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We construct and explore the solution space of two nonspinning, miniboson stars in equilibrium, in fully
nonlinear general relativity (GR), minimally coupled to a free, massive, complex scalar field. The
equilibrium is due to the balance between the (long range) gravitational attraction and the (short-range)
scalar mediated repulsion, the latter enabled by a π relative phase. Gravity is mandatory; it is shown no
similar solutions exist in flat spacetime, replacing gravity by nonlinear scalar interactions. We study the
variation of the proper distance between the stars with their mass (or oscillation frequency), showing it can
be qualitatively captured by a simple analytic model that features the two competing interactions.
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I. INTRODUCTION

The two-body equilibrium is an old and far reaching
problem in general relativity (GR). As a nonlinear theory,
there is no superposition principle. Thus, the putative
existence of any two-body equilibrium solution must be
anchored on a balance between different interactions.
It was therefore surprising when Bach and Weyl,

following Weyl’s formalism for static, axisymmetric sol-
utions in GR [1], found a two-body equilibrium solution in
fully nonlinear vacuum GR. This fact intrigued Einstein,
who in 1936 addressed the problem with Rosen [2],
realizing there is indeed an extra (nonvacuum) ingredient
that allows the equilibrium: a conical singularity. The latter
can be either interpreted as a strut in between the two
bodies, or two strings connecting each body to infinity.
Whichever the chosen interpretation, the solution is geo-
desically incomplete, by virtue of the (naked) conical
singularity.
A nonsingular (on and outside the event horizon) two-

body (or in fact N-body) solution of GR was eventually
found, independently, in 1947 [3] by Majumdar and in
1948 by Papapetrou [4] in electro-vacuum. They found
that, under an appropriate ansatz, the Einstein-Maxwell
equations fully linearize into a Laplace equation in flat
Euclidean 3-space, which admits a multicenter harmonic
solution. Each center (in the full geometry) was later
interpreted by Hartle and Hawking [5] as the horizon of
an extremal Reissner-Nordström black hole (BH).
The existence of the two-center (or multicenter)

Majumdar-Papapetrou solution can be interpreted as due
to a balance between the gravitational attraction and the
electric repulsion. In classical mechanics, two point masses

of magnitude M, each electrically charged with magnitude
Q, at a distance r, interact via a potential energy
U ¼ Ug þUe, where

Ug ¼ −G
M2

r
; Ue ¼

1

4πϵ0

Q2

r
: ð1:1Þ

In geometrized units, forwhichNewton’s constantG and the
vacuum electric permittivity ϵ0 obey, G ¼ 1 ¼ 4πϵ0,
extremal objects obeying M ¼ Q can be in equilibrium at
any r, i.e., F ¼ −∇U ¼ 0. This is precisely what occurs for
the Majumdar-Papapetrou solution, wherein the extremal
BHs can be placed at any location. Thus, this heuristic
classical mechanics argument provides an intuition
for the Majumdar-Papapetrou solution. This argument also
suggests the equilibrium is not stable against small
perturbations—there is a flat potential—which in fact is
also the case in the full GR problem [6,7]. Small perturba-
tions lead to an interesting scattering problem which can be
dealt, for small velocities, in the moduli space approxima-
tion—see also Ref. [8].
The simplest extension of vacuum GR, apart from

electro-vacuum, is arguably scalar-vacuum. Allowing the
scalar field to be massive and complex, but still free and
minimally coupled to gravity, yields a novel feature:
horizonless self-gravitating solitons exist, describing local-
ized energy lumps, dubbed boson stars (BSs). These
solutions were first described in 1968 by Kaup [9], in
1969 by Ruffini and Bonazzala [10] and (in a less known
work) in 1968 by Feinblum and McKinley [11]. Single BSs
rely on a dispersive scalar field—due to an oscillating
amplitude with a harmonic phase ω, but with a time
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independent energy-momentum tensor—being confined by
gravity. The harmonic phase ω can neither be too large,
with an upper bound set by the field’s mass μ, nor too small,
with a minimum frequency ωmin. For ωmin < ω < μ, self-
gravitating, everywhere regular, asymptotically flat spheri-
cal solitons exist, for one or more values of the ADM mass
(in units of the field’s mass) Mμ, defining one or more
branches—see, e.g., Ref. [12].1 Some of these solutions are
dynamically robust—see Refs. [15–17] for reviews—and
one may ask if one can set two such boson stars in
equilibrium in this fully nonlinear theory.
Nonlinear BS solutions that are axisymmetric, static,

asymptotically flat and describe two symmetric lumps of
scalar field energy were first reported in [18] (see also
Refs. [19,20] for a discussion in the Newtonian limit). More
recently, more complex configurations of many scalar
lumps in equilibrium were reported [21],2 therein dubbed
multipolar BSs. Although these are nonlinear configura-
tions, and therefore not a simple superposition of two BSs,
it is natural to interpret the two-center dipolar BSs (DBSs)
as an equilibrium solutions of two (equal mass) BSs [18].
A key finding in the works described in the previous

paragraph is that DBSs solutions exist only for a parity odd
scalar field, with respect to the symmetry plane in between
the two individual BSs. This is equivalent to saying the two
BSs have a phase difference of π. Such a phase difference
sustains a repulsive scalar interaction, as confirmed (say)
by performing head-on collisions of BSs, using numerical
relativity techniques [24]. Since the scalar field has mass μ,
one may expect to capture the leading interaction between
the two BSs by an interaction potential including both
gravity and a meson Yukawa term U ¼ Ug þ Us, with

Ug ¼ −G
M2

r
; Us ¼ g

Q2

r
e−αμr; ð1:2Þ

where Q defines the scalar strength of each BS—its
Noether charge—and g, α are constants. This heuristic
model suggests that: (1) For each pair of BSs with givenM
[and Q ¼ QðMÞ] there is a specific equilibrium distance
L ¼ L½M;QðMÞ� and (2) This equilibrium is stable, at least
in the point particle approximation. Below we shall discuss
how this simple model indeed captures the distance
dependence of the fully nonlinear DBSs and why the
stability problem of DBSs is more complex than what this
model suggests.

