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We present a formulation of Einstein-Maxwell vacuum fields due to plane fronted electromagnetic waves
sharing their wave fronts with gravitational waves. This is based on a recent geometrical reconstruction of
plane fronted wave fields by the authors that clearly identifies the cases in which the wave fronts collide
or do not collide. In the former case our construction suggests an explicit example of a searchlight
beam, accompanied by gravitational radiation, which sweeps across the sky. This gravitoelectromagnetic
searchlight and its properties are described in detail.
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I. INTRODUCTION

We describe a formulation of Einstein-Maxwell vacuum
fields of plane fronted electromagnetic waves sharing
their wave fronts with gravitational waves. This follows
our recent reconstruction [1,2] of plane fronted waves
that enables a clear distinction between plane waves with
colliding wave fronts (Kundt [3] waves) and waves with
noncolliding wave fronts (pp waves [4,5]). Our new
formulation suggests a simple example in which the
gravitational and electromagnetic radiation fields vanish
if the waves are not colliding. This is an example of a
searchlight beam, accompanied by gravitational radiation,
sweeping across the sky. We refer to it as a gravitoelec-
tromagnetic searchlight. Such waves are the asymptotic
limit of spherical waves emitted by an isolated source [6].
The wave fronts are colliding or not colliding depending
upon the motion of the source. The paper is organized as
follows: in Sec. II we give a detailed description of
our formulation of plane fronted waves in the context
of Einstein-Maxwell theory. This is followed in Sec. III
by the gravitoelectromagnetic searchlight, which is an
explicit solution of the Einstein-Maxwell equations which
exploits variables which arise naturally in our geometrical
construction of plane fronted waves. The solution is also
described in coordinates closely associated with rectan-
gular Cartesians and time as this makes the solution more
surveyable. This leads to further properties of the solution
described in Sec. IV by making use of tensor fields on a
background Minkowskian space time. The paper ends
with a discussion of our results in Sec. V.

II. EINSTEIN-MAXWELL VACUUM FIELDS

We use units for which the gravitational constant G ¼ 1
and the speed of light in a vacuum c ¼ 1 and we choose the
sign conventions of Synge [7]. Thus in a local coordinate
system fxig we obtain from the Riemann curvature tensor
components Rijkm the Ricci tensor components Rjk ¼
gimRijkm. The Ricci scalar R ¼ gjkRjk, the Einstein tensor
components Gjk ¼ Rjk − 1

2
gjkR and the Einstein-Maxwell

vacuum field equations

Gjk ¼ −κEjk with Ejk ¼ FjpFk
p −

1

4
gjkFmpFmp; ð1Þ

with the Maxwell tensor Fij ¼ −Fji satisfying Maxwell’s
vacuum field equations

Fij
;j ¼ 0 with Fij;k þ Fki;j þ Fjk;i ¼ 0: ð2Þ

In (1) κ ¼ 8π, Ejk ¼ Ekj with Ej
j ¼ 0 is the electromag-

netic energy-momentum tensor, indices are raised with gij

and lowered with gij and gij is defined by gijgjk ¼ δik and
gij ¼ gji are the components of the metric tensor. The
semicolon denotes covariant differentiation with respect
to the Riemannian connection calculated with the metric
tensor gij. We shall denote by Ai the components of a four
potential from which the components of the Maxwell tensor
can be obtained via

Fij ¼ Aj;i − Ai;j ¼ Aj;i − Ai;j; ð3Þ

with the comma denoting partial differentiation with respect
to the coordinates xi. With Fij given by (3) the second
equation in (2) is satisfied. The first equation in (2) can be
written in terms of the four potential as ([7], p. 357)
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gjkAi;j;k þ RijAj ¼ 0 provided Ai
;i ¼ 0: ð4Þ

This relies on the Ricci identities in Synge’s form

Ai;j;k − Ai;k;j ¼ ApRp
ijk; ð5Þ

which reveals his convention for the definition of the
Riemann curvature tensor. Making use of this, following
the substitution of (3) into the first of Maxwell’s equa-
tions (2), results in (4). As a final preliminary we note the
components of the Weyl conformal curvature tensor Cijkm

are given by

Cijkm ¼ Rijkm þ 1

2
ðgikRjm þ gjmRik − gimRjk − gjkRimÞ

þ 1

6
Rðgimgjk − gikgjmÞ: ð6Þ

We now consider a novel form for the line element of
the space-time model for plane fronted gravitational waves
sharing their wave fronts with electromagnetic waves,
which has been constructed in [1,2]:

