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We construct the covariantly defined multipole moments on the common horizon of an equal-mass,
nonspinning, quasicircular binary-black-hole system. We see a strong correlation between these multipole
moments and the gravitational waveform. We find that the multipole moments are well described by the
fundamental quasinormal modes at sufficiently late times. For each nonzero multipole moment with l ≤ 6,
at least two fundamental quasinormal modes of different l are detectable in the best model. These models
provide faithful estimates of the true mass and spin of the remnant black hole. We also show that by
including overtones, the l ¼ m ¼ 2 mass multipole moment admits an excellent quasinormal-mode
description at all times after the merger. This demonstrates the perhaps surprising power of perturbation
theory near the merger.
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I. INTRODUCTION

The black hole (BH) no-hair theorem [1,2] suggests that
the final state of a charge-neutral BH merger satisfies the
Kerr solution, which is characterized by only two param-
eters: mass and angular momentum (or equivalently, spin).
Numerical simulations of binary-black-hole (BBH) sys-
tems have directly confirmed this theorem by comparing
the quantities in the final stage with the corresponding Kerr
values [3–6]. The Kerr spacetime is axisymmetric and
has a simple geometry. In stark contrast, as brought out by
numerical simulations, the horizon of a merged BH is
highly distorted at its formation, and undergoes large
dynamical changes as it approaches equilibrium. For a
BH merger to lose its hair and settle down to the final Kerr
state, the horizon distortion must be washed away by
general relativity in the ringdown phase.
In numerical relativity, an event horizon is not a

convenient notion of horizon, as it cannot be determined
during the evolution of the spacetime. It is typically found
in post-processing, once the complete spacetime is known.
Quasilocal objects like apparent horizons are more favored,
because they can be computed on each time slice without

the knowledge of the complete spacetime. A recent topic in
the study of quasilocal objects is seeking a quantitative
description of the horizon behavior of a BBH merger. One
of the physical quantities used for such an investigation is
the gravitational flux falling into a horizon. It turns out that
the infalling energy flux is correlated with the outgoing flux
of gravitational waves [7,8]. This might seem slightly
surprising at first glance but is indeed reasonable, because
both the ingoing and outgoing flux are generated from the
same gravitational source. Besides the flux, another quan-
tity that can be used in the analysis of BH horizons is the set
of horizon multipole moments. In the following discussion,
we will discuss the multipole moments only in the ring-
down phase, though this concept is also applicable in the
inspiral phase (see, e.g., Ref. [9]).
Horizon multipole moments generalize the mass and

spin of a BH. It is fairly straightforward to define multipole
moments on the isolated horizon of a Kerr BH [10], or
on a dynamical horizon that is axisymmetric throughout
the whole ringdown phase [11]. This is because in both
situations, the horizon possesses a rotational Killing vector,
which is associated with a natural choice of angular
coordinates. In a more general BBH configuration, how-
ever, choosing an appropriate definition of multipole
moments is a nontrivial task. One difficulty comes from*yc2377@cornell.edu

PHYSICAL REVIEW D 106, 124045 (2022)

2470-0010=2022=106(12)=124045(23) 124045-1 © 2022 American Physical Society

https://orcid.org/0000-0002-8664-9702
https://orcid.org/0000-0001-5523-4603
https://orcid.org/0000-0003-3515-2859
https://orcid.org/0000-0003-4557-4115
https://orcid.org/0000-0002-5075-5116
https://orcid.org/0000-0001-5392-7342
https://orcid.org/0000-0001-6656-9134
https://orcid.org/0000-0001-9765-4526
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.124045&domain=pdf&date_stamp=2022-12-29
https://doi.org/10.1103/PhysRevD.106.124045
https://doi.org/10.1103/PhysRevD.106.124045
https://doi.org/10.1103/PhysRevD.106.124045
https://doi.org/10.1103/PhysRevD.106.124045


the nonaxisymmetry of the dynamical horizon. Moreover,
the coordinate system used to express the components of
spacetime quantities varies from simulations to simula-
tions, which calls for an invariant notion of multipole
moments. Ashtekar et al. [12] provide a definition of
horizon multipole moments that is appropriate for this
task. They start with the axisymmetry of the final BH,
construct weighting fields subject to this axisymmetry, and
transport these weighting fields backward along the
dynamical horizon. The resulting multipole moments are
then spatially gauge independent on a given dynamical
horizon. This set of multipole moments will be the subject
of this paper, and we will explain the construction process
in greater detail in later sections.
Regardless of different notions of multipole moments, an

important goal in studying them is to discover any
universality in the horizon behavior of a remnant BH. A
natural avenue is to find inspiration from multipole
moments of the gravitational waveform in the ringdown
phase. BH perturbation theory shows that the gravitational
waves radiated by a perturbed BH at late times can be
characterized by a superposition of exponentially damped
oscillations, called the quasinormal modes (QNMs) [13–
16]. The frequency and the decay constant of each mode are
completely determined by the final mass and spin, con-
sistent with the no-hair theorem. The presence of quasi-
normal modes in the late-time behavior of postmerger
waveforms has already been confirmed in numerical
simulations (e.g., [17,18]). Recently, Giesler et al. [19]
discovered that including overtones even allows a QNM
model to describe the waveform immediately after merger.
Although the waveform multipole moments are a super-

position of QNMs in the ringdown phase, we might not
expect this behavior in multipole moments of the dynami-
cal horizon soon after the common horizon forms. After all,
this horizon is initially highly distorted compared to a Kerr
horizon, so we have no reason to expect perturbation theory
to be valid. Moreover, the time coordinate of the simulation
is quite arbitrary compared to the time coordinate of an
observer at infinity, which is used to define the frequency of
QNMs. Nevertheless, there is strong evidence supporting
the idea that horizon multipole moments exhibit QNM
behavior [8,20–22]. However, such evidence is based on
either the special case of a head-on collision of two BHs, or
a definition of multipole moments that does not refer to the
connection among quasilocal horizons on different time
slices. A definition ignoring the diffeomorphism content of
a dynamical horizon is subject to the arbitrariness of spatial
coordinates.
In this paper, we calculate the horizonmultipolemoments

that are spatially gauge invariant on the common horizon of
an equal-mass BBH system, following the definition in
Ref. [12]. To investigate the dynamics of these multipole
moments, we test their balance laws, compare them with
waveform multipole moments, and model them as linear

combinations of QNMs. Regarding the QNM models, we
use fundamental tones to analyze the late-time behavior of
multipolemoments, and then include overtones in the survey
of their early-time patterns. We will also consider the effect
of mode mixing, which turns out to be significant in most of
the multipole moments.
The rest of this paper is structured as follows. In Sec. II,

we introduce the notions of horizons and quasinormal
modes. We also describe the construction process of the
horizon multipole moments proposed by Ashtekar et al.
[12]. In Sec. III, we describe the configuration of our BBH
simulation and implement the procedure to extract multi-
pole moments on the common horizon. In Sec. IV, we first
look for potential correlations between horizon and wave-
form behavior in the context of their respective multipole
moments. Then, we investigate the damped sinusoidal
patterns of multipole moments using QNM models, with
or without the inclusion of overtones. We finally summa-
rize the results and give remarks on possible future work
in Sec. V.

II. PRELIMINARIES

A. Dynamical horizons

A spacetime is a 4-dimensional Lorentzian manifold M
equipped with a metric gab of signature ð−;þ;þ;þÞ. Here,
we only consider a vacuum spacetime that is asymptotically
flat.1 Let ∇a be the covariant derivative compatible with
gab. Let S ⊂ M be a smooth, orientable, spacelike 2-
manifold with spherical topology S2. Let q̃ab be the induced
metric on S. (All symbols with tilde in this paper represent
quantities on or associated with S.) The outgoing and
ingoing future-directed null normals to S, denoted as la

and na, are normalized subject to l · n ¼ lana ¼ −1. The
expansions of la and na are

ΘðlÞ ¼ q̃ab∇alb; ð1Þ

ΘðnÞ ¼ q̃ab∇anb: ð2Þ

The shear of la is

σab ¼ q̃acq̃bd∇cld −
1

2
ΘðlÞq̃ab; ð3Þ

while the shear of na is not used in this paper. Note that σab
is related to but different from the shear spin coefficient σ,
which is usually defined using a complex null tetrad.
Amarginally outer trapped surface (MOTS) is a surfaceS

satisfyingΘðlÞ¼0 (following the convention in Ref. [23]). A
MOTS is called a futureMOTS ifΘðnÞ < 0, or apastMOTS if
ΘðnÞ > 0. The notion of aMOTS is quasilocal, whichmakes

1The concepts in this section can be generalized in a non-
vacuum spacetime.
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it very convenient because the calculation does not require
the knowledge of a full spacetime. In numerical simulations
of BHs, there are efficient algorithms [24–28] that compute
MOTSs to locate BHs on every Cauchy surface Σ.
A marginally trapped tube is a smooth 3-manifold H

foliated by future MOTSs [23]. The 3-manifoldH is said to
be a dynamical horizon2 [23,30–32] if it is spacelike, or a
timelike membrane if it is timelike. We call H a non-
expanding horizon if it is null3 [33–35]. A nonexpanding
horizon is called an isolated horizon4 [33–35] if there is a
specific null normal l

∘a
to H such that

ðL
l
∘Da −DaLl

∘ÞWa ¼ 0; ð4Þ

for any tangent vector Wa on H. Here Da is the covariant
derivative compatible with the (degenerate) metric qab
induced on H5 We are not interested in the specific form

of l
∘a

on an isolated horizon, though it can be constructed
from any null normal (see Sec. IV B in [35]).
After the merger of a BBH, the outermost MOTSs

(called the common horizons) on Cauchy surfaces trace
out a dynamical horizon.6 As we expect the remnant BH to
be Kerr, this dynamical horizon should asymptote to an
axisymmetric isolated horizon [33] as the BH settles down.
We are only interested in this dynamical horizon (which is,
the stack of common horizons) in the rest of this paper, so
we reserve the symbol H to represent this dynamical
horizon henceforth.
We visualize the relation among S, H, and Σ in Fig. 1.

The figure is based on Fig. 1 of Ref. [12], with slightly
different use of symbols. This figure is merely illustrative:
the shapes of the objects in this figure do not reflect their

actual appearance in a numerical simulation. The horizontal
plane represents a Cauchy surface Σ, and the circle on this
plane represents the common horizon S. The common
horizons on all Cauchy surfaces constitute a dynamical
horizonH, shown as the paraboloid. There are four vectors
in this figure: t̂a is the unit timelike normal to Σ, τ̂a the unit
timelike normal to H within the spacetime, r̂a the unit
spacelike normal to S within H, and ŝa the unit spacelike
normal to S within Σ. Based on these unit vectors, we fix
the scaling freedom in l · n ¼ −1 by choosing

la ¼ τ̂a þ r̂a; na ¼ 1

2
ðτ̂a − r̂aÞ: ð5Þ

We also define another set of null normals that satisfy the
same normalization, fl0; n0g, such that

l0a ¼ t̂a þ ŝa; n0a ¼ 1

2
ðt̂a − ŝaÞ: ð6Þ

B. Multipole moments

The notion of multipole moments on horizons was first
introduced for an isolated horizon [10]. If an isolated
horizon is axisymmetric, multipole moments are defined as
the multipolar expansion of the Weyl scalar Ψ2. Multipole
moments were later generalized to a dynamical horizon in
Refs. [11,12,20]. As mentioned in the previous section, we
only consider a dynamical horizonH that asymptotes to an
axisymmetric isolated horizon. In simulations, the late
portion of H can be treated as an axisymmetric isolated
horizon to within numerical accuracy. We construct multi-
pole moments on such a dynamical horizon by following
Ref. [12], and the majority of this section is simply a review
of materials from Ref. [12].

FIG. 1. Dynamical horizon in a numerical simulation. The
common horizon S is computed on the Cauchy surface Σ (the
horizontal plane). The dynamical horizon H (the paraboloid)
consists of a stack of S. Note that these shapes do not reflect the
actual appearance of these quantities. See Sec. II A for the
definitions of the vectors. This figure is a modification of Fig. 1
of Ref. [12].

2Other literature may use different definitions of a dynamical
horizon. For example, Ref. [29] and the Appendix B of Ref. [30]
allow dynamical horizons to be timelike. We also note that the
original definition of a dynamical horizon does not require la and
na to be outgoing and ingoing [31].

3The foliation in the definition of a nonexpanding horizon only
requires MOTSs, instead of future MOTSs. To define a non-
expanding horizon in a nonvacuum spacetime, an additional
condition is imposed on the stress-energy tensor Tab: −TabUb is
causal and future directed for any future-directed null normal
Ub to H. This is an energy condition weaker than the dominant
energy condition.

4In a nonvacuum spacetime, matter fields must be “time”
independent on an isolated horizon as well, where “time” is

understood as the parameter generated by l
∘a
.

5Since qab is degenerate, there exist infinitely many covariant
derivatives compatible with it. The covariant derivativeDa here is
uniquely defined as the pullback of∇a. This can be done, because
the nonexpanding horizon is shear free.

