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Relying on the Penrose process mechanism, we study the possibility of energy extraction from a binary
system composed of two extreme electrostatic black holes (BHs) oppositely charged, separated by a strut
described by Bonnor’s metric. We determined and plotted the generalized ergosphere that surrounds only
one of the BHs. We demonstrate the existence of nonclosed orbits of negative energy outside the event
horizon; these orbits allow the possibility of energy extraction by particle disintegration from a system
described by the Bonnor’s metric. We prove that the extraction process can occur when a charged test
particle and the BH have opposite charges; also, we analyze the efficiency of the process.
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I. INTRODUCTION

The Kerr metric is a stationary solution of Einstein’s field
equation that gives the more general description of a
rotating black hole (BH) [1–3]; this metric possesses an
interesting region called the ergosphere, delimited by the
stationary limit surface and the outer event horizon. Within
the ergosphere the timelike Killing vector ð∂tÞμ becomes
spacelike; this special feature allows particles inside the
ergosphere to have negative energy. However, the particle
can yet avoid entering the event horizon and can escape
back to infinity.
The Penrose process is a mechanism proposed by

Penrose and Floyd [4] for extracting energy from a
rotating BH taking advantage of the fact that test particles
inside the ergosphere can have negative energy states. It
consists of a particle that reaches the ergosphere and at
some point it disintegrates into two fragments, one of the
fragments is trapped within the ergosphere with negative
energy and the other one escapes back to infinity with
more energy than the one of the incident particle; by
conservation of energy then rotating energy through
angular momentum has been extracted. However, the
ergosphere is a characteristic region of stationary solu-
tions, then by means of the Penrose process it is, in
principle, impossible to extract energy from a static BH.
However, for electrostatic BHs it is possible to define a
region where charged test particles can have negative
energy [5–7].

Although the Penrose process applied to a single particle
might seem unfeasible to carry out, it is possible to
establish relations between the Penrose process and some
astrophysical observations. For instance, the collisional
Penrose process might eventually eliminate dark energy
particles in the vicinity of a supermassive BH once the
multiple particles that scatter inside the ergosphere achieve
an arbitrarily high center of mass energy [8]. On the other
hand, the influence of an external magnetic field surround-
ing a rotating BH can form accretion disks of charged
ionized matter [9] and this may be related to high-frequency
oscillations noticed in microquasars, galactic nuclei, or
even the magnetic Penrose process itself [10] where ultra
high-energy particles around rotating magnetized BHs are
created [11,12]. Moreover, the radiative Penrose process is
connected to synchrotron radiation of charged particles
moving within the ergosphere of a magnetized BH, where
such a process considers a special type of radiated photons
having negative energy relative to a distant observer
[13,14]. In addition, recent numerical studies on plasmas
and jets suggest the main role of negative energy particles
and the Penrose process in the total flux coming from the
BH jets [15]. Finally, the electromagnetic Penrose process
[16–21] allows events of high energy emission in contrast
with the efficiency of 20.7% of the well-known Penrose
process due only to the rotation of a Kerr BH.
The present paper aims to investigate energy extraction

via the Penrose process in a BH binary system. In [22] the
energy extraction is analyzed for the Majumdar-Papapetrou
(MP) BH binary metric [23–25], which is an exact solution
of the Einstein-Maxwell equations describing two static
charged BHs whose charges equal their masses, jQij ¼ Mi,
i ¼ 1, 2. Therefore, in the MP binary metric, the BHs
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remain in equilibrium since their mutual gravitational
attraction compensates their mutual electric repulsion no
matter how far apart the sources are. Our purpose is to use
the method developed in [5,6] to determine negative energy
states for charged test particles and prove that by means of
the Penrose process is possible the energy extraction in a
binary system composed of two electrostatic oppositely
charged BHs described by Bonnor’s metric (BM) [26,27],
where now the gravitational attraction does not counter-
balance the electrical (attractive) force, and therefore, a
conical singularity arises [28,29] in between the sources. In
particular we study the generalized ergosphere, its depend-
ence on charged test particle, and how the energy extraction
efficiency is affected by the presence of a BH companion
with opposite charge.
Our paper is organized as follows. In Sec. II A, we

introduce the spacetime described by the BM and derive the
motion equations for charged massive test particles in a
static and axisymmetric spacetime. In Sec. II B the gener-
alized ergosphere and the existence of negative orbits is
analyzed. In Sec. III the Penrose process is described and
the conservation equations are presented (mass, charge,
energy, linear momentum, and angular momentum). In
Sec. IV the constrictions over the parameters and the
maximum efficiency of the process are presented and in
the last section conclusions are given.

II. BONNOR’S BINARY BH

The stationary axisymmetric line element in Weyl’s
cylindrical coordinates ðt; ρ; z;ϕÞ is the Papapetrou metric
[24] given by

ds2 ¼ f−1½e2γðdρ2 þ dz2Þ þ ρ2dϕ2� − fðdt − ωdϕÞ2; ð1Þ

where the condition ω ¼ 0 defines the double Reissner-
Nordström [30] solution of Einstein-Maxwell equations
that describes a two-body system composed of two
electrostatic BHs; to keep the two BHs apart, a line source
should be introduced: the strut [28,29]. As a consequence
there arise an angle deficit in ϕ that is a conical singularity.
The interacting force associated to the strut between the
BHs is given by [30]

F ¼ M1M2 − ðQ1 − δÞðQ2 þ δÞ
R2 − ðM1 þM2Þ2 þ ðQ1 þQ2Þ2

;

δ ¼ M2Q1 −M1Q2

RþM1 þM2

; ð2Þ

where Mi and Qi, for i ¼ 1, 2, are the masses and electric
charges, respectively, while R defines an arbitrary separa-
tion distance among the BH centers. Regarding the last
point, the half-length BH horizons σi assume the next
simple formulas [31,32]

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i −Q2
i − 2ð−1ÞiQi

M2Q1 −M1Q2

RþM1 þM2

s
;

i ¼ 1; 2; ð3Þ

and thus the double Reissner-Nordström (RN) spacetime
contains a total of five independent parameters within the set
fMi;Qi; Rg. The reader should note that if one exchanges the
physical properties of the sources, i.e., M1 ↔ M2 and
Q1 ↔ Q2, where δ → −δ, then the interaction force remains
invariant. Also, it is possible to observe that σ1 ↔ σ2 under
this physical interchange.
The extremal condition σi ¼ 0 leads to two possible

scenarios. The first one is the MP case, where jQij ¼ Mi,
and there is no need of introducing the strut since the
gravitational attraction balances the electric repulsion and
the net force is null, F ¼ 0.
The second scenario corresponds to BM; in this case the

electric charges, Qi, are opposite in sign and related to the
masses and distance according to [27]