In this paper we shall construct the domain of solutions
of DBSs and explore its physical properties, within the
perspective that it is the simplest multi-BSs configuration.
This serves both as a test ground for the properties of
equilibrium multi-BSs and as a bridge toward the dynami-
cal problem of collisions of two BSs. We shall further
comment on both these perspectives in the final discussion.
This paper is organized as follows. In Sec. II we

introduce the model, the ansatz and the explicit equations
of motion to construct DBSs. In Sec. III we discuss the
boundary conditions under which the equations of motion
are solved and introduce some relevant physical quantities
for the analysis of the solutions. In Sec. IV we present the
numerical approach to solve the equations of motion. In
Sec. V we discuss the solution space and illustrate specific
solutions. Moreover, we discuss how a simple analytic
model based on (1.2) captures (to some extent) the behavior
of the fully nonlinear solutions. We also provide an
argument for the absence of two static Q-balls in equilib-
rium on Minkowski spacetime, regardless of the specific
self-interactions. We conclude with a discussion and final
remarks in Sec. VI.

II. THE FRAMEWORK

A. The model and the ansatz

We consider the action for Einstein’s gravity minimally
coupled to a complex massive scalar field Φ

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
gαβðΦ�

;αΦ;β þΦ�
;βΦ;αÞ

− μ2Φ�Φ
�
; ð2:1Þ

where G is Newton’s constant, gαβ the spacetime metric,
with determinant g and Ricci scalar R, “*” denotes complex
conjugation and μ is the scalar field mass.
The resulting field equations are

Eαβ ≡ Rαβ −
1

2
gαβR − 8πGTαβ ¼ 0; ð2:2Þ

□Φ ¼ μ2Φ; ð2:3Þ

where

Tαβ ¼ 2Φ�
;ðαΦ;βÞ − gαβ½Φ�

;νΦ;ν þ μ2Φ�Φ�; ð2:4Þ

is the energy-momentum tensor of the scalar field.
The action (2.1) is invariant under the global Uð1Þ

transformationΦ → eiαΦ, where α is constant. This implies
the existence of a conserved current, jν ¼ −iðΦ�

∂
νΦ−

Φ∂
νΦ�Þ, with jν;ν ¼ 0. It follows that integrating the time-

like component of this 4-current in a spacelike slice Σ yields
a conserved quantity—the Noether charge:

1Here we are referring to the fundamental solutions, for which
the scalar field has no nodes. Excited, spherical solutions with
nodes also exist—see, e.g., Ref. [13]. Moreover, spinning, axially
symmetric solutions also exist, see, e.g., Ref. [14], which can be
seen as a different sort of excitation, with angular (rather than
radial) nodes.

2See also Refs. [22,23] for chains of nonspinning and spinning
BSs.
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Q ¼
Z
Σ
jt: ð2:5Þ

At a microscopic level, this Noether charge counts the
number of scalar particles.
The line-element for the solutions to be constructed in

this work possesses two commuting Killing vector fields, ξ
and η, with

ξ ¼ ∂t; η ¼ ∂φ; ð2:6Þ

in a system of adapted coordinates. The analytical study of
GR solutions with these symmetries is usually considered
within a metric ansatz of the form

ds2 ¼ −e−2Uðρ;zÞdt2 þ e2Uðρ;zÞ½e2kðρ;zÞðdρ2 þ dz2Þ
þ Pðρ; zÞ2dφ2�; ð2:7Þ

where ðρ; zÞ correspond asymptotically to the usual cylin-
drical coordinates. The corresponding expression for the
scalar field is

Φ ¼ ϕðρ; zÞe−iωt; ð2:8Þ

where the real function ϕ is the field amplitude and ω is the
scalar field frequency, which we take to be positive, without
loss of generality. The Einstein–Klein-Gordon equations
take the following compact form3:

∇2kþð∇UÞ2þ8πG½ð∇ϕÞ2þe2kþ2Uðμ2−2e2Uω2Þϕ2� ¼ 0;

∇2Uþ 1

P
ð∇UÞ · ð∇PÞ−8πGe2kþ2Uðμ2−2e2Uω2Þϕ2 ¼ 0;

∇2Pþ16πGe2kþ2Uðμ2−2e2Uω2Þϕ2 ¼ 0;

∇2ϕþ 1

P
ð∇PÞ · ð∇ϕÞ−e2kþ2Uðμ2−e2Uω2Þϕ¼ 0;

ð2:9Þ

where we define

∇2A ¼ ∂
2A
∂ρ2

þ ∂
2A
∂z2

; ð∇AÞ · ð∇BÞ ¼ ∂A
∂ρ

∂B
∂ρ

þ ∂A
∂z

∂B
∂z

:

In the (electro-)vacuum case, it is always possible to set
P≡ ρ, such that only two independent metric functions
appear in the equations, and ðρ; zÞ become the canonical
Weyl coordinates, the system being integrable [25].
However, setting P≡ ρ is not possible for the case of

interest here and no exact solutions appear to exist for
nonzero ðω; μÞ, in which case the problem is solved
numerically. Then, it is convenient to use “quasi-isotropic”
spherical coordinates ðr; θÞ instead of ðρ; zÞ, with the usual
transformation

ρ ¼ r sin θ; z ¼ r cos θ; ð2:10Þ

and the usual coordinate ranges, 0 ≤ r < ∞, 0 ≤ θ ≤ π.
Also, in order to make contact with our previous work [26],
we redefine U ¼ −F0, k ¼ F1 þ F0 and P ¼ eF2þF0 in
(2.7). The line-element and scalar field become

ds2¼−e2F0ðr;θÞdt2þe2F1ðr;θÞðdr2þ r2dθ2Þ
þe2F2ðr;θÞr2sin2θdφ2; Φ¼ϕðr;θÞe−iωt; ð2:11Þ

which is the ansatz used in this work in the numerical
treatment of the problem. The Minkowski spacetime back-
ground is approached for r → ∞, with F0 ¼ F1 ¼ F2 ¼ 0.
One also remarks that the symmetry axis of the spacetime
is given by η ¼ 0, which corresponds to the z-axis,
with θ ¼ 0; π.