6Reference [29] shows that a tiny portion of early common
horizons may admit ΘðnÞ ≥ 0, so the 3-manifold foliated by these
early common horizons may not strictly obey the definition of a
dynamical horizon used in this paper. However, a portion of
ΘðnÞ ≥ 0 does not affect the conclusions of this paper.
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1. Spherical harmonics on an axisymmetric S

Let S be a general smooth, orientable, spacelike
2-manifold with spherical topology S2. We start by choos-
ing a pair of angular coordinates ðθ;ϕÞ on S. If S is
axisymmetric (as in the late portion ofH), there is a natural
choice of ðθ;ϕÞ [10]. Let φa on S be the rotational Killing
vector field, which generates closed integral curves and
vanishes at exactly two points (the poles). Let ϕ be the
affine parameter of each closed integral curve with range
½0; 2πÞ. We then pick a new curve that connects the two
poles and is orthogonal to φa everywhere, and we set it to
be the prime meridian ϕ ¼ 0. We define a variable ζ that
satisfies

D̃aζ ¼ 1

R2
ϵ̃baφ

b; ð7Þ
I
S
ζd2V ¼ 0; ð8Þ

where D̃a is the covariant derivative compatible with q̃ab,
ϵ̃ab the area 2-form, d2V the corresponding area element,
R ¼ ffiffiffiffiffiffiffiffiffiffiffi

A=4π
p

the areal radius, and A the area. It is necessary
that ζ has range ½−1; 1�. We obtain the angle θ via
ζ ¼ cos θ. Note that there is a rotational degree of freedom
in choosing the prime meridian, and we will fix this
freedom in Sec. III A.
In the ðθ;ϕÞ coordinates, the induced metric on S can be

written as [10]

q̃ab ¼
R4 sin2 θ
jφ⃗j2 ðdθÞaðdθÞb þ jφ⃗j2ðdϕÞaðdϕÞb; ð9Þ

where jφ⃗j2 ¼ φaφa. The compatible area element, d2V ¼
R2 sin θdθdϕ, is the same as the area element of a fictitious
round 2-sphere metric,

q
∘
ab ¼ R2½ðdθÞaðdθÞb þ sin2 θðdϕÞaðdϕÞb�: ð10Þ

Spherical harmonics7 are then defined as usual,

Ylmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
Pm
l ðcos θÞeimϕ; ð11Þ

where Pm
l ðxÞ are the associated Legendre polynomials

(with the Condon–Shortley phase convention) [36].
These Ylm are orthogonal on S:

I
S
Y�
lmYl0m0d2V ¼ R2δll0δmm0 ; ð12Þ

where * denotes complex conjugation, and the integration
is with respect to the area 2-form of q̃ab.

2. Multipole moments on an axisymmetric
isolated horizon

Let S be an axisymmetric MOTS of an axisymmetric
isolated horizon. On this S, we define mass multipole
moments (or simply mass moments) Ilm and spin multipole
moments (spin moments) Llm as

Ilm ¼ 1

4

I
S
R̃Y�

lmd
2V; ð13Þ

Llm ¼ 1

2

I
S
ϵ̃abω̃bD̃aY�

lmd
2V: ð14Þ

Here, R̃ is the q̃ab-compatible Ricci scalar8 on S, and ω̃a is
the rotational 1-form,

ω̃a ¼ −q̃abnc∇blc: ð15Þ
These multipole moments are related to the Weyl
scalar Ψ2 by

Ilm þ iLlm ¼ −
I
S
Ψ2Y�

lmd
2V; ð16Þ

because Ψ2 on an isolated horizon satisfies [10]

Ψ2 ¼ −
1

4
R̃þ i

2
ϵ̃abD̃aω̃b: ð17Þ

Although the m ¼ 0 modes (Il;0 and Ll;0) are the only
nonvanishing modes because of the axisymmetry of S, we
keep m arbitrary so that we can easily generalize multipole
moments on any MOTS of H in the coming sections.
At the end of Sec. II A, we fixed the scaling freedom in

fl; ng, so there is no ambiguity in the definition of ω̃a. As
the scaling freedom does not affect Ψ2 and Llm, we can
replace the current pair fl; ng in Eq. (15) by any other null
fl; ng subject to l · n ¼ −1. For the purpose of this paper, it
is more convenient and stable to use the pair fl0; n0g in the
definition of a rotational 1-form. We define

ωa ¼ −γabn0c∇bl0c ¼ γa
bŝc∇bt̂c ¼ ðKΣÞabŝb; ð18Þ

where γab is the spatial metric induced on Σ, and ðKΣÞab ¼
γa

c∇ct̂b is the extrinsic curvature9 of Σ within the space-
time. Replacing ω̃a by ωa, we have an equivalent definition
of spin moments,

7Spin-weighted spherical harmonics can be defined similarly,
but we do not use them on a horizon in this paper.

8We use the following convention of the spacetime Riemann
tensor ð4ÞRabcd∶ ð∇a∇b −∇b∇aÞvc ¼ ð4ÞRabc

dvd for any 4D
1-form va. The spacetime Ricci scalar is then defined as
ð4ÞR ¼ ð4ÞRab

ab. The Riemann tensor and Ricci scalar on a
horizon follow similar conventions.

9We use a sign convention different from Ref. [37].
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Llm ¼ 1

2

I
S
ϵ̃abωbD̃aY�

lmd
2V: ð19Þ

It is also useful to rewrite Eq. (19) as

Llm ¼ −
1

2

I
S
ωaφ

a
lmd

2V; ð20Þ

φa
lm ¼ ϵ̃abD̃bY�

lm: ð21Þ

The vectors φa
lm provide a complete basis for divergence-

free vectors on S [12], and the vector φa
1;0 is parallel to the

rotational Killing vector field φa [see Eq. (7)].

3. 2 + 1 decomposition of H

Except in special situations (e.g., head-on collisions of
two BHs), an arbitrary MOTS S in H is not axisymmetric.
It then becomes tricky to choose a suitable pair of angular
coordinates ðθ;ϕÞ. We cannot simply apply the construc-
tion process in the previous section, since there is no longer
a rotational Killing vector field on an arbitrary S. However,
we can still take advantage of the axisymmetry of those S in
the late portion of H. In particular, instead of defining
ðθ;ϕÞ separately and locally on every S, we adopt the idea
in Ref. [12] and build a vector Xa onH that connects ðθ;ϕÞ
on all S in a canonical way. We call Xa the stitching vector
and regard the coordinates ðθ;ϕÞ as “evolving” along Xa

on H.
A dynamical horizon is essentially a stack of MOTSs,

so it naturally admits a 2þ 1 decomposition, similar to a
3þ 1 decomposition of spacetime (cf. [37] for an intro-
duction of a 3þ 1 decomposition). Additionally, the
foliation by MOTSs is unique for a dynamical horizon,
in contrast to a nonexpanding horizon [23]. We treat Xa

as the time vector of the 2þ 1 decomposition, which has
the form,

Xa ¼ α̃r̂a þ β̃a; ð22Þ

where β̃a is a tangent vector to be specified on S. The
scalar α̃ and the vector β̃a are the lapse and the shift in this
2þ 1 decomposition. We call α̃ the 2-lapse and β̃a the
2-shift, to distinguish them from the usual lapse α and
shift βa used in a 3þ 1 decomposition.
The 2-lapse is required to preserve the foliation of

MOTSs. Let the MOTSs be labeled by a parameter v that
is smooth on H. In other words, each MOTS corres-
ponds to a v ¼ constant surface. (We will identify v with
simulation time t in a numerical simulation, but we
continue using v here to keep the discussion general.)
For Xa being the time vector, we require v to be the
parameter of the integral curve generated by Xa, i.e.,
Xa ¼ ð∂vÞa. This implies

α̃ ¼ ðqabDavDbvÞ−1=2; ð23Þ

where qab is the induced metric on H, and Da is the
covariant derivative compatible with qab.

10 Note that α̃
tends to 0 when qab approaches a degenerate metric, as in
the case when a merged BH approaches equilibrium.
However, Xa does not tend to 0, because the limiting
behavior of r̂a is nontrivial. This brings difficulties in the
numerical calculation of Xa, and we will handle them in
the next section.
Spin moments on an isolated horizon (or the late

portion of H) can be defined using a set of divergence-
free vector fields [Eq. (20)]. This inspires us to define spin
moments on a general S that also uses divergence-free
vector fields. We can obtain a canonical set of divergence-
free vector fields on all S by imposing a mapping
condition on Xa: Xa maps divergence-free vector fields
among different S isomorphically. Specifically, once φa

lm
(the divergence-free vectors on an axisymmetric S) are
known, we can Lie drag them along Xa to all other
MOTSs. In the mathematical language, we are looking for
a vector Xa on H, that satisfies the following statement.
Given a vector field ξa that is divergence free on a
particular MOTS S, i.e.,

Lξϵ̃ab ¼S 0; ð24Þ

we can define ξa on other MOTSs via LXξ
a ¼ 0, and

the resultant vector field stays divergence free on all
MOTSs, i.e.,

Lξϵ̃ab ¼H 0: ð25Þ

The trivial choice β̃a ¼ 0 does not satisfy this
mapping condition. To see this, we first note that
Eq. (25) implies LXLξϵ̃ab ¼ 0. Meanwhile, we know
LXLξϵ̃ab ¼ LξLX ϵ̃ab ¼ Lξðα̃ K̃Þ because LXξ

a ¼ 0 and
Lα̃ r̂ϵ̃ab ¼ α̃ K̃ ϵ̃ab. Here, K̃ab ¼ q̃acq̃bd∇cr̂d is the extrin-
sic curvature of S within H, and K̃ ¼ K̃a

a is its trace. The
expression Lξðα̃ K̃Þ is generally nonzero, which contra-
dicts LXLξϵ̃ab ¼ 0.
We can find a viable choice of β̃a by eliminating the

inhomogeneity in α̃K̃ from LX ϵ̃ab. In detail, the inhomo-
geneity is

α̃ K̃ −
1

4πR2

I
S
α̃ K̃ d2V ¼ α̃ K̃ −

2 _R
R

; ð26Þ

10The definitions of qab and Da on a dynamical
horizon are consistent with the ones on an isolated horizon
[Eq. (4)].
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where _R ¼ dR=dv. We choose β̃a such that11

D̃aβ̃
a ¼ −ðα̃ K̃ −2 _R=RÞ; ð27Þ

which implies LX ϵ̃ab ¼ ð2 _R=RÞϵ̃ab. Note that 2 _R=R is only
a function of v. The differential equation LXLξϵ̃ab ¼
LξLXϵ̃ab ¼ ð2 _R=RÞLξϵ̃ab, together with the initial condi-
tion Eq. (24), admits the unique solution Eq. (25). In other
words, this choice of β̃a [Eq. (27)] satisfies the mapping
condition of Xa. In the numerical implementation of
Eq. (27), it is more convenient to define

β̃a ¼ q̃abD̃bg ð28Þ

and solve

q̃abD̃aD̃bg ¼ −ðα̃ K̃ −2 _R=RÞ ð29Þ

for g on every S. The integration constant in the solution of
g does not affect β̃a and can be selected arbitrarily.
We have thus constructed the time vector Xa that satisfies

the following four properties:
(1) Xa is constructed covariantly.
(2) Xa preserves the foliation of H.
(3) Xa maps divergence-free vectors isomorphically

among different S.
(4) If H is axisymmetric, Xa preserves the rotational

Killing vector.
Now, we are ready to define multipole moments on a
general dynamical horizon H whose late portion is axi-
symmetric. We first construct Ylmðθ;ϕÞ on an axisym-
metric but otherwise arbitrary S as described in Sec. II B 1.
We then extend Ylmðθ;ϕÞ to the whole H by

LXYlm ¼ 0: ð30Þ

We define mass (multipole) moments Ilm and spin (multi-
pole) moments Llm as functions of v (or time t in numerical
simulations),12

Ilm ¼ 1

4

I
S
R̃Y�

lmd
2V; ð31Þ

Llm ¼ 1

2

I
S
ϵ̃abωbD̃aY�

lmd
2V; ð32Þ

where R̃ still represents the q̃ab-compatible Ricci scalar
and ωa is still defined by Eq. (18). These multipole
moments are dimensionless, so they are sometimes
referred to as geometric multipole moments. They extend
Eqs. (13) and (19), but the relation among Ψ2, R̃, and
ϵ̃abD̃aω̃b is not as simple as Eq. (17), so Eq. (16) no longer
holds on a general MOTS.13 Also, see Refs. [12,20] for
other definitions of multipole moments on a dynamical
horizon.

