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Colliding plane fronted waves and a gravitoelectromagnetic searchlight
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We present a formulation of Einstein-Maxwell vacuum fields due to plane fronted electromagnetic waves
sharing their wave fronts with gravitational waves. This is based on a recent geometrical reconstruction of
plane fronted wave fields by the authors that clearly identifies the cases in which the wave fronts collide
or do not collide. In the former case our construction suggests an explicit example of a searchlight
beam, accompanied by gravitational radiation, which sweeps across the sky. This gravitoelectromagnetic

searchlight and its properties are described in detail.
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I. INTRODUCTION

We describe a formulation of Einstein-Maxwell vacuum
fields of plane fronted electromagnetic waves sharing
their wave fronts with gravitational waves. This follows
our recent reconstruction [1,2] of plane fronted waves
that enables a clear distinction between plane waves with
colliding wave fronts (Kundt [3] waves) and waves with
noncolliding wave fronts (pp waves [4,5]). Our new
formulation suggests a simple example in which the
gravitational and electromagnetic radiation fields vanish
if the waves are not colliding. This is an example of a
searchlight beam, accompanied by gravitational radiation,
sweeping across the sky. We refer to it as a gravitoelec-
tromagnetic searchlight. Such waves are the asymptotic
limit of spherical waves emitted by an isolated source [6].
The wave fronts are colliding or not colliding depending
upon the motion of the source. The paper is organized as
follows: in Sec. II we give a detailed description of
our formulation of plane fronted waves in the context
of Einstein-Maxwell theory. This is followed in Sec. III
by the gravitoelectromagnetic searchlight, which is an
explicit solution of the Einstein-Maxwell equations which
exploits variables which arise naturally in our geometrical
construction of plane fronted waves. The solution is also
described in coordinates closely associated with rectan-
gular Cartesians and time as this makes the solution more
surveyable. This leads to further properties of the solution
described in Sec. IV by making use of tensor fields on a
background Minkowskian space time. The paper ends
with a discussion of our results in Sec. V.
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II. EINSTEIN-MAXWELL VACUUM FIELDS

We use units for which the gravitational constant G = 1
and the speed of light in a vacuum ¢ = 1 and we choose the
sign conventions of Synge [7]. Thus in a local coordinate
system {x'} we obtain from the Riemann curvature tensor
components R;j,, the Ricci tensor components Rj =
9™R,jim- The Ricci scalar R = ¢/*R;, the Einstein tensor
components G;; = R;z —g;R and the Einstein-Maxwell
vacuum field equations

. 1
ij:_KEjk with Ejk:Fijkp_Zgijmmepv (1)
with the Maxwell tensor F;; = —F; satisfying Maxwell’s
vacuum field equations

FU’J:O with Flj,k+Fkl,j+ij,l:0 (2)

In (1) k = 87, Ej = Ey; with E/; = 0 is the electromag-
netic energy-momentum tensor, indices are raised with g/
and lowered with g;; and ¢” is defined by g/g; = &} and
gij = gj; are the components of the metric tensor. The
semicolon denotes covariant differentiation with respect
to the Riemannian connection calculated with the metric
tensor g;;. We shall denote by A’ the components of a four
potential from which the components of the Maxwell tensor
can be obtained via

Fij=A;—A;;=A;,— A, (3)

ij — Ajii
with the comma denoting partial differentiation with respect
to the coordinates x'. With F;; given by (3) the second
equation in (2) is satisfied. The first equation in (2) can be

written in terms of the four potential as ([7], p. 357)
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gjkAi;j;k + RUAJ = 0 prOVided Ai;l‘ = O (4)

This relies on the Ricci identities in Synge’s form
Aisjik = Aiksj = ApRP iy (5)

which reveals his convention for the definition of the
Riemann curvature tensor. Making use of this, following
the substitution of (3) into the first of Maxwell’s equa-
tions (2), results in (4). As a final preliminary we note the
components of the Weyl conformal curvature tensor C;jy,,
are given by

1
Cijkm = Rijim + 2 (9ikRjm + GjmRik = gimR ji = 9juRim)

1
+ gR(gimgjk — GikGjm)- (6)

We now consider a novel form for the line element of
the space-time model for plane fronted gravitational waves
sharing their wave fronts with electromagnetic waves,
which has been constructed in [1,2]:

ds?* = g;jdx'dx) = 2|d¢ — p(u)v dul* + 2qdu(dv + Hdu),
(7)

with

9(C.2u) = P+ B + 370 (®)