B. The explicit equations of motion

Given the ansatz (2.11), the explicit form of the Klein-
Gordon (KG) equation (2.3) reads

ϕ;rr þ
ϕ;θθ

r2
þ
�
F0;r þ F2;r þ

2

r

�
ϕ;r þ

1

r2
ðF0;θ þ F2;θ þ cot θÞϕ;θ þ e−2F0þ2F1ðω2 − μ2e2F1Þϕ ¼ 0: ð2:12Þ

The metric functions Fi (i ¼ 1; 2; 3) satisfy the following second order partial differential equations (PDEs):

F0;rr þ
F0;θθ

r2
þ
�
F0;r þ F2;r þ

2

r

�
F0;r þ

1

r2
ðF0;θ þ F2;θ þ cot θÞF0;θ þ 8πGe2F1ðμ2 − 2e−2F0ω2Þϕ2 ¼ 0; ð2:13Þ

F1;rr þ
F1;θθ

r2
−
�
F2;r þ

1

r

�
F0;r þ

F1;r

r
−

1

r2
ðF2;θ þ cot θÞF0;θ þ 8πGe2F1

�
ϕ2
;r þ

ϕ2
;θ

r2
þ e−2F0þ2F1ω2ϕ2

�
¼ 0; ð2:14Þ

3There are two further constraint equations which, however, we do not display here.
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F2;rr þ
F2;θθ

r2
þ F0;r

r
þ
�
F0;r þ F2;r þ

3

r

�
F2;r þ

1

r2
½ðF0;θ þ F2;θÞF2;θ þ ðF0;θ þ 2F2;θÞ cot θ� þ 8πGe2F1μ2ϕ2 ¼ 0: ð2:15Þ

In addition, there are also two constraint equations:

F0;rr þ F2;rr þ ðF0;r − 2F1;rÞF0;r − ð2F1;r − F2;rÞF2;r −
1

r
ðF0;r þ 2F1;r − F2;rÞ −

1

r2
½F0;θθ þ F2;θθ

þ ðF0;θ − 2F0;θÞF0;θ þ ðF2;θ − 2F1;θÞF2;θ − 2 cot θðF1;θ − F2;θÞ� þ 16πG

�
ϕ2
0;r −

ϕ2
;θ

r2

�
¼ 0; ð2:16Þ

F0;rθ þ F2;rθ þ F0;rF0;θ þ F2;rF2;θ − ðF1;rF2;θ þ F2;rF1;θÞ − ðF1;rF0;θ þ F0;rF1;θÞ

−
1

r
ðF0;θ þ F1;θÞ − cot θðF1;r − F2;rÞ þ 16πGϕ;rϕ;θ ¼ 0; ð2:17Þ

which are not solved directly, being used to check the
numerical accuracy of the results.
The above Eqs. (2.13)–(2.17) are derived as follows. The

only Einstein equations which are not identically zero are
Et
t; Er

r; Eθ
θ; E

φ
φ, and Eθ

r . These five equations are divided
into two groups: three of these equations are solved
together with the KG equation (2.12), yielding a coupled
system of four PDEs on the four unknown functions. The
remaining two Einstein equations are treated as constraints.
More precisely, one takes the following combinations of
the Einstein equations:

Er
r þ Eθ

θ þ Eφ
φ − Et

t ¼ 0 ⇒ Eq: ð2.13Þ;
Er
r þ Eθ

θ − Eφ
φ − Et

t ¼ 0 ⇒ Eq: ð2.14Þ;
Er
r þ Eθ

θ − Eφ
φ þ Et

t ¼ 0 ⇒ Eq: ð2.15Þ;
Er
r − Eθ

θ ¼ 0 ⇒ Eq: ð2.16Þ;
Eθ
r ¼ 0 ⇒ Eq: ð2.17Þ: ð2:18Þ

III. BOUNDARY CONDITIONS AND PHYSICAL
QUANTITIES OF INTEREST

In order to perform the numerical integration of the
system of equations described in Sec. II, appropriate

boundary conditions must be imposed, which implement
the conditions of asymptotic flatness and regularity at r ¼ 0
and at the symmetry axis. These are now discussed in detail.

A. Boundary conditions and asymptotic expansion

The solutions reported in this work are constructed
subject to the following boundary conditions:

∂rF0jr¼0 ¼ ∂rF1jr¼0 ¼ ∂rF2jr¼0 ¼ ϕjr¼0 ¼ 0;

F0jr¼∞ ¼ F1jr¼∞ ¼ F2jr¼∞ ¼ ϕjr¼∞ ¼ 0;

∂θF0jθ¼0;π ¼ ∂θF1jθ¼0;π ¼ ∂θF2jθ¼0;π ¼ ∂θϕjθ¼0;π ¼ 0:

ð3:1Þ

Moreover, the absence of conical singularities implies also
that F1 ¼ F2 on the symmetry axis (θ ¼ 0; π) (as implied
by a constraint equation), a condition which was not
imposed, being satisfied as a result of implementing a
consistent numerical scheme.
An asymptotic expression of the solutions compatible

with the above boundary conditions can be found. Starting
with the small-r expressions, the first terms in a power
series expansion of ðFi;ϕÞ are

F0 ¼ f00 þ s0ð1 − 3cos2θÞr2 þOðr4Þ;
F1 ¼ f10 þ ½s1 þ ðs0 − 2s1 − 4πGd21Þcos2θ�r2 þOðr4Þ;

F2 ¼ f10 þ
1

3
½s0ð5cos2θ − 2Þ þ s1ð1 − 4cos2θÞ − 4πGd21ð1þ 2 cos 2θÞ�r2 þOðr4Þ;