4. Alternative calculation of Xa

The 2þ 1 decomposition, Eq. (22), nicely resembles the
3þ 1 decomposition of a spacetime, but there exist
numerical difficulties in the implementation. For example,
as H becomes null and qab becomes degenerate, α̃ tends to
zero and the components of r̂a diverge. References [12,30]
discuss these ill behaviors and provide an alternative
solution to handle them. Using this alternative solution,
we can compute Xa stably on both dynamical and isolated
horizons, as described below.
Let Va be a normal to S within H such that

VaDav ¼ 1: ð34Þ

The vector Va is unique and well defined on both
dynamical and isolated horizons. It is null on an isolated
horizon and reduces to the spacelike vector α̃r̂a on a
dynamical horizon. Thus, it is more promising to use

Xa ¼ Va þ β̃a ð35Þ

in numerical simulations. The 2-shift β̃a may also be
problematic because of its dependence on α̃ and K̃
[Eq. (29)]. As H becomes null, evaluating α̃ and K̃ may
become unstable. A better way to obtain β̃a is to use the
following differential equation for g,

q̃abD̃aD̃bg ¼ −
�
1

2
q̃abLVq̃ab −

2 _R
R

�
: ð36Þ

11Constrained by the mapping condition of Xa, this choice of
β̂a is actually unique. To see this, we can first assume D̃aβ̃

a ¼
−α̃ K̃þf for a general smooth scalar function f on H. Similar to
the argument made in the paragraph after Eq. (27), we have
LXLξϵ̃ab ¼ fLξϵ̃ab þ ϵ̃abLξf. Using Eq. (25), we simply have
Lξf ¼ 0. As ξa is an arbitrary divergence-free vector on S, f has
to be constant on every S. Because the integration of D̃aβ̃

a over S
vanishes, f is uniquely determined.

12We define multipole moments using the complex conjugates
of the spherical harmonics, instead of the spherical harmonics
themselves. This is different from Ref. [12].

13Penrose and Rindler studied the right-hand side of Eq. (17)
and called its additive inverse the complex curvature [38]

K ¼ 1

4
R̃ −

i
2
ϵ̃abD̃aω̃b: ð33Þ

They also provide the relation between Ψ2 and K in Ref. [38].
The complex curvature is closely related to horizon’s tendicity
and vorticity, which are visualized in Ref. [39].
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This new equation generalizes Eq. (29), the original equa-
tion for g presented in Ref. [12], because q̃abLVq̃ab reduces
to 2α̃ K̃ on a dynamical horizon.
As a simple example, let us consider the event

horizon of a Kerr BH in the Boyer-Lindquist coordinates
ftBL; rBL; θBL;ϕBLg. This event horizon is automatically
an isolated horizon [33] and admits a foliation of MOTSs
labeled by v ¼ tBL. The 2-shift β̃

a vanishes on the horizon,
so Xa coincides with the null Killing vector Va ¼
ð∂tBLÞa þΩHð∂ϕBL

Þa, where ΩH is the horizon angular
velocity [40].

5. Balance laws

Let ΔH be the portion of a dynamical horizon H
between any two MOTSs S1 and S2. The gravitational
energy flux across ΔH is defined as [30–32]

F gðΔHÞ ¼ F g;σðΔHÞ þ F g;ζðΔHÞ; ð37Þ

where the first term on the right-hand side,

F g;σðΔHÞ ¼ 1

16π

Z
ΔH

jdRjσabσabd3V; ð38Þ

arises naturally at a perturbed event horizon [41], and the
second term,

F g;ζðΔHÞ ¼ 1

8π

Z
ΔH

jdRjζaζad3V; ð39Þ

arises only when ΔH is not null. Here,

jdRj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qabDaRDbR

q
¼ _R=

ffiffiffĩ
α

p
; ð40Þ

ζa ¼ q̃abr̂c∇clb ¼ ω̃a þ D̃a ln jdRj; ð41Þ

σab is defined in Eq. (3), and d3V is the volume element
determined by qab. It is feasible but inconvenient to use the
energy flux F gðΔHÞ in numerical studies, because the
expression depends on two simulation times, t1 for S1 and
t2 for S2. A more practical choice is the time derivative

dF g

dt
¼ d

dt
F gðΔHÞ ¼ lim

t2→t1

F gðΔHÞ
t2 − t1

: ð42Þ

We call dF g=dt the energy flux rate and may regard it as
the energy flux across a common horizon. Its constituents
dF g;σ=dt and dF g;ζ=dt can be defined similarly.
The difference between the areal radii R1 (of S1) and R2

(of S2) is proportional to the energy flux [30–32]14:

R2−R1 ¼ 2F g ¼
1

8π

Z
ΔH

jdRjðσabσabþ2ζaζ
aÞd3V: ð43Þ

This is the area balance law for areal radii. The differential
version is more convenient in numerical studies:

dR
dt

¼ 2
dF g

dt
: ð44Þ

There are balance laws for multipole moments as well.
The difference in Ilm and Llm between S1 and S2 can also
be expressed as a flux across ΔH [12]15:

Ilm½S2� − Ilm½S1�

¼
Z
ΔH

jdRj
�

1

4 _R
Y�
lmLXR̃þ 1

R
ζa∂aY�

lm

�
d3V

þ
Z
ΔH

jdRj
2R

ðσabσab þ 2ζaζ
aÞY�

lmd
3V; ð45Þ

Llm½S2� − Llm½S1�

¼ 1

2

Z
ΔH

½ðKHÞab − KHqab�Daðϵ̃bcD̃cY�
lmÞd3V: ð46Þ

Here, ðKHÞab ¼ qacqbd∇cτ̂d is the extrinsic curvature ofH
within the spacetime M, and KH ¼ ðKHÞaa is its trace.
The differential versions of these two balance laws are

dIlm
dt

¼ d
dt

Z
ΔH

jdRj
�

1

4 _R
Y�
lmLXR̃þ 1

R
ζa∂aY�

lm

�
d3V

þ d
dt

Z
ΔH

jdRj
2R

ðσabσab þ 2ζaζ
a

�
Y�
lmd

3V; ð47Þ

dLlm

dt
¼ 1

2

d
dt

Z
ΔH

½ðKHÞab − KHqab�

×Daðϵ̃bcD̃cY�
lmÞd3V: ð48Þ

All these balance laws, Eqs. (43)–(48), offer internal
checks on numerical simulations, because both sides of
these equations can be calculated independently. We will
use them to check the correctness of our simulation in
Appendix A.

C. Quasinormal modes

Perturbations of the Kerr spacetime can be described by
the Teukolsky equation [13,14]. It was first derived using
the Kinnersley tetrad [42] in Boyer-Lindquist coordinates
ftBL; rBL; θBL;ϕBLg. In this paper, we will only be con-
cerned with the Teukolsky equation governing gravitational

14In a nonvacuum spacetime, matter fields would have con-
tribution to the right-hand side.

15The right-hand side of Eq. (46) can be treated as a “general”
gravitational angular momentum flux [30,32]. We do not have a
good physical interpretation for the flux terms on the right-hand
side of Eq. (45).
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perturbations. Let Ψð1Þ
0 and Ψð1Þ

4 denote the first-order
perturbation of the Weyl scalars Ψ0 and Ψ4. Then,

ψ ¼ Ψð1Þ
0 has spin weight s ¼ 2 and describes the ingoing

gravitational wave, while ψ ¼ ρ−4Ψð1Þ
4 is a spin-weight

s ¼ −2 quantity representing the outgoing gravitational
wave, where ρ is one of the spin coefficients of the
Kerr metric.
The Teukolsky equation is separable. With appropriate

boundary conditions imposed at horizons and spatial
infinity, it admits solutions

ψlmn ¼ e−iωlmntBLRðrBLÞsYlmðθBL;ϕBL; aωlmnÞ: ð49Þ

The indices l; m represent angular modes, while n repre-
sents overtones. The indices take on integer values and
satisfy l ≥ jsj, jmj ≤ l, and n ≥ 0. The quantity ωlmn is a
complex number called the quasinormal mode frequency,16

which necessarily has a negative imaginary component
[46–49] because the perturbed BH system is dissipative.
Besides (l; m; n), the frequency ωlmn also depends on
the spin weight s, the mass Mf,

17 and the dimensionless
spin χf of the unperturbed Kerr BH. We calculate the values
of ωlmn using the qnm package [50]. The functions
sYlmðθBL;ϕBL; aωlmnÞ are the spin-weighted spheroidal
harmonics, where a ¼ χfMf is the dimensionful spin (i.e.,
spin angular momentum per unit mass). They reduce to the
spin-weighted spherical harmonics sYlmðθBL;ϕBLÞ [51] if
a ¼ 0, which further reduce to the usual spherical har-
monics YlmðθBL;ϕBLÞ if s ¼ 0. The radial part RðrBLÞ is
not important in this paper. For further discussion on the
Teukolsky equation, see Refs. [13,14,16,52]. Also, see
Ref. [44] for a review of QNMs and Ref. [53] for details of
the spin-weighted spheroidal harmonics.
In a BBH simulation, one often expands a physical

quantity on a 2-sphere S2 into angular modes using
spherical harmonics. If one performs such an expansion
on a time collection of 2-spheres, then each angular mode is
a function of simulation time t. To investigate potential
quasinormal behavior of a mode in the ringdown phase, one
then decomposes the mode into several damped sinusoids
of t. For example, strain h is usually expanded into hlm
using the s ¼ −2 spin-weighted spherical harmonics. Then,
the ringdown portion of h22 can be modeled as a linear

combination of e−iω22nt [19,54,55]. Also, see Ref. [22] for
the QNM description of the shear spin coefficient σ on the
horizon of a merged BH. Note that the spherical harmon-
ics used in simulations are constructed with respect to
some specifically chosen angular coordinates, and differ-
ent literature in general uses different sets of angular
coordinates.
Several groups have studied the quasinormal behavior of

mass moments [8,20–22]. They either consider head-on
collisions of two BHs or use definitions of multipole
moments without referring to the connection among
MOTSs (i.e., no Lie dragging along the vector Xa). In
contrast, we will investigate the quasinormal behavior of
multipole moments for an orbiting BBH system, and the
definition of our multipole moments does take into account
the relation among MOTSs. We will model mass and spin
moments as linear combinations of QNMs, and choose
different models for different moments. We will describe
these models explicitly in Sec. IV, but no matter what
models we apply, we determine coefficients in these models
by unweighted least square linear fitting.

III. NUMERICAL IMPLEMENTATION

A. Binary-black-hole simulation

We simulate the BBH system using the Spectral Einstein
Code (SPEC) [56], which adopts the first order gener-
alized harmonic formalism [57]. SpEC constructs quasi-
equilibrium initial data that is given by a Gaussian-
weighted superposition of two single-BH analytic solutions
[58]. Spacetime quantities are evolved in the damped
harmonic gauge after a smooth transition from the quasie-
quilibrium initial gauge [59]. SpEC uses excision bounda-
ries that are placed slightly inside apparent horizons
[60–62], and imposes constraint-preserving conditions on
the outer boundary [57,63]. Apparent horizons are calculated
using the fastflow method [26]. A SpEC simulation starts
with a spectral grid containing two excised regions (within
two apparent horizons), and switches to a new grid that has
only one excised region (within the common horizon) after
merger. We consider the merger as the instant when the
common horizon first appears. SpEC uses a dual-frame
configuration [64] whose domain arrangement is described
in Ref. [65]. The adaptive mesh refinement algorithm, which
SpEC uses to dynamically control grid resolutions and
domain arrangement, is discussed in Refs. [66,67].
We evolve an equal-mass, nonspinning, noneccentric

[68] BBH system. We use the same configuration as SXS:
BBH:0389 in the SXS catalog [69] and record the simu-
lation parameters in Table I. We simulate the BBH system
at two resolutions. The target truncation errors of the
adaptive mesh refinement algorithm are ∼5 × 10−8 for
the higher resolution and ∼2 × 10−7 for the other reso-
lution. Unless specified, the results in this paper are
generated from the higher resolution run. We only focus
on the post-merger portion of our BBH simulation. We set

16There are two distinct families of QNMs: the prograde
modes, ωþ

lmn, that corotate with the BH, and the retrograde
modes, ω−

lmn, that counterrotate with the BH. They are related by
ω−
lð−mÞn ¼ −ðωþ

lmnÞ� [43–45]. In this paper, we will only consider
ωþ
lmn for m ≠ 0, but we will use both ωþ

lmn and ω−
lmn for m ¼ 0.

For the sake of readability, we drop these superscripts and keep
using the notation ωlmn throughout the paper. The meaning
should be clear from the context.