The coordinate ¢ is complex with complex conjugate ¢
while u, v are two real coordinates. The function f(u) is an
arbitrary complex-valued function of the coordinate u with
complex conjugate denoted by f(u), y(u) is an arbitrary
real-valued function of u, and H({,{, u) is a real-valued
function to be determined by the field equations. The
hypersurfaces u# = constant are null and generated by
the shear-free, expansion-free, geodesic integral curves
of the null vector field d/dv. It is demonstrated explicitly
in [1,2] that these null hypersurfaces intersect, and thus
the wave fronts collide, if and only if f(u) # 0. Labeling
the coordinates x' = (¢, &, v, u) for i = 1, 2, 3, 4 we find
that the only nonvanishing components of the Riemann
curvature tensor are

Rips =—qHz, Riyis=—qH:, Rows=—qHzz, (9)

with the subscripts here, and in the sequel, denoting partial
derivatives. The Ricci tensor has only one nonvanishing
component

Consequently the Ricci scalar vanishes and the non-
vanishing components of the Weyl conformal curvature
tensor are

Ciusa = —qHy and  Cyppy = —qHgz.  (11)

Next we consider a four potential on the space-time with
line element (7) given by the one form

A= f(¢.C u)du, (12)

with f a real-valued function of its arguments. This leads
to a candidate for Maxwell field F';; having nonvanishing
components

Fiy=/f; and Fy = [t (13)

with the subscripts denoting partial derivatives as before.
Now Maxwell’s vacuum field equations (2) are satisfied
provided f satisfies

fgg =0, (14)

and thus f is an analytic function of ¢ with an arbitrary
dependence on u. The electromagnetic energy-momentum
tensor in (1) has one nonvanishing component

Ey =2ffz. (15)

With (10) and (15) the Einstein-Maxwell field equations (1)
provide the following single equation

Hgé = —Kq_lféfz. (16)

In order to survey what we have here it is useful to
introduce the null tetrad k', [, m', m' given in the
coordinates x' = (£,¢, v, u) for i =1, 2, 3, 4 by
ki = &L,
I'=q'pvs, + g7 pvd — g HS, + ¢715;,  (17)

mi =&,  m =8,

and the three complex bivectors

Li = mil —mll, (18)
Mii = mim/ — imim/ + k'l — K1, (19)
Nij = mikj - mjki. (20)

Each of these bivectors is self-dual in the sense that
LU =LV, *MJ = iM"V and *NY = iNV with i = /-1
and LY =IpkmL,, etc. With Mg = /—G€ijims
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g = det(g;;), and €, the totally skewsymmetric Levi-
Civita permutation symbol in four dimensions with
€1234 = 1. Any self-dual complex bivector can be expressed
as a linear combination of these three self-dual bivectors.
In particular we have from (13)

The covariant vector field k; and the complex bivector N;
satisfy the important equations in the current context

ki = —q ' Bmk; — g pin;k;, (22)
given in [1,2], and
Nijy = _q_l/}Mijklw (23)
so that if =0 then k; and N;; are covariantly constant.
Using (23) we confirm that (21) satisfies Maxwell’s equa-
tions in the form
(F — i*Fif);j = —2q‘1f§5k" =0. (24)
It also follows from (21) that

ij ~
indicating that we have here a purely radiative Maxwell field
with propagation direction k' in space-time. Next we can
write (11) in the form

Cijkm _ i*cijkm — —2q_1HC§Niijm. (26)
Using (23) we obtain from this

(Ciikm — peCitkm) = 2¢7"H ;N kX, (27)

The Bianchi identities and the field equations (1) result in
Cikm,, = S(ER — ), (28)

with
EN =2g72f  f2 kMK (29)

With the use of (22) we find that

Cijkm;m — _Kq_l(q_lfgfz)gNijkk
— kg~ (g7 fefz)eNVKE. (30)

Since *N“ = iN/ we have

*Cijkm;m — —Kiq_l (q_lfgfg’)gNijkk
+Kiq‘1(q‘1f¢f5)5Nijkk. (31)
Hence the left hand side of (27) can be written
(Cijkm _ i*cijkm);m — —2K'q_1 (q_lfgfg‘)gNijkk~ (32)

Therefore (27) is automatically satisfied since it reduces to
the derivative with respect to ¢ of the field equation (16).
Finally we see from (26) that

(i — Ciikm)E, = 0, (33)

indicating pure gravitational radiation with propagation
direction k' in space-time.

