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The Schrödinger-Newton model describes self-gravitating quantum particles, and it is often cited to
explain the gravitational collapse of the wave function and the localization of macroscopic objects.
However, this model is completely nonrelativistic. Thus, in order to study whether the relativistic effects
may spoil the properties of this system, we derive a modification of the Schrödinger-Newton equation by
considering certain relativistic corrections up to the first post-Newtonian order. The construction of the
model begins by considering the Hamiltonian of a relativistic particle propagating on a curved background.
For simplicity, the background metric is assumed to be spherically symmetric, and it is then expanded up to
the first post-Newtonian order. After performing the canonical quantization of the system, and following
the usual interpretation, the square of the module of the wave function defines a mass distribution, which in
turn is the source of the Poisson equation for the gravitational potential. As in the nonrelativistic case, this
construction couples the Poisson and the Schrödinger equations and leads to a complicated nonlinear
system. Hence, the dynamics of an initial Gaussian wave packet is then numerically analyzed. We observe
that the natural dispersion of the wave function is slower than in the nonrelativistic case. Furthermore, for
those cases that reach a final localized stationary state, the peak of the wave function happens to be located
at a smaller radius. Therefore, the relativistic corrections effectively contribute to increase the self-
gravitation of the particle and strengthen the validity of this model as an explanation for the gravitational
localization of the wave function.
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I. INTRODUCTION

The Schrödinger-Newton (SN) equation [1] describes
nonrelativistic quantum objects under self-gravitation. In
this model, the Schrödinger equation is coupled to a
Newtonian gravitational potential term, which, in turn,
is sourced by the mass density given by the square of
the module of the wave function. Therefore, contrary to the
usual Schrödinger equation, this system is nonlinear. The
SN equation was first proposed to study self-gravitating
bosonic stars [2]. However, interesting applications of this
equation to describe the gravitational collapse of the wave
function and the decoherence of macroscopic objects have
also been proposed later [3,4].
Despite its nonlinearity, the SN system has been shown

to have an infinite family of defined stationary states with
negative energies [5]. These eigenstates have been explicitly
found both numerically [5–8] and with approximate ana-
lyticalmethods [9]. The studies of the dynamical evolution of
a general wave packet given by the SN equation have been
mostly based on numerical methods due to the complexity of
the nonlinear system (see, e.g., Refs. [8,10–15]). In general,

in this dynamical scenario, two regimes can be distinguished
depending on the features of the initial state.On the one hand,
there is the weak self-gravitational regime, where the natural
quantum spreading of the wave function dominates. In this
regime, thewave function evolves similarly to, but somehow
slower than, a free particle. On the other hand, there is the
case dominated by self-gravitation, or, as we will refer to it,
the strong self-gravitational regime. In this latter regime, the
wave function tends to decay into its corresponding ground
state through the so-called gravitational cooling [10,11].
Furthermore, certain modifications of the SN equation

have also been studied in the literature. For instance, a dark-
energy term was coupled to this equation in Refs. [9,16].
The addition of dark energy changes the eigenstates of
the Hamiltonian, as well as the dynamical evolution of the
wave function, but the main features of the model are
kept intact.
All in all, theSNequation is a promising effectivemodel to

describe macroscopic quantum objects, which are expected
to be well localized. Nonetheless, due to the Newtonian
treatment of the gravitational interaction, relativistic effects,
which could strengthen or undermine the validity of this
model, are completely missing from this picture. In fact,
the Newtonian limit of fully relativistic self-gravitating
models, like the Einstein-Klein-Gordon system, has been
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analyzed [10], and certain variations of the Klein-Gordon
equation with a Newtonian gravitational potential have been
proposed [17]. In addition, there are studies in which
relativistic and gravitational corrections from external fields
are considered in the usual Schrödinger equation [18,19],
though discarding the self-gravitational interaction. In
Ref. [20], the SN equation was derived in the context of
the gravitoelectromagnetism approximation to general rela-
tivity. While this approximation includes the relativistic
corrections produced by the gravitomagnetic vector potential
up to first post-Newtonian (1PN) order (that is, up to order
c−2, with c being the speed of light), other terms of the same
order are excluded. Therefore, the main goal of the present
paper is to construct a model that describes the SN system
with the 1PN relativistic corrections given by nonlinear terms
of the Newtonian potential and kinetic energies, which
have not been previously considered, and to determine the
physical consequences of such corrections on the dynamics
of the wave packets.
For such a purpose, we will first derive the Hamiltonian