17The final Kerr BH mass, Mf , is smaller than the initial total
ADM mass of the system, M. See Sec. III A for the numerical
value of their ratio in our simulation.
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t ¼ 0 at the merger (i.e., when the common horizon
first appears). We assume the merged BH settles down
to the Kerr state at tf ¼ 500M (whereM is the initial total
ADM mass of the BBH system), and we shall see in
Sec. IVA that this is a good assumption. The final Kerr
BH has dimensionless spin χf ¼ 0.68644 (measured by
the method of approximate Killing vectors [58]) and mass
Mf ¼ 0.95162M. Table II shows several ωlmnðχf;MfÞ
that are used in this paper.
We process the simulation following the procedure

described in Sec. II B. We first calculate the invariant
spherical coordinates ðθ;ϕÞ on the common horizon at
t ¼ tf, when the common horizon is axisymmetric. With
ðθ;ϕÞ, we immediately obtain a set of spherical harmonics
Ylm by Eq. (11) at t ¼ tf. We then find Va by Va ⊥ S and
Eq. (34), find βa by Eqs. (28) and (36), and construct the
stitching vector Xa on H by Eq. (35). Next, we Lie drag
Ylm along Xa [Eq. (30)] backward in time, from the final
state t ¼ tf to the merger t ¼ 0. Finally, we calculate the

mass and spin moments by Eqs. (31) and (32). Because of
the symmetry of the BBH configuration, the mass moments
Ilm are nonvanishing only for even l and evenm, while the
spin moments Llm are nonvanishing only for odd l and
even m. To fix the rotational degree of freedom mentioned
in Sec. II B, we multiply Ilm and Llm by an m-dependent
phase factor eimη, where η is some real constant, such that
I22 is real at t ¼ 0. Under this convention, the even-m
modes are unambiguous, but the odd-m modes are still
determined up to a sign. We do not choose a further
convention to fix this sign, because all odd-m modes are
trivial in this paper.
Besides the coordinates ft; θ;ϕg used above, we some-

times need the notion of simulation coordinates ft; x̀; ỳ; z̀g
in this paper. These are the horizon-penetrating Cartesian
coordinates used directly to simulate the BBH system in
SpEC, and they are called the inertial coordinates in
Ref. [61]. We also construct the simulation spherical
coordinates ft; r̀; θ̀; ϕ̀g such that

x̀ ¼ r̀ sin θ̀ cos ϕ̀; ð50Þ

ỳ ¼ r̀ sin θ̀ sin ϕ̀; ð51Þ

z̀ ¼ r̀ cos θ̀: ð52Þ

On a dynamical horizon, which is a 3D object, we only
need ft; θ̀; ϕ̀g. Note that in general, θ̀ ≠ θ and ϕ̀ ≠ ϕ.

B. Rotation procedure on multipole moments

To compare multipole moments with QNMs in this
simulation, we need to apply one more procedure on these
multipole moments. In Sec. II B 3, by Lie dragging a
spherical harmonic basis as in Eq. (30), we construct an
invariant basis of Ylm ’s and use it to define multipole
moments. While this construction leads to an invariantly
defined set of multipole moments, this basis of Ylm ’s is not
well adapted for the QNM analysis. In particular, as the
dynamical horizon H approaches the Kerr horizon, the Lie
dragged Ylm’s are rotating with respect to the Kerr-Schild
coordinates. This rotation can be understood from the
following chain of arguments.
(1) In the limit at equilibrium, the right-hand side of

Eq. (36) vanishes, so Xa approaches Va.
(2) BecauseVa is tangent to the horizonandperpendicular

to the foliation, it must be a null normal of the Kerr
horizon. This implies

Xa ¼ fðta þ ΩHϕ
aÞ; ð53Þ

where ta and ϕa are the timelike and rotational Killing
vector fields of the Kerr spacetime, ΩH is the horizon
angular velocity [40], and f is some function.

TABLE I. Parameters for the BBH simulation studied in this
paper. The symbols q, D0, Ω0, _a0, and e represent the mass ratio,
initial coordinate separation, initial orbital frequency, initial rate
of change of separation, and eccentricity. The symbols χ⃗A;B stand
for the dimensionless spin vectors of the two BHs. We choose the
initial free data to be the Gaussian-weighted superposition of two
BHs in the Kerr-Schild coordinates, and this is called superposed
Kerr-Schild in SpEC [58].

Parameter Value

Initial free data superposed Kerr-Schild
q 1
D0 15.43M
Ω0 0.01525
_a0 −0.00003721
χ⃗A;B (0, 0, 0)
e ∼0.0009
Number of orbits 18.6

TABLE II. The values of several spin-weight-2 QNM frequen-
cies ωlmn used in this paper. They are generated by the qnm
package [50], based on the remnant parameter Mf ¼ 0.95162M
and χf ¼ 0.68644. QNM frequencies are complex numbers. The
real part, ReðωlmnÞ, is the oscillation frequency, while the inverse
imaginary part, −1=ImðωlmnÞ, is the characteristic decay time.
Note that we express the QNM frequencies in the unit of M,
instead of Mf .

l; m; n ReðωlmnÞ [M−1] −1=ImðωlmnÞ [M]

2, 2, 0 0.5535 11.707
2, 2, 1 0.5410 3.8713
2, 2, 2 0.5180 2.2923
3, 2, 0 0.7920 11.235
4, 2, 0 1.0172 10.938
2, 0, 0 0.4132 11.236
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(3) This function f is actually a constant, since Xa

preserves the foliation and the foliation is known
to become stationary at late times. Moreover,
the simulation coordinates in SpEC are remark-
ably close to the Kerr-Schild coordinates at late
times,18 which fixes the normalization f ≈ 1. Thus,
we have

Xa
∂a ≈ ∂t þΩH∂ ϕ̀

; ð54Þ

where we write the Killing vector fields explicitly
in the simulation coordinates t; ϕ̀. [Note that the
normalization is irrelevant to the Lie dragging
procedure, Eq. (30).]

We now see that the azimuthal coordinate ϕ, being
Lie dragged along Xa, is rotating with frequency ΩH,
relative to the Kerr-Schild azimuthal coordinate. In Kerr
perturbation theory, one uses a Kerr-Schild-like coor-
dinate system to obtain QNM frequencies. If we use an
azimuthal coordinate that is Lie dragged along Xa, we
expect different frequencies in the temporal behaviors
of perturbed quantities. We can, however, simply undo
this rotation by the transformation ϕ → ϕ −Ωt, which
yields the transformation Ylm → Ylme−imΩt. Crucially,
this transformation changes the temporal behaviors of
horizon multipole moments, and makes them more
suitable for the QNM analysis. However, we note that
the transformed ϕ is not covariantly defined, because
the transformation depends on the simulation time.
We will apply this procedure on multipole moments in

Sec. IV, specifically in Eqs. (59) and (67). Note that we use
a symbol Ω here instead of ΩH, because we will choose a
frequency value slightly different from ΩH. See Sec. IVA
for the detail of this choice of Ω.

IV. RESULTS

In this section, we analyze in detail both the mass and
spin moments extracted from the BBH simulation
described in Sec. III. In particular, we investigate the
dominant mass moment (I22) in Sec. IVA, the dominant
spin moment (L32) in Sec. IV B, and the I20 multipole
moment in Sec. IV C. We summarize the behaviors of other
multipole moments up to l ¼ 6 in Sec. IV D. For those
readers interested in the correctness of our simulation, we
numerically confirm the balance laws and demonstrate the
error convergence in Appendix A.

A. (2,2) mass moment

The (2,2) mass moment I22 is the dominant mode among
the Ilm with nonzero m. Figure 2 shows the (2,2) mass
moment as a complex function of t. In the top panel, the
magnitude (absolute value), the real part, and the imaginary
part of I22 are plotted in blue (solid), orange (dashed), and
purple (dotted). We use a linear scale to demonstrate that
both real and imaginary parts alternate between positive
and negative values. The linear scale also provides a better
reading on the magnitude of these curves before t < 30M.
Note that the imaginary part of I22 is 0 at t ¼ 0, since we
choose the convention that I22 is real at t ¼ 0 (see Sec. III).
In the bottom panel, we show jReðI22Þj, i.e., the absolute
value of the real part of I22, in cyan (solid). We use a
logarithmic scale in this panel to show the manifest pattern
of damped oscillations of I22. This curve decays exponen-
tially until reaching a floor at the level 4 × 10−6 after
t ∼ 150M. Because I22 (and other Ilm with nonzero m)
should approach 0 because of the axisymmetry of the
remnant BH, the floor provides a measure of numerical
error for I22. We can remove this numerical floor by
subtracting it from I22. Specifically, we define

Ī22 ¼ I22 −mean½I22ðt ≥ 400MÞ�; ð55Þ

FIG. 2. The mass moment I22 and its floor correction. The top
panel shows jI22j in blue/solid, ReðI22Þ in orange/dashed, and
ImðI22Þ in purple/dotted. The bottom panel shows jReðI22Þj in
cyan/solid. This curve directly demonstrates the damped oscil-
lation pattern of I22. It also reveals a numerical floor at the level
4 × 10−6 after t ∼ 150M. Subtracting this floor from I22, we
obtain the floor-corrected mass moment Ī22, which is shown in
pink/dashed in the bottom panel. The pattern of damped
oscillation extends to t ∼ 280M.

18Ref. [70] found that an isolated BH in damped harmonic
gauge has lapse, shift, and extrinsic curvature nearly identical
to that of Kerr-Schild coordinates, only the spatial metric is
different.
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where mean½I22ðt ≥ 400MÞ� refers to the average value19

of I22 over the range 400M ≤ t ≤ 500M. The bottom
panel displays jReðĪ22Þj in a pink dashed style. We
observe that jReðĪ22Þj also possesses a pattern of damped
oscillation, but now the pattern extends to t ∼ 280M. As
Ī22 has a longer-lasting nontrivial behavior, we will use
Ī22 instead of I22 from now on. However, we keep in
mind that the t > 150M portion of Ī22 is within numeri-
cal uncertainty, so we will only focus on t ≤ 150M from
now on. All conclusions in this paper are based on the
portion t ≤ 150M.
To further analyze the behavior of this mass moment,

we will implement the rotation procedure outlined in
Sec. III B. We first check the validity of Eq. (54) in the
simulation at late times by comparingΩH withΩt. Here,Ωt

is defined as the average value of X ϕ̀ (the ϕ̀-component of
Xa) over the common horizon S at time t, i.e.,

Ωt ¼ mean
S

ðX ϕ̀Þ: ð56Þ

Note that in the simulation, the maximum deviation of X ϕ̀

from Ωt on every S is within 10−5 for t ≥ 300M, as
expected. What is unexpected is shown in the top panel of
Fig. 3: Although we expect Ωt to approach the horizon
angular velocity [40],

ΩH ¼ χf

2Mfð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2f

q
Þ
¼ 0.208819M−1; ð57Þ

it does not completely settle down even at t ¼ tf ¼ 500M.
Nevertheless, as Ωt varies gradually near t ¼ 500M, we set
the rotational frequency of the transformation ϕ → ϕ −Ωt
in this paper to be

Ω ¼ Ωt¼500M ¼ 0.208784M−1: ð58Þ

All results in the following sections are based on this
choice. We also show the relative difference20 between Ωt
and ΩH in the inset.
We rotate the mass moments by defining

ĨlmðtÞ ¼ ĪlmðtÞe−imΩt: ð59Þ

The bottom panel of Fig. 3 compares the rotated mass
moment jReðĨ22Þj (orange/dashed) with the nonrotated one
jReðĪ22Þj (blue/solid). The rotation does not change the
decay rate of the mass moment but greatly increases its
oscillation frequency: Ĩ22 oscillates almost four times as
quickly as Ī22. Thus, the use of Ī22 or Ĩ22 may lead to very
different conclusions. In this paper, we choose to investigate
the behavior of Ĩ22, namely the rotated, error-floor-corrected
(2,2)massmoment. Aswewill see, the behavior of thismass
moment resembles that of a gravitational waveform.
Our first step in the analysis of Ĩ22 is to compare it with

the waveform strain h.21 We extract h on the surfaces of
multiple concentric spherical shells of finite Euclidean radii
r, and extrapolate rh to Iþ as a function of retarded time tret
[72–76]. Then, rh22 is the ðl ¼ 2; m ¼ 2Þ coefficient in the
s ¼ −2 spin-weighted spherical harmonic expansion of rh.
Note that rh22 is both time shifted and phase shifted in this
paper: We set tret ¼ 0 when jrh22j (not necessarily jrhj)

FIG. 3. The rotational frequency of Ylm and the rotated mass
moment. The top panel shows Ωt (purple/solid), the rotational
frequency of Ylm, as a function of time. The curve does not settle
down to a constant even at a very late time. This panel also shows
ΩH (cyan/dashed), the horizon angular velocity, as a reference.
The relative difference between Ωt and ΩH is given in the inset.
We show the comparison between Ī22 (blue/solid) and its rotated
version Ĩ22 (orange/dashed) in the bottom panel. Applying the
rotation does not alter the decay rate, but it increases the
frequency significantly.

19Even more specifically, I22ðtÞ is a series of discrete data
points generated from the simulation. They are equally spaced by
0.1M in 400M ≤ t ≤ 500M. The quantity mean½I22ðt ≥ 400MÞ�
is the unweighted mean of these data points, which is of the
order of 10−6 in our simulation.

20In this paper, the relative difference/error between any two
numbers, f and g, is defined as 2jf − gj=jf þ gj. The relative
difference between ΩH and Ω is 1.7 × 10−4. This is the same as
the difference between the surface gravity for Va and the Kerr
surface gravity, introduced in Appendix B.