III. A GRAVITOELECTROMAGNETIC
SEARCHLIGHT

In the geometrical construction of (7), described in [1,2],
the function ¢(¢, Z, u) given in (8) emerges naturally. We
can use it to provide a simple explicit example of the
Einstein-Maxwell fields described above by taking f = goq
in the potential 1-form (12) with g, as a real constant.
Then the Maxwell field F;; = 0 except for F4 = gof and
F5, = g,p while (14) is satisfied. The Einstein-Maxwell
field equation (16) now reads

Hye = —xg5q™' 1P (34)
and we solve this with H = —xg3qlog g. Now the Weyl
conformal curvature tensor Cjj,,, = 0 except for Ci44 =
2g2/* and Caypy = 2¢3/. In this case (21) and (26) read

Fij—i'F;; = 2906]_IBNU (35)
and

Cijtm = ©"Cijtm = 2KG3q 2 P*N ;N ton, (36)
and so we have the Weyl double copy (cf. [8])
Cijkm - i*Cijkm = %K(Fij - i*Fij)(ka - i*ka)- (37)
The potential 1-form (12) now reads
A = gyqdu, (38)

and the line element (7) reads

ds* =2|d¢ — p(u)vdul* + 2qdu(dv — kg3qlog qdu). (39)
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This gravitoelectromagnetic searchlight can be written in a
more surveyable form by introducing coordinates X' =
(X,Y,Z,T) with i = 1, 2, 3, 4 via the transformations [1,2]

X +iY = V20 = V2I(u)v, (40)
Z+T=2{l(u)l + 1w} —=20(u)l(u)v+ n(u), (41)
Z-T=v, (42)

with dl/du = f and dn/du =y. Applying these trans-
formations to the line element (39) results in
ds* = (dX)? 4 (dY)* + (dZ)* — (dT)? - 2xg3q* log qdu?
= n;;dX'dX! — 2xg3q* log qdu?, (43)
where #;; = diag(1,1,1,~1) is the Minkowskian metric
tensor in rectangular Cartesian coordinates and time.
Solving (40)—~(42) for (£, &, v, u) in terms of X' is straight-
forward except for the equation giving the coordinate u
as a function of X'. This equation is obtained by
substituting (40) and (42) into (41) to arrive at
V2(I+ DX 4+ ivV2(1-1)Y + (211 - 1)Z
— O+ 1)T+n=0, (44)
giving u(X") implicitly. Defining
al(u) = (V2(I1+1),ivV2(1=1),211 = 1,2[1 + 1), (45)
we have
nja'a’ = ajal =0, (46)
and (44) takes the form
a;(u)X' + n(u) = 0. (47)
We thus see that the hypersurfaces u = constant are
null hyperplanes in Minkowskian space-time. These hyper-
planes intersect provided &' =da'/du#0(< p#0).
From (47) we have
du=u;dX' = -WadX' with W= (a,X/+y)"". (48)
With ¢(¢, &, u) given by (8) we find, using (40) and (42),
29 = V2(B+p)X +iV2(B - p)Y
+2(pL+I(Z=T) +vy
=a'X+a*Y+a3Z - a*T +vy, (49)

so that

2 =X +y =W (50)

Hence we have
1 .
qdu = —Ea,-Xm, (51)

and so the line element (43) written entirely in the
coordinates X' reads

1 . .
ds? = (’hj + Ekg(z) log Wa,»aj) dx'dx’. (52)

We note in passing that W(X') given by (48) is, with
respect to the Minkowskian metric, a wave function and its
gradient is orthogonal to a’. With a comma denoting partial
differentiation with respect to X' the first and second
derivatives of W are

W,i = (aJXJ + 7./)W3ai — W2al’, (53)
and
W,ij = W3(ai('1'j + éi,»aj + 2&lélj)

- 3(Clka + }’)W4((1,(1] + él,-aj)
+ {3(a Xk +7)° W3 — (G, X" + 7)Waa;.  (54)
Hence
WJ»ai = O, W.iéli = —W2C'li6.li = W2al~di, (55)

so that, in particular, the gradient of W is orthogonal to a’
with respect to the Minkowskian metric, and

