental frequencies, and their initial
time derivatives to third order. This approach could be useful
for search since the model is extremely efficient and can
overfit physical signals such that detection sensitivity is not
impaired. Its main difficulty lies in mapping the phenom-
enological quantities to the source parameters for identi-
fication, which ultimately still requires the inversion of a
physical model. Another proposed strategy is to directly
search for EMRI-like frequency tracks in spectrograms of
the data, using edge-detection algorithms [85]. Such excess-
power searches are more limited for EMRIs, due to their low
instantaneous SNR and their place in the SNR hierarchy of
the global LISA catalog. They could be feasible for the
detection of high-SNR sources, but again would have to rely
on physical models for identification and thus remain
susceptible to the issue of degeneracy as well.

C. Inference (and modeling) strategies

By partitioning the EMRI data-analysis problem into
nonlocal search and local inference, all that is required in
the latter stage for each candidate signal is to map out the
vicinity of its source parameters in a localized prior region.
Standard posterior sampling, as well as the multitude of
techniques proposed for its acceleration, should be
adequate for this purpose (but may still be less efficient
if the prior region is too large). A high detection SNR for
the candidate is insufficient to provide confidence that the
examined parameter point corresponds to the parameters of
some physical signal, but the nature of EMRI degeneracy
actually works to our benefit here. One of the key
conclusions from Sec. IV is that secondary posterior peaks
are expected to feature pathologies that are absent in the
posterior bulk, which could be a simple way of vetoing
such solutions (see Sec. VI A).
However, we have up till now assumed a fitting factor [86]

of unity between the injection and the template manifold,
i.e., hinj ∈ S such that F ≔ maxθ Ωðhinj; hðθÞÞ ¼ 1. This
ensures that the posterior is well behaved near the best-fit
point argmaxθΩðhinj; hðθÞÞ, but it may not be achievable in
practice even with future postadiabatic waveforms. A low
fitting factor can impact on search through the reduction of
expected detection SNRs and might pose a problem for
inference even in the case where F ≳ 0.5. The latter is
evident from the posterior around secondary nodes with
injection overlaps as high as ≈0.8 (indicative of putative
models where those nodes are the best-fit points)—and also
from the results in [47], where the parameters of an injected
signal with fully relativistic mode amplitudes are inferred
from a template model with identical phasing but semi-
relativistic amplitudes (leading to a best-fit overlap of ≈0.5
and a multimodal posterior). To complicate matters,F alone
contains no information about the template manifold away
from the best-fit point and so is insufficient as a determinant
of whether and how much the posterior is deformed.
Assuming the source parameters are still correctly and
sufficiently localized by the search stage, F < 1 does not
significantly challenge posterior estimation during infer-
ence, but may, of course, lead to an unacceptable degree of
bias for precision applications of EMRI observations.
The well-understood need for low or manageable bias

in high-precision inference [87], as well as the strong
dependence of EMRI-specific search strategies on models
with the correct frequency evolution, will impose con-
straints on modeling accuracy that have yet to be deter-
mined. Degeneracy does not impact directly on accuracy
requirements, but is still relevant through its influence on
data-analysis approaches. Studies on modeling accuracy
are required at a level beyond simple dephasing arguments
or fitting-factor calculations and are presently being under-
taken as part of the LISA Science Group’s work-package
activities. In terms of modeling strategies, degeneracy
would appear to severely handicap approaches such as
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the construction of reduced-order-modeling surrogates
[88–90] in the time or frequency domain (at least in the
global sense). These waveform-level fits are already
unlikely to be practical for EMRIs due to the length and
complexity of signals, and the added severity of nonlocal
correlations seems to rule out their viability beyond highly
localized regions in parameter space. The data compression
provided by reduced-order modeling itself is still useful in
EMRI modeling, however; as demonstrated in [10], it only
needs to be applied to the set of instantaneous mode
amplitudes over the space of Kerr geodesics.