21Comparison between horizon data and asymptotic data in
SPEC BBH simulations is not new. Reference [71] is such an
example that compares masses, spins, and recoil velocities of
remnant BHs.
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reaches its maximum. We also multiply rh22 by a
constant complex factor such that rh22ðtret ¼ 50MÞ
matches Ĩ22ðt ¼ 50MÞ.22 We show both Ĩ22 (blue/solid)
and rh22 (orange/dashed) in Fig. 4. The graph displays the
absolute values of their real parts, so that we can compare
the decay and oscillation between the two curves simul-
taneously. The horizontal axes represent the simulation
time t for Ĩ22 and the retarded time tret for rh22. We see
from the graph that Ĩ22 and rh22 are strongly correlated.
Specifically, in the range 20M ≤ t ≤ 120M, they share
the same decay constant and oscillation frequency. For
t > 120M (not shown), the comparison becomes mean-
ingless, because the strain reaches its level of numerical
error. For t < 20M, Ĩ22 and rh22 are less correlated,
possibly because the meaning of time (or the behavior
of the lapse) in the strong field regime is substantially
different from at infinity.
Figure 4 strongly suggests that the mass moment Ĩ22,

like h22, is described by the QNM of spin-weight s ¼ −2
or s ¼ 2. We include the possibility s ¼ 2 here, because
the frequency of an s ¼ 2 QNM is the same as that
of s ¼ −2.23 In the following sections, we investigate
the quasinormal pattern of Ĩ22 quantitatively, by linearly
fitting Ĩ22 to multiple QNMs of spin weight s ¼ 2 (or
equivalently s ¼ −2).

1. Mode mixing

We start with a model with only fundamental modes,

Ĩ22 ¼
XL
l¼2

Cl20e−iωl20ðt−t0Þ; ð60Þ

with a fitting time range t0 ≤ t ≤ 120M. We choose
120M as the end fitting time, when the mass moment
is still slightly above the numerical error of Ĩ22 (see
Fig. 2). The parameters Cl20 are to be determined by a
linear fit. (All the symbols Clmn in this paper should be
understood as fitting parameters.) We consider several
L ≥ 2 and allow t0 to vary. We measure the error of fit by
the mismatch between Ĩ22 and its fit. The mismatch
between two complex-valued functions fðtÞ and gðtÞ is
defined as

Mðf; gÞ ¼ 1 −
ReðhfjgiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihfjfihgjgip ; ð61Þ

where

hfjgi ¼
Z

fðtÞg�ðtÞdt; ð62Þ

with integration domain over the fitting time range.
We first consider the simplest choice L ¼ 2 in this

model, which means we fit Ĩ22 using only the fundamental
tone of (2,2) QNMs. The mismatchM as a function of the
initial fitting time t0 is shown in blue (solid) in Fig. 5. The
curve decays from 10−2 to 10−5 before t0 ¼ 18M. This
decay is expected, because the current model does not
include overtones, which are strongly excited near the
merger. However, it is surprising to see a wavy pattern in
the curve after t0 ¼ 18M, since the QNM fit of rh22 does

FIG. 5. The mismatch between Ĩ22 and its fit using ωl20 QNMs
[Eq. (60)], plotted as a function of the initial fitting time t0. Both
the L ¼ 2 (blue/solid) and L ¼ 3 (orange/dashed) curves decay
sharply before t0 ¼ 18M, because overtones are not included in
the model. The L ¼ 2 curve, which only uses the ω220 QNM,
contains a persistent oscillatory pattern after t0 ¼ 18M. This is a
beat pattern formed by the ω220 and ω320 QNMs, and is removed
in the L ¼ 3 curve.

FIG. 4. The comparison between the mass moment Ĩ22 (blue/
solid) and the waveform rh22 (orange/dashed). The mass moment
is plotted as a function of simulation time t, while the waveform is
of retarded time tret. The waveform is time shifted and multiplied
by a constant factor, as described in the main text. The black
dotted vertical line marks t ¼ 50M, at which the values of two
curves are matched. We see strong correlation between these two
quantities in 20M ≤ t ≤ 120M.

22Matching at any time between 25M and 95M yields a very
similar result.

23It is interesting that Ĩ22, a spin-weight-0 quantity, is described
by spin-weight-�2 QNMs. Understanding this is an interesting
topic for future work.
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not have such a feature [19,54]. This oscillatory pattern
extends well beyond t0 ¼ 70M, which is not shown.
This oscillatory pattern suggests that the L ¼ 2 model

does not capture an essential feature of Ĩ22. We can rule out
the following two possibilities for this missing feature.
First, this feature is not related to the oscillation of Ī22, i.e.,
the nonrotated mass moment. This is because the period of
the oscillatory pattern in the L ¼ 2 mismatch curve
(∼26M) differs from the period of Ī22. Second, the missing
feature is not related to the ω22n overtones either, because
the oscillatory pattern cannot be eliminated by including
them in the L ¼ 2 model (not shown). Accordingly, we
consider one more possibility: There is another fundamen-
tal tone, other than ω220, that contributes to Ĩ22. Indeed,
ω220 and ω320 share a similar decay rate, and they can
generate a beat period of 26.3M (see Table II), which is
close to the period of the oscillatory pattern (∼26M). So we
now examine the model Eq. (60) with L ¼ 3. The orange
dashed curve in Fig. 5 represents the mismatch using this
model. It contains no oscillatory pattern at late times,
confirming the non-negligible contribution of the (3,2)
fundamental tone to Ĩ22. The curve decreases steadily after
the local maximum at t ¼ 27.4M, so we may treat t ¼
27.4M as the instant when overtones are negligible, and
only two fundamental tones dominate. We have also
investigated the L ¼ 4 and L ¼ 5 cases, but they hardly
improve the fit (not shown).
We now connect the presence of the (3,2) QNM in the

description of Ĩ22 to the concept of mode mixing. In BH
perturbation theory, the natural angular basis for strain h
(whose second time derivative is Ψ4) is the spin-weighted
spheroidal harmonics (Sec. II C). However, the natural
angular basis for h at future null infinity Iþ is the basis of
the spin-weighted spherical harmonics [69]. This is the
basis used, for example, in LIGO-Virgo-KAGRA wave-
form analysis. The use of spherical harmonics intertwines
spheroidal modes of the same m but different l [77]. For
example, the spherical mode h22 (i.e., the expansion
coefficient corresponding to −2Y22) can be decomposed
into not only the ω22n modes, but also the ω32n modes, etc.
This phenomenon is called mode mixing. In our BBH
configuration (equal-mass, non-spinning), modes other
than ω22n may be ignored in h22’s decomposition. This
is because the ω22n modes are strongly dominant [18], and
the mixing of spheroidal and spherical harmonics is tiny
[77]. However, this argument does not apply to mass
moments Ilm. The natural angular basis of the perturbed
R̃ in Eq. (31) is neither spheroidal nor spherical harmonics,
but a complicated function of angles ðθ;ϕÞ instead.24 The
mixing of this complicated angular function and spherical
harmonics, if non-negligible, would lead to the presence

of (3,2) QNMs in Ĩ22. In this paper, we refer to this
phenomenon as mode mixing as well, but in a somewhat
broader sense.
Now that we know Ĩ22 can be well approximated

by the fundamental tones of (2,2) and (3,2) QNMs after
t ¼ 27.4M, we shall analyze the effect of overtones on Ĩ22.
Inspired by the use of overtones in the QNM fit of
waveforms and horizon moments in Refs. [19,22,54], we
consider the following model,

Ĩ22 ¼ C320e−iω320ðt−t0Þ þ
XN
n¼0

C22ne−iω22nðt−t0Þ; ð63Þ

with the same fitting time range t0 ≤ t ≤ 120M. Figure 6
shows the mismatch of this model as a function of t0 for
multiple N (0 ≤ N ≤ 3). By construction, the N ¼ 0 curve
is the same as the L ¼ 3 curve in Fig. 5. As more
overtones are included, the mismatch curve becomes
flatter and lower, and the initial damping part shrinks
and ends earlier. For N ¼ 3, we no longer see the initial
damping part. This means that the overtones ω22n (at least
for 1 ≤ n ≤ 3) do contribute to Ĩ22, and the fitting model
Eq. (63) indeed captures them. Note that compared to the
N ¼ 0 model, those N ≥ 1 models improve the accuracy
even after the overtones are supposed to damp away. This
might be caused by overfitting to numerical noise. We also
checked several N ≥ 4 models, but they do not display
much improvement (not shown) compared to the N ¼
3 model.

2. Fit using fundamental tones

In this section, we will have a closer look at the late-time
QNM description of Ĩ22. We continue using the model
Eq. (60) with L ¼ 3, which reads

Ĩ22 ¼ C220e−iω220ðt−t0Þ þ C320e−iω320ðt−t0Þ: ð64Þ

FIG. 6. The mismatch between Ĩ22 and its fit using ω22n and
ω320 QNMs [Eq. (63)]. The N ¼ 0 curve is, by construction, the
same as the L ¼ 3 curve in Fig. 5. Adding higher overtones
renders a better fit for all t0, and specifically, brings down the
portion of large mismatch before t ∼ 10M. This figure demon-
strates the important contribution of overtones to the mass
moment.

24The angular dependence of the perturbed R̃ is a surface
derivative of spheroidal harmonics in certain coordinates. See
Ref. [78] for expressions of the perturbed R̃.
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Instead of varying t0 as in the previous section, we now fix
the value of t0. In particular, we choose t0 ¼ 50M, at which
all overtones have decayed sufficiently.25

The top left panel of Fig. 7 shows the fit using this model
with the fitting time range 50M ≤ t ≤ 120M. The blue
solid curve represents the actual mass moment Ĩ22, while
the orange dashed curve represents the fit. They are both
plotted in the magnitude of their real parts. We see that the
two curves overlap very well, so the model Eq. (64) indeed
provides a good description of Ĩ22. The relative difference
between Ĩ22 and its fit (including their imaginary parts) is
plotted in purple (solid) in the bottom panel of the same
figure. For reference, the cyan dashed curve in this panel is
the relative difference in Ĩ22 between the two resolutions
used in our simulation (Sec. III A), which provides another
estimate of the numerical error of Ĩ22. Note that both curves
in the bottom panel have an increasing trend, as Ĩ22 gets
closer to the level of numerical uncertainty. After t ≥ 80M,
the relative error of the QNM fit is larger than the numerical
error of Ĩ22 by about two orders of magnitude. This means
the model is good but not perfect, and there is room for
improvement in the future. Ideas for potential improvement
include replacing the current fitting scheme (ordinary least
square) by weighted least squares (putting more weight on
the late-time portion of the curve) and rotating Īlm into Ĩlm
by a time-varying frequency.
Once we accept that the model Eq. (64) can describe the

mass moment at late times, we may use it to estimate the

final mass and spin of the remnant. The QNM frequencies
ω220 and ω320 used to generate the left panels of Fig. 7 are
calculated based on Mf and χf that are measured by SPEC

(Sec. III A). In the following discussion, we regard the
SpEC values of Mf and χf as their true values. Now, we
allowMf and χf to deviate from the true values, and repeat
the QNM fit over the (Mf, χf) parameter space (similar to
the procedure in Ref. [19]). For each (Mf, χf) combination,
we measure the error of the fit by the mismatch, Eq. (61).
The result is visualized as a heat map of log10M in the left
panel of Fig. 8: the lighter the shading, the smaller the
mismatch. We also show the true values of Mf and χf in
golden (solid) lines for reference. We see from the plot that
not only does the mismatch have a deep minimum over the
(Mf, χf) parameter space, but also the minimum approx-
imately recovers the true values. In particular, the best
estimates of the mass and spin (i.e., their values at the
minimum) areM0

f ¼ 0.95390M and χ0f ¼ 0.68825. We can
assess the goodness of these estimates by the error,

ϵf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM0

f −MfÞ2=M2 þ ðχ0f − χfÞ2
q

; ð65Þ

as proposed in Ref. [19]. The error of these estimates is
ϵf ¼ 2.9 × 10−3, compared to a difference between the two
resolutions, 3 × 10−6. Note that the minimum mismatch
does not necessarily make (M0

f, χ0f) a better pair of
candidates for the final mass and spin, because as we will
see, different QNM models produce different (M0

f; χ
0
f)

combinations, and there is no consistent choice among
these models to determine mass and spin yet.

FIG. 7. The comparison between Ĩ22 and its fit. The left two panels are based on the fit using ω220 and ω320 [Eq. (64)], in the time range
50M ≤ t ≤ 120M. The right two panels are based on the fit using fω220;ω221;ω222;ω223;ω320g [Eq. (63) with N ¼ 3], in the time range
0 ≤ t ≤ 120M. The top two panels show the absolute real parts of Ĩ22 (blue/solid) and its fit (orange/dashed). In either top panel, the two
curves overlap very well. The bottom two panels show the relative difference between Ĩ22 and the fit in purple/solid, and the difference in
Ĩ22 between two resolutions in cyan/dashed. The quantity Ĩ22;coarse refers to the (2,2) mass moment extracted from the low-resolution
simulation.