ϕ ¼ d1r cos θ þOðr3Þ; ð3:2Þ
where f00, f10, s0, s1, and d1 are constants fixed by numerics. A relatively simple expression can also be written for large r.
The asymptotic behavior of the scalar field is of the form

ϕðr; θÞ ¼ fðθÞ e
−

ffiffiffiffiffiffiffiffiffiffi
μ2−w2

p
r

r
þ…; with fðθÞ ¼

X∞
k¼0

ckP2kþ1ðcos θÞ; ð3:3Þ
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where P2kþ1ðcos θÞ are the Legendre polynomials (e.g., P1 ¼ cos θ, P3 ¼ cos θð5 cosð2θÞ − 1Þ=4, etc.), while ck are
constants fixed by the numerics. Neglecting the scalar field contribution—since it decays faster than any power of r—the
leading order terms in a power series expansion of the metric functions are

F0 ¼
M
r
þ 1

12
½1þ p1 þ p2ð1þ 3 cos 2θÞ�

�
M
r

�
3

þ…;

F1 ¼ −
M
r
−
1

4
½1þ p1 þ p2 cos 2θ�

�
M
r

�
2

−
1

12
½1þ p1 þ p2ð1þ 3 cos 2θÞ�

�
M
r

�
3

þ…;

F2 ¼ −
M
r
−
1

4
ð1þ p1Þ

�
M
r

�
2

−
1

12
½1þ p1 þ p2ð1þ 3 cos 2θÞ�

�
M
r

�
3

þ…; ð3:4Þ

with M the ADM mass of solutions and p1, p2 arbitrary constants.
The approximate expression of the solutions on the symmetry axis is more complicated, the first terms in a small-θ

expansion being (a similar expansion holds for θ → π):

F0ðr; θÞ ¼ f00ðrÞ þ f02ðrÞθ2 þOðθÞ4; F1ðr; θÞ ¼ f10ðrÞ þ f12ðrÞθ2 þOðθÞ4; ð3:5Þ

F2ðr; θÞ ¼ f10ðrÞ þ f22ðrÞθ2 þOðθÞ4; ϕðr; θÞ ¼ ϕ0ðrÞ þ ϕ2ðrÞθ2 þOðθÞ4; ð3:6Þ

where the essential data is encoded in the functions f00ðrÞ, f10ðrÞ, and ϕ0ðrÞ which result from the numerics. One finds,
e.g., (where a prime denotes the derivative with respect to the r-coordinate):

f02 ¼ −
1

4
rfrf0000 þ f000½2þ rðf000 þ f010Þ�g − 2πGe2ðf10−f00Þr2ðe2f00μ2 − 2ω2Þϕ2

0;

f12 ¼ −
1

2
r

�
f010 þ

r
2
½f0000 þ 2f0010 þ f000ðf000 − f010Þ þ 8πGð2ϕ02

0 þ e2f10μ2ϕ2
0Þ�

�
;

f22 ¼ −
1

6
r

�
3f010 −

1

2
r½f0000 − 2f0010 þ ðf000 − 2f010Þðf000 þ f010Þ� þ 4πGe2ðf10−f00Þrðe2f00μ2 þ 2ω2Þϕ2

0

�
;

ϕ2 ¼ −
1

4
rfrϕ00

00 þ ½2þ rðf000 þ f010Þ�ϕ0
0 − e2ðf10−f00Þrðe2f00μ2 − ω2Þϕ0g: ð3:7Þ

Also, for all solutions discussed in this work, the scalar
field changes sign with respect to a reflection on the
equatorial plane, θ ¼ π=2, while the metric tensor remains
invariant. That is, the solutions posses the symmetry
Fiðr; θÞ ¼ Fiðr; π − θÞ, ϕðr; θÞ ¼ −ϕðr; π − θÞ. As a
result, it is enough to consider the range 0 ≤ θ ≤ π=2
for the angular variable; then the functions Fi and ϕ
satisfy the following boundary conditions on the equatorial
plane:

∂θFijθ¼π=2 ¼ ϕjθ¼π=2 ¼ 0: ð3:8Þ

B. Quantities of interest

Our solutions are static, globally regular and without an
event horizon or conical singularities. Also, they approach
asymptotically the Minkowski spacetime background.
Then, their ADM mass M can be obtained from the
respective Komar expression [27],

M ¼ 1

4πG

Z
Σ
RαβnαξβdV; ð3:9Þ

where Σ denotes an asymptotically flat spacelike hyper-
surface, nα is normal to Σ (with nαnα ¼ −1) and dV is
the natural volume element on Σ. After replacing in (3.9)
the Ricci tensor by the energy-momentum tensor—via the
Einstein equations (2.2)–, one finds

M ¼ 2

Z
Σ

�
Tαβ −

1

2
gαβTν

ν

�
nαξβdV

¼ 4π

Z
∞

0

dr
Z

π

0

dθr2 sin θeF0þ2F1þF2

× ðμ2 − 2e−2F2ω2Þϕ2: ð3:10Þ

Alternatively, the ADM mass can be read off from the
asymptotic subleading behavior of the metric function gtt
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gtt ¼ −e2F0 ¼ −1þ 2GM
r

þ…: ð3:11Þ

In addition to mass, there is also a conserved Noether
charge, which is computed from (2.5):

Q ¼ 2π

Z
∞

0

dr
Z

π

0

dθr2 sin θeF0þ2F1þF2ωϕ2: ð3:12Þ

These two physical quantities are connected via the “first
law”

dM ¼ ωdQ: ð3:13Þ

To see how “compact” the dipole BSs are, one defines
the compactness [28]

Compactness ¼ 2M99

R99

; ð3:14Þ

where R99 is the circumferential radius containing 99% of
the DBS mass, M99, with R ¼ eF2r for the ansatz (2.11).
The separation between the two individual BSs, i.e.,
between the two individual components of the DBS, is
given by the proper distance between them

Lz ¼
Z

0

−z0
dreF1ðr;πÞ þ

Z
z0

0

dreF1ðr;0Þ ¼ 2

Z
z0

0

dreF1ðr;0Þ;

ð3:15Þ

with �z0 the position on the z-axis of a single star. As we
shall see below, z0 is given by the maximum of the
corresponding energy density, which is reasonable, since
individual spherical, fundamental BSs attain their maxi-
mum energy density at their center.