VI. SUGGESTIONS FOR DATA ANALYSIS

A. Simple post hoc vetoes

Notwithstanding the efficacy of search strategies, the
main concern for EMRI search is that secondaries of actual
signals might be falsely identified as candidate signals.
There are two specific subscenarios to consider: (i) the
actual signals themselves are found, and (ii) they are not.
The former implies the existence of a set of ≥2 candidate
signals; a simple check would then be to compute the
pairwise overlaps among all of them (effectively, to cluster
the candidates using the direct overlap as a measure of
connectivity, as mentioned in Sec. II D). From the results of
our confusion study in Sec. III, we do not expect ≳1%
overlap between any two candidates. If this occurs, then the
pair should be flagged as a possible manifestation of
parameter degeneracy for follow-up analysis.
In the latter subscenario (which could arise after the

above veto, or for a single incorrectly identified candidate),
there exists a set of ≥1 candidate signals that are virtually
uncorrelated with one another. If any of these candidates is
a secondary for some actual signal that was not found due
to search error, this should immediately be evident when
attempting to estimate the posterior in the vicinity of its
associated parameters. The obtained posterior is expected
to be highly non-Gaussian and difficult to localize; further
checks could involve comparison to either a Fisher-matrix
analysis, or to a simulated posterior with the spurious
candidate as an injection.

B. Veto “likelihood” function

Annealing-type sampling methods such as parallel-tem-
pering MCMC involve exploring the likelihood at different
temperatures (L1=Ti) to efficiently converge on the posterior
bulk. However, the relative log-likelihood gradients near
the injection parameters and near some secondary node are
unaltered by annealing, i.e., the ratio between ln LðθinjÞ −
τðθinjÞ and ln LðθsecÞ − τðθsecÞ for local tail values τðθÞ ≔
−ρ2θ (see Eq. (24) and related discussion) is preserved for all
Ti. This means that secondary likelihood peaks remain
present at all temperatures, and a large number of high-
overlap ones can still cause problems in practice. Here we
suggest a modified likelihood that suppresses secondary

peaks by accounting for the expected spread of individual-
mode detection SNRs, in order to provide improved
identification in the search stage. Specifically, we define
a sampling density L0ðθÞ such that for a typical secondary
node θsec, the difference ln L0ðθsecÞ − τðθsecÞ is much
reduced from its original counterpart ln LðθsecÞ − τðθsecÞ.
We also demand that L0ðθinjÞ ≈ LðθinjÞ in the vicinity of
θinj, so as to facilitate a smooth transition into inference.
More precisely, the volume of the corresponding “posterior
bulk” should neither be much larger (to give good prior
localization) nor much smaller (such that there is no need to
compensate with increased sampling resolution).
We begin with a generic angular and frequency-based

decomposition of any EMRI waveform into a small number
MðθÞ of strong harmonic modes:

hðθÞ ≈
XMðθÞ

m¼1

hmðθÞ; ð60Þ

where MðθÞ varies slowly over parameter space and really
only depends strongly on the orbital eccentricity. For any
given analysis, we may fixMðθÞ to some maximal valueM
in practice. Throughout most of this work, we have used the
AAK model with m≡ j and M ¼ 4 [see Eq. (17)], but the
decomposition (60) is compatible with all other standard
approaches in EMRI modeling (see Sec. II A). Note,
however, that a decomposition into angular harmonics
alone (as done for comparable-mass-binary waveforms)
is insufficiently discriminative for our proposal, which
relies on there being a distinctive spread in individual-
mode optimal SNRs for each source.
Our desired likelihood L0 must naturally make use of the

discrepancy between the mode structure of a putative signal
at each θ, i.e., the vector of mode optimal SNRs,

½voptðθÞ�m ≔ ρoptðhmðθÞÞ; ð61Þ

with ρopt as defined in Eq. (12), and the mode information
that is actually recovered from the data x at that same point,
i.e., the vector of mode detection SNRs,