Q1 ¼ M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþM2Þ2 −M2

1

ðR −M2Þ2 −M2
1

s
;

Q2 ¼ −M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþM1Þ2 −M2

2

ðR −M1Þ2 −M2
2

s
; ð4Þ

where the electric charges and masses fulfill the condition
jQij > Mi, i ¼ 1, 2. The metric functions in the BM are
given by

f ¼
�

1

1þ g1
þ 1

1þ g2
− 1

�
2

; e2γ ¼
�ð1 − g1g2Þgþg−

4d2

�
4

;

g1 ¼
ð1þ dÞM1 − ð1 − dÞM2

ð1þ dÞr− − ð1 − dÞrþ
; g2 ¼

ð1þ dÞM2 − ð1 − dÞM1

ð1þ dÞrþ − ð1 − dÞr−
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðM1 −M2Þ2
R2 − ðM1 þM2Þ2

s

gþ ¼ 1þ d − ð1 − dÞ rþ
r−

; g− ¼ 1þ d − ð1 − dÞ r−
rþ

; r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� R=2Þ2

q
: ð5Þ
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In Weyl’s cylindrical coordinates the BHs and their
horizons are represented by points at the z axis
ðρ ¼ 0; z ¼ �R=2Þ. The independent parameters of the
metric functions in the BM (5) areM1,M2, and R, while the
electric potential Aμ is given by

Aμ ¼ ðAt; Aρ; Aϕ; AzÞ ¼
�

1

1þ g1
−

1

1þ g2
; 0; 0; 0

�
: ð6Þ

Contrary to the MP scenario, in the BM the electrical
force is attractive rather than repulsive, which means that
the gravitational attraction will never balance the electro-
magnetic force. After replacing (4) in (2) it is possible to
show that the interaction force associated to the strut
between the BHs is given by [33]

F ¼ 2M1M2

R2 − ðM1 þM2Þ2
�
1þ 2M1M2

R2 − ðM1 þM2Þ2
�
; ð7Þ

and because the masses and distance satisfy the inequality
ðM1 þM2Þ < R, only attractive scenarios will be allowed
corresponding to a positive force of the strut,F > 0. On the
other hand, since the BM is static, the spacetime does not
possess an ergosphere in the usual sense where the timelike
Killing vector becomes spacelike, and consequently the
energy associated to geodesic motion of neutral particles is
always positive, i.e., the energy extraction is not possible.
However, charged particles can interact with charged BHs
via Lorentz forces. According to the ideas proposed by
Denardo-Ruffini [6] and Dadhich [7] for a single charged
BH as well as Sanches-Richartz for a BH binary [22], we
can define a particular region where negative energy
trajectories and energy extraction are, in principle, possible.

In what follows we study the motion of charged particles in
the BH binary BM and derive the energy extraction.

A. Motion of charged particles

The motion equations for a test particle with charge-mass
ratio μ in a spacetime characterized by the metric gμν, and
interacting with the electric potential Aμ, can be obtained
from the Euler-Lagrange equations with the Lagrangian

L ¼ 1

2
gμν _xμ _xν þ μAα _xα; ð8Þ

where the dot means derivative with respect to an affine
parameter. In terms of the metric coefficients in Eq. (1), the
Lagrangian is

L ¼ 1

2
ðf−1ðe2γð_ρ2 þ _z2Þ þ ρ2 _ϕ2Þ − f_t2Þ þ μAt_t; ð9Þ

which does not depend explicitly on the coordinates t and
ϕ. Then we can identify two motion constants of the test
particle: its energy E and angular momentum L per unit
mass, as measured by observers at infinity, given by

E ¼ −
∂L
∂_t

¼ f_t − μAt;

L ¼ ∂L

∂ _ϕ
¼ f−1ρ2 _ϕ; ð10Þ

where after solving for _ϕ and _t, and substituting the result
into Eq. (9), we obtain the motion equations for ρ and z
coordinates, via the Euler-Lagrange equations, as

ρ̈ −
fe−2γ

2

∂

∂ρ

�ðEþ μAtÞ2
f

−
fL2

ρ2

�
þ
�
_z2 − _ρ2

2

�
∂

∂ρ
ðln ðfe−2γÞÞ − _ρ _z

∂

∂z
ðln ðfe−2γÞÞ ¼ 0;

̈z −
fe−2γ

2

∂

∂z

�ðEþ μAtÞ2
f

−
fL2

ρ2

�
þ
�
_ρ2 − _z2

2

�
∂

∂z
ðln ðfe−2γÞÞ − _ρ _z

∂

∂ρ
ðln ðfe−2γÞÞ ¼ 0: ð11Þ

It is worth mentioning that the motion equations for ρ
and z, in terms of the metric (1) are given in [34] for neutral
test particles. On the other hand, an explicit expression for
the energy E is obtained by plugging the constants of
motion (10) into the normalization condition of the four
velocity _xμ _xμ ¼ −1,

E ¼ −μAt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2γð_ρ2 þ _z2Þ þ L2f2

ρ2
þ f

s
; ð12Þ

where the positive root is taken for a positive energy at
infinity when μ ¼ 0 [5]. After some straightforward alge-
bra, Eq. (12) can be expressed as

_ρ2 þ _z2 ¼ E2
effðρ; zÞ − Veffðρ; zÞ; ð13Þ

where

E2
effðρ; zÞ ¼

ðEþ μAtÞ2
e2γ

;

Veffðρ; zÞ ¼
1

e2γ

�
L2f2

ρ2
þ f

�
: ð14Þ

These expressions are subject to the following con-
straints:
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Eeffðρ; zÞ ≥ 0; E2
effðρ; zÞ ≥ Veffðρ; zÞ: ð15Þ

The system of equations (11) fully describes the motion
of a charged test particle in a static and axisymmetric
spacetime; this set of equations can be numerically solved
once the appropriate initial conditions are chosen. In order
to solve this system of equations, the values for the energy
E, angular momentum L, and initial values for ρ, z, and _z
should be given; the initial value for _ρ is determined from
Eq. (12). With these initial values Eq. (11) can be solved for
ρðλÞ and zðλÞ with λ being the affine parameter; the full
description of the motion of a test particle is obtained when
the set of Eq. (10) is solved using ρðλÞ and zðλÞ.