IV. THE NUMERICAL APPROACH

Apart from Newton’s constant, the model (2.1) possess
two input parameters, corresponding to the field mass and
frequency. However, the dependence on both G and μ
disappears from the equations when using natural units set
by μ and G, i.e., when taking the following field redefi-
nition together with a scaling of both r and ω:

ϕ →
ϕffiffiffiffiffiffiffiffiffi
4πG

p ; r →
r
μ
; ω →

ω

μ
: ð4:1Þ

As such, we are left with a single input parameter, which is
the (scaled) field frequency ω. Also, the global charges and
all other quantities of interest are expressed in units set by μ
and G; however, in order to simplify the output, we set
G ¼ 1 in what follows.
In our approach, the Einstein–Klein-Gordon equations

reduce to a set of four coupled nonlinear elliptic PDEs
for the functions ðF0; F1; F2;ϕÞ, which are displayed in

Sec. II B. These equations have been solved numerically
subject to the boundary conditions introduced above. Apart
from these, there are two more constraint Einstein equa-
tions (also presented in Sec. II B) which are not solved
in our numerics. Following an argument originally pro-
posed in [29], one can, however, show that the identities
∇νEνr ¼ 0 and ∇νEνθ ¼ 0, imply the Cauchy-
Riemann relations ∂r̄P2 þ ∂θP1 ¼ 0, ∂r̄P1 − ∂θP2 ¼ 0.
In these relations we have defined P1 ¼ ffiffiffiffiffiffi−gp

Er
θ,

P2 ¼ ffiffiffiffiffiffi−gp
rðEr

r − Eθ
θÞ=2, and dr̄ ¼ dr=r. Therefore, the

weighted constraints Er
θ and Er

r − Eθ
θ still satisfy Laplace

equations in ðr̄; θÞ variables. Then, they are fulfilled, when
one of them is satisfied on the boundary and the other at a
single point [29]. From the boundary conditions above, it
turns out that this is the case, i.e., the numerical scheme is
self-consistent.
Our numerical treatment can be summarized as follows.

The first step is to introduce a new radial variable

x≡ r
cþ x

;

which maps the semi–infinite region ½0;∞� to the finite
region [0, 1], c being an appropriate constant, which is
chosen to be one for most of the solutions. The resulting
equations are solved by using a fourth order finite differ-
ence scheme. The system of four equations is discretized on
a grid with Nr × Nθ points, where typically Nr ∼ 250,
Nθ ∼ 50. The solutions were constructed by using a
Newton-Raphson method and two different sofware pack-
ages, the solver FIDISOL/CADSOL [30,31] and the Intel MKL

PARDISO sparse direct solver [32,33], together with
CEDSOL

4 library. The results are in very good agreement,
the typical errors being of order of 10−4. The compilation of
the numerical output is done by using the software
Mathematica.
Let us close this section by remarking that other

solutions can be studied within the ansatz (2.11) and the
approach described above. The simplest ones are the
spherically symmetric boson stars, in which case
F2 ¼ F1, with F0; F1;ϕ being functions of r only. The
boundary conditions in this case are similar to those
displayed above, except that the scalar field does not
vanish at r ¼ 0 and in the equatorial plane.

V. DBSS SOLUTIONS

A. Domain and illustrative solutions

The numerical results confirm the existence of solutions
of Eqs. (2.13)–(2.17) with the boundary conditions (3.1)
representing DBSs. The individual solutions do not exhibit

4Complex Equations—Simple Domain partial differential
equations SOLver is a C++ package being developed by I.
Perapechka.
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any sign of pathological behavior as discussed below; in
particular, no conical singularities are detected at the level
of numerical accuracy, while the Ricci and Kretschmann
scalars are finite everywhere.
The ADM mass-frequency together with the Noether

charge-frequency diagrams are displayed in Fig. 1. One
notices that the solutions exist for ω < μ, which is the usual
bound state condition. As we decrease the frequency, the
mass reaches monotonically the maximum value
Mmaxμ ≃ 1.035, for ω=μ ≃ 0.835. The maximal value of
Q is also approached for the same solution, with
Qmaxμ

2 ≃ 1.072. Further decreasing ω one finds a minimal
frequency ωmin ∼ 0.736μ, below which no DBS solutions
are found. Instead, a secondary branch of solutions occurs,
with ω increasing. The DBS curve then seems to spiral, and
it is likely that the picture familiar from the spherically
symmetric case (see the inset in Fig. 1) is recovered also
in the dipole case. Then we expect that the ðω;MÞ and
ðω; QÞ curves would spiral toward a central region of the
diagram, wherein the numerics become increasingly
challenging.
As seen in Fig. 1, along the fundamental branch (with

ωmin < ω < μ), the ratio μQ=M is greater than unity down
to a critical frequency ωc ∼ 0.752μ.
A standard energetic argument stating that the BS has

more energy than a system of Q free bosons, implies that
the set of DBSs beyond that point—i.e., for ω < ωc along
the first branch and on the whole second branch—are
unstable against fission, since the system prefers to relax
into free bosons. Whereas, this does not mean that this is
the true fate of such stars, it establishes they are unstable.
In Figs. 2 and 3 we display various relevant functions

and physical quantities for a typical, illustrative solution
with

ω=μ ¼ 0.8; Mμ ¼ 1.0165; Qμ2 ¼ 1.049;