OW =niW ;; = 2W3(a;d’ + a;a’) =0, (56)

so that W is a Minkowskian wave function.
In coordinates X' the gravitoelectromagnetic searchlight
has a metric tensor of the Kerr-Schild form

1
ij = Mij + ikg% log Wa;(u)a;(u)
. o1 oo
= g/ =n' - Elcg% log Wa'a/, (57)
with a' =n'a; = gVa;. W is given by (48) and u(X')
implicitly by (47). The electromagnetic four potential is

A= 2 g0 (). (8)

Calculating directly with these we see that the Maxwell
field is
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F = EgOW(&’a-’ —a'a’) = Fla; = 0. (59)

Denoting by a semicolon covariant differentiation with
respect to the Riemannian connection calculated with the
metric tensor (57) and noting from the metric form that
g=det(g;;) =det(n;;) =—1 we satisfy the gauge condition

. . . 1 .
Al;i = —(\/—gAl),i = Al.i = Egch'z’a,- =0. (60)

Also we confirm that Maxwell’s equations are satisfied since

. 1 y .
Y :—;_—g(\/_gFj),j =FY;
1 B y "
= EQOWJ“/“’ +§go(W2aja/ - W al)a' =0, (61)

with the final equality following from (55). The electro-
magnetic energy-momentum tensor is given by

1 ..
Eij :Zg%WZapapaiaj. (62)
A calculation of the Riemann curvature tensor components
starting with the metric tensor (57) results in

1 .
_Kg(z)Wz(aiaj

Rijkm = 4 - aiaj)(akam - akdm)’ (63)

from which the Ricci tensor components are found to be

Rix = 9" Rijim = —%Kg%Wded”’ajak. (64)
The equations (62) and (64) confirm that the Einstein-
Maxwell field equations R;; = —kE;; are satisfied. With A’
given by (58), satisfying the gauge condition (60), and the
Ricci tensor (64), it is straightforward to check that the
Einstein-Maxwell field equations in the form of (4) are
satisfied. Finally the Weyl conformal curvature tensor
components in coordinates X' are

|
Cijim :ZKQOW {Sia;a, +S;na;ar—Syaa, =S pa;a,},
(65)

with
T . 1. .
Sijzaiaj—iapapnijZSﬁ=>S,-jaJ:—§apapa,». (66)

Consequently we have the radiative property [the partner
for (59)]

Cl-jkmam =0. (67)

IV. FIELDS ON MINKOWSKIAN SPACE-TIME

It follows from (61) that F*/ given by (59) is not only a
Maxwell field on the space-time with line element (57) but is
also a Maxwell field on Minkowskian space-time with metric
tensor components 7;; in coordinates X I = (X,Y,Z,T).
This Maxwell field on Minkowskian space-time determines
an electric three-vector E = (E', E?, E*) and a magnetic
three-vector B = (B!, B2, B}) given, respectively, by

E* = Fa4’ BY = *Fa4’ (68)
with greek indices taking values 1, 2, 3. With a'(u) in (45)
we have from (59):

B + iE = 2igyW(2] 4 1)pm, (69)

with the three-vector m given by

o 1=2r (1 +2p) 21
_<v§@ﬁ+1fv§@ﬁ+1y2ﬂ+1>'(ﬂ»

The formula (69) with (70) is a special case of a formula
satisfied by plane fronted electromagnetic waves in general
given in [1,2]. The histories in Minkowskian space-time of
the plane fronted waves are the null hyperplanes u(X’) =
constant given by (47). The wave velocity (see [9]) has
components

oo = - 2dta, (71)
Uplp

which, as a consequence of (48), read as (see Fig. 1)

v = (a*)"'a, (72)
with a’ = (a,a*) by (45). The plane fronted waves, of
course, travel with the speed of light so that v- v = 1. With

uy =—Way = Wa* we find that

T

(a(u),0)

FIG. 1. a‘(u) is resolved into (a(u),0) in the observer’s space
and a vector of magnitude a*(u) parallel to the T axis. The three
velocity of the waves is v(u) = (a*)'a in the observer’s space.
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FIG. 2. The intersecting null hyperplane histories Ny (i),
Ni(u;), No(uy) of some plane wave fronts as the gravitoelec-
tromagnetic searchlight sweeps across the sky with angular
velocity |w| = W(a,,a™)"/? in the observer’s space. The gen-
erators of the null hyperplanes [the integral curves of a'(u) in
each case] are indicated.

