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We investigate gravitational waves (GWs) generated in a two-field inflationary model with a
noncanonical kinetic term, in which the gravitational Chern-Simons term is coupled to a heavy dynamical
field. In such a model, primordial GWs experience a period of resonant amplification for some modes.
In addition, isocurvature perturbations suffer from a temporary tachyonic instability due to an effective
negative mass, which source curvature perturbations, resulting in large induced GWs. These two stochastic
gravitational wave backgrounds correspond to different frequency bands, which are expected to be detected
by future GW detectors such as SKA, LISA, and Taiji.
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I. INTRODUCTION

Inflation, a compelling paradigm for the very early
Universe, has successfully solved some theoretical prob-
lems of the hot big bang model, such as the horizon and
flatness problems [1–4]. Inflation predicts scalar perturba-
tions that seed the large-scale structure formation of the
Universe [5] and are supported by observations of the
cosmic microwave background (CMB). On the other hand,
tensor perturbations of the spacetime metric provide
another crucial probe, i.e., primordial gravitational waves
(GWs) [6,7], that encodes important information of the
early Universe. Primordial GWs will induce the quadrupole
anisotropies in the radiation field within the last scattering
surface, causing B-mode polarization [8]. Therefore, the
precise measurement of B-mode polarization of CMB on
large angular scales is considered to be the most promising
method to detect primordial GWs. In addition, there are
significant differences in the prediction of primordial GWs
in assorted inflationary models, which is reflected in an
important parameter tensor-to-scalar ratio r, directly related
to the energy scale of inflation. The recent release of
BICEP-Keck combined with the Planck 2018 result [9]
gives an upper limit on the tensor-to-scalar ratio r0.002 <
0.035 at a 95% confidence level in the case of a scale-
invariant power spectrum of tensor perturbations [10].

Consequently, primordial GWs are not only a smoking-
gun probe of inflation but also a powerful tool to distin-
guish various inflationary models.
PrimordialGWs, as a probe of gravitational symmetry, can

also help us test the correctness of general relativity (GR). For
a standard slow-roll inflation in the framework of GR,
primordial GWs have two polarization modes that share
exactly the same statistical properties and their power spectra
coincide completely. However, the gravitational terms with
parity violation are pervasive in abundant candidates of
quantum gravity. One widely studied example is dynamical
Chern-Simons (DCS) gravity [11,12], in which a dynamical
pseudoscalar field coupled to curvature via the Pontryagin
density. This modified gravity theory is motivated from the
anomaly cancellation in heterotic string theory [13] and from
loop quantum gravity upon the promotion of the Barbero-
Immirzi parameter to a field in the presence ofmatter [14,15].
As usual, the corrections on friction term in Chern-Simons
gravity induce the amplitude birefringence effect of GWs,
associated with parity violation, which have been studied in
previous works, e.g., [16–30]. In the inflationary context,
these works mainly focus on the influence of GWs on large
scales, and only few works pay attention to possible small-
scale observational effects [31].
In Ref. [32], the authors successfully realize the resonant

amplification of primordial GWs on small scales by intro-
ducing a periodic function of inflaton coupled to Pontryagin
density. However, it is not natural enough to put a sine
function coupling by hand and lacks sufficient physical
motivation. In thepresent paper,we investigate how to trigger
the resonant amplification of GWs through the natural
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oscillation of a scalar field during inflation in Chern-Simons
gravity.We find the necessary conditions for this mechanism
where the subdominated coupled scalar field, not inflaton,
shall be so heavy that a large third derivative with respect to
cosmic time during oscillation induces parametric resonance
for some modes. Because we are interested in implementing
this mechanism on small scales, we consider a noncanonical
two-field inflationarymodel, inwhich the noncanonical term
serves as a steplike functionmaking the subdominated scalar
field nearly frozen until the noncanonical effect vanishes.
In addition, curvature perturbations are also amplified in
this model owing to the tachyonic instability of isocurvature
perturbations, which has been discussed in previous
papers [33–35]. We also perform numerical calculation on
curvature perturbations and find some new phenomena
different from those in previous works, which will be
discussed in detail later. To sum up, primordial GWs can
be resonantly amplified in such amodel considering theDCS
coupling.Meanwhile, second order scalar-inducedGWswill
inevitably appear due to the enhancement of curvature
perturbations. These two stochastic GW backgrounds
(SGWBs) are located in different frequency bands and they
are expected to be detected by future space-based GW
detectors, such as LISA, Taiji, and BBO. Joint observations
of these two SGWBs provide a breathtaking opportunity to
test our model.
The organization of the paper is as follows. In Sec. II, we