Lzμ ¼ 5.361: ð5:1Þ

The left columns displays 3D plots (in cylindrical
coordinates), whereas the right column shows 2D plots
of the same functions in terms of the radial variable for
three different angular coordinates θ ¼ 0 (red solid line),
θ ¼ π=4 (blue dotted line), and θ ¼ π=2 (green dotted
line). A compactified radial coordinate is used, such that the
asymptotic behavior of the functions becomes transparent.
Note in particular from Fig. 2 (bottom panel) that the scalar
field is parity odd.
Figure 4 shows the morphology of the same illustrative

solution by exhibiting the surfaces of constant energy
density. DBSs always possess two distinct components,
the energy of the scalar field being located around two
distinct centers, located on the z-axis, at z ¼ �z0. This also
corresponds to maximum of various other quantities like
jϕj; R; K—see Figs. 2 and 3. Then a surface of constant
energy density (as given by the Tt

t component of the
energy-momentum tensor) yields two spheroidal surfaces
located on the symmetry axis at z ¼ �z0—Fig. 4. Let us
remark that the energy density (unlike the scalar field) does
not vanish at r ¼ 0: Tt

t ¼ −d21e−2f10 , where d1, f10 are the
constants in the small-r expansion (3.2).
In Fig. 5 we display the proper distance Lz, as defined by

Eq. (3.15), as a function of the frequency. The two BSs
become infinitely separated as ω → μ; then, the distance
between them decreases with ω. The minimal value of Lz is
approached on the secondary branch, for ω=μ ≃ 0.77, with
the proper distance increasing again after this point. The
maximal value of the scalar field, on the other hand, which
is approached on the z-axis, at z ¼ z0, always increases
along the spiral—Fig. 5 (inset). The latter behavior is
analogous to that of single spherical BSs.
The (inverse) compactness of DBSs is shown in Fig. 6.

Although these odd parity solutions are less compact than
single, spherical BSs, along the fundamental branch, the
usual diagram for a spherical BS is recovered. The picture
changes, however, along the secondary branch, where we
notice an increase in compactness relatively to the first
branch, in contrast to the spherical case, where the
compactness decreases in the second branch relatively to
the first one.
As one can see in the inset of Fig. 6, for a given

frequency, the mass of a DBS is smaller than the mass of
two spherical BSs with the same frequency. This is
consistent with the DBSs being a bound state (with
negative binding energy) of two individual BSs. Here
we consider first branch solutions only, where such a
comparison is more meaningful, and recall that the spheri-
cal BSs exist for ωmin < ω < μ, with a maximal mass
Mmaxμ ∼ 0.633. Then, we may expect that the binding
energy goes to zero and the system becomes better

 0

0.3

0.6

0.9

 0.8  0.9  1
�/�

M�

Q/�2

 

�/�

M�

Q/�2

 0

 0.3

 0.6

 0.8  0.9  1

spherical BSs

FIG. 1. The mass and Noether charge are shown vs scalar field
frequency for the DBSs. The inset shows the corresponding
picture for spherically symmetric, fundamental BSs [12], as a
comparison.
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approximated by a linear superposition of two BSs as
ω → μ. Let us give evidence this is the case.
As ω → μ, the DBS is indeed a bound state of two

(largely separated) BSs, then a single BS would carry half
of the total Noether charge,

QBS ¼
1

2
QDBS: ð5:2Þ

This provides a range of QBS which indeed exists within
the existing set of (spherical) BSs data. Then, from
the numerical single BSs data we compute their mass
MBS corresponding to that QBS. It turns out that, as
expected,

1 −
2MBS

MDBS
≃ 10−3: ð5:3Þ
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FIG. 2. The metric functions Fi and the scalar field ϕ are shown for the illustrative solution (5.1).
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The corresponding individual spherical BSs and DBS
possess slightly different frequencies, which are expected
to converge as ω → μ. We can support this expectation
considering a fitting of the existing data with ω → μ. For
DBSs one finds

MDBS ≃ 3.80046
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω

μ

r
; ð5:4Þ

while the corresponding relation for BSs reads [34]

MBS ≃ 2.47864
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω

μ

r
; ð5:5Þ

which agrees very well with our numerical results.
Then let us assume MDBSðωðDBSÞÞ ¼ 2MBSðωðBSÞÞ ¼ M

and invert the relations (5.4), (5.5) to compute the ratio
ωðDBSÞ=ωðBSÞ. For small M, this gives
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FIG. 3. The component Tt
t of the energy-momentum tensor, the Komar energy density ρK ¼ T − 2Tt

t and the Ricci and Kretschmann
scalars are shown for the illustrative solution (5.1).
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ωðDBSÞ
ωðBSÞ

¼ 1 − 0.028543M2 þ…; ð5:6Þ

which is the expected result, withMDBSðωÞ ¼ 2MBSðωÞ as
M → 0. We also remark that a fitting of the DBS data found
for ω → μ gives the following relation

M ¼ μQð1 − c0μ2Q2Þ; with c0 ¼ 0.0230503: ð5:7Þ

This agrees well with the result c0 ¼ 0.02298 in [19]
obtained within a Newtonian approximation.

B. Comparison with the simple effective model

We shall now show how the simple model based on the
interaction energy (1.2) for two point masses in flat
spacetime, captures the variation of the distance Lz between
the two centers of the DBSs in the fully nonlinear solutions.
To allow the comparison, we take the interaction energy

(1.2) with M → M=2 and Q → Q=2, so that M, Q can be
compared with the ADM mass and Noether charge of the
DBS, thinking of each component has having half of the
mass/Noether charge. Then the total force between the two
constituents F ¼ −∇U has radial magnitude

Fg þ Fs ¼ −
M2

4r2
þ g

Q2

4r2
ð1þ αrÞe−αr: ð5:8Þ

Equilibrium amounts to the force balance condition

Fg þ Fs ¼ 0 for r ¼ Lz: ð5:9Þ

We have tested the naive equilibrium condition (5.9) for
the family of static DBSs reported above. For each DBS
(specified by ω, say) we use its ðM;Q; LzÞ to compute Fg,
Fs above and determine g, α by enforcing (5.9). A priori,
these parameters may vary significantly along the space of
DBSs solutions. Considering various pairs of frequencies
ðw1; w2Þ on the first branch of solutions—where this simple
mechanical model is more reasonable—we always found a
value of g ≃ 1 and α ≃ 0.01, with a few percent variation for
both parameters. Thus, in what follows we choose these
values for g, α.
In Fig. 7 we show the individual forces Fg, Fs as

computed from (5.8) (with r ¼ Lz) and also the relative
difference between them (in the inset). One observes that
this simple model works relatively well for the set of
solutions between ωmax ¼ μ and ωmin. For example, the
relative error found for the solution with the maximal mass