ds2 ¼ gijdxidxj ¼ 2jdζ − βðuÞv duj2 þ 2qduðdvþHduÞ;
ð7Þ

with

qðζ; ζ̄; uÞ ¼ βðuÞζ̄ þ β̄ðuÞζ þ 1

2
γðuÞ: ð8Þ

The coordinate ζ is complex with complex conjugate ζ̄
while u, v are two real coordinates. The function βðuÞ is an
arbitrary complex-valued function of the coordinate uwith
complex conjugate denoted by β̄ðuÞ, γðuÞ is an arbitrary
real-valued function of u, and Hðζ; ζ̄; uÞ is a real-valued
function to be determined by the field equations. The
hypersurfaces u ¼ constant are null and generated by
the shear-free, expansion-free, geodesic integral curves
of the null vector field ∂=∂v. It is demonstrated explicitly
in [1,2] that these null hypersurfaces intersect, and thus
the wave fronts collide, if and only if βðuÞ ≠ 0. Labeling
the coordinates xi ¼ ðζ; ζ̄; v; uÞ for i ¼ 1, 2, 3, 4 we find
that the only nonvanishing components of the Riemann
curvature tensor are

R1424 ¼ −qHζζ̄; R1414 ¼ −qHζζ; R2424 ¼ −qHζ̄ ζ̄; ð9Þ

with the subscripts here, and in the sequel, denoting partial
derivatives. The Ricci tensor has only one nonvanishing
component

R44 ¼ 2qHζζ̄: ð10Þ

Consequently the Ricci scalar vanishes and the non-
vanishing components of the Weyl conformal curvature
tensor are

C1414 ¼ −qHζζ and C2424 ¼ −qHζ̄ ζ̄: ð11Þ

Next we consider a four potential on the space-time with
line element (7) given by the one form

A ¼ fðζ; ζ̄; uÞdu; ð12Þ

with f a real-valued function of its arguments. This leads
to a candidate for Maxwell field Fij having nonvanishing
components

F14 ¼ fζ and F24 ¼ fζ̄; ð13Þ

with the subscripts denoting partial derivatives as before.
Now Maxwell’s vacuum field equations (2) are satisfied
provided f satisfies

fζζ̄ ¼ 0; ð14Þ

and thus fζ is an analytic function of ζ with an arbitrary
dependence on u. The electromagnetic energy-momentum
tensor in (1) has one nonvanishing component

E44 ¼ 2fζfζ̄: ð15Þ

With (10) and (15) the Einstein-Maxwell field equations (1)
provide the following single equation

Hζζ̄ ¼ −κq−1fζfζ̄: ð16Þ

In order to survey what we have here it is useful to
introduce the null tetrad ki, li, mi, m̄i given in the
coordinates xi ¼ ðζ; ζ̄; v; uÞ for i ¼ 1, 2, 3, 4 by

ki ¼ δi3; mi ¼ δi2; m̄i ¼ δi1;

li ¼ q−1βvδi1 þ q−1β̄vδi2 − q−1Hδi3 þ q−1δi4; ð17Þ

and the three complex bivectors

Lij ¼ m̄ilj − m̄jli; ð18Þ

Mij ¼ mim̄j − m̄imj þ kilj − kjli; ð19Þ

Nij ¼ mikj −mjki: ð20Þ

Each of these bivectors is self-dual in the sense that
�Lij ¼ iLij, �Mij ¼ iMij and �Nij ¼ iNij with i ¼ ffiffiffiffiffiffi

−1
p

and �Lij ¼ 1
2
ηijkmLkm etc. with ηijkm ¼ ffiffiffiffiffiffi−gp

ϵijkm,
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g ¼ detðgijÞ, and ϵijkm the totally skewsymmetric Levi-
Civita permutation symbol in four dimensions with
ϵ1234 ¼ 1. Any self-dual complex bivector can be expressed
as a linear combination of these three self-dual bivectors.
In particular we have from (13)

Fij − i�Fij ¼ 2q−1fζNij: ð21Þ

The covariant vector field ki and the complex bivector Nij

satisfy the important equations in the current context

ki;j ¼ −q−1β̄mikj − q−1βm̄ikj; ð22Þ

given in [1,2], and

Nij;k ¼ −q−1βMijkk; ð23Þ

so that if β ¼ 0 then ki and Nij are covariantly constant.
Using (23) we confirm that (21) satisfies Maxwell’s equa-
tions in the form