25At t0 ¼ 50M, the mismatch of this model (Fig. 5) has
decreased below 4 × 10−6, which is the numerical error of Ĩ22
estimated by the numerical floor in Fig. 2.
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3. Fit using overtones

We extend the analysis in the previous section to the
early-time portion of Ĩ22, by including overtones up to
n ¼ 3. In particular, we investigate the model Eq. (63) with
N ¼ 3, and fix the fitting time range as 0 ≤ t ≤ 120M. The
right panels of Fig. 7 shows the comparison between the
actual Ĩ22 and its QNM fit using this N ¼ 3 model. We see
from the top panel that the QNM description of the (2,2)
mass moment is valid even near the merger. The relative
error of this fit is 10−3–10−2, which is about two orders of
magnitude greater than the numerical error measured by the
difference in Ĩ22 between two resolutions, as shown in the
bottom panel. Again, this means the model could be
improved in the future.
Thismodel also provides an estimate of the final mass and

spin of the remnant. The right panel of Fig. 8 shows the
mismatch heat map over the (Mf, χf) parameter space,
togetherwith a golden cross representing the trueMf and χf.
Once more, we see a deep minimum near the golden cross.
The mass (M0

f ¼ 0.95699M) and spin (χ0f ¼ 0.69066) at the
minimum reproduce the true values, with error ϵf ¼ 6.8×
10−3. This result also rules out overfitting partially, because
almost any (Mf, χf) combination yields a worse fit than the
true values. We cannot completely rule out overfitting since
the five complex frequencies represent 10 real degrees of
freedom, and we only vary two (final mass and spin).

B. (3,2) spin moment

The (3,2) spin moment L32 is the dominant mode among
Llm with nonzerom. Figure 9 shows the value of jReðL32Þj,
i.e., the magnitude of the real part of L32, in cyan (solid).

Similar to the jReðI22Þj curve in Fig. 2, this curve has a
pattern of damped oscillation before t ¼ 150M, and then
stays unchanged on a 5 × 10−6 numerical error floor after
t ¼ 150M. We subtract this floor from L32 and define the
floor-corrected spin moment

L̄32 ¼ L32 −mean½L32ðt ≥ 400MÞ�: ð66Þ

The pink dashed curve in Fig. 9 represents the value of
jReðL̄32Þj. After the error floor correction, the damped
oscillation extends to t ¼ 280M. Nevertheless, wewill only
focus on the portion t ≤ 150M of L̄32 henceforth. In Fig. 9,
we also observe that the early-time portion of both curves
does not follow a normal damped-oscillatory pattern: the

FIG. 8. Heat maps of the mismatch log10 M over the (Mf, χf) parameter space. The left panel is based on the model Eq. (64), while the
right one on the model Eq. (63) with N ¼ 3: the lighter the shading, the smaller the mismatch. In each panel, we use two golden lines to
represent the true values ofMf and χf. The dashed curves are the contour lines of constant mismatch. The deepminimum of the mismatch
is located close to the golden cross, which means that the QNM model can be used to recover the true values of the remnant parameters.

FIG. 9. The spin moment L32 and its floor correction. The
original (3,2) spin moment (cyan/solid) reaches a numerical
floor at the level 5 × 10−6 after t ∼ 150M. We define the floor-
corrected spin moment L̄32 (pink/dashed) by subtracting the floor
from L32. The damped oscillatory pattern of L̄32 extends to
t ∼ 280M. We also observe that the first several cycles are
stretched wider near the local maxima.
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first 3–4 cycles are stretched wider at the local maxima,
especially near t ∼ 25M and t ∼ 50M. This is caused by
mode mixing, as we shall see in the following subsection.
This feature is not visible in Fig. 2, where the mixing of
modes is relatively small.

1. Mode mixing

Following the rotation procedure in Sec. III B, we define
the rotated spin moments,

L̃lmðtÞ ¼ L̄lmðtÞe−imΩt; ð67Þ
and investigate the mode mixing in L̃32. We perform a
QNM fit of L̃32 using the following model:

L̃32 ¼
X
l∈Q

Cl20e−iωl20ðt−t0Þ: ð68Þ

We choose the fitting time range to be t0 ≤ t ≤ 120M, with
t0 varying, and assess the goodness of fit by mismatch
[Eq. (61)]. The set Q consists of integers to be specified.
Sincewe are investigating the ðl ¼ 3; m ¼ 2Þ spinmoment,
the most intuitive choice ofQ is the singleton f3g, i.e., only
considering the (3,2) QNM. However, this choice com-
pletely fails theQNMfit withmismatch always above 0.1, as
indicated by the blue solid curve in Fig. 10. The best single-l
model is actually of l ¼ 2 (the orange dashed curve in the
same graph), whose mismatch is smaller than the l ¼ 3
curve (blue/dashed) by a factor of 10 after t0 ¼ 10M. Thus,
the (2,2) QNM is the actual dominant mode in L̃32. This is
not unreasonable, because the perturbation of D̃aðϵ̃abωbÞ
[see Llm’s definition, Eq. (32)] is not guaranteed to satisfy
the Teukolsky equation.
From Fig. 10, we see that even the best single-l model

has poor performance with mismatch ∼10−2. Thus, we

move on to models using two different l’s. In particular, we
consider all possible pairs of l among f2; 3; 4; 5g. The pair
l ¼ 2; 3 yields the best QNM fit, as shown in purple/dash-
dot in Fig. 10, while all other pairs produce much worse
mismatch (not shown).26 The mismatch of the l ¼ 2, 3
curve is much smaller than the l ¼ 2 curve (orange/
dashed), by a factor of ∼1000 after t ¼ 20M. This means
that the (2,2) and (3,2) QNMs are the first two dominant
modes in L̃32. It also demonstrates that a two-l model can
outperform any single-l model when mode mixing is
significant.
The purple dash-dot curve in Fig. 10 has a wavy pattern

after t ¼ 20M, similar to the L ¼ 2 curve in Fig. 5, which
suggests a further mode mixing. This oscillatory feature is
indeed reduced by using the l ¼ 2; 3; 4model, as shown by
the cyan dotted curve in Fig. 10. We continued expanding
the model to include more l, but we found the improve-
ment negligible (not shown). Hence, our (3,2) spin moment
is best described by a linear combination of the (2,2), (3,2)
and (4,2) QNMs at late times (t ≥ 20M).
For t ≤ 20M, the mismatch of the l ¼ 2; 3; 4 model

(cyan/dotted) decays sharply from 10−2 to 10−5. To probe
the effect of overtones on the early-time behavior of L̃32,
we consider the following fitting model,

L̃32 ¼ C320e−iω320ðt−t0Þ þ C420e−iω420ðt−t0Þ

þ
XN
n¼0

C22ne−iω22nðt−t0Þ; ð69Þ

with the fitting range t0 ≤ t ≤ 120M. We plot the mis-
match as a function of t0 in Fig. 11 for five different N.

FIG. 10. The mismatch between L̃32 and its fit using the model
Eq. (68). The intuitive choice Q ¼ f3g (blue/solid) actually
produces the QNM fit with the largest mismatch. The best
single-l model uses l ¼ 2 (orange/dashed), producing a mis-
match ∼10−2. The best two-l model uses l ¼ 2; 3 (purple/dash-
dot), which decreases the mismatch by a factor of ∼1000
compared to the orange dashed curve after t0 ¼ 20M. The l ¼
2; 3 curve exhibits a wavy pattern, which can be reduced by using
the l ¼ 2; 3; 4 model (cyan/dotted).

FIG. 11. The mismatch between L̃32 and its fit using the model
Eq. (69). By construction, theN ¼ 0 curve is the same as the cyan
dotted curve in Fig. 10. Including higher overtones brings down
the mismatch, but also reveals a new oscillatory pattern. Unless
this pattern is resolved, the effect of overtones on L̃32 remains
unclear.

26The pairs l ¼ 2; 4 and l ¼ 2; 5 have mismatch close to the
orange dashed curve in Fig. 10, while the remaining pairs close to
the blue dashed curve.
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By construction, theN ¼ 0 curve (blue/solid) is identical to
the cyan dotted curve in Fig. 10. As more overtones are
included, the mismatch decreases, and the initial decay
pattern fades. However, it is yet unclear whether the decay
completely disappears, because a newly emerging wavy
pattern overshadows this decay. The wavy pattern is mani-
fest in all four N > 0 curves and persists for even higher N
(not shown). This suggestsmore potentialmixing fromother
QNMs, which we do not pursue further in this paper.27

C. (2,0) mass moment

There are two major differences between multipole
moments of m ¼ 0 and those of m ≠ 0. First, an m ¼ 0
multipole moment is real-valued, while an m ≠ 0 mode is
complex-valued. Second, as the remnant BH settles down,
a nontrivialm ¼ 0mode tends to a nonzero constant, while
a nontrivial m ≠ 0 mode always tends to 0. Because of
these distinctions, it is instructive to discuss m ¼ 0 multi-
pole moments separately. We apply the techniques used in
the previous two sections (Secs. IVA and IV B) on I20, but
with slight modification.
Mass and spin moments of a Kerr BH can be calculated

theoretically given its mass and spin [8]. Let I20;theory be the
theoretical value of the (2,0) mass moment of a Kerr BH.
We find that the relative difference between I20 and I20;theory
always lies below 4 × 10−6 after t ¼ 150M, so our I20
indeed approaches the expected value. To investigate the
possible QNM description of I20, we subtract its asymptotic
value and define

Ī20 ¼ I20 −mean½I20ðt ≥ 400MÞ�: ð70Þ

This is similar to Eq. (55), except that the nonzero value of
I20 at a late time is related to the horizon geometry instead
of numerical errors. Note that form ¼ 0, there is no need to
rotate Ī20, and we can directly set Ĩ20 ¼ Ī20 [see Eq. (59)].
We expect Ĩ20 to be described by the fundamental tone of

the (2,0) QNM at late times. Because ω200 is a complex
number while Ĩ20 is real-valued, we use the following
fitting model for Ĩ20,

28

Ĩ20 ¼ e−λ1ðt−t0Þ½A1 cos λ2ðt − t0Þ þ A2 sin λ2ðt − t0Þ�; ð71Þ

where λ1 and λ2 are the real and imaginary parts of −ω200.
The real parameters A1 and A2 are to be determined by a
linear fit. The fitting range is t0 ≤ t ≤ 120M as usual. We
first vary t0 and analyze the mismatch Eq. (61) as a function
of t0 in Fig. 12. This curve ultimately reaches the level of

10−5, but very gradually. This is different from the mis-
match curve of Ĩ22 fit by theω220 mode (the blue solid curve
in Fig. 5), which damps sharply to the 10−5 level before
t0 ¼ 20M. Such a distinction is unexpected, because the
decay rates of ω200 and ω220 differ by only a few percent
(see Table II). This suggests that the model Eq. (71) may
not be appropriate for Ĩ20 before t0 ¼ 70M (at which Ĩ20
drops to near 10−5).
Next, we examine the performance of the model after

t ¼ 70M, by fitting Ĩ20 with the ω200 mode in the time
range 70M ≤ t ≤ 120M. The top panel of Fig. 13 displays
both Ĩ20 and its fit, which overlap to within about 1%
relative error. The absolute difference between these
two curves is shown in purple (solid) in the bottom panel.

FIG. 12. The mismatch between Ĩ20 and its fit using the ω200

QNM [Eq. (71)]. The mismatch decays to the 10−5 level very
slowly, unlike the Ĩ22 case. There are irregular bumps along the
curve, which is in stark contrast to the smooth curves in Figs. 7
and 10. The origin of these bumps is unknown.

FIG. 13. The comparison between Ĩ20 and its fit based on the
model Eq. (71). The top panel shows the absolute values of Ĩ20
(blue/solid) and the fit (orange/dashed), and these two curves
overlap well. The bottom panel shows the absolute difference
between Ĩ20 and the fit in purple/solid, and the difference in Ĩ20
between two resolution in cyan/dashed.

27We have tried including an ω520 term in the fitting
model Eq. (69). This only improves the mismatch little and
generates a figure similar to Fig. 11.