present the amplification mechanism of primordial GWs in
Chern-Simons gravity. In Sec. III, we introduce a feasible
two-field inflationary model and show numerical results
about background and primordial GWs. In Sec. IV, we
discuss curvature perturbations in this model. Section V is
devoted to conclusion. Throughout the paper, we set
c ¼ ℏ ¼ 1, and the reduced Planck mass is defined as
Mp ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
.

II. GRAVITATIONAL WAVES IN DYNAMICAL
CHERN-SIMONS GRAVITY

In this section, we discuss the possible significant
observational effects of primordial gravitational waves in
DCS gravity. We consider a scalar field χ coupled to a
Chern-Simons term. The action for Chern-Simons gravity
is as follows

SDCS ¼
α

8

Z
d4x

ffiffiffiffiffiffi
−g

p
χRR̃; ð1Þ

where α is a dimensional quantity, and Pontryagin density
RR̃ is defined by 1

2
ϵρσαβRμν

αβRνμρσ in which ϵμνρσ is the four-
dimensional Levi-Civita tensor with ϵ0123 ¼ −1= ffiffiffiffiffiffi−gp

.
In the flat Friedmann-Robertson-Walker (FRW) universe

in the presence of tensor perturbations, the perturbed metric
reads

ds2 ¼ −dt2 þ a2ðtÞðδij þ hijðt;xÞÞdxidxj; ð2Þ

with hij representing the first-order transverse and traceless
tensor perturbations, and aðtÞ, the scale factor, denoting a
function of cosmic time t. Proceeding to expand the action
(1) including well-known Einstein-Hilbert action up to
second order in tensor perturbations, one can obtain

S2h ¼
M2

p

8

Z
dtd3xa3

�
_h2ij −

1

a2
ð∂khijÞ2 þ

α_χ

aM2
p
ϵijk _hil∂j _hkl

þ α_χ

a3M2
p
ϵijk∂2hil∂jhkl

�
; ð3Þ

where ϵijk is the Levi-Civita tensor. One could identify the
first two terms in the squared brackets in (3) coming from
Einstein-Hilbert contribution while the remaining two
terms represent the corrections brought by the Chern-
Simons term. For the convenience of discussion, we expand
hij in terms of circular polarization basis in Fourier space

hijðt;xÞ ¼
X
A¼R;L

Z
d3k
ð2πÞ3 hAðt;kÞe

ik·xeAijðkÞ; ð4Þ

where eAij is the circular polarization tensor, and A ¼ L;R
label the left-handed and right-handed polarization, respec-
tively. The normalization and helicity conditions are

eAijðeBijÞ� ¼ 2δAB; ð5aÞ

ϵijnkjeAim ¼ ikλAeAnm with λL ¼ −1; λR ¼ 1: ð5bÞ

The quadratic action can now be rewritten as

S2h¼
M2

p

8

X
A¼R;L

Z
dt
Z

d3k
ð2πÞ3

�
1−

λAkα_χ
aM2

p

��
_h2A−

k2

a2
h2A

�
: ð6Þ

The action exists with ghost modes if λAkα_χ
aM2

p
> 1. To avoid

the appearance of vacuum instability, DA≡1−λAkα_χ
aM2

p
should

be positive for both polarization modes [36].
Varying the action (6) with respect to hij, we derive the

equations of motion for hij,

ḧA þ
�
3H þ

_DA

DA

�
_hA þ k2

a2
hA ¼ 0: ð7Þ

Next, we theoretically analyze the necessary conditions to
achieve effective amplification of hij during inflation. We

introduce a new variable h̄A ¼ a3=2D1=2
A hA, which yields a

new expression
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̈h̄A þ
�
k2

a2
−
F̈A

FA

�
h̄A ¼ 0; ð8Þ

where FA ¼ a3=2D1=2
A . As mentioned above, no ghost

modes imply that j kα_χaM2
p
j < 1, thus, we can obtain

F̈A

FA
≃
9

4
H2 þ 3

2
_H −

ρA
2

k
a

�
1

4
H2

α_χ

aM2
p
þ 1

2
_H

α_χ

aM2
p

þH
αχ̈

aM2
p
þ αχ

…

aM2
p

�
: ð9Þ

We consider a subdominated but heavy scalar field χ,
namely mχ > H, dramatically oscillates around the mini-
mum of its effective potential during inflation, thus, χ obeys