of a relativistic particle propagating on a curved back-
ground. After assuming spherical symmetry, and perform-
ing a post-Newtonian expansion of the metric in inverse
powers of the speed of light up to the order c−2, the basic
variables will be promoted to operators, and the canonical
quantization of the Hamiltonian will be performed. In this
way, we will obtain the Schrödinger equation with rela-
tivistic corrections, which will depend on a certain
Newtonian gravitational potential. This potential will then
be assumed to obey the Poisson equation with a mass
density given by the probability distribution of the particle.
This procedure will lead to a closed nonlinear system of
equations. We will then analyze the dynamics of an initial
Gaussian state given by these equations of motion, and
obtain the physical effects produced by the relativistic
correction terms by comparing this evolution with the one
given by the usual nonrelativistic SN system.
The paper is organized as follows: In Sec. II, the SN

equation with relativistic corrections up to the first post-
Newtonian order is derived. Section III presents the
analysis of the dynamics of an initial Gaussian wave
packet. In Sec. IV, we summarize and discuss the main
physical results of the model. Finally, in Appendix A we
include a description and some technical aspects of the
numerical methods used to solve the equations, while in
Appendix B we present the results found with a modified
version of the Poisson equation.

II. RELATIVISTIC CORRECTIONS ON THE
SCHRÖDINGER-NEWTON EQUATION

This section is divided into three subsections. In Sec. II A,
the Hamiltonian of a relativistic particle propagating on a
certain curved background is obtained. In Sec. II B, a post-
Newtonian expansion of the Hamiltonian is considered up to
1PN order. Finally, in Sec. II C, the canonical quantization of

the system is performed in order to obtain the Schrödinger-
Newton equation with relativistic corrections.

A. Hamiltonian of a relativistic
particle on curved backgrounds

The action of a particle with mass m propagating on a
spacetime described by the metric tensor gμν is given by

S ¼
Z

dsLðxμ; _xμÞ; ð1Þ

with the Lagrangian

Lðxμ; _xμÞ ¼ −mcð−gμν _xμ _xνÞ1=2; ð2Þ

where xμ ¼ xμðsÞ is the trajectory of the particle, and the
dot stands for a derivative with respect to the parameter s.
In this setup, all four coordinates xμ ¼ ðx0; x1; x2; x3Þ are
dynamical variables. For convenience, we will also use the
notation x0 ≔ ct for the time coordinate. In order to obtain
the Hamiltonian, one first needs to define the conjugate
momenta,

pμ ≔
∂L
∂_xμ

¼ mc

ð−gαβ _xα _xβÞ1=2
gμν _xν: ð3Þ

It is easy to check that these momenta are not independent,
since they obey the constraint

pμpμ þm2c2 ¼ 0: ð4Þ

This constraint is first class, and it is related to the
reparametrization invariance of the system, that is, the
freedom to choose the parameter s. By performing a
Legendre transformation and following the usual Dirac
procedure for constrained systems, which states that one
should add the different constraints multiplied by certain
Lagrange multiplier to the Hamiltonian, one then finds the
generalized Hamiltonian,

C ¼ α

2
ðpμpμ þm2c2Þ; ð5Þ

with the Lagrange multiplier α. The equations of motion
can be readily obtained by computing the Poisson brackets
between the different variables and the Hamiltonian,

_xμ ¼ fxμ; Cg ¼ αgμνpν; ð6Þ

_pμ ¼ fpμ; Cg ¼ −
α

2
pαpβ

∂gαβ

∂xμ
: ð7Þ

Note that the Hamiltonian (5) is vanishing on shell, and its
canonical quantization would lead to the Klein-Gordon
equation. Instead, in order to construct our model, we will
fix the gauge before quantization by imposing the condition
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x0 ¼ cs, or equivalently t ¼ s, on the time coordinate.
The conservation of this condition all along the evolution,
_x0 ¼ c, establishes the value α ¼ c=ðg0μpμÞ for the
Lagrange multiplier. The gauge-fixing procedure is then
completed by solving the constraint (4) to write the
conjugate momentum p0 in terms of the other variables.
This leads to the Hamiltonian