B. Generalized ergosphere

From the expression (12), we know that the energy is
determined by the angular momentum L, charge-mass ratio
μ, electric potential At and the coordinates and velocities: ρ,
z, _ρ, and _z at a specific time. In order to know if there are
test particles with negative energy we consider the mini-
mum possible energy with a fixed charge μ and position
ðρ; zÞ; this is the energy associated with test particles at rest.
Replacing _ρ ¼ 0, _z ¼ 0, and L ¼ 0 in (12), we get

Emin ¼ −μAt þ
ffiffiffi
f

p
; ð16Þ

since
ffiffiffi
f

p
≥ 0, then the existence of test particles with

negative energies is defined by the term −μAt. This is so
that Emin < 0, μAt > 0. Hence we need to determine the
sign of At given by

At ¼
1

1þ g1
−

1

1þ g2
: ð17Þ

Using the explicit form of g1 and g2 in Eq. (5) one can
easily verify that the sign of At is different if ðρ; zÞ are
inside or outside the circle delimited by

ρ̄2 þ
�
z̄þ 1

2

�
1þM2

R

1 −M2
R

��
2

¼
�

MR

1 −M2
R

�
2

; ð18Þ

where ρ̄ ¼ ρ=R, z̄ ¼ z=R, and MR ¼ M2=M1. Note that
this region encircles the smaller mass. We distinguish two
scenarios:
(1) For M1 > M2 the circle represented by (18) sur-

rounds the BH with mass M2 and electric charge
Q2 < 0. Whether ðρ; zÞ are located inside (outside)
this circle, then, it follows that At > 0ðAt < 0Þ.

(2) For M1 < M2, the circle depicted by (18) surrounds
the BH with massM1 and electric charge Q1 > 0. If
ðρ; zÞ is localized inside (outside) the circular region,
then At > 0ðAt < 0Þ.

It should be stressed that the region (18) never includes
both sources. For the case M1 > M2, the circle remains on
the semiplane z < 0 while forM2 > M1 it is located on the
semiplane z > 0. Hence, for a given value μ > 0, the
condition μAt > 0 cannot be simultaneously fulfilled; in
this case the ergosphere encircles the lower BH with
electric charge Q2 < 0. While if μ < 0, then the condition
μAt > 0 is fulfilled in the region encircling the upper BH
with electric charge Q1 > 0.
When the values ofM1 andM2 are exchanged, the graphic

in Fig. 1 is rotated about the z ¼ 0 plane; then,without loss of
generality, we shall consider only the case M1 > M2.
In order for Emin < 0 the sign of μ should be the same

than the sign of At. In contrast with the MP metric,
analyzed in [22], where the two BH are positively charged
and then energy can be extracted only by negatively
charged test particles, in the BM energy can be extracted
by negative or positive charged test particles.
The condition Emin < 0, Eq. (16) can be written as

ρ̄2 þ z̄2 þ 2μðM̄1r̄þ − M̄2r̄−Þd̄
d̄2 − 1

þ d̄2 þ 1

d̄2 − 1
r̄þr̄− <

1

4
; ð19Þ

(a) (b)

FIG. 1. The sign of the electric potential, At depends on the chosen ðρ; zÞ. (a) If M1 > M2, 0 < MR < 1 then At is positive inside the
circle that surrounds the bottom source, and negative outside. (b) On the other hand, ifM1 < M2,MR > 1 then At is negative inside the
circle that surrounds the upper source, and positive outside.
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where r̄� ¼ r�=R, M̄1;2 ¼ M1;2=R, and d̄ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ðM̄1 − M̄2Þ2Þ=ð1 − ðM̄1 þ M̄2Þ2Þ

p
are dimension-

less quantities restricted by ðM̄1 þ M̄2Þ < 1. Recall that
ðρ̄; z̄Þ are the coordinates of the initial particle, then (19)
restricts the position of the initially at rest particle. Note that
this reparametrization is equivalent to fix R ¼ 1. The
inequality (19) determines the generalized ergosphere on
the BM. The sketches of the ergosphere for μ > 0 and
μ < 0 are shown in Fig. 2; the charged test particle can have
negative energy in the region encircling the BH with
opposite charge. For particles with μ < 0 the generalized
ergosphere surrounds the upper source [Figs. 2(a)–2(e)]. If
jμj is sufficiently large the generalized ergosphere would
surround the region delimited by (18) without including it.
On the other hand, for particles μ > 0 the generalized
ergosphere surrounds the bottom source [Figs. 2(f)–2(h)];
and if jμj is sufficiently large the generalized ergosphere is
delimited by (18).
From Fig. 2 we see that the generalized ergosphere

depends on the parameters μ, M1, andM2, i.e., not only on
the spacetime geometry but also on the charge of the test
particle via μ. The minimum energy per unit mass at a given
point inside the ergosphere also depends on μ and one the
masses of the BHs. To illustrate this, the energy levels of
the ergosphere are shown in Fig. 3 for different values of

M1, M2 for charge-mass ratio μ positive and negative. One
can see that in general the shape of the ergosphere does not
change and the magnitude of the energy levels is larger as
the test particle gets closer to the BH oppositely charged.
The ergospheres then surround one of the BHs, the one with
charge opposite to the test particle and then never merge to
include both BHs, in this sense resembling the double Kerr
for counterrotating BHs [35].

C. Negative energy trajectories

The negative energy trajectories of the charged test
particles in the BM are confined inside the ergosphere
defined by (19); in the case illustrated the particle falls into
one of the BHs.
We shall describe two classes of orbits around the BH

binary described by BM. The first class of trajectories are
orbits with angular momentumL ¼ 0; this condition implies
that the trajectories are confined to a meridional plane, i.e., a
plane with ϕ constant; for simplicity we take ϕ ¼ 0. Fixing
the parameters M1, M2, μ, and R, and given a set of initial
conditions ρð0Þ, zð0Þ, and _zð0Þ we can calculate _ρðλÞ and
solve the motion equations (11). In Fig. 4 we show some
examples of trajectories of particleswith negative energy that
are confined to the generalized ergosphere. Figure 4(a)
exhibits three trajectories for μ ¼ −5 and Fig. 4(b) exhibits