½vdetðθÞ�m ≔ ρdetðhmðθÞÞ; ð62Þ

with ρdet as defined in Eq. (13). This allows the point θinj
(where E½vdet� ¼ vopt) to be differentiated from any typical
θsec (where only a single component of v is matched). In
fact, the discrepancy between vopt and vdet is already partly
accounted for in the standard log-likelihood (22), which
may be written more evocatively as

lnL ¼ hxjhi − 1

2
hhjhi − 1

2
hxjxi

≈ vopt · vdet −
1

2
hhjhi − 1

2
hxjxi; ð63Þ

ALVIN J. K. CHUA and CURT J. CUTLER PHYS. REV. D 106, 124046 (2022)

124046-34



where all dependence on θ is implicit. The approximation
in Eq. (63) is due only to the truncation of modes in
Eq. (60), whereas hhjhi ≈ jvoptj2 if we further assume
hhmjhm0 i ≈ 0 for all m ≠ m0 (which is generally valid).
Computation of the constant final term in Eq. (63) is not

needed in practice except for evidence calculations, and the
penultimate term varies much more slowly than the first
with respect to most parameters that affect phasing. Thus
the first term is the main determinant of the likelihood
profile over parameter space—its value is closer to ρ2inj at
θsec and closer to zero at θtail. A direct strategy is then to
suppress the first term to zero at θsec, using a similaritylike
quantity Q∶Θ → ½0; 1� that depends on some measure of
discrepancy between vopt and vdet:

lnL0 ≔ Qhxjhi − 1

2
hhjhi − 1

2
hxjxi

¼ ln L − ð1 −QÞhxjhi: ð64Þ

The form of Eq. (64) seems to preclude statistically
motivated definitions where L0 is derived from natural
probabilistic statements; nevertheless, such a modification
should facilitate EMRI search, at the cost of invalidating the
interpretation of L0 as a proper Bayesian likelihood.
Our first suggestion for Q is

Q1 ≔ 1 − Fχ2ðjvopt − vdetj2Þ; ð65Þ

where Fχ2 denotes the cumulative distribution function of a
chi-squared random variable with M degrees of freedom.
The veto likelihood L0 with Q1 works well to “flatten out”
secondaries (see Fig. 22), while the cross-sectional profile
of the density bulk around θinj is only marginally narrower
at the Gaussian-analogous 3-σ value ln L ¼ −9=2 (and
well beyond). Another option for Q is

Q2 ≔ ðv̂opt · v̂detÞ2q; ð66Þ

where an overhat denotes normalization with respect to the
Euclidean inner product on RM (v̂ · v̂ ¼ 1). The quantity q
is empirically determined; it might be defined to depend on
θ via the properties of vopt, but here we treat it as a tunable
hyperparameter. This version of L0 is also shown in Fig. 22,
for q ¼ 20. There are, of course, many other viable choices
for the functional form of Q, which only needs to be ≈1
near θinj and ≈0 everywhere else (or at least near θsec). Such
veto likelihoods might be combined with other likelihood-
smoothing approaches such as annealing or semicoherent
filtering (which essentially broadens all likelihood peaks),
in order to further aid EMRI search. We leave optimization
of the basic concept in Eqs. (64)–(66) for future follow-up
studies.
As decompositions of the form (60) are central to EMRI

waveform modeling, the set of modes fhmg for the veto
likelihood can first be predetermined (in terms of member-
ship), then obtained as a byproduct of template generation
during data analysis. Similarly, the inner-product opera-
tions hhmjhmi in vopt (and vdet) may be bypassed with a
precomputed fit. The veto likelihood is, however, penalized
with added online cost through its reliance on vdet, which
entails M evaluations of hxjhmi. All other operations
have negligible cost relative to the inner product at full
sampling resolution, and thus the final cost of the veto
likelihood is approximately M times that of the standard
likelihood. This may seem like a significant penalty even
for modest M, but the hope is that it will be more than
offset by the increased efficiency of search. Sampling
algorithms will no longer have to explore a large number
of probability peaks en route to the global peak; this in turn
will increase the reliability of candidate detections and
accelerate the transition to performing inference on indi-
vidual signals.