H ≔ −cp0 ¼
cffiffiffiffiffiffiffiffiffiffi
−g00

p
�
m2c2 þ

�
gij −

1

g00
g0ig0j

�
pipj

�
1=2

þ c
g0i

g00
pi; ð8Þ

where we have chosen the positive sign in front of the
square root in order to get the correct sign in the non-
relativistic limit, and latin letters stand for spatial indices
running from 1 to 3. Now, the dynamical variables are the
three spatial coordinates xi, for which we will also use
the notation x ≔ ðx1; x2; x3Þ, and the equations of motion
take the form

_xi ¼ cðg00H − cg0kpkÞ−1ðg0iH − cgijpjÞ; ð9Þ

_pi ¼
1

2
ðg00H − cg0kpkÞ−1

×

�
H2

∂g00

∂xi
− 2cHpj

∂g0j

∂xi
þ c2pjpl

∂gjl

∂xi

�
: ð10Þ

B. Parametrized post-Newtonian formalism

In the nonrelativistic limit, every metric theory of gravity
can be written in terms of small deviations from the
Newtonian gravitational equations. The post-Newtonian
framework encompasses the mathematical tools used for
this purpose. An especially useful setup is the so-called
parametrized post-Newtonian formalism [21], which enc-
odes these deviations using explicit parameters. These
parameters have specific physical meaning, as they
describe different properties of the spacetime, and their
numerical values are fixed by the particular theory of
gravity under consideration.
However, there is nothing like a parametrized post-

Newtonian formalism for a generic spacetime. In order
to construct such a framework, one needs to assume certain
particular physical scenario with corresponding symmetries
and, more importantly, a specific matter content. The usual
parametrized post-Newtonian formalism is written for a
perfect fluid, which is a suitable assumption for most
applications, and it is described in terms of ten real-valued
parameters along with the same number of metric potentials
that obey Poisson-like equations. This formalism includes
all possible 1PN-order terms in the metric. However, the
resolution of such a system is very complicated due to the
large number of equations involved. In addition, since our

goal is to describe the evolution of a mass density given by
the norm of the wave function, in order to apply the
complete formalism, one would need to define different
kinematic and thermodynamic quantities (like the velocity,
the pressure, the internal energy…) in terms of the wave
function, as well as the equation of state of such a fluid, and
such definitions might not be obvious. Therefore, we leave
the construction and analysis of the complete framework
for future work. Here, in order to construct the simplest
possible model that encodes the 1PN corrections that only
involve the Newtonian potential, we will assume the
same metric as considered by Eddington, Robertson, and
Schiff [21], which describes a spherically symmetric
vacuum spacetime. By doing so, we are neglecting all
other post-Newtonian potentials. Some of these potentials
are related to the velocity of the fluid, while others are
sourced by thermodynamic magnitudes as the pressure or
the internal energy. Therefore, our formalism will be valid
near the equilibrium and as long as such termodynamic
quantities do not have a large impact on the dynamics.
Finally, let us comment that, instead of using the para-
metrized post-Newtonian framework to study the relativ-
istic effects, another alternative would be to consider the
metric obtained from the expansion of the Einstein-Klein-
Gordon system presented in Ref. [22], which leads to the
SN system.
In the coordinates centered at the gravitational source,

the components of the Eddington-Robertson-Schiff
metric are

g00 ¼ −
�
1þ 2

Φ
c2

þ 2β
Φ2

c4

�
þOðc−5Þ;

g0i ¼Oðc−4Þ;