ov  ov - -
7o 2W(pm + pm), (73)
with m as the complex conjugate of m. Among the
useful properties of the complex three-vectorm (m - m = 1,
m-m=0=m-m and m xm = iv) are the vector
products

m=i/mxv and m=—imxV. (74)

Consequently it follows from (69) that |E|* = |BJ?,

E B =0,E x B = |E|?>v,and E, B, v form a right-handed
orthogonal triad. In addition (73) can be written as

g_; —wxv with o=2iW(pm-pm), (75)

so that |w|? = @ - @ = 8W?|B|%. Hence provided that 8 # 0
[so that the null hyperplanes (47) with u = constant

intersect and the wave fronts collide], then w is the angular
velocity with which the searchlight sweeps across the sky
as described by Pirani [10] (see Fig. 2). If # = 0, then there
is no searchlight. The searchlight we are considering
here can also project gravitational radiation and is then a
gravitoelectromagnetic searchlight. We achieve this in the
present context by considering (57) as a perturbation of
Minkowskian space-time written as

where
L,
vij = 5kgo log Wa;(u)a;(u) (77

is a tensor field on Minkowskian space-time. Using (46),
(48), and (53) we find that y;; satisfies the gauge condition

W vk = 0. (78)

The linearized Riemann curvature tensor components are

Lijim = 5 Vim jk + ¥V jkim = Yikjm = Vimic)s  (79)

N[ =

and so, making use of (54), the components of the linearized
Ricci tensor are

. 1 .
Ly =n""Ljjim = Enlmyjk,im

1
= —Zkg(z)Wzézmézmajak = —kEj, (80)

with E ;. given by (62). On account of the Weyl double copy
(37) the linearized Weyl tensor is given in coordinates X by

C,]km _ l‘*Cljkm — EK(FU — i*F”)(ka _ i*ka). (81)

In terms of the electric part of the linearized Weyl tensor
E* = C** and the magnetic part B¥ = *C*/* we obtain
from this the gravitational partner for (69) namely

BY +iEY = 2ikggWB (21 + 1)’m" /', (82)

with (m®) =m. The plane fronted gravitational waves
described by this tensor share their wave fronts with the
electromagnetic waves above and their wave fronts undergo
the rotation implied by (73) making the searchlight a
gravitoelectromagnetic searchlight. Using (69) and (82)
we deduce that
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1
EB — 5K(EozEﬁ _ B(’Bﬂ) — [pa = E — (), (83)

and
1
B = EK‘(E“Bﬁ + EPBY) = Bf* = B =0. (84)
Using the algebraic relations following (74) above involv-

ing E, B, and v we obtain the corresponding relations
involving E%, B* and v:

EEP° = B¥#BPe, (85)
EYBPe + BPEPe = (), (86)

and
€, E¥ B = EVEPPy® = B B/Py°, (87)

where €,,,, is the three-dimensional Levi-Civita permutation
symbol.

V. DISCUSSION

The electromagnetic field and the gravitational field of our
explicit model of a gravitoelectromagnetic searchlight are

given by (35) and (36), respectively. Their existence depends
upon the nonvanishing of the complex valued function f(u).
This in turn means that the plane fronted waves, both
electromagnetic and gravitational, must have colliding wave
fronts (see [1,2]). A useful property of these fields is given
by the so-called Weyl double copy in the form of (37). In the
context of tensor fields on Minkowskian space-time in
Sec. IV this leads to simple relationships (85) and (86)
between the electric and magnetic three-vectors of the
electromagnetic field and the so-called electric and magnetic
parts of the gravitational field. In our treatment of the
gravitoelectromagnetic searchlight in coordinates X' (in
Sec. III), an interesting function W, which appears first
in (48), plays a key role. Its most important attribute is that it
is a wave function on Minkowskian space-time, which we
have utilized in confirming that (4) is satisfied by the
searchlight field and also in deriving (80). A more general
scenario than that considered here emerges from the
asymptotic limit (in the manner of [6]) of the Liénard-
Wiechert electromagnetic field. The limiting case is alge-
braically general but contains a radiation part (just as the
Liénard-Wiechert field does). A challenging open question
is to find a corresponding gravitoelectromagnetic model in
Einstein-Maxwell theory.
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