VII. CONCLUSION

Self-confusion and degeneracy for EMRIs, as we have
defined them in Sec. I B, are both manifestations of the fact
that sources with very different parameters can have signals
that strongly resemble one another. The former term is used
in the context of a finite set of putative EMRI signals that
might plausibly be present in LISA data, while the latter
refers instead to the continuum of possible EMRI signals
described by a physical waveform model. We have shown
in Sec. III that self-confusion is unlikely to arise in reality—
for a typical set of ≈200 detectable sources distributed
according to a representative astrophysical model, the root
mean square of pairwise overlaps among their two-year
signals is ∼10−3. On the other hand, degeneracy is one of
the main hindrances to the search for EMRI signals in LISA
data, and we have devoted the bulk of this work to its
characterization.

FIG. 22. Standard and veto log-likelihood values along an
extended connecting line through the injection parameters and a
strong secondary node from Sec. IVA 2—specifically, the set-I
node of pair 2 (red point in middle panel of Fig. 11). The
approximate inner product (19) is used for clarity, although the
general concept holds for the full inner product (8). Dashed
curves are annealed versions of the respectively colored standard
and veto (Q2) log-likelihoods, with a temperature of 10.
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Several new analysis tools have been introduced in
Sec. II for our study of degeneracy, where existing methods
are inadequate. These include an approximate noise-
weighted inner product that acts on highly downsampled
waveform amplitude/phase trajectories, as well as a
bespoke clustering algorithm that uses overlaps along
connecting lines in parameter space to define the degree
of connectivity between pairs of signal templates. In
Sec. IVA, we have conducted an extensive mapping
analysis of the posterior surface over parameter space
for a representative signal injection, which has yielded a
variety of qualitative results. The most notable of these are:
(i) secondary posterior peaks are both strong (injection-
template overlaps of≲0.8) and numerous (∼103 of them) in
an encompassing region that is ≳1012 times larger than the
posterior bulk; (ii) they come in different shapes and sizes;
and (iii) they are interconnected and thus cannot be
localized. Furthermore, the conditions that give rise to
secondaries are very natural, as discussed in Sec. IV B, and
thus they are expected to be a generic feature of the EMRI
signal space.
Our results hold several implications for EMRI data

analysis, as we have discussed at length in Sec. V. The
fundamental interaction of degeneracy with detector noise
or with multiple actual signals is unlikely to cause false
positives or negatives in the search for candidate signals,
but this may still arise in practice due to the technical
limitations of stochastic search methods. Regardless, pre-
viously proposed strategies for EMRI search are a prom-
ising first step in addressing degeneracy; we have provided
a few complementary suggestions of our own in Sec. VI, to
rule out false signals and to better identify the source
parameters of actual ones. We have, however, mostly
limited the scope of the current study on degeneracy to
illuminate the problem itself, rather than to develop
possible practical solutions. The new tools and perspectives
we have introduced here should help to inform and direct
follow-up work on the latter.

There is also utility in an improved characterization of the
degeneracy problem, although this is arguably unneeded
before the advent of efficient and extensive next-generation
waveform models. For example, the global distribution of
secondaries over the full-dimensional space of intrinsic and
extrinsic parameters is still unknown for a single injection—
much less a representative set of injections with different
source parameters and analysis durations. Scaling up the
mapping analysis in this way will require computational
enhancements such as fast LISA-response models, alterna-
tive algorithms for obtaining a large set of high-overlap
points, and GPU acceleration of the sampling and clustering
steps. Once fast and fully generic Kerr models with adiabatic
evolution schemes and mode content become available, it
might be worthwhile to perform comprehensive surveys of
secondaries, with the focus shifting to the quantitative
characterization of degeneracy for these specific models.
Such studies could inform the tuning of sampling algorithms
and strategies for EMRI search. Proxy postadiabatic models
that incorporate approximate or phenomenological resonant
jumps might also be explored using the tools we have
introduced, in order to investigate how degeneracy changes
in the presence of transient resonances.
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