gij ¼
�
1− 2γ

Φ
c2

�
qij þOðc−3Þ; ð11Þ

where qij is the three-dimensional Euclidean metric, Φ is
the Newtonian gravitational potential, and the truncation
order is chosen so that all the components of the line
element gμνdxμdxν are accurate up to an order c−2. In
particular, this differs from the gravitoelectromagnetism
approximation used in Ref. [20], which does not include
the quadratic term Φ2 in the expansion of the g00 compo-
nent of the metric. Note that this metric depends on the two
parameters β and γ. The parameter β describes how
nonlinear the superposition law for gravitational fields is,
whereas γ is related to the spatial curvature. Both of them
have fixed values for any given theory of gravity and, in the
particular case of general relativity, β ¼ γ ¼ 1. However, in
order to track their contribution along the different equa-
tions, we will keep them explicitly and only replace them
by their value in general relativity β ¼ γ ¼ 1 for the
numerical implementation that will be performed in the
next section.
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It is now straightforward to obtain the components of the
inverse metric,

g00 ¼ −
�
1 − 2

Φ
c2

− ð2β − 4ÞΦ
2

c4

�
þOðc−5Þ;

g0i ¼ Oðc−4Þ;

gij ¼
�
1þ 2γ

Φ
c2

�
qij þOðc−3Þ; ð12Þ

with qij being the inverse Euclidean metric, that is,
qijqjk ¼ δik. By placing these elements of Eq. (12) into
Eq. (8), and performing an expansion in inverse powers
of c, the Hamiltonian up to 1PN order is found to be

H ¼ mc2 þ p2

2m
þmΦþ m

2c2
ð2β − 1ÞΦ2

þ ð2γ þ 1Þ
2mc2

Φp2 −
p4

8m3c2
þOðc−3Þ; ð13Þ

with p2 ≔ pipjqij. The first term is the rest energy of the
particle and will be absorbed simply by redefining the
origin of the energy. The second and third terms are,
respectively, the Newtonian kinetic and potential energies.
The last three terms are thus the relativistic corrections,
which are essentially the three possible quadratic combi-
nations of the Newtonian kinetic and potential energies.
That is, the term that depends on β is quadratic on the
potential energy and, as commented above, represents how
nonlinear the superposition of potential energies is, which
is exactly linear in the Newtonian regime. The term
parametrized by γ shows a coupling between the potential
and kinetic energies, while the last term is quadratic in the
kinetic energy and encodes the usual relativistic correction
to the kinetic energy. These relativistic terms are not present
in the Hamiltonian obtained in the context of the grav-
itoelectromagnetism approach [see Eq. (30) of Ref. [20] ],
while in contrast, the geometromagnetic potential vector is
absent from our Hamiltonian, since it corresponds to one of
the neglected post-Newtonian potentials.

C. Canonical quantization

In order to perform the canonical quantization of the
system, the classical position xi and momentum pi vari-
ables are promoted to quantum operators xi → x̂i and
pi → p̂i. These operators do not commute,

½x̂i; p̂j� ¼ iℏδij; ð14Þ

and they act on states of a given Hilbert space H. For any
two vectors φ;ϕ ∈ H, the inner product of this space will
be defined as

hφ;ϕi ¼
Z
R3

φðx; tÞϕðx; tÞ ffiffiffi
q

p
d3x; ð15Þ

with the overline denoting the complex conjugate and q
being the determinant of the three-dimensional Euclidean
metric. Note that, in curved spacetimes, instead of the “flat”
measure

ffiffiffi
q

p
d3x, one sometimes considers the volume

element
ffiffiffi
g

p
d3x, with g being the determinant of the spatial

metric gij, to define the corresponding inner product. If the
metric gij is time independent, both quantization schemes
will lead to unitary equivalent theories. Nonetheless, if the
metric gij is time dependent, the inner product given byffiffiffi
g

p
d3x will also be time dependent, and thus the evolution

of the wave function as given by the corresponding
Schrödinger equation will not automatically define an
isometry between Hilbert spaces. Therefore, it turns out
to be more convenient to use the flat inner product as
defined above.
In this representation, the position operator x̂i will act as