χ̈ þ 3H _χ þm2
χχ ¼ 0: ð10Þ

The solution for the field χ asymptotically approaches the
regime

χðtÞ ¼ XðtÞ sinðmχtÞ: ð11Þ

Here XðtÞ is the oscillation amplitude and we ignore the
initial phase for simplicity. In the oscillating regime, χ̈
changes rapidly since fast oscillation during a Hubble
time, thus αχ

…
=aM2

p is dominated in F̈A=FA in Eq. (9).
Meanwhile, we roughly regard XðtÞ as a constant in the
derivative because of the slow change compared with the
phase. So

F̈A

FA
≃
λA
2

k
a

m3
χα

M2
p
XðtÞ cosðmχtÞ: ð12Þ

The equation of motion can be reduced to

̈h̄A þ
�
k2

a2
−
λA
2

k
a

m3
χα

M2
p
XðtÞ cosðmχtÞ

�
h̄A ¼ 0: ð13Þ

This equation describes a damping oscillator with a fre-
quency kphysð≡k=aÞ driven by the polarization-dependent

periodic forcewith the amplitude λA
2kphys

m3
χα

M2
p
XðtÞ cosðmχtÞ and

frequencymχ. We are concerned about the phenomenologi-
cal significance of the above equation, such as whether
efficient increase of hij can be realized during oscillation to
produce observable phenomena. Fortunately, the above
equation can naturally lead to the well-known Mathieu
equation, that is, we can expect the appearance of resonant
amplification for some modes. Making a change of the
variable mχt ¼ 2z reduces Eq. (13) to a celebrated Mathieu
equation

d2h̄A
dz2

þ ½Ak − 2q cosð2zÞ�h̄A ¼ 0; ð14Þ

where

Ak ¼
k2

k2sa2
; q ¼ λAkmχαX

aM2
p

¼ 2ksk
aM2

; ð15Þ

with ks ¼ mχ=2 and M2 ¼ M2
p

λAαX
. According to the Floquet

theory, h̄A will present an exponential growth when
the Floquet exponent μk has a real part, in which case the
corresponding ðAk; qÞ falls in the unstable band. In the
present paper, we shall focus on narrow resonance where
q < 1 and the most important instability band is located in
the region around jAk − 1j ∼�q.
In previous works [37–41], the control of parametric

resonance, such as the duration and strength of the
resonances, were achieved by phenomenologically intro-
ducing an oscillatory term. For the current discussion,
however, parametric resonance of tensor perturbations may
arise from oscillation of the scalar field during inflation,
which has a more natural and sufficient physical motiva-
tion. During oscillation, one can estimate the amplitude
amplification factor AðkÞ ≈ exp ðμkðtÞksΔtÞ, where the
maximum of μkðtÞ is q=2 and the duration of resonance
for a given mode within this band Δt is about lnð1þq

1−qÞ=2H,

which is estimated as qH−1 in leading order in the case of
narrow resonance. This leads to substantial growth of

tensor perturbations h̄A ∝ expðq2mχ

4H Þ when q2mχ ≫ H.
Combined with q < 1, usually, q ∼Oð0.1Þ, only when
mχ is at least two orders of magnitude larger thanH can the
resonant amplification of h̄A be successfully realized.
Such a heavy field is obviously not the inflaton because

it cannot provide enough e-folds. In the two-field model, if
χ is a subdominated spectator field, we anticipate that such
phenomena will occur on large scales, which we are not
interested in the present paper. To address this issue, a
feasible model will be introduced in the next section, in
which the noncanonical kinetic term is considered to
control the time when the heavy field starts to oscillate.