ðFij − i�FijÞ;j ¼ −2q−1fζζ̄ki ¼ 0: ð24Þ

It also follows from (21) that

ðFij − i�FijÞkj ¼ 0; ð25Þ

indicating that we have here a purely radiative Maxwell field
with propagation direction ki in space-time. Next we can
write (11) in the form

Cijkm − i�Cijkm ¼ −2q−1HζζNijNkm: ð26Þ

Using (23) we obtain from this

ðCijkm − i�CijkmÞ;m ¼ 2q−1Hζζζ̄N
ijkk: ð27Þ

The Bianchi identities and the field equations (1) result in

Cijkm
;m ¼ 1

2
κðEki;j − Ekj;iÞ; ð28Þ

with

Eki ¼ 2q−2fζfζ̄k
kki: ð29Þ

With the use of (22) we find that

Cijkm
;m ¼ −κq−1ðq−1fζfζ̄ÞζNijkk

− κq−1ðq−1fζfζ̄Þζ̄N̄ijkk: ð30Þ

Since �Nij ¼ iNij we have

�Cijkm
;m ¼ −κiq−1ðq−1fζfζ̄ÞζNijkk

þ κiq−1ðq−1fζfζ̄Þζ̄N̄ijkk: ð31Þ

Hence the left hand side of (27) can be written

ðCijkm − i�CijkmÞ;m ¼ −2κq−1ðq−1fζfζ̄ÞζNijkk: ð32Þ

Therefore (27) is automatically satisfied since it reduces to
the derivative with respect to ζ of the field equation (16).
Finally we see from (26) that

ðCijkm − i�CijkmÞkm ¼ 0; ð33Þ

indicating pure gravitational radiation with propagation
direction ki in space-time.

III. A GRAVITOELECTROMAGNETIC
SEARCHLIGHT

In the geometrical construction of (7), described in [1,2],
the function qðζ; ζ̄; uÞ given in (8) emerges naturally. We
can use it to provide a simple explicit example of the
Einstein-Maxwell fields described above by taking f ¼ g0q
in the potential 1-form (12) with g0 as a real constant.
Then the Maxwell field Fij ¼ 0 except for F14 ¼ g0β̄ and
F24 ¼ goβ while (14) is satisfied. The Einstein-Maxwell
field equation (16) now reads

Hζζ̄ ¼ −κg20q−1jβj2; ð34Þ

and we solve this with H ¼ −κg20q log q. Now the Weyl
conformal curvature tensor Cijkm ¼ 0 except for C1414 ¼
2g20β̄

2 and C2424 ¼ 2g20β
2. In this case (21) and (26) read

Fij − i�Fij ¼ 2g0q−1β̄Nij ð35Þ

and

Cijkm − i�Cijkm ¼ 2κg20q
−2β̄2NijNkm; ð36Þ

and so we have the Weyl double copy (cf. [8])

Cijkm − i�Cijkm ¼ 1

2
κðFij − i�FijÞðFkm − i�FkmÞ: ð37Þ

The potential 1-form (12) now reads

A ¼ g0qdu; ð38Þ

and the line element (7) reads

ds2 ¼ 2jdζ − βðuÞvduj2 þ 2qduðdv− κg20q logqduÞ: ð39Þ
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This gravitoelectromagnetic searchlight can be written in a
more surveyable form by introducing coordinates Xi ¼
ðX; Y; Z; TÞ with i ¼ 1, 2, 3, 4 via the transformations [1,2]

X þ iY ¼
ffiffiffi
2

p
ζ −

ffiffiffi
2

p
lðuÞv; ð40Þ

Z þ T ¼ 2fl̄ðuÞζ þ lðuÞζ̄g − 2lðuÞl̄ðuÞvþ nðuÞ; ð41Þ

Z − T ¼ v; ð42Þ

with dl=du ¼ β and dn=du ¼ γ. Applying these trans-
formations to the line element (39) results in

ds2 ¼ ðdXÞ2 þ ðdYÞ2 þ ðdZÞ2 − ðdTÞ2 − 2κg20q
2 logqdu2

¼ ηijdXidXj − 2κg20q
2 logqdu2; ð43Þ

where ηij ¼ diagð1; 1; 1;−1Þ is the Minkowskian metric
tensor in rectangular Cartesian coordinates and time.
Solving (40)–(42) for ðζ; ζ̄; v; uÞ in terms of Xi is straight-
forward except for the equation giving the coordinate u
as a function of Xi. This equation is obtained by
substituting (40) and (42) into (41) to arrive at