a multiplication operator—that is, x̂iφ ≔ xiφ—whereas the
action of the momentum operator will be defined as p̂jφ ≔
−iℏq−1=4∂jðq1=4φÞ for any φ ∈ H. These operators obey
the above commutation relations (14) and are both
Hermitian under the inner product (15). Apart from this,
in order to obtain the explicit action of the quantum
Hamiltonian operator, one needs to decide the ordering
of the basic operators in the different terms of the
expression (13). In particular, the terms p2, Φp2, and p4

are sensitive to ordering ambiguities, since in those terms
position and momenta variables appear coupled. The
Hermiticity of the Hamiltonian requires a symmetric
ordering of the basic operators. Therefore, for our model,
we will choose, on the one hand, p2 to be written as
q−1=4piq1=4qijq1=4piq−1=4 so that its quantization leads
to the covariant expression p̂2 ≔ −ℏ2Δ ¼ −ℏ2qij∇i∇j,
with Δ being the flat Laplacian operator and ∇i being
the covariant derivative associated with the Euclidean
metric qij. In addition, p4 will simply be understood as
ðp2Þ2. On the other hand, the term Φp2 will be quantized
as ðp̂2ΦþΦp̂2Þ=2. This is certainly an arbitrary choice,
but it has a nice feature: as shown in Ref. [18], the
Hamiltonian operator obtained by the present canonical
quantization is equivalent to the one found by considering
the nonrelativistic limit of the Einstein-Klein-Gordon
equation. In this way, the Hamiltonian operator takes thus
the explicit form

Ĥ ¼ −
ℏ2

2m
ΔþmΦðxÞ þmð2β − 1Þ

2c2
Φ2ðxÞ

−
ℏ2ð2γ þ 1Þ

4mc2
ðΦðxÞΔþ ΔΦðxÞÞ − ℏ4

8m3c2
ΔΔ; ð16Þ

and the dynamics of the wave function ψ ¼ ψðt;xÞ is ruled
by the Schrödinger equation,
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iℏ
∂ψ

∂t
¼ Ĥψ : ð17Þ

Now, in order to solve this equation, one needs to
provide the Newtonian potential Φ. In our case, we will
assume that the source of this potential is the particle itself,
since, due to its quantum character, its exact position is not
well defined, but instead, it is given in terms of the
probability distribution jψðx; tÞj2. Therefore, following this
interpretation, mjψðx; tÞj2 defines a mass density, which in
turn produces the gravitational potential Φ as given by the
Poisson equation,

ΔΦ ¼ 4πGmjψ j2: ð18Þ

Hence, the system of Eqs. (17) and (18) is closed, and it
describes the evolution of a self-gravitating spherically
symmetric quantum particle, taking into account the rela-
tivistic effects given by the Newtonian potential up to an
order c−2. However, following the basic principles of
relativity, one also would expect that not only the mass
density, but also the energy density of the gravitational
field should source the Poisson equation. In particular,
in Refs. [23,24] it was argued that a consistent self-
coupling of the energy density leads to the equation
Δð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φþ c2

p
Þ ¼ 2πGρ

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φþ c2

p
. Expanding this expression

in inverse powers of c, one gets the modified form of the

Poisson equationΔΦ ¼ 4πGρð1þ Φ
c2Þ þ

ð∇ΦÞ2
2c2 at 1PNorder.

For the numerical resolution of the system, we have also
considered this form of the Poisson equation and find out that
the qualitative results do not differ much from the ones
obtained with Eq. (18). Therefore, from now on we will
consider that the potential Φ obeys Eq. (18). The subtle
differences introduced by the modified Poisson equation are
commented on in Appendix B.
Due to the symmetry of the system, it is natural to choose

spherical coordinates in such a way that all the functions
only depend on the radius r and time t—i.e., ψ ¼ ψðr; tÞ
and Φ ¼ Φðr; tÞ. In these coordinates,

ffiffiffi
q

p ¼ r2 sin θ, and
the inner product (15) between two vectors of the Hilbert
space, φ and ϕ, takes the form