FIG. 2. We show the ϕ ¼ 0 (meridional) plane section of the generalized ergosphere (shaded surface) for different values of μ and
fixed values ofM1 ¼ 0.5,M2 ¼ 0.2, and R ¼ 1. Recalling that negative energy states are achieved via the condition μAt > 0, where At
depends on M1, M2, and R. The black circumference represents Eq. (18) and the dots symbolize the BHs. The shadow regions in
(a)–(e) represent the ergosphere for μ < 0, where the condition μAt > 0 is satisfied outside the black circumference, thus, the ergosphere
surrounds only the upper positively charged source and excludes the region delimited by the black circumference. On the other hand, the
shadow regions in (f)–(h) represent the ergosphere for μ > 0 that is surrounding the bottom (negatively charged) source, where now
μAt > 0 is fulfilled inside the black circumference. For an arbitrarily large value of jμj the ergosphere tends to occupy the space inside
the black circumference. The reader must be aware that the ergosphere always surrounds the BH carrying on an opposite charge to the
test particle.
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three trajectories for μ ¼ 20. Note in these trajectories one of
them ends at one of the BHs.
The second class of orbits is a projection of geodesics in

the plane z ¼ 0; in general, a particle that initially is located
at z ¼ 0 will not remain in this plane. Since the generalized
ergosphere for positive μ is always contained in the circle
depicted by Eq. (18) [see Figs. 2(f)–2(h)], then the ergo-
sphere does not reach the plane z ¼ 0; then we only show
the movement for negative μ. Setting z ¼ 0 in motion
Eq. (11) and energy condition Eq. (13), the motion in the
z ¼ 0 plane is constrained to the region E2

effðρ; 0Þ ≥
Veffðρ; 0Þ where the equality is satisfied for circular orbits.
Figure 5 shows the energy and effective potential for BM at

the z ¼ 0 plane. The corresponding trajectory is also shown
in Fig. 5.

III. PENROSE PROCESS

Now we investigate the possibility of energy extraction
from the binary BM. Considering the Penrose process
developed in [4], extended for RN BHs [6] and lately
applied to MP binary BH [22], we addressed the Penrose
process for the BM. It consists in sending a charged particle
towards the binary BH; at some point, once inside the
generalized ergosphere, the particle breaks up into two
fragments, one of them escapes to infinity with more
energy than the initial one, while the other remains inside
the ergosphere until it falls into one of the BHs. We denote
the initial particle with subscript 0, the particle that falls
into the BH with subscript 1 and the particle that escapes
with subscript 2. We consider that the incident particle
follows the trajectory Tð0Þ, which starts outside the ergo-
sphere and ends inside it at the break-up point ðρ�;ϕ�; z�Þ.
From the break-up point emerge two particles with

FIG. 3. Energy levels of the BM generalized ergosphere are illustrated with R ¼ 1,M1 ¼ 0.5,M2 ¼ 0.2, and selected values of μ. The
color bar represents Emin. The dots indicate the location of the BHs. The horizontal and vertical axes are ρ and z, respectively.

FIG. 4. (a) Examples of trajectories for particle with charge-
mass ratio μ ¼ −5; the other parameters are specified for each
trajectory. Tð0Þ: E ¼ −0.1, ρð0Þ ¼ −1=2, zð0Þ ¼ 1, _ρð0Þ ¼
−0.73758, and _zð0Þ ¼ 0. Tð1Þ: E ¼ −0.00001, ρð0Þ ¼ 0,
zð0Þ ¼ 0, _ρð0Þ ¼ 1.32396, and _zð0Þ ¼ 0. Tð2Þ: E ¼ −0.0001,
ρð0Þ ¼ 1=2, zð0Þ ¼ 3=2, _ρð0Þ ¼ 0.250857, and _zð0Þ ¼ 0. (b) Ex-
amples of trajectories for particle with charge-mass ratio μ ¼ 20;
the other parameters are specified for each trajectory. Tð0Þ:
E ¼ −0.002, ρð0Þ ¼ 0, zð0Þ ¼ −1, _ρð0Þ ¼ 0.998144, and
_zð0Þ ¼ 0. Tð1Þ: E ¼ −0.002, ρð0Þ ¼ −1=4, zð0Þ ¼ −1=4,
_ρð0Þ ¼ 0.423686, and _zð0Þ¼ 0. Tð2Þ: E ¼ −0.002, ρð0Þ ¼ 1=4,
zð0Þ ¼ −1=4, _ρð0Þ ¼ 0.423686, and _zð0Þ ¼ 0. The parameters
are M1 ¼ 0.4, M2 ¼ 0.2, and R ¼ 1.

FIG. 5. Left: effective energy (black curve) and effective
potential (red dashed curve) for L ¼ 0.71, E ¼ −0.15,
M1 ¼ 0.5, M2 ¼ 0.2, and R ¼ 1. Right: example of a trajectory
of negative energy at the z ¼ 0 plane with initial conditions
ρð0Þ ¼ 2.19858, ϕð0Þ ¼ 0 and _ρð0Þ ¼ 1.22395. The blue circle
corresponds to the generalized ergosphere.
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trajectories labeled Tð1Þ for the particle with negative
energy (Eð1Þ < 0) that remains inside the ergosphere and
Tð2Þ that corresponds to the particle escaping to infinity.
The TðiÞ trajectories are timelike paths xμi ðλÞ parametrized
by the proper time λ. We denote with mðiÞ, μðiÞ, EðiÞ, LðiÞ,
and Pμ

ðiÞ to the mass, charge-mass ratio, energy per unit

mass, angular momentum per unit mass (with respect to the
z axis), and four momentum of the i particle, respectively.
The quantities that characterize each particle should fulfill
charge, energy, and momentum conservation equations.
From the charge conservation we have

μð0Þmð0Þ ¼ μð1Þmð1Þ þ μð2Þmð2Þ: ð20Þ

On the other hand, if we consider that at the break-up
point the four momentum is conserved,

Pν
ð0Þ ¼ Pν

ð1Þ þ Pν
ð2Þ: ð21Þ

From the temporal component in Eq. (21) we have the
conservation of the total energy, i.e.,

Eð0Þmð0Þ ¼ Eð1Þmð1Þ þ Eð2Þmð2Þ; ð22Þ

while the spatial components of Eq. (21) are the conserva-
tions of linear momenta in each component, i.e.,

mð0Þ _ρð0Þ ¼ mð1Þ _ρð1Þ þmð2Þ _ρð2Þ;

mð0Þ _zð0Þ ¼ mð1Þ _zð1Þ þmð2Þ _zð2Þ; ð23Þ

where the derivatives _ρðiÞ and _zðiÞ should be evaluated at the
break-up point. Besides, the conservation of angular
momentum is

mð0ÞLð0Þ ¼ mð1ÞLð1Þ þmð2ÞLð2Þ: ð24Þ

Finally there is an additional restriction on the masses
mðiÞ; squaring the four momentum (21) and using the
condition Pμ