III. MODEL AND NUMERICAL RESULTS

In this section, we discuss in detail a simple implemen-
tation of enhanced mechanism with a feasible two-field
inflationary model. The action is given by

S½ϕ; χ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

p

2
R −

1

2
ð∂ϕÞ2 − e2bðϕÞ

2
ð∂χÞ2

− Vðϕ; χÞ þ LDCS

�
; ð16Þ

GENERATION OF GRAVITATIONAL WAVES IN DYNAMICAL … PHYS. REV. D 106, 124044 (2022)

124044-3



where R is the Ricci scalar, ϕ is the inflaton field and χ is a
subleading but heavy scalar field. bðϕÞ induces the inter-
action between two fields, and unambiguously bðϕÞ
vanishes recovering standard kinetic terms. This type of
action is motivated by generalized Einstein theories, which
can also be naturally derived when χ is equivalent to an
axionic component.
We consider the following decoupled potential where

inflation is mainly driven by the canonical field ϕ in the
presence of a heavy noncanonical field χ

Vðϕ; χÞ ¼ UðϕÞ þm2
χ

2
χ2; ð17Þ

where UðϕÞ is in principle an arbitrary inflation potential
favored by the current observational data. In our work the
Starobinsky potential UðϕÞ¼V0½1−expð− ffiffiffiffiffiffiffiffi

2=3
p

ϕ=MpÞ�2
with V0 ¼ 1.048 × 10−10M4

p is considered as a concrete
example. In our model, χ is much heavier than the inflaton
field ϕ, i.e.,mχ ≫ mϕð∼

ffiffiffiffiffiffi
V0

p
=MpÞ. We shall work with the

following form for the function bðϕÞ [35]

bðϕÞ ¼ b1
2

�
1þ tanh

�
ϕ − ϕc

γ

��
; ð18Þ

where b1 characterizes the strength of the coupling, ϕc is the
turningpoint and γ represents the speedof transformation.As
discussed in the previous section, bðϕÞ is actually very
similar to a steplike function, whichmakes the field χ “light”
at first and then “heavy” at the turning point.
The Friedmann equations for background and equations

of motion in the FRW metric are

ϕ̈þ 3H _ϕþ Vϕ ¼ bϕe2b _χ2; ð19Þ

χ̈ þ ð3H þ 2bϕ _ϕÞ_χ þ e−2bVχ ¼ 0; ð20Þ

_H ¼ −
1

2M2
P
½ _ϕ2 þ e2b _χ2�: ð21Þ

Now we numerically calculate the evolution of back-
ground through Eqs. (19)–(21). In Fig. 1, we plot the
evolution of ϕ and χ for the illustrative case. Here
ðmχMpÞ2=V0 ¼ 4 × 106 and V0 is fixed to produce the
correct Planck normalization on CMB scales. We choose
ϕi ¼ 5.6Mp and χi ¼ 10−5Mp for the initial values of the
scalar fields. We discuss two sets of parameters that are
relevant for observations in Table I.
As can be seen from Fig. 1, the lighter one of the two

fields, i.e., the inflaton field ϕ, rolls down its potential
driving inflation while the subdominated but heavier field χ
remains nearly frozen at the first phase. The form of the
function bðϕÞ induces a turning in the field space as the
field ϕ approaches ϕc. We find that the rolling of χ from
the turning point ϕc to the minimum is more complicated,
which is of course because its sudden rolling takes away
part of the kinetic energy of the inflaton. Nonetheless, it
eventually settles into a stable oscillation. It is the rapid
oscillation due to a large mass that induces parametric
resonance of hij.
We normalize the scale factor aðtÞ so that the pivot

scale k� ¼ 0.05 Mpc−1 crosses the Hubble radius N� ¼ 60
e-folds before the end of inflation. We depict the resulting
power spectrum of tensor perturbations Ph ¼

P
A

k3

2π2
jhAk j2

for set 1 in Fig. 2. Apparently, Ph shows a bump for at a
certain mode. To characterize the chiral effect, we introduce
the degree of the circular polarization, defined as

Π ¼ PR
h − PL

h

PR
h þ PL

h
: ð22Þ

The absolute value of the degree of the circular polarization
is plotted in the right panel of Fig. 2. By definition,
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FIG. 1. Evolution of the inflaton field ϕ (left) and the scalar field χ (right) for set 1.

TABLE I. Two parameter sets used in this paper.