hφ;ϕi ¼ 4π

Z
∞

0

φðr; tÞϕðr; tÞr2dr: ð19Þ

Thus, for convenience, we will define the radial wave
function χ ≔ 2

ffiffiffi
π

p
rψ , with its normalization simply

given by
R∞
0 jχj2dr ¼ hψ ;ψi ¼ 1 and with a clear physical

interpretation: jχj2dr provides the probability to find the
particle between a radius r and rþ dr. In this way, the
Schrödinger-Newton system [Eqs. (17) and (18)] up to 1PN
order takes the explicit form

iℏ
∂χ

∂t
¼ −

ℏ2

2m
∂
2χ

∂r2
þmΦχ −

ℏ4

8m3c2
∂
4χ

∂r4

þmð2β − 1Þ
2c2

Φ2χ −
ℏ2ð2γ þ 1Þ

4mc2

×

�
∂
2Φ
∂r2

χ þ 2
∂Φ
∂r

∂χ

∂r
þ 2Φ

∂
2χ

∂r2

�
; ð20Þ

∂

∂r

�
r2
∂Φ
∂r

�
¼ Gmjχj2: ð21Þ

It is straightforward to check that in the limit c → ∞, all
relativistic correction terms vanish, and one recovers the
usual SN system in spherical symmetry:

iℏ
∂χ

∂t
¼ −

ℏ2

2m
∂
2χ

∂r2
þmΦχ; ð22Þ

∂

∂r

�
r2
∂Φ
∂r

�
¼ Gmjχj2: ð23Þ

The main goal of the following section is to check the
physical effects of the relativistic correction terms. However,
the above equations are highly coupled, and it is very difficult
to obtain any analytical information from them. Therefore,
for such a purpose, we will consider a certain initial wave
packet and numerically check the differences between
the evolution provided by the 1PN-relativistic [Eqs. (20)
and (21)] and the nonrelativistic [Eqs. (22) and (23)] SN
systems. Since we are assuming that the relativistic correc-
tions are small, they will be interpreted as perturbations.
Therefore, we will also refer to Eqs. (20) and (21) as the
perturbed system, and to Eqs. (22) and (23) as the back-
ground system. In this respect, it is important to note that the
perturbed system is of higher order in radial derivatives than
the background one. Therefore, this is a singular perturbation
problem, and there might be solutions to Eqs. (20) and (21)
that do not tend to a solution of the background system in
the limit c → ∞. As will be discussed below, this kind of
solution will be avoided by imposing appropriate boundary
conditions to the perturbed system that are obeyed in a
natural way by all the solutions of the background equations.

III. EVOLUTION OF A GAUSSIANWAVE PACKET

This section is divided into four subsections. In Sec. III A,
we present the initial Gaussian state and the boundary
conditions to be considered for the numerical integration.
In Sec. III B, a dimensionless version of the system is
constructed, so that the number of parameters is reduced
to the minimum required. Section III C then discusses the
possible ranges that can be chosen for these parameters and
defines the set of cases that will be studied in order to analyze
in an efficient way a large section of the parameter space.
Finally, in Sec. III D, the obtained physical results are
discussed.
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A. Initial and boundary conditions

For the numerical study, we will choose a spherical
Gaussian wave packet centered at the origin as the initial
state for the wave function ψ . This choice is taken due to its
spherical symmetry and its usual interpretation in quantum
mechanics as the minimal uncertainty state, in the sense
that it saturates the Heisenberg relation with the same
uncertainty for both position and momentum variables.
Furthermore, several studies in the literature (see, e.g.,
Refs. [8,10–15]) have also used an initial spherical
Gaussian wave packet to study the SN equation numeri-
cally, which will allow us to perform a direct comparison
with the results obtained in the present work. Therefore, the
initial profile of the radial wave function reads

χðr; 0Þ ¼ 2
ffiffiffi
π

p
rψðr; 0Þ ¼ 2r

ðπσ6Þ1=4 e
− r2

2σ2 ; ð24Þ

with σ being the standard deviation of the initial state,
which will also be referred to as the Gaussian width. Note
that the peak (the maximum) of this function is located at
r ¼ σ, which defines the mode of the initial probability
distribution jχj2dr, and thus the most probable position of
the particle. Once this initial state is chosen, the initial form
of the gravitational potentialΦðr; 0Þ is not free, and one can
find it by solving the elliptic equation (21),