ð1ÞPμð2Þ (future-pointing timelike vectors)

[16,22], we have

m2
ð1Þ þm2

ð2Þ < m2
ð0Þ: ð25Þ

IV. ENERGY EXTRACTION EFFICIENCY

The efficiency η of the Penrose process can be defined as
the ratio between the output energy (energy of the outgoing
particle) and the input energy (energy of the incident
particle). From (22), we have

η ¼ Eð2Þmð2Þ − Eð0Þmð0Þ
Eð0Þmð0Þ

¼ −
Eð1Þmð1Þ
Eð0Þmð0Þ

: ð26Þ

In order to maximize the efficiency of the process we
need to make Eð1Þ as large as possible and Eð0Þ as small as
possible. On the other hand the mass of the negative energy
fragment mð1Þ should be as massive as possible in com-
parison with mð0Þ. In order to deduce the values of the
parameters that maximizes the efficiency we choose par-
ticular values for the BM parametersM1,M2, R, the break-
up point coordinates ðρ�; z�Þ, and the charge-mass ratio
μð1Þ. With these considerations we analyze how much
energy can be extracted from the BM binary BH.

A. Maximum efficiency

The minimum energy of the incident particle, that comes
from infinity, according to Eq. (12) is Eð0Þ ¼ 1 and it
corresponds to the particle having zero kinetic energy at
infinity. On the other hand, with the purpose of maximizing
the efficiency, the absolute value of the energy Eð1Þ should
be as large as possible, this occurs when the particle mð1Þ is
initially at rest. Recalling that Eð1Þ < 0, at the break-up
point we set

_ρð1Þ ¼ _zð1Þ ¼ _ϕð1Þ ¼ 0; ð27Þ
hence, the angular momentum per unit mass and energy per
unit mass are, respectively, Lð1Þ ¼ 0 and

Eð1Þðρ�; z�Þ ¼ Emin
ð1Þ ðρ�; z�Þ ¼ −μð1ÞAt� þ

ffiffiffiffiffi
f�

p
; ð28Þ

where At� and f� are evaluated at the break-up point
ðρ�; z�Þ. Now, we determine the restrictions over the masses
mð0Þ, mð1Þ and mð2Þ. From the linear momentum conserva-
tion Eq. (23), we have

m2
ð2Þ ¼ m2

ð0Þ
_ρ2ð0Þ þ _z2ð0Þ
_ρ2ð2Þ þ _z2ð2Þ

þm2
ð1Þ

_ρ2ð1Þ þ _z2ð1Þ
_ρ2ð2Þ þ _z2ð2Þ

− 2mð0Þmð1Þ
_ρð0Þ _ρð1Þ þ _zð0Þ _zð1Þ

_ρ2ð2Þ þ _z2ð2Þ
: ð29Þ

If we consider the condition given by Eq. (27), and using
ð_ρ2ðiÞ þ _z2ðiÞÞ from Eq. (13), substituting in Eq. (29), yields

mð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ð0Þ − 2mð0Þmð1Þαð0Þ þm2
ð1Þ

q
; ð30Þ

where

αð0Þ ¼
1þ At�μð0Þffiffiffiffiffi

f�
p ; ð31Þ

where f� and At� are evaluated at the break-up point. αð0Þ
can be written as αð0Þ ¼ Eeffð0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Veffð0Þ

p
using Eq. (14) for
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an initially at rest particle at infinity (Eð0Þ ¼ 1, L ¼ 0),
hence αð0Þ is always positive. The MP case is recovered
with f� → 1=U2� and At� → 1=U� − 1, where U� is the
interaction potential for MP binary BH [22].
From the inequality (25), squaring (30), and using the

fact that the masses are positive, we obtain

0 < mð1Þ < mð0Þ
�
αð0Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ð0Þ − 1

q �
: ð32Þ

Where a necessary condition for the masses to have real
values is α2ð0Þ ≥ 1, namely,

αð0Þ ¼
1þ At�μð0Þffiffiffiffiffi

f�
p ≥ 1; ð33Þ

then the values of μð0Þ depend on the location of the break-
up point, since At� is positive (negative), depending if it is
evaluated inside (outside) of the region defined by Eq. (18).
For the case where the break-up point occurs inside
Eq. (18), μ0 is constrained by

μð0Þ ≥
ffiffiffiffiffi
f�

p
− 1

At�
: ð34Þ

Have in mind that the extraction process occurs in this
region if μð0Þ is positive and the BH is negatively charged.
On the other hand, if the break-up point occurs outside (18),
the values that μð0Þ can take are constrained by

μð0Þ ≤
ffiffiffiffiffi
f�

p
− 1

At�
; ð35Þ

and the extraction process takes place if μð0Þ is negative.
Note that the change of sign in the inequality (35) is
because At� < 0. Then, to maximize the range of mð1Þ the
inequality (33) must be saturated; this occurs when the
inequalities (34) or (35) are saturated, i.e., when μð0Þ →
ð ffiffiffiffiffi

f�
p

− 1Þ=At� to the left or to the right according to the
sign of μð0Þ. In this case, one can choose mð1Þ → mð0Þ thus
maximizing the ratio mð1Þ=mð0Þ that appears in (26). Then,
the efficiency η of the Penrose process in the BM is
bounded by

η < ηb ¼ −Emin
ð1Þ ðρ�; z�Þ: ð36Þ

The efficiency upper bound denoted by ηb is a function
of μð1Þ, the break-up point coordinates ðρ�; z�Þ and the BM
parameters M1, M2, R according to Eq. (28). The effect of
varying these parameters is analyzed in the next subsection.