ffiffiffi
2

p
ðl̄þ lÞX þ i

ffiffiffi
2

p
ðl̄ − lÞY þ ð2ll̄ − 1ÞZ

− ð2ll̄þ 1ÞT þ n ¼ 0; ð44Þ

giving uðXiÞ implicitly. Defining

aiðuÞ ¼ ð
ffiffiffi
2

p
ðl̄þ lÞ; i

ffiffiffi
2

p
ðl̄ − lÞ; 2ll̄ − 1; 2ll̄þ 1Þ; ð45Þ

we have

ηijaiaj ¼ ajaj ¼ 0; ð46Þ

and (44) takes the form

aiðuÞXi þ nðuÞ ¼ 0: ð47Þ

We thus see that the hypersurfaces u ¼ constant are
null hyperplanes in Minkowskian space-time. These hyper-
planes intersect provided _ai ¼ dai=du ≠ 0ð⇔ β ≠ 0Þ.
From (47) we have

du¼ u;idXi ¼ −WaidXi with W ¼ ð _ajXj þ γÞ−1: ð48Þ

With qðζ; ζ̄; uÞ given by (8) we find, using (40) and (42),

2q ¼
ffiffiffi
2

p
ðβ̄ þ βÞX þ i

ffiffiffi
2

p
ðβ̄ − βÞY

þ 2ðβ̄lþ βl̄ÞðZ − TÞ þ γ

¼ _a1X þ _a2Y þ _a3Z − _a4T þ γ; ð49Þ

so that

2q ¼ _ajXj þ γ ¼ W−1: ð50Þ

Hence we have

qdu ¼ −
1

2
aidXi; ð51Þ

and so the line element (43) written entirely in the
coordinates Xi reads

ds2 ¼
�
ηij þ

1

2
κg20 logWaiaj

�
dXidXj: ð52Þ

We note in passing that WðXiÞ given by (48) is, with
respect to the Minkowskian metric, a wave function and its
gradient is orthogonal to ai. With a comma denoting partial
differentiation with respect to Xi the first and second
derivatives of W are

W;i ¼ ðäjXj þ _γÞW3ai −W2 _ai; ð53Þ

and

W;ij ¼ W3ðaiäj þ äiaj þ 2_ai _ajÞ
− 3ðäkXk þ _γÞW4ðai _aj þ _aiajÞ
þ f3ðäkXk þ _γÞ2W5 − ð⃛akXk þ ̈γÞW4gaiaj: ð54Þ

Hence

W;iai ¼ 0; W;i _ai ¼ −W2 _ai _ai ¼ W2aiäi; ð55Þ

so that, in particular, the gradient of W is orthogonal to ai

with respect to the Minkowskian metric, and

□W ¼ ηijW;ij ¼ 2W3ðaiäi þ _ai _aiÞ ¼ 0; ð56Þ

so that W is a Minkowskian wave function.
In coordinates Xi the gravitoelectromagnetic searchlight

has a metric tensor of the Kerr-Schild form

gij ¼ ηij þ
1

2
κg20 logWaiðuÞajðuÞ

⇒ gij ¼ ηij −
1

2
κg20 logWaiaj; ð57Þ

with ai ¼ ηijaj ¼ gijaj. W is given by (48) and uðXiÞ
implicitly by (47). The electromagnetic four potential is

Ai ¼ −
1

2
g0aiðuÞ: ð58Þ

Calculating directly with these we see that the Maxwell
field is
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Fij ¼ 1

2
g0Wð _aiaj − _ajaiÞ ⇒ Fijaj ¼ 0: ð59Þ

Denoting by a semicolon covariant differentiation with
respect to the Riemannian connection calculated with the
metric tensor (57) and noting from the metric form that
g¼detðgijÞ¼detðηijÞ¼−1 we satisfy the gauge condition

Ai
;i ¼

1ffiffiffiffiffiffi−gp ð ffiffiffiffiffiffi
−g

p
AiÞ;i ¼ Ai

;i ¼
1

2
g0W _aiai ¼ 0: ð60Þ

Also we confirm that Maxwell’s equations are satisfied since

Fij
;j ¼

1ffiffiffiffiffiffi−gp ð ffiffiffiffiffiffi
−g

p
FijÞ;j ¼ Fij

;j

¼ 1

2
g0W;jaj _ai þ

1

2
g0ðW2ajäj −W;j _ajÞai ¼ 0; ð61Þ

with the final equality following from (55). The electro-
magnetic energy-momentum tensor is given by