Set α=M−1
p ϕc=Mp b1 γ=Mp

1 0.029 4.94 12 10−2

2 0.023 4.65 11 10−2
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Π ¼ 1;−1 are associated with fully right- and left-handed
polarized GWs, respectively. One can see that the Π rapidly
oscillates with k within the resonant frequency band. This
phenomenon originates from the phase difference in the
two resonant polarization modes after they cross the
horizon, which stems directly from the difference in their
equations of motion (7) when the Chern-Simons coupling
is considered (see Fig. 3).
The present energy spectrum is related to the power

spectrum through [42]

ΩGW;0ðkÞh2 ¼ 6.8 × 10−7PhðkÞ; ð23Þ

where PhðkÞ is the total power spectrum of tensor pertur-
bations. We show the resulting ΩGW;0h2 in Fig. 4. The
peak of the energy spectrum exceeds the sensitivity curves
of LISA [43] and Taiji [44]. In Refs. [45,46] it has
been pointed out that a parity violation signature with
jΠjΩGWðkÞh2 ∼ 10−12 in an isotropic SGWB might be
revealed by cross-correlating the data of LISA and Taiji.
Accordingly, the chirality of primordial GWs predicted in
the present paper are expected to be detected by the LISA-
Taiji network in the future [47–49].

IV. CURVATURE PERTURBATIONS
AND INDUCED GWs

The two-field inflationary model in the present paper
actually leads to increase of curvature perturbations sourc-
ing an important production of GWs in the radiation-
dominated era, which has been studied in [35]. However,
due to the different parameter settings, the emergence of
some new phenomena will be different from those in
previous studies. In this section, we first elaborate on
the basic formula for perturbations, and then present our
results.

A. Curvature perturbations

We now discuss the linear perturbations in the
Newtonian gauge. In the absence of anistropic stress,
the perturbed FRW metric in the Newtonian gauge is of
the form [50]

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ð1 − 2ΦÞdx2; ð24Þ

where Φ is the Newtonian potential characterizing scalar
perturbations. We decompose the scalar fields into their
background parts and perturbations: ϕðt;xÞ ¼ ϕðtÞ þ
δϕðt;xÞ and χðt;xÞ ¼ χðtÞ þ δχðt;xÞ. In order to interpret
the evolution of cosmological perturbations conveniently,

FIG. 2. Power spectrum of primordial GWs (left) and the absolute value of the degree of the circular polarization (right) for set 1.

FIG. 3. Evolution of PR
h ðkÞ and PL

hðkÞ for a resonant mode
for set 1. FIG. 4. Energy spectrum of primordial GWs for set 1.
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δϕ and δχ are decomposed along the two directions,
respectively, parallel and orthogonal to the homogeneous
trajectory in the field space [51]. We call the projection
parallel to the trajectory the adiabatic (or curvature)
component, while the orthogonal one is equivalent with
the entropy (or isocurvature) component. These quantities
at the linear level are given by [52]

δσ ¼ cos θδϕþ sin θebδχ; ð25aÞ

δs ¼ − sin θδϕþ cos θebδχ; ð25bÞ

where cos θ ¼ _ϕ
_σ, sin θ ¼ eb _χ

_σ, and _σ2 ¼ _ϕ2 þ e2b _χ2. The
following quantities are also defined for the convenience of
discussion

Vσσ ¼ Vϕϕcos2θ þ e−bVϕχ sin 2θ þ e−2bVχχsin2θ; ð26aÞ

Vss ¼ Vϕϕsin2θ − e−bVϕχ sin 2θ þ e−2bVχχcos2θ; ð26bÞ

Vσs ¼ −Vϕϕ cos θ sin θ þ e−bVϕχðcos2θ − sin2θÞ
þ e−2bVχχ cos θ sin θ; ð26cÞ

with Vσ ¼ Vϕ cos θ þ e−bVχ sin θ and Vs ¼ −Vϕ sin θþ
e−bVχ cos θ. Curvature perturbations and isocurvature per-
turbations are defined as

R≡H
_σ
Qσ; S ≡H

_σ
Qs: ð27Þ

Here Qσ and Qs are the Mukhanov-Sasaki variables, which
are given by Qσ ≡ δσ þ _σ

HΦ and Qs ¼ δs. We note that δs
is automatically gauge invariant from definition. The
equations of motion for perturbations are given by [53]