28This model can be regarded as a linear combination of the
prograde mode with the frequency ωþ

200 and the retrograde mode
with ω−

200.
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Here, we use the absolute difference instead of relative
difference to measure error, because Ĩ20 crosses zero
periodically. The amplitude of the purple solid curve stays
near the level 10−7, which means the relative error is at the
level 10−2–10−1, after we take into account the magnitude
of Ĩ20. The bottom panel also shows the absolute difference
in Ĩ20 between two resolutions for reference (cyan/dashed).
The figure indicates that Ĩ20 can be reasonably described by
the ω200 mode at sufficiently late times.
Knowing that the model Eq. (71) can describe the late-

time behavior of Ĩ20, we would like to estimate the final
mass and spin by minimizing the mismatch of the fit.
The outcome is not so satisfactory compared to the
previous cases. Figure 14 shows the mismatch of the
QNM fit (with the fitting range 70M ≤ t ≤ 120M), as both
the final mass and spin vary. Again, the golden lines
represent the true mass and spin, and a lighter-shaded
region has lower mismatch. The local minimum is achieved
at M0

f ¼ 0.95374M and χ0f ¼ 0.69868, which yields an
error ϵf ¼ 1.2 × 10−2, about 4 times the error ϵf in
Sec. IVA 2. This means that, with regard to the perfor-
mance of mass or spin estimate, fitting Ĩ20 is inferior to
fitting Ĩ22. To understand why the ω200 model for Ĩ20 is less
faithful, we should realize that this model is not very
sensitive to the remnant parameters. This can be seen
from Fig. 14, where the local minimum of the mismatch
is shallow. Specifically, the minimum mismatch is
1.61 × 10−5, which is very close to the mismatch at the

true mass and spin, 1.87 × 10−5. There is actually a
fundamental reason for the weakness of this model: the
variation in the values of ω200 versus spin is much smaller
than the one of ω220. In particular, as the spin ranges from
0.5 to 0.9, Reðω220Þ increases by 45%, while Reðω200Þ by
only 7%. In summary, the ω200 model is a reasonable but
spin-insensitive model for Ĩ20 at late times.

D. Other multipole moments

Here, we briefly summarize the results for those multi-
pole moments that have not been discussed previously. We
will focus on the nontrivial Ĩlm and L̃lm up to l ¼ 6. Note
that these multipole moments are all floor-corrected and
rotated.
We start with the multipole moments with l ¼ m,

specifically, Ĩ44 and Ĩ66.
29 Fitting Ĩ44 or Ĩ66 with a

single-l QNM model results in a beat pattern at late times,
so there is mode mixing in both cases. The best30 multi-l
model (with m fixed) for the late-time behavior of Ĩ44
consists of the ω440 and ω540 modes, while the best model
for Ĩ66 consists of ω660 and ω760. We have not found any
good model that describes the early-time behavior of Ĩ44
and Ĩ66. For example, simply including ω44n (or ω66n)
overtones in a QNM model does not eliminate the initial
decay of Ĩ44 (or Ĩ66).
Next, we consider the nontrivial multipole moments with

0 < m < l: Ĩ42, Ĩ62, Ĩ64, L̃52, and L̃54. Their behaviors are
very similar to that of L̃32. Mode mixing is significant for
these multipole moments, and the best multi-l models for
them are comprised of three or four fundamental tones of
different l. For example, Ĩ42, Ĩ62, and L̃52 are all best
described by the fω220;ω320;ω420;ω520g model at late
times. For early-time behavior, adding overtones does
greatly reduce the initial decay pattern, but this comes
with the emergence of additional oscillatory patterns whose
origin is unclear at this time.
Finally, we study the multipole moments with m ¼ 0:

Ĩ40, Ĩ60, L̃30, and L̃50.
31 They all approach their respective

theoretical values with error below 1.2 × 10−5. The best
multi-l model [by extending Eq. (71)] for L̃30 uses
fω200;ω300g, while the best model for Ĩ40, L̃50, and Ĩ60
uses fω200;ω300;ω400g. A common feature shared by these
models is their failure to describe the multipole moments
before t ∼ 60–80M. At sufficiently late times, these models
do produce a good description of the respective multipole
moments. However, we should keep in mind that them ¼ 0
QNMs used in these models are not as sensitive to the

FIG. 14. Heat map of the mismatch log10 M over the (Mf , χf)
parameter space. This is generated based on the fit of Ĩ20 using the
model Eq. (71). The fitting time range is 70M < t < 120M. The
color representation is similar to Fig. 8, and we again use two
golden lines to represent the true values. The dashed curves are
the contour lines of constant mismatch. Although the minimum
mismatch is located near the golden cross, the minimum is
shallow, as discussed in Sec. IV C.

29The moment I00 has a constant value.
30The best model includes all l that can appreciably improve

the QNM fit, and excludes those l that produce negligible
improvement.

31The moment L10 is proportional to the angular momentum of
the merged BH.
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remnant spin as the m ≠ 0 QNMs, so the models might not
be very precise.

V. CONCLUSION

In this paper, we numerically construct the multipole
moments on the common horizon of an equal-mass BBH
system on a sequence of time slices. The construction
process captures the connection among the common
horizons on different time slices, which ensures that this
set of multipole moments is spatially gauge independent.
We apply a geometrically motivated rotation to the multi-
pole moments, which turns out to simplify the analysis. We
compare the multipole moments of the horizons with those
of the gravitational waveform, and see a strong correlation
between the ðl ¼ 2; m ¼ 2Þ mass multipole moment and
the strain (2,2)-mode. Specifically, they share the same
oscillation frequency and decay constant at late times. This
suggests the possible QNM description of horizon multi-
pole moments, which we pursue next.
We consider all nontrivial multipole moments up to

l ¼ 6, and model each multipole moment as a linear
combination of spin-weight-2 QNMs. At sufficiently late
times, these multipole moments are well described by the
fundamental tones of QNMs: not only do the true values
overlap with the predicted values fit to the QNM models,
but also the mismatch between them is small. However, the
multipole moments do not match one-to-one with the
fundamental tones, and we actually see a manifest
mode-mixing phenomenon in all the multipole moments.
For example, our best QNM model for the late-time
behavior of the (2,2) mass moment consists of the ω220

and ω320 QNMs, where the ω320 mode has a tiny but
nonnegligible contribution. A more counter-intuitive exam-
ple is the (3,2) spin moment, in which the ω220 mode
dominates over the ω320 mode, instead of vice versa. We
find that in general, the ðl; mÞ multipole moment at late
times is described by a QNM model consisting of the
ðl0; mÞ fundamental tones for the first several possible l0.
Note that the mode mixing in horizon moments does not
originate from spherical-spheroidal mode mixing (the latter
is studied in, e.g., Ref. [77]). The waveform perturbation
Ψ4 (to which h is closely related) satisfies the Teukolsky
equation [13] and has spheroidal harmonics as angular
dependence. In contrast, the perturbation of surface Ricci
scalar R̃ does not satisfy the Teukolsky equation and has a
potentially more complicated angular dependence. The
mode mixing in horizon moments comes from the mixing
between this complicated angular dependence and spheri-
cal harmonics, so the mixing is potentially more significant.
We also explore the possibility of QNMmodeling for the

early-time behavior of multipole moments by including
overtones. We find that the inclusion of ω22n overtones up
to n ¼ 3 is sufficient to provide an accurate representation
of the (2,2) mass moment immediately after the merger.
This extends the power of BH perturbation theory back to

the time of coalescence. However, this picture does not
apply to other multipole moments: a QNM model with
overtones does reduce the mismatch significantly, but at the
same time, it also unveils further mixing of modes. As a
consequence, a more careful modeling with overtones is
needed in the future to describe the early-time behavior of
multipole moments other than the (2,2) mass moment.
Taking into account the effect of mode mixing, we find

that the QNMmodels using fundamental tones at late times
provide a fairly faithful estimate of the remnant mass and
spin, especially for those multipole moments of nonzerom.
Furthermore, in the case of the (2,2) mass moment, the
QNMmodel with overtones also recovers the true mass and
spin at the minimum mismatch. We also note that for the
m ¼ 0 multipole moments, the performance of these
estimates is not as good as in the m ≠ 0 cases. This is
interpreted as resulting from the weaker dependence of the
m ¼ 0 mode frequencies on the spin.
In summary, this paper provides promising evidence for

the QNM description of horizon multipole moments of a
remnant BH in the ringdown phase of an equal-mass
nonspinning BBH system. These multipole moments are
spatially gauge independent, as we take into account the
relation among apparent horizons in the construction step.
Such gauge independence, along with the accuracy of the
SPEC code, allows these multipole moments to be described
with QNMs much more accurately than those horizon
multipole moments constructed in previous literature
(e.g., [8,9]).
As future work, one can consider more generic BBH

systems whose progenitors have different masses or non-
zero spins, and then construct horizon multipole moments
as outlined in this paper. One may also define a similar set
of horizon multipole moments for the progenitor BHs, and
investigate their possible imprint on the common horizon
multipole moments. Note that Ref. [9] discusses the
multipole moments of the progenitors, but the construction
there does not yet capture the connection among the
apparent horizons. Regarding the QNM models, one can
continue improving them to mitigate the effect of mode
mixing. Such improvement should reveal a clearer pattern
in the early-time portion of horizon multipole moments.
Regarding the similarities between horizon behavior and
waveforms at I , we have shown qualitatively the strong
correlation between a horizon mode I22 and a waveform
mode h22. It would be interesting to explore whether this
correlation can be turned into a quantitative relation
between horizon moments and waveform modes.
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APPENDIX A: BALANCE LAWS AND ERROR
CONVERGENCE

As mentioned in Sec. II B 5, the balance laws,
Eqs. (44), (47), and (48), provide internal consistency
checks for BH simulations. In this section, we use
them to test the correctness of the BBH simulation in
Sec. III A. We start by showing the energy flux rate
dF g=dt in Fig. 15, as it is relevant to the area balance law.
The graph displays the σ-part (dF g;σ=dt) in blue (solid)
and the ζ-part (dF g;ζ=dt) in orange (dashed), as a
function of simulation time t. We only show the time
range t ≤ 30.8M, since the calculation of the ζ-part is
numerically unstable at late times because of the diver-
gence of the components of r̂a. Both curves decay
exponentially, with higher decay rates near the merger.
We see that the σ-part always dominates the ζ-part,
except at the merger. They differ by a factor of 2–3 after
t ¼ 5M, which is not significant.
Next, we investigate the numerical violations of these

three balance laws as functions of simulation time
(t ≤ 30.8M). The violations are measured by the relative
difference between the left- and right-hand sides of their
respective equations. We find that the area balance law
[Eq. (44)] always holds within 10−4, and for most of the
time within 10−5. The mass moment balance law [Eq. (47)]
always holds within 3 × 10−6 for all nontrivial mass
moments with 1 ≤ l ≤ 8,32 and the spin moment balance
law [Eq. (48)] always holds to within 10−5 for all nontrivial
spin moments up to l ¼ 8.
To demonstrate the convergence of relative errors in the

balance laws, we perform simulations of the same BBH
system as described in Sec. III A, but at four additional
resolutions. Including the two resolutions used in the main
text, we have six resolutions in total. These resolutions are
labeled “Lev-i”, where i ¼ 1; 2;…; 6. For a fixed i, the

target truncation error of the adaptive mesh refinement
algorithm is ∼2 × 4−i × 10−4. Note that Lev-6 corresponds
to the higher resolution in the main text, while Lev-5
corresponds to the lower one.
Figure 16 shows the L2 norm33 of the relative errors in

the balance laws. The blue dotted line represents the area
balance law, while the solid lines stand for the mass
moment balance law, and the dashed lines for the spin
moment balance law. We only show three mass moments
and three spin moments here, but we checked that these

FIG. 15. The energy flux rate dF g=dt. The rate consists of two
parts, and we show the σ-part (dF g;σ=dt) in blue/solid and the
ζ-part (dF g;ζ=dt) in orange/dashed. We only consider the time
range 0 ≤ t ≤ 30.8M. Except at the merger, the σ-part is always
greater than the ζ-part, but the difference is not substantial: the
σ-part is at most 2–3 times as much as the ζ-part.

FIG. 16. The convergence of relative errors in the balance laws.
The horizontal axis represents the resolution labeled by “Lev,”
and the vertical axis represents the L2 norm of the relative errors
in these balance laws. The blue dotted line stands for the area
balance law. The solid lines are for the mass moment balance law,
while the dashed lines for the spin moment balance law.

32We did not check the balance law for I00, even though it is
nontrivial. This is because I00 is equal to the constant

ffiffiffi
π

p
(which

we checked), and both sides of the differential balance law should
vanish.

33Specifically, the relative error in a balance law is a time series
in 0 ≤ t ≤ 30.8M. The L2 norm here refers to the Euclidean L2

norm of this time series, then divided by the square root of the
length of the series.
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curves are representative of the behaviors of other non-
trivial horizon moments. We can see from the graph that the
errors converge as the resolution increases from Lev-2 to
Lev-5, and they reach floors around Lev-5. Therefore, we
conclude that the balance laws for the area, mass moments,
and spin moments are accurate and satisfied in our
simulation.

APPENDIX B: SURFACE GRAVITY

In this section, we briefly investigate the surface gravity
on a dynamical horizon [12,30,79],

κV ¼ −nbVa∇aVb: ðB1Þ

Here, na is the ingoing null normal to the common horizon
(t ¼ constant slice) on H, satisfying Vana ¼ −1. As the
dynamical horizon approaches an isolated horizon, Va

becomes null and this surface gravity coincides with the
one on an isolated horizon. Because κV is a function on a
dynamical horizon, it is more convenient to consider the
average value of κV over each common horizon S, which
we denote as κV;t.
In Fig. 17, we show κV as a function of the simulation

time t, starting from t ¼ 25M. The blue solid curve
represents κV;t, and the orange dashed curve represents
maxðκV − κV;tÞ, i.e., the maximum deviation of κV
from its average value on every S. We see from the blue
curve that κV;t is settling down, and we check that the
absolute difference between κV;t¼400M and κV;t¼500M

is ∼10−5. The orange curve tells us that κV is a constant
on every common horizon after t ¼ 200M, with error
∼10−8. From this, we conclude that κV already reaches a
constant on the dynamical horizon at t ¼ 500M, with
error ∼10−5.