FIG. 4. Surfaces of constant energy density, with −Tt
t ¼ 0.1,

0.05, 0.01, from the innermost to the outermost surface, are
shown for the illustrative solution (5.1).
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the maximal value of the scalar field (inset) are shown as a
function of scalar field frequency ω for the DBSs.
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and charge (ω=μ ≃ 0.835) is 1þ Fg=Fs ∼ 6%. Likely, this
agreement is partly a consequence of the fact that the ratio
Q=M is not too far from unity for all solutions between
ωmax and ωmin.

C. The role of gravity: No flat spacetime static
Q-balls in equilibrium

The last subsection corroborates the interpretation of
DBSs as two (static) BSs in equilibrium, by virtue of a
balance between their gravitational attraction and their
scalar repulsion. We shall now put forward a different
argument that emphasizes the importance of the long range
gravitational interaction, for the existence of DBSs.
Single BSs have a flat spacetime cousin: Q-balls [35].

Q-balls are interpreted as emerging from a balance between
the dispersiveness of the oscillating scalar field (amplitude)
and the attractiveness of the self-interactions. When turning
on gravity, however, the scalar self-interactions are dispen-
sable; their role is replaced by another attractive, nonlinear
interaction. There is, however, an important difference: the
scalar (gravitational) interaction is short (long) range.
This discussion suggests that whereas nonlinear scalar

and gravitational interactions may be interchanged for
obtaining single energy lumps in equilibrium, they might
not mimic one another for distant energy lumps in
equilibrium. This leads to the conjecture that no flat
spacetime multi-Q-balls in equilibrium exist. We shall
now follow the arguments in [36], to prove this statement,
for the case of two equilibrium Q-balls, in a nongravitating
model with a complex scalar field. Thus, gravity is a crucial
ingredient for the existence of equilibrium configurations
of two such scalar lumps, a result which is independent of
the precise scalar field potential.
The starting point of the argument assumes a generic

field theory model on flat spacetime, with its metric in
cylindrical coordinates

ds2 ¼ −dt2 þ dρ2 þ ρ2dφ2 þ dz2: ð5:10Þ

One focuses on static axially symmetric solitonic configu-
rations, with a conserved energy-momentum tensor,

∇αTα
β ¼

1ffiffiffiffiffiffi−gp ∂

∂xα
ð ffiffiffiffiffiffi

−g
p

Tα
βÞ −

1

2

∂gαν
∂xβ

Tαν ¼ 0: ð5:11Þ

Then, the only nonzero components of the energy-momen-
tum tensor are

Tρρðρ; zÞ; Tzzðρ; zÞ; Tρzðρ; zÞ; Tφφðρ; zÞ; Tttðρ; zÞ: ð5:12Þ

Next, one consider the xβ ¼ z component of Eq. (5.11)
and integrates it over the half-space z ≥ 0. This implies the
general relation

Z
∞

0

dzρTρ
z j∞ρ¼0 þ

Z
∞

0

dρρTz
zj∞z¼0 ¼ 0; ð5:13Þ

which must be satisfied by any static soliton. Now, we
assume that Tρ

z is finite at ρ ¼ 0 and vanishes faster than
1=ρ2 as ρ → ∞, both necessary conditions for a finite
energy, everywhere regular soliton. This implies that the
first integral in (5.13) vanishes. Additionally, we assume
that Tz

z goes to zero as z → ∞; then (5.13) reduces to

Z
∞

0

dρρTz
zðρ; zÞjz¼0 ¼ 0: ð5:14Þ

This is a generic constraint that we shall now evaluate for a
complex scalar field Φ model, with the Lagrangian density

L ¼ −
1

2
gαβðΦ�

;αΦ;β þΦ�
;βΦ;αÞ −UðjΦj2Þ; ð5:15Þ

where UðjΦj2Þ is the self-interaction potential, with
Uð0Þ ¼ 0. The scalar field satisfies the KG equation

□Φ ¼ ∂U
∂jΦj2Φ: ð5:16Þ

For a Q-ball solution, one assumes a (static) scalar field
ansatz

Φ ¼ e−iωtϕðρ; zÞ; ð5:17Þ

which results in the following expression for Tz
z:

Tz
z ¼ −ϕ2

;ρ þ ϕ2
;z þ w2ϕ2 −UðϕÞ: ð5:18Þ

Let us assume the existence of a small-z Taylor expansion
expansion of the scalar field

ϕðρ; zÞ ¼
X
k≥0

ϕkðρÞzk; ð5:19Þ
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FIG. 7. The forces in the effective model—cf. (5.8)—and the
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such that the integral (5.13) becomes

Z
∞

0

ρ½ϕ2
1 − ϕ2

0;ρ þ w2ϕ2
0 − Uðϕ0Þ�dρ ¼ 0: ð5:20Þ

However, an odd-parity scalar field necessarily vanishes on
the equatorial plane

ϕ0 ¼ 0; ð5:21Þ

(or more general, ϕ2k ¼ 0) such that (5.20) becomes

Z
∞

0

ρϕ2
1dρ ¼ 0: ð5:22Þ

The only way to satisfy the above relation is to assume
ϕ1ðρÞ ¼ 0. However, from the KG equation (5.16) one
finds that the higher order coefficients in (5.18) vanish
order by order, ϕ2kþ1 ¼ 0. Thus, we conclude that no odd-
parity static scalar field smooth solutions may exist, in
particular, no Q-dipoles.
We remark that the above nonexistence result does not

apply to rotating configurations. Rotation introduces a
dipole-dipole interaction that can be used to balance two
spinning Q-balls in flat spacetime. Such solutions were
briefly reported in [37]—see also Ref. [38]. Also, it does
not exclude the existence of even-parity solutions, the
simplest one being the spherically symmetric Q-balls.