Q̈σþ3H _Qσþ
�
k2

a2
þMσσ

�
Qσþ

2Vs

_σ
_δsþMσsδs¼0; ð28Þ

δ̈sþ3H_δsþ
�
k2

a2
þMss

�
δs−

2Vs

_σ
_Qσ þMsσQσ ¼ 0; ð29Þ

with

Mσσ ¼ Vσσ −
�
Vs

_σ

�
2

þ 2
_σVσ

M2
PH

þ 3_σ2

M2
P
−

_σ4

2M4
PH

2

− bϕðs2θcθVσ þ ðc2θ þ 1ÞsθVsÞ; ð30Þ

Mσs ¼ 6H
Vs

_σ
þ 2VσVs

_σ2
þ 2Vσs þ

_σVs

M2
PH

þ 2bϕðs3θVσ − c3θVsÞ; ð31Þ

Mss ¼ Vss −
�
Vs

_σ

�
2

þ bϕð1þ s2θÞcθVσ þ bϕc2θsθVs

− _σ2ðbϕϕ þ b2ϕÞ; ð32Þ

Msσ ¼ −6H
Vs

_σ
−
2VσVs

_σ2
þ _σVs

M2
PH

; ð33Þ

where sθ ≡ sin θ and cθ ≡ cos θ. Generally, in order to
ensure the statistical independence ofQσ and δs at the deep
horizon, we adopt the method of integrating twice to solve
the above equations. We impose the Bunch-Davies initial
conditions on Qσ and assume that the initial value of δs is
zero in first integration. Then we exchange the initial
conditions and finally obtain two sets of solutions, ðR1; S1Þ
and ðR2; S2Þ. The curvature and isocuvature power spectra
and cross power spectra are defined as

PRðkÞ¼
k3

2π2
ðjR1j2þjR2j2Þ¼PR1

ðkÞþPR2
ðkÞ; ð34aÞ

PSðkÞ ¼
k3

2π2
ðjS1j2 þ jS2j2Þ; ð34bÞ

CRSðkÞ ¼
k3

2π2
ðR�

1S1 þR�
2S2Þ: ð34cÞ

The left panel of Fig. 5 plots the evolution of the
isocurvature mass and curvature mass for set 1. The
corresponding power spectra of curvature perturbations
and isocurvature perturbations for the most enhanced mode
km are shown in the right panel of Fig. 5. We focus on the
period when χ oscillates rapidly. We see that during a
period of oscillation, the isocurvature mass Mss becomes
temporarily negative triggering a tachyonic instability,
which acts as a source leading to exponential growth in
curvature perturbations. This fact is confirmed by our
numerical computation showed in the right panel (see
the evolution of PR2

). Meanwhile, we note that around
both t1 and t2 the curvature mass Mσσ also becomes
negative, which means that curvature perturbations suffer
from the same tachyonic instability. A direct result of this
interesting phenomenon is that curvature perturbations
(PR1

) experience exponential amplification without relying
on isocurvature perturbations as well, which is a novel
discovery different from that in the previous study. The
efficiency of enhancement, however, is weaker than the
former. As a result, the enhanced part of PR1

on small
scales is washed out in the resulting power spectrum PR in
Fig. 6. One notes that both Mss and Mσσ exhibit violent
oscillatory behavior in a certain period of time, which
means that parametric resonance occurs for certain modes.
Indeed, for a larger mode k ¼ 103km, the resonant ampli-
fication is highly efficient when the coupling terms in
Eqs. (28) and (29) are absent. It is the coupling term that
weakens the parametric resonance, so that the second peak
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does not appear on smaller scales. In addition, we stress that
isocurvature perturbations will not affect curvature pertur-
bations on CMB scales due to its rapid decay for super-
horizon modes.
We present the resulting power spectra of curvature

perturbations in Fig. 7, where we plot two different
examples using the same potential parameters.