B. Dependence of the maximum
efficiency on the parameters

From Eqs. (28) and (36) the explicit expression of the
efficiency upper bound ηb is given by

ηb ¼ μð1ÞAt� −
ffiffiffiffiffi
f�

p
: ð37Þ

The efficiency bound ηb has a linear dependence respect
to the charge-mass ratio μð1Þ. The dependence with respect
to the break-up point coordinates (ρ�, z�) can be understood
with the help of the energy levels shown in Fig. 3; the
efficiency upper bound increases as the break-up point
approaches one of the BHs, i.e., the Penrose process is
more efficient if the break-up point is located near one of
the horizons. If this is the case, using Eq. (4) the upper
bound efficiency for μð1Þ > 0 is

ηb ¼ μð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR −M1Þ2 −M2

2

ðRþM1Þ2 −M2
2

s
¼ −μð1Þ

M2

Q2

; ð38Þ

and for μð1Þ < 0 the upper bound is

ηb ¼ −μð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR −M2Þ2 −M2

1

ðRþM2Þ2 −M2
1

s
¼ −μð1Þ

M1

Q1

: ð39Þ

A relevant characteristic of the efficiency bound,
Eqs. (38) and (39), is that it depends on the charge-mass
ratio μð1Þ, and it can be chosen arbitrarily large, even such
that the resulting efficiency is greater than one, ηb > 1,
similarly to the case of one single charged BH [16,18,21]
interacting with charged particles.
Moreover, for a given M1, the ratio jM2=Q2j in Eq. (38)

decreases monotonically in the interval 0 < M2 < R −M1;
however, as M2 approaches ðR −M1Þ the ratio jM2=Q2j→
0 and consequently ηb → 0; i.e., as the value of the total
mass approaches the BH separation distance R,
M1 þM2 → R, the maximum efficiency decreases up to
zero. The same behavior occurs for a fixedM2 and varying
M1, see Eq. (39).
From (37) we can identify two scenarios according to the

sign of the charge-mass ratio μ, while the sign of At is
defined by the break-up point location.
How ηb depends on the break-up location, (ρ�, z�), is

illustrated in Fig. 6(a) for several values of ρ� and fixedM1,
M2, R, and μð1Þ < 0. On the other hand, the dependence
of the break-up coordinates of μð1Þ > 0 is illustrated in
Fig. 6(b). The efficiency is negative when the particle
that escapes to infinity carries less energy than the
incident particle. Note that the extraction process occurs
only when the test particle and the BH are of opposite
charges.
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Since the upper bound efficiency given by Eqs. (38) and
(39) can be written in terms of the BH charges that are such
that jQij > Mi, then the upper bound efficiency is less than
ð−μð1ÞÞ for arbitraryM1, M2, and R; this is in contrast with
the MP case, analyzed in [22], where the upper bound is
ð−μð1ÞÞ. In the case that one of the BH masses is zero, the
extraction process occurs if μð1Þ and the BH are oppositely
charged and in that case the maximum efficiency is
ηb ¼ �μð1Þ, for a negative or positively charged BH,
respectively.
To determine how the efficiency depends on the BH

masses, we analyze (37) in terms of the mass ratio MR ¼
M2=M1 with M2 < M1, total mass MT ¼ M1 þM2 and
fixed μð1Þ and R ¼ 1, such that 0 < MR < 1 and

0 < MT < 1. The dependence on the total mass MT for
a fixed mass ratioMR, μð1Þ with different break-up points is
shown in Fig. 7. In Fig. 7(a) initially the efficiency is
negative because the break-up points are located outside the
ergosphere and the total mass is small (therefore the
ergosphere is small as well); for a fixedMR the generalized
ergosphere gets bigger as the total mass MT increases until
a critical value MTcrit, where the generalized ergosphere
has its largest size and the upper bound efficiency is
maximum.
When MTcrit < MT < R, the efficiency ηb behaves

similarly than in Eqs. (38) and (39); i.e., it decreases
monotonically, even reaching negative values; the reason is
that as MT → R the ergosphere shrinks.

FIG. 6. It is illustrated the upper bound efficiency ηb as a function of z� for fixed ρ� and M1 ¼ 0.5, M2 ¼ 0.2, R ¼ 1; in
(a) μð1Þ ¼ −1.7, while in (b) μð1Þ ¼ 3. In the region where the Penrose process takes place, note that as the break-up point gets closer to
the point where the BH is located, the maximum efficiency ηb increases up to a maximum [see Eqs. (38) and (39)]; conversely, if the
break-up point moves away the BH then ηb → 0. Negative ηb occurs if the break-up points are outside the generalized ergosphere.

(a) (b)

FIG. 7. It is shown in (a) the upper bound efficiency ηb as a function of MT ¼ M1 þM2 for MR ¼ M2=M1 ¼ 0.25, R ¼ 1, and
μ ¼ −1.7 for selected break-up points, denoted by X, Y, and Z. The values of MTcrit are MTcrit ¼ 0.658999, MTcrit ¼ 0.645854 and
MTcrit ¼ 0.823573 for the break-up points X, Y, and Z, respectively. (b) Generalized ergospheres for selected values of MT . The black
square markers are the locations of the break-up points ðρ�; z�Þ ¼ ð0; 0.8Þ, ðρ�; z�Þ ¼ ð0; 0.3Þ and ðρ�; z�Þ ¼ ð0; 0Þ that are labeled as X,
Y, and Z, respectively. Each curve in (a) corresponds to one of the break-up points in (b). The dots represent the BHs.
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The critical value of the total mass MTcrit is given by

d
dMT

ðηbÞ ¼ 0;
d2

dM2
T
ðηbÞ < 0; ð40Þ

where ηb is the upper bound efficiency in Eq. (37), where
At� and f� have been rewritten in terms of the total mass
MT and mass ratio MR using M1 ¼ MT=ðMR þ 1Þ and
M2 ¼ MRMT=ðMR þ 1Þ.
For μð1Þ > 0 the ergosphere and upper bound efficiency

exhibit the same qualitative behavior as shown in Fig. 8; the
critical mass can be calculated with Eq. (40).

The mass ratio MR for MT ¼ 1=2 and μð1Þ < 0, for
different break-up points is shown in Fig. 9. In this case
the ergosphere and upper bound ηb decrease as MR
increases, i.e., the ergosphere and upper bound efficiency
decrease when the masses M1 and M2 tend to the same
value. The maximum of the upper bound efficiency ηb

occurs whenMR → 0, i.e., whenM2 → 0 but less or equal
to −μð1Þ. In Fig. 10 is shown ηb as a function of MR for
μð1Þ > 0. In this case the upper bound efficiency ηb and
the ergosphere increase as MR increases and the maxi-
mum ηb for an arbitrary break-up point occurs
when MR → 1.

(a) (b)

FIG. 8. It is shown the (a) upper bound efficiency ηb as a function of MT for MR ¼ 0.75, R ¼ 1, and μ ¼ 3 for different break-up
points; MTcrit ¼ 0.809496, MTcrit ¼ 0.326936, and MTcrit ¼ 0.611923 correspond to the break-up points X, Y, and Z, respectively.
(b) Generalized ergospheres for different MT . The square markers are the locations of the break-up points ðρ�; z�Þ ¼ ð0;−0.2Þ,
ðρ�; z�Þ ¼ ð0;−0.55Þ, and ðρ�; z�Þ ¼ ð0;−0.75Þ that are labeled X, Y, and Z, respectively. The dots represent the BHs. Each curve in
(a) corresponds to one of the break-up points in (b).