The final value of κV in our simulation is

κV;t¼500M ¼ 0.221177M−1; ðB2Þ

which is very close to the Kerr surface gravity [40,80],

κKerr ¼
1

4Mf
−MfΩ2

H ¼ 0.221214M−1: ðB3Þ

Note that this expression for κKerr is calculated using the
canonical null Killing vector of the Kerr solution on the
horizon. The relative difference between κV;t¼500M and κKerr
is 1.7 × 10−4. This confirms the approximation f ≈ 1 in
Sec. III B, and is related to the slight deviation of Ωt¼500M
from ΩH seen in Sec. IVA.
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Poincaré 16, 289 (2015).

[48] R. Teixeira da Costa, Mode stability for the Teukolsky
equation on extremal and subextremal Kerr spacetimes,
Commun. Math. Phys. 378, 705 (2020).

[49] M. Casals and R. T. da Costa, Hidden spectral symmetries
and mode stability of subextremal Kerr(-de Sitter) black
holes, Commun. Math. Phys. 394, 797 (2022).

[50] L. C. Stein, qnm: A Python package for calculating
Kerr quasinormal modes, separation constants, and

YITIAN CHEN et al. PHYS. REV. D 106, 124045 (2022)

124045-22

https://doi.org/10.1088/0264-9381/21/11/003
https://doi.org/10.1088/0264-9381/21/11/003
https://doi.org/10.1103/PhysRevD.74.024028
https://doi.org/10.1103/PhysRevD.74.024028
https://doi.org/10.1103/PhysRevD.88.064045
https://doi.org/10.1103/PhysRevD.88.064045
https://doi.org/10.1103/PhysRevLett.29.1114
https://doi.org/10.1086/152444
https://doi.org/10.1086/152444
https://doi.org/10.1086/152445
https://doi.org/10.1086/153180
https://doi.org/10.1086/153180
https://doi.org/10.1103/PhysRevD.75.124018
https://doi.org/10.1103/PhysRevD.75.124018
https://doi.org/10.1103/PhysRevD.76.064034
https://doi.org/10.1103/PhysRevX.9.041060
https://doi.org/10.1103/PhysRevX.9.041060
https://doi.org/10.1103/PhysRevD.80.084012
https://arXiv.org/abs/2006.03940
https://doi.org/10.1103/PhysRevD.103.044054
https://doi.org/10.1103/PhysRevD.103.044054
https://doi.org/10.4310/ATMP.2005.v9.n1.a1
https://doi.org/10.4310/ATMP.2005.v9.n1.a1
https://doi.org/10.1103/PhysRevD.54.4849
https://doi.org/10.1103/PhysRevD.58.024003
https://doi.org/10.1103/PhysRevD.58.024003
https://doi.org/10.1103/PhysRevD.57.863
https://doi.org/10.1103/PhysRevD.62.124005
https://doi.org/10.1088/0264-9381/21/2/026
https://arXiv.org/abs/2006.03939
https://doi.org/10.1103/PhysRevD.68.104030
https://doi.org/10.1103/PhysRevLett.89.261101
https://doi.org/10.1103/PhysRevLett.89.261101
https://doi.org/10.12942/lrr-2004-10
https://doi.org/10.12942/lrr-2004-10
https://doi.org/10.1103/PhysRevD.62.104025
https://doi.org/10.1103/PhysRevD.62.104025
https://doi.org/10.1103/PhysRevLett.85.3564
https://doi.org/10.1103/PhysRevLett.85.3564
https://doi.org/10.1088/0264-9381/19/6/311
https://doi.org/10.1088/0264-9381/19/6/311
https://doi.org/10.1103/PhysRevLett.106.151101
https://doi.org/10.1103/PhysRevLett.106.151101
https://doi.org/10.1007/BF01645515
https://doi.org/10.1007/BF01645515
https://doi.org/10.1063/1.1664958
https://doi.org/10.1063/1.1664958
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://arXiv.org/abs/2107.05609
https://doi.org/10.1063/1.528308
https://doi.org/10.1007/s00023-014-0315-7
https://doi.org/10.1007/s00023-014-0315-7
https://doi.org/10.1007/s00023-014-0315-7
https://doi.org/10.1007/s00220-020-03796-z
https://doi.org/10.1007/s00220-022-04410-0


spherical-spheroidal mixing coefficients, J. Open Source
Software 4, 1683 (2019).

[51] J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F.
Rohrlich, and E. C. G. Sudarshan, Spin s spherical harmon-
ics and EDTH, J. Math. Phys. (N.Y.) 8, 2155 (1967).

[52] J. B. Hartle and D. C. Wilkins, Analytic properties of
the Teukolsky equation, Commun. Math. Phys. 38, 47
(1974).

[53] R. A. Breuer, J. Ryan, M. P., and S. Waller, Some properties
of spin-weighted spheroidal harmonics, Proc. R. Soc. A
358, 71 (1977).

[54] S. Bhagwat, X. J. Forteza, P. Pani, and V. Ferrari, Ringdown
overtones, black hole spectroscopy, and no-hair theorem
tests, Phys. Rev. D 101, 044033 (2020).

[55] A. Dhani, Importance of mirror modes in binary black
hole ringdown waveform, Phys. Rev. D 103, 104048
(2021).

[56] http://www.black-holes.org/SpEC.html.
[57] L. Lindblom, M. A. Scheel, L. E. Kidder, R. Owen, and O.

Rinne, A new generalized harmonic evolution system,
Classical Quantum Gravity 23, S447 (2006).

[58] G. Lovelace, R. Owen, H. P. Pfeiffer, and T. Chu, Binary-
black-hole initial data with nearly-extremal spins, Phys.
Rev. D 78, 084017 (2008).

[59] B. Szilagyi, L. Lindblom, and M. A. Scheel, Simulations of
binary black hole mergers using spectral methods, Phys.
Rev. D 80, 124010 (2009).

[60] F. Pretorius, Numerical relativity using a generalized har-
monic decomposition, Classical Quantum Gravity 22, 425
(2005).

[61] D. A. Hemberger, M. A. Scheel, L. E. Kidder, B. Szilágyi,
G. Lovelace, N. W. Taylor, and S. A. Teukolsky, Dynamical
excision boundaries in spectral evolutions of binary black
hole spacetimes, Classical Quantum Gravity 30, 115001
(2013).

[62] M. A. Scheel, M. Giesler, D. A. Hemberger, G. Lovelace, K.
Kuper, M. Boyle, B. Szilágyi, and L. E. Kidder, Improved
methods for simulating nearly extremal binary black holes,
Classical Quantum Gravity 32, 105009 (2015).

[63] O. Rinne, L. Lindblom, and M. A. Scheel, Testing outer
boundary treatments for the Einstein equations, Classical
Quantum Gravity 24, 4053 (2007).

[64] M. A. Scheel, H. P. Pfeiffer, L. Lindblom, L. E. Kidder, O.
Rinne, and S. A. Teukolsky, Solving Einstein’s equations
with dual coordinate frames, Phys. Rev. D 74, 104006
(2006).

[65] L. T. Buchman, H. P. Pfeiffer, M. A. Scheel, and B. Szilagyi,
Simulations of non-equal mass black hole binaries with
spectral methods, Phys. Rev. D 86, 084033 (2012).

[66] G. Lovelace, M. A. Scheel, and B. Szilagyi, Simulating
merging binary black holes with nearly extremal spins,
Phys. Rev. D 83, 024010 (2011).

[67] B. Szilágyi, Key elements of robustness in binary black hole
evolutions using spectral methods, Int. J. Mod. Phys. D 23,
1430014 (2014).

[68] A. Buonanno, L. E. Kidder, A. H. Mroue, H. P. Pfeiffer, and
A. Taracchini, Reducing orbital eccentricity of precessing
black-hole binaries, Phys. Rev. D 83, 104034 (2011).

[69] M. Boyle et al., The SXS Collaboration catalog of binary
black hole simulations, Classical Quantum Gravity 36,
195006 (2019).

[70] V. Varma and M. A. Scheel, Constructing a boosted,
spinning black hole in the damped harmonic gauge, Phys.
Rev. D 98, 084032 (2018).

[71] D. A. B. Iozzo et al., Comparing remnant properties from
horizon data and asymptotic data in numerical relativity,
Phys. Rev. D 103, 124029 (2021).

[72] M. Boyle and A. H. Mroue, Extrapolating gravitational-
wave data from numerical simulations, Phys. Rev. D 80,
124045 (2009).

[73] M. Boyle, Angular velocity of gravitational radiation from
precessing binaries and the corotating frame, Phys. Rev. D
87, 104006 (2013).

[74] M. Boyle, L. E. Kidder, S. Ossokine, and H. P. Pfeiffer,
Gravitational-wave modes from precessing black-hole bina-
ries, arXiv:1409.4431.

[75] M. Boyle, Transformations of asymptotic gravitational-
wave data, Phys. Rev. D 93, 084031 (2016).

[76] D. A. B. Iozzo, M. Boyle, N. Deppe, J. Moxon, M. A.
Scheel, L. E. Kidder, H. P. Pfeiffer, and S. A. Teukolsky,
Extending gravitational wave extraction using Weyl char-
acteristic fields, Phys. Rev. D 103, 024039 (2021).

[77] E. Berti and A. Klein, Mixing of spherical and spheroidal
modes in perturbed Kerr black holes, Phys. Rev. D 90,
064012 (2014).

[78] J. B. Hartle, Tidal shapes and shifts on rotating black holes,
Phys. Rev. D 9, 2749 (1974).

[79] I. Booth and S. Fairhurst, Isolated, slowly evolving, and
dynamical trapping horizons: Geometry and mechanics
from surface deformations, Phys. Rev. D 75, 084019 (2007).

[80] M. R. R. Good and Y. C. Ong, Are black holes springlike?,
Phys. Rev. D 91, 044031 (2015).

MULTIPOLE MOMENTS ON THE COMMON HORIZON IN A … PHYS. REV. D 106, 124045 (2022)

124045-23

https://doi.org/10.21105/joss.01683
https://doi.org/10.21105/joss.01683
https://doi.org/10.1063/1.1705135
https://doi.org/10.1007/BF01651548
https://doi.org/10.1007/BF01651548
https://doi.org/10.1098/rspa.1977.0187
https://doi.org/10.1098/rspa.1977.0187
https://doi.org/10.1103/PhysRevD.101.044033
https://doi.org/10.1103/PhysRevD.103.104048
https://doi.org/10.1103/PhysRevD.103.104048
http://www.black-holes.org/SpEC.html
http://www.black-holes.org/SpEC.html
http://www.black-holes.org/SpEC.html
http://www.black-holes.org/SpEC.html
https://doi.org/10.1088/0264-9381/23/16/S09
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.80.124010
https://doi.org/10.1103/PhysRevD.80.124010
https://doi.org/10.1088/0264-9381/22/2/014
https://doi.org/10.1088/0264-9381/22/2/014
https://doi.org/10.1088/0264-9381/30/11/115001
https://doi.org/10.1088/0264-9381/30/11/115001
https://doi.org/10.1088/0264-9381/32/10/105009
https://doi.org/10.1088/0264-9381/24/16/006
https://doi.org/10.1088/0264-9381/24/16/006
https://doi.org/10.1103/PhysRevD.74.104006
https://doi.org/10.1103/PhysRevD.74.104006
https://doi.org/10.1103/PhysRevD.86.084033
https://doi.org/10.1103/PhysRevD.83.024010
https://doi.org/10.1142/S0218271814300146
https://doi.org/10.1142/S0218271814300146
https://doi.org/10.1103/PhysRevD.83.104034
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1103/PhysRevD.98.084032
https://doi.org/10.1103/PhysRevD.98.084032
https://doi.org/10.1103/PhysRevD.103.124029
https://doi.org/10.1103/PhysRevD.80.124045
https://doi.org/10.1103/PhysRevD.80.124045
https://doi.org/10.1103/PhysRevD.87.104006
https://doi.org/10.1103/PhysRevD.87.104006
https://arXiv.org/abs/1409.4431
https://doi.org/10.1103/PhysRevD.93.084031
https://doi.org/10.1103/PhysRevD.103.024039
https://doi.org/10.1103/PhysRevD.90.064012
https://doi.org/10.1103/PhysRevD.90.064012
https://doi.org/10.1103/PhysRevD.9.2749
https://doi.org/10.1103/PhysRevD.75.084019
https://doi.org/10.1103/PhysRevD.91.044031