B. Generation of induced gravitational waves
on small scales

We now investigate GWs sourced by second-order scalar
perturbations, named scalar-induced GWs. For the reasons
mentioned above, we omit the detailed derivation and
directly show the formula for energy spectrum of GWs,
which is given by [58]

ΩGWðη; kÞ ¼
1

12

Z
∞

0

dv
Z j1þvj

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

×PRðkuÞPRðkvÞ
�

3

4u3v3

�
2

ðu2 þ v2 − 3Þ2

×

��
−4uvþ ðu2 þ v2 − 3Þ ln

				3− ðuþ vÞ2
3− ðu− vÞ2

				
�
2

þ π2ðu2 þ v2 − 3Þ2Θðvþ u−
ffiffiffi
3

p
Þ
�
: ð35Þ

Taking the thermal history of the Universe into consid-
eration, one can get the energy spectrum of GWs at present,

ΩGW;0ðkÞ ¼ Ωγ;0

�
g⋆;0
g⋆;eq

�
1=3

ΩGWðηeq; kÞ; ð36Þ
FIG. 5. Top: evolution of the effective mass of perturbations
Meff . Meff ¼ Mσσ ;Mss label curvature perturbations and isocur-
vature perturbations, respectively. Bottom: the evolution of the
power spectra PR ¼ k3

2π2
jRj2 and PS ¼ k3

2π2
jSj2 for the most

enhanced mode km for set 1. The blue and purple solid lines
represent R1 and R2, respectively, while green and yellow
dashed lines represent S1 and S2. The red vertical line denotes
the rescaled time (t1 and t2) when a tachyonic instability occurs.

FIG. 6. Power spectra of curvature perturbations corresponding
to different initial conditions for set 1.

FIG. 7. Power spectra of primordial curvature perturbations.
The blue and red lines represent the results for sets 1 and 2,
respectively. The green shaded region is excluded by CMB
observations [9]. The orange shaded region shows the present
upper bound on the power spectrum from measurements of μ
distortion for COBE/FIRAS [54,55]. The forecasted constraint
for the distortion experiment PIXIE [56] is shown as the orange
dashed line. See Ref. [57] for the summary of constraints on the
power spectrum of curvature perturbations.
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where Ωγ;0 is the density parameter of radiation today, g⋆;0
and g⋆;eq are the effective numbers of relativistic degrees of
freedom at the present time and at the time ηeq of the
radiation-matter equality, respectively.
Figure 8 shows the current energy spectra for induced

GWs and primordial GWs with parity violation for set 1.
We can see that the peak of the induced GWs energy
spectrum locates in the sensitive region of SKA. It is
interesting to find that the peak frequency of induced GWs
is much smaller than that of primordial GWs. The reason
for this phenomenon is almost obvious. We can estimate
kpeak;IGW ≃ aðtoscÞHðtoscÞ, kpeak;PGW ≃mχaðtoscÞ=2, where
tosc denotes the time when χ starts oscillation. Given
that slow-roll condition H2 ≃ V0=3M2

p, we obtain
kpeak;PGW=kpeak;IGW ≃mχMp=

ffiffiffiffiffiffi
V0

p
, which is approximately

equal to 2 × 103 in our parameter setting. Therefore, the
relation of peak frequency between these two SGWBs is
only dependent on the potential ratio (≡mχMp=

ffiffiffiffiffiffi
V0

p
).

Varying the ratio, the total SGWB spans the sensitive

frequency bands of various current of future observation
plans. For example, if primordial GWs with parity violation
locate in the sensitive region of BBO or DECIGO, induced
GWs fall in the LISA-Taiji frequency range, and so on. In a
word, besides chirality from the Chern-Simons term, the
joint measurements of these two SGWBs provide another
channel to test our model.

V. CONCLUSION

Searching for signs beyond GR is an exciting topic. DCS
gravity is certainly a plausible and self-consistent alter-
native. In this paper, we have investigated GWs generated
in the two-field model with the DCS coupling. A novelty is
that we consider a very heavy field coupled with the Chern-
Simons term, which leads to an increase in the third
derivative of this field with respect to the cosmic time,
thus triggering the resonant amplification of primordial
GWs on small scales during inflation. On the other hand,
the heavy field forces us to consider the effects of
isocurvature perturbations on curvature perturbations. It
is shown that isocurvature perturbations exhibit a tachyonic
instability within a short period of time, which acts as a
source inducing the amplification of curvature perturba-
tions. As a result, there are two SGWBs located at different
frequency bands in our model. One is amplified primordial
GWs with parity violation during inflation and the other is
induced GWs sourced by curvature perturbations in the
radiation-dominated era. The detection of these two
SGWBs provides an exciting possibility to test inflationary
models and gravitational theories.
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