Eij ¼
1

4
g20W

2 _ap _apaiaj: ð62Þ

A calculation of the Riemann curvature tensor components
starting with the metric tensor (57) results in

Rijkm ¼ 1

4
κg20W

2ð _aiaj − ai _ajÞð _akam − ak _amÞ; ð63Þ

from which the Ricci tensor components are found to be

Rjk ¼ gimRijkm ¼ −
1

4
κg20W

2 _am _amajak: ð64Þ

The equations (62) and (64) confirm that the Einstein-
Maxwell field equations Rij ¼ −κEij are satisfied. With Ai

given by (58), satisfying the gauge condition (60), and the
Ricci tensor (64), it is straightforward to check that the
Einstein-Maxwell field equations in the form of (4) are
satisfied. Finally the Weyl conformal curvature tensor
components in coordinates Xi are

Cijkm¼1

4
κg20W

2fSikajamþSjmaiak−Simajak−Sjkaiamg;
ð65Þ

with

Sij ¼ _ai _aj −
1

2
_ap _apηij ¼ Sji ⇒ Sijaj ¼ −

1

2
_ap _apai: ð66Þ

Consequently we have the radiative property [the partner
for (59)]

Cijkmam ¼ 0: ð67Þ

IV. FIELDS ON MINKOWSKIAN SPACE-TIME

It follows from (61) that Fij given by (59) is not only a
Maxwell field on the space-timewith line element (57) but is
also aMaxwell field onMinkowskian space-timewithmetric
tensor components ηij in coordinates Xi ¼ ðX; Y; Z; TÞ.
This Maxwell field on Minkowskian space-time determines
an electric three-vector E ¼ ðE1; E2; E3Þ and a magnetic
three-vector B ¼ ðB1; B2; B3Þ given, respectively, by

Eα ¼ Fα4; Bα ¼ �Fα4; ð68Þ

with greek indices taking values 1, 2, 3. With aiðuÞ in (45)
we have from (59):

Bþ iE ¼ 2ig0Wð2ll̄þ 1Þβ̄m; ð69Þ
with the three-vector m given by

m ¼
�

1 − 2l2ffiffiffi
2

p ð2ll̄þ 1Þ ;
ið1þ 2l2Þffiffiffi
2

p ð2ll̄þ 1Þ ;
2l

2ll̄þ 1

�
: ð70Þ

The formula (69) with (70) is a special case of a formula
satisfied by plane fronted electromagnetic waves in general
given in [1,2]. The histories in Minkowskian space-time of
the plane fronted waves are the null hyperplanes uðXiÞ ¼
constant given by (47). The wave velocity (see [9]) has
components

vα ¼ −
u;4u;α
u;βu;β

; ð71Þ

which, as a consequence of (48), read as (see Fig. 1)

v ¼ ða4Þ−1a; ð72Þ

with ai ¼ ða; a4Þ by (45). The plane fronted waves, of
course, travel with the speed of light so that v · v ¼ 1. With
u;4 ¼ −Wa4 ¼ Wa4 we find that

FIG. 1. aiðuÞ is resolved into ðaðuÞ; 0Þ in the observer’s space
and a vector of magnitude a4ðuÞ parallel to the T axis. The three
velocity of the waves is vðuÞ ¼ ða4Þ−1a in the observer’s space.
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∂v
∂T

¼ ∂v
∂u

u;4 ¼ 2Wðβ̄mþ βm̄Þ; ð73Þ

with m̄ as the complex conjugate of m. Among the
useful properties of the complex three-vectorm (m · m̄ ¼ 1,
m ·m ¼ 0 ¼ m̄ · m̄ and m × m̄ ¼ iv) are the vector
products

m ¼ im × v and m̄ ¼ −im̄ × v: ð74Þ

Consequently it follows from (69) that jEj2 ¼ jBj2,
E ·B ¼ 0,E ×B ¼ jEj2v, andE,B, v form a right-handed
orthogonal triad. In addition (73) can be written as