VI. FURTHER REMARKS AND CONCLUSIONS

BSs are perhaps the simplest self-gravitating solitons. As
argued in [21] there is an infinite tower of multipolar
solutions, in close analogy with the hydrogen orbitals. The
DBSs discussed here can be seen as two BSs in equilibrium
due to a balance between gravitational attraction and scalar
repulsion.
An interesting perspective on BSs is that they are a

manifestation of the gravitational desingularization
mechanism [21]. Restricting to the original (and simplest)
spherical solutions in [9,10], one can explain this mecha-
nism as follows. A scalar field on flat spacetime (with mass
μ and frequency ω) possesses a spherically symmetric
solutions (of the linear KG equation) which vanishes in the
far field and diverges at r ¼ 0:

Φ ¼ e−iωt
e−

ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r

r
:

When coupling the scalar field to gravity, the backreac-
tion regularizes this central singularity,5 resulting in spheri-
cally symmetric BSs. However, whereas for the flat space
solution the scalar field is confined for any ω < μ, gravity

effects lead to the existence of a nonzero minimal value for
the frequency. As argued in [21], this mechanism works
also the multipoles of the scalar field (see also Ref. [22]).
The simplest case is the dipole, with the flat spacetime
solution

Φ ¼
�
1

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q �
e−

ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r cos θ

r
e−iωt: ð6:1Þ

Again, gravity regularizes the singularity at r ¼ 0, resulting
in physically reasonable configurations—the DBSs—
consisting of a pair of oscillating lumps with a phase
difference of π. It is the phase difference between these
components which yields a repulsive force between them,
balancing the gravitational attraction.
DBSs represent a gravitationally bound pair of solitons.

Analogous configurations are known in classical field
theory; the solitons possess a core in which most energy
is localized, and an asymptotic tail, which is responsible for
the long-range interaction between the well-separated
solitons, see, e.g., Refs. [40,41]. This interaction can be
either repulsive or attractive. In flat space, a pair of solitons
may exist as a regular equilibrium solution of the field
equations if there are several field components and the
corresponding interactions balance, providing a zero net
force6—see Ref. [42] for examples in various spacetime
dimensions. For instance, bound pairs of solitons may exist
in the 3þ 1 dimensional Skyrme model with a special form
of the potential, which combines both repulsive and
attractive interactions [43,44]. Similarly, the Faddeev-
Skyrme model supports bound pairs of Hopfions [45].
Another type of bounded soliton solutions is a static pair of
a Skyrmion and an anti-Skyrmion in equilibrium
[36,46,47]. Similar soliton-antisoliton pairs exist in the
SUð2Þ Yang-Mills-Higgs theory [48–50]. The magnetic
dipole is a saddle point solution where the attractive short-
range forces, mediated both by the A3

μ vector boson and the
Higgs boson, are balanced by the repulsive interaction due
to massive vector bosons A�

μ with opposite orientation in
the group space [51]. The effective net potential of the
interaction between a monopole and an anti-monopole is
attractive for large separation between the constituents and
it is repulsive on a short distance. Similar bound pairs of
solutions exist in the SUð2Þ ×Uð1Þ electroweak theory
[52–54], in the Goldstone model with an isovector scalar
field [55] and in the Euclidian SUð2Þ Yang–Mills theory
[56]. These axially-symmetric configurations represent a
deformation of the topologically trivial sector, a saddle
point solution (sphaleron). Coupling to gravity yields an
additional attractive effect in the system, introducing more

5The same mechanism works for other models with more
complicated matter fields [39].

6Notably, there is a very special class of self-dual solitons
whose energy of interaction is always zero for any separation
between the solitons.
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intricate patterns in the solution space of self-gravitating
bound pairs of solitons, see Refs. [57–61].
The main purpose of this paper was to provide a deeper

study of DBS solutions. This type of solutions likely
provides the simplest example of composite configurations
in a field theory coupled with gravity. In (electro-)vacuum
GR, the two BH solution is plagued by conical singularities
[62], except in the extremal case, that yields a no-force
condition and connects to supersymmetry and BPS bounds
[63,64]. The existence of the DBSs shows that the situation
can be different for (rather simple) field theory models, also
admitting self-gravitating solitons.
The simple effective model based on (1.2), managed to

reproduce some features of DBSs. However, it suggests that
these solutions could be dynamically stable, whereas the
study in [65] has unveiled they are unstable. This is most
likely due to the point particle approximation. The two
centers in the DBSs are extended objects with a more
complicated dynamics. This discussion suggests, nonethe-
less, that the dynamical properties of DBSs can be made
more robust by making each center more compact (and
hence point like). This is precisely the effect of introducing
a (repulsive) self-interaction. Preliminary results indeed
show this can improve the dynamical robustness of DBSs
(as for other excited BSs [13,66]) and we expect to report
on this soon.
If would be interesting to see if the DBSs allow for BH

generalizations. For a single, spherically symmetric BS, the
answer is negative, as shown by the results in Ref. [67].
Although the arguments in [67] do not seem to possess a
simple extension for DBSs, it is likely that also in this case
there are no BHs. For example, when assuming the
existence of a power series expansion of the solutions in
the vicinity of the event horizon, one finds that the scalar
field vanishes order by order, as implied by the regularity

assumption. However, rotation allows for a loophole, the
nonzero scalar field at the horizon being anchored to the
synchronization condition ω ∼ΩH (with ΩH the event
horizon velocity). Indeed, solutions of the Einstein-scalar
field equations with an event horizon inside a single
spinning BS [68] or a spinning DBS [69] are known
to exist.
Finally, let us remark that similar two-center solitonic

solutions in equilibrium exist in the Einstein-(complex,
massive)-Proca model [65], and deserve an analogous
detailed study.
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