(a) (b)

FIG. 9. It is plotted the (a) upper bound efficiency ηb as a function of MR for MT ¼ 0.5, R ¼ 1 and μ ¼ −1.7 for selected break-up
points. (b) Generalized ergospheres for different MR. The square markers are the locations of the break-up points ðρ�; z�Þ ¼ ð0; 0.88Þ,
ðρ�; z�Þ ¼ ð0; 0.3Þ, and ðρ�; z�Þ ¼ ð0; 0Þ labeled as X, Y, and Z, respectively. The dots represent the BHs. Each curve in (a) corresponds
to one of the break-up points in (b).
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C. Examples of the Penrose process

Once we have described the efficiency ηb, in this section
some concrete examples of the Penrose process in the BM
are given. In these examples the efficiency approaches the
theoretical maximum described by Eq. (38) for test
particles with μð1Þ > 0 and Eq. (39) for test particles with
μð1Þ < 0. First we fix M1, M2, and R, and the charge mass
ratio μð1Þ for a particular break-up point ðρ�; z�;ϕ�Þ located
inside the generalized ergosphere. According to the analy-
sis in Sec. IVA, we set mð0Þ ¼ 1, Lð0Þ ¼ Lð1Þ ¼ Lð2Þ ¼ 0,
which means that the trajectories are confined to the
meridional plane ϕ ¼ ϕ�. The energy Eð1Þ is determined
by Eq. (28), and we set Eð0Þ ¼ 1. The two scenarios for the
process correspond to negative and positive charged test
particle μð1Þ; the charge mass ratio μð0Þ is bounded by two
different limits depending where the break-up point (ρ�, z�)
occurs according to Eqs. (34) and (35).
If the break-up point is located outside the region bounded

by (18), then according to Eqs. (32) and (35), we choose

μð0Þ ¼
ffiffiffiffiffi
f�

p
− 1

At�
− ϵ1; ð41Þ

mð1Þ ¼ 1 − ν1; ð42Þ

where ϵ1 and ν1 are small and positive. Substituting Eqs. (41)
and (42) into Eq. (32), we find that ϵ1 and ν1 satisfy

ν1 >
At�ϵ1ffiffiffiffiffi
f�

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2
ffiffiffiffiffi
f�

p
At�ϵ1

s
þ 1

�
: ð43Þ

On the other hand, if the break-up point occurs inside of
the circle (18), then according to (32) and (34), we choose

μð0Þ ¼
ffiffiffiffiffi
f�

p
− 1

At�
þ ϵ2; ð44Þ

mð1Þ ¼ 1 − ν2; ð45Þ

Substituting these expressions into (32), we find that ϵ2
and ν2 satisfy

ν2 >
At�ϵ2ffiffiffiffiffi
f�

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
ffiffiffiffiffi
f�

p
At�ϵ2

s
− 1

!
; ð46Þ

the charge mass ratio μð2Þ and energy per unit mass Eð2Þ can
be determined from Eqs. (20) and (22).
For a given angle between the velocities, θð0Þ ¼

argð_ρð0Þ þ i_zð0ÞÞ, Eqs. (47) and (48) can be used to
determine _ρð0Þ and _zð0Þ at the break-up point. According
to (27), we have _ρð1Þ ¼ _zð1Þ ¼ 0 for the negative energy
fragment. For the incident particle, if the break-up point is
outside the circular region (18) and Eð0Þ ¼ 1 then

_ρ2ð0Þ þ _z2ð0Þ ¼
ð1þ At�ð1 − ϵ1ÞÞ2

e2γ�
−

f�
e2γ�

; ð47Þ

while if the break-up point is inside (18) we have

_ρ2ð0Þ þ _z2ð0Þ ¼
ð1þ At�ð1þ ϵ2ÞÞ2

e2γ�
−

f�
e2γ�

: ð48Þ

While from linear momentum conservation (23) _ρð2Þ and
_zð2Þ are calculated.
With this setting of parameters the trajectories Tð0Þ, Tð1Þ,

and Tð2Þ can be completely determined and the efficiency of
the Penrose process is given by η1;2 ¼ ð1 − ν1;2Þηb. In order

(a) (b)

FIG. 10. It is illustrated in (a) the upper bound efficiency ηb as a function ofMR forMT ¼ 0.5, R ¼ 1, and μ ¼ 3 for selected break-up
points. (b) Generalized ergospheres for differentMR. The square markers are the locations of the break-up points ðρ�; z�Þ ¼ ð0;−0.24Þ,
ðρ�; z�Þ ¼ ð0;−0.6Þ, and ðρ�; z�Þ ¼ ð0;−0.7Þ with labels X, Y, and Z, respectively. The dots represent the BHs. Each curve in
(a) corresponds to one of the break-up points in (b).
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to maximize the efficiency we choose ν1;2 as small as
possible. However, ϵ1;2 and ν1;2 should not be zero because
the inequalities (43) or (46) cannot be saturated; but it is
possible, in principle, to set infinitesimally small values for
ϵ1;2 and ν1;2. According to these considerations we explore
two specific examples where the efficiency corresponds to
90% for a break-up point located outside and inside of the
region bounded by (18) resulting that the extraction process
occurs with the BH with positive or negative charge,
respectively.
Figure 11(a) shows the Penrose extraction from a BH

with negative charge. The BM parameters M1, M2, and R
are fixed. It corresponds to the extraction process where the
break-up point occurs outside (18) and the charge-mass
ratio of the negative energy fragment (red line) is negative
μð1Þ [e.g., Fig. 2(c)], the setting of these parameters enables
us to determine the trajectories Tð1Þ, having in mind that the
energy Eð1Þ associated to the trajectory Tð1Þ, Eq. (16), is the
minimum possible and the trajectories Tð0Þ and Tð2Þ are
fully described once we fix ν1;2, ϵ1;2, and θð0Þ. On the other
hand, in Fig. 11(b) it is shown the Penrose process where
the break-up point occurs inside the region bounded by (18)
for a negatively charged particle. We can highlight two
different features of the Penrose process in the BM that are
in contrast with the MP binary: first, the process of
extraction can occur for positive or negative charged test
particles inside the generalized ergosphere that surrounds
the BH with charge of opposite sign to the one of the test
particle. So, any observer can recover information of the

energy extraction only when the particle that gains energy
escapes back to infinity. Second, in some scenarios the
particle escaping with more energy can be trapped by the
other BH, as shown in Fig. 11(b); in this case the observer
at infinity will not receive any information of the energy
extraction process. As far as we know the second phe-
nomenon has not been reported in the MP binary BH. The
parameters that generate these examples satisfy the con-
servations Eqs. (20)–(25) and are given in Tables I and II.