∂v
∂T

¼ ω × v with ω ¼ 2iWðβ̄m − βm̄Þ; ð75Þ

so that jωj2 ¼ ω · ω ¼ 8W2jβj2. Hence provided that β ≠ 0
[so that the null hyperplanes (47) with u ¼ constant

intersect and the wave fronts collide], then ω is the angular
velocity with which the searchlight sweeps across the sky
as described by Pirani [10] (see Fig. 2). If β ¼ 0, then there
is no searchlight. The searchlight we are considering
here can also project gravitational radiation and is then a
gravitoelectromagnetic searchlight. We achieve this in the
present context by considering (57) as a perturbation of
Minkowskian space-time written as

gij ¼ ηij þ γij; ð76Þ

where

γij ¼
1

2
κg20 logWaiðuÞajðuÞ ð77Þ

is a tensor field on Minkowskian space-time. Using (46),
(48), and (53) we find that γij satisfies the gauge condition

ηjkγij;k ¼ 0: ð78Þ

The linearized Riemann curvature tensor components are

Lijkm ¼ 1

2
ðγim;jk þ γjk;im − γik;jm − γjm;ikÞ; ð79Þ

and so,making use of (54), the components of the linearized
Ricci tensor are

Ljk ¼ ηimLijkm ¼ 1

2
ηimγjk;im

¼ −
1

4
κg20W

2 _am _amajak ¼ −κEjk; ð80Þ

withEjk given by (62). On account of theWeyl double copy
(37) the linearizedWeyl tensor is given in coordinatesXi by

Cijkm − i�Cijkm ¼ 1

2
κðFij − i�FijÞðFkm − i�FkmÞ: ð81Þ

In terms of the electric part of the linearized Weyl tensor
Eαβ ¼ Cα4β4 and the magnetic part Bαβ ¼ �Cα4β4 we obtain
from this the gravitational partner for (69) namely

Bαβ þ iEαβ ¼ 2iκg20W
2β̄2ð2ll̄þ 1Þ2mαmβ; ð82Þ

with ðmαÞ ¼ m. The plane fronted gravitational waves
described by this tensor share their wave fronts with the
electromagnetic waves above and their wave fronts undergo
the rotation implied by (73) making the searchlight a
gravitoelectromagnetic searchlight. Using (69) and (82)
we deduce that

FIG. 2. The intersecting null hyperplane histories N0ðu0Þ,
N1ðu1Þ, N2ðu2Þ of some plane wave fronts as the gravitoelec-
tromagnetic searchlight sweeps across the sky with angular
velocity jωj ¼ Wð _am _amÞ1=2 in the observer’s space. The gen-
erators of the null hyperplanes [the integral curves of aiðuÞ in
each case] are indicated.
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Eαβ ¼ 1

2
κðEαEβ − BαBβÞ ¼ Eβα ⇒ Eαα ¼ 0; ð83Þ

and

Bαβ ¼ 1

2
κðEαBβ þ EβBαÞ ¼ Bβα ⇒ Bαα ¼ 0: ð84Þ

Using the algebraic relations following (74) above involv-
ing E, B, and v we obtain the corresponding relations
involving Eαβ, Bαβ, and v:

EαβEβσ ¼ BαβBβσ; ð85Þ
EαβBβσ þ BαβEβσ ¼ 0; ð86Þ

and

ϵσρλEαρBβλ ¼ EαρEρβvσ ¼ BαρBρβvσ; ð87Þ
where ϵσρλ is the three-dimensional Levi-Civita permutation
symbol.

V. DISCUSSION

The electromagnetic field and the gravitational field of our
explicit model of a gravitoelectromagnetic searchlight are

given by (35) and (36), respectively. Their existence depends
upon the nonvanishing of the complex valued function βðuÞ.
This in turn means that the plane fronted waves, both
electromagnetic and gravitational, must have colliding wave
fronts (see [1,2]). A useful property of these fields is given
by the so-called Weyl double copy in the form of (37). In the
context of tensor fields on Minkowskian space-time in
Sec. IV this leads to simple relationships (85) and (86)
between the electric and magnetic three-vectors of the
electromagnetic field and the so-called electric and magnetic
parts of the gravitational field. In our treatment of the
gravitoelectromagnetic searchlight in coordinates Xi (in
Sec. III), an interesting function W, which appears first
in (48), plays a key role. Its most important attribute is that it
is a wave function on Minkowskian space-time, which we
have utilized in confirming that (4) is satisfied by the
searchlight field and also in deriving (80). A more general
scenario than that considered here emerges from the
asymptotic limit (in the manner of [6]) of the Liénard-
Wiechert electromagnetic field. The limiting case is alge-
braically general but contains a radiation part (just as the
Liénard-Wiechert field does). A challenging open question
is to find a corresponding gravitoelectromagnetic model in
Einstein-Maxwell theory.
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