FIG. 11. Examples of Penrose process with the maximum efficiency in a BM. The efficiencies of the processes are 90% of the
theoretical maximum. In both panels the incoming trajectory Tð0Þ (black curve) splits (at the black point) into the negative energy
trajectory Tð1Þ (red curve) and the trajectory of the particle that escapes Tð2Þ. The Bonnor parameters in both cases are fixed asM1 ¼ 0.5,
M2 ¼ 0.2, R ¼ 1, the parameter ν and ϵ are fixed as ν1;2 ¼ 10−2, ϵ1;2 ¼ 10−5, the charge-mass ratio, the break-up point and the angle
θð0Þ are fixed, respectively, as (a) μð1Þ ¼ −5, ðρ�; z�Þ ¼ ð1=4; 1=4Þ and θð0Þ ¼ 0.0872665; (b) μð1Þ ¼ 20, ðρ�; z�Þ ¼ ð0.3;−0.8Þ, and
θð0Þ ¼ 0.296706. The initial values of the parameters that generate these trajectories are shown in Tables I and II. The respective upper
bound efficiency is ηb ¼ 1.20854 (left panel) and ηb ¼ 0.208203 (right panel).

TABLE I. Initial values that generate the trajectories Tð0Þ, Tð1Þ,
and Tð2Þ in the Penrose process shown in Fig. 11(a). The
derivatives _ρðiÞ and _zðiÞ are evaluated at the break-up point.

i mðiÞ μðiÞ EðiÞ LðiÞ _ρðiÞ _zðiÞ
0 1 2.70371 1 0 1.45015 0.126872
1 0.9 −5 −1.20854 0 0 0
2 0.0998852 72.1199 20.9008 0 14.5182 1.27018

TABLE II. Initial values that generate the trajectories Tð0Þ, Tð1Þ,
and Tð2Þ in the Penrose process shown in Fig. 11(b). The
derivatives _ρðiÞ and _zðiÞ are evaluated at the break-up point.

i mðiÞ μðiÞ EðiÞ LðiÞ _ρðiÞ _zðiÞ
0 1 2.70371 1 0 1.45015 0.126872
1 0.9 −5 −1.20854 0 0 0
2 0.0998852 72.1199 20.9008 0 14.5182 1.27018
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D. Stability of the Bonnor metric

Reference [36] studied the effect of perturbing a black
hole binary (BHB) with a massless scalar field and it is
shown that initially the dominant mode is monopolar and
once this initial mode dies away there arises an exponen-
tially damped sinusoid mode. It is as well find out that BHB
possesses global quasinormal modes whose ringdown
parameters do not depend on the initial conditions but
only on the masses and the separation, and that relaxation
timescale increases with the separation. Moreover simu-
lations indicate that the perturbations die away in time.
Besides, [37] agrees in the exponential decay of a massless
scalar perturbation, however indicating that for confined
BHB there might be mechanisms that could trigger
instabilities. More analysis is required for other kind of
perturbations to elucidate general conditions under which
BHB are stable systems.
Regarding stability of the binary BM against electromag-

netic perturbations and specifically how energy extraction
affects stability the following considerations point to the
stability of the BM: since the generalized ergosphere never
encircles both BH, then the perturbation affects only one of
the BH, the one with charge opposite to the test particle;
therefore we can apply stability criteria valid for one single
charged BH, i.e., a Reissner-Nordström BH, that we know is
stable; and then we guess that the BM remains stable
regarding energy extraction. The situation would be very
different if the system be under some kind of confinement
that could stimulate superradiance effects; in any case a
deeper analysis is required to elucidate the BM stability.

V. CONCLUSIONS

We have analyzed in detail the possibility of energy
extraction from the Bonnor BH binary (BM), that describes
two oppositely charged BH kept apart by a strut [26,27] that
prevents the two BH collide; this is in contrast to the MP
binary where the gravitational and electromagnetic forces
are balanced.
We determined a generalized ergosphere that depends on

the parameters of the BM and the charge-mass ratio μ of the
test particle and we showed that energy extraction is
possible; the sign of the electric potential At is defined
by the point ðρ; zÞ where it is evaluated. A first difference
with the MP case is that the generalized ergosphere exists
for positive and negatively charged test particles μ. Another
remarkable difference with respect to the MP case is that

the ergosphere cannot include both BHs, but only one; the
ergosphere encloses the BH with charge opposite to the one
of the test particle. We found that for some initial conditions
the particle that escapes with more energy is trapped by the
other BH and in this case the observer at infinity would not
receive information of the energy extraction.
We studied the conditions that optimize the efficiency of

the process. The efficiency is enhanced if the break-up point
is located near the horizon of the BH charged oppositely to
the test particle. We determined the total mass MT ¼ M1 þ
M2 and mass ratio MR ¼ M2=M1 that renders the highest
efficiency ηb. The behavior of ηb as a function ofMR depends
on the sign of μ. If μ < 0 then ηb decreases when MR → 1;
while if μ > 0 then ηb increases when MR approaches 1.
Moreover the maximum efficiency ηb does not increase
monotonically asMT increases, but there is a certainMTcrit

such that forMT > MTcrit, ηb decreases, and even can reach
negative values. The upper bound efficiency in the BM is
always smaller than the MP one [22].
Due to the vast recent observations reported by the

LIGO-Virgo Collaboration, so far it has been able to
identify multiple candidates for compact binary systems.
We believe that the study of the Penrose process in BM
contributes to the understanding of actual BHBs as it
extends the analysis carried out for a MP BH in [22].
Further analysis of BHB would give relevant information
regarding other astrophysical aspects [38–40], for instance
there are proposals that link compact binary systems with
superradiance [37,41]. Moreover, the magnetic variant of
the Penrose process that takes into account the combined
influence of external magnetic field and the rotation of a
BH seems to be connected to the origin of accretion disks
where the energy extraction into jets can befall, or even the
generation of ultrahigh energy cosmic rays [9,42]. In this
direction we aim to develop further research of the
magnetic Penrose process in BHB.
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