Φðr; 0Þ ¼ c1 þ
c2
r
þ Gm

r
erfðr=σÞ; ð25Þ

where c1 and c2 are integration constants, and erf is the
error function.
Concerning the boundary conditions, first of all, to avoid

irregularities at the origin and to ensure a finite norm of
the wave function, the radial wave function χ has to vanish
both at the origin and at infinity—i.e., χðr ¼ 0; tÞ ¼ 0 ¼
χðr ¼ ∞; tÞ. In a similar way, the gravitational potential
needs to be regular at the origin, which is translated to the
condition ∂rΦðr; tÞjr¼0 ¼ 0 and implies c2 ¼ 0. In addition,
in order to obtain aNewtonian behavior at long distances, the
Robin boundary condition ∂rΦðr; tÞ ¼ −Φðr; tÞ=r will be
imposed at r → ∞, and thus c1 ¼ 0. These four boundary
conditions are enough to solve the background system in
Eqs. (22) and (23), but since the perturbed SN equation (20)
contains up to fourth-order radial derivatives of χ, to
solve the perturbed system in Eqs. (20) and (21), one needs
to impose two further boundary conditions on χ. In
particular, as already commented above, we will choose
these two new boundary conditions for the perturbed
problem as relations that are automatically satisfied by
the background system. In this way, we will obtain a
solution that can be considered a perturbation in the sense
that it will tend to a background solution as c → ∞. More
precisely, taking the limit r → 0 on the background SN
equation (22), along with the condition χðr ¼ 0; tÞ ¼ 0,

leads to the identity ∂
2
rχðr; tÞjr¼0 ¼ 0, which is obeyed

by all background solutions. Furthermore, applying the
second derivative with respect to r to both sides of
the background SN equation (22), and considering the
above conditions for the radial wave function and
gravitational potential at the origin, the relation
∂
4
rχðr; tÞjr¼0 ¼ 0 is obtained. Therefore, the two further
boundary conditions to implement on the perturbed
system will be the vanishing of the first two even
derivatives of the radial wave function—that is,
∂
2
rχðr; tÞjr¼0 ¼ 0 ¼ ∂

4
rχðr; tÞjr¼0.

B. Dimensionless version of the system

In the perturbed SN system [Eqs. (20) and (21)], there are
many coupling constants and parameters that obscure the
meaning of each term. In order to facilitate the analysis of
these equations, wewill perform a nondimensionalization of
the system so that the number of parameters and constants
involved is reduced to the minimum required. First, we will
fix the parameters β and γ to their corresponding values in the
theory of general relativity—that is, β ¼ 1 ¼ γ. Next, mak-
ing use of the physical parameters of the particlem and σ, in
combination with the Planck constant ℏ, it is possible to
define the following dimensionless coordinates:

τ ≔
ℏ

σ2m
t; ρ ≔

r
σ
: ð26Þ

Note, in particular, that these are the only dimensionless
coordinates one can construct without making use of the
constantsG and c, and thus they are also natural coordinates
for the nonrelativistic ðc → ∞Þ and the free-particle (G → 0)
cases. Concerning the dependent variables, χ and Φ, it is
straightforward to define their dimensionless versions as

Sðρ; τÞ ≔ ffiffiffi
σ

p
χðρ; τÞ; Vðρ; τÞ ≔ σ

Gm
Φðρ; τÞ: ð27Þ

The interpretation of these functions is clear: jSðρ; τÞj2dρ
provides the probability of finding the particle between a
radius σρ and σðρþ dρÞ, while V is the ratio between the
potentialΦ and the Newtonian potential generated by a point
mass m at a distance σ.
Finally, the constants G and c will be absorbed by

considering the following two dimensionless coupling
constants:

λ ≔
ℏ2

8m2c2σ2
¼ 1

8

�
mP

m

�
2
�
lP
σ

�
2

; ð28Þ

κ ≔
Gm3σ

ℏ2
¼

�
m
mP

�
3
�
σ

lP

�
; ð29Þ

where the Planck mass mP and length lP have been
introduced in order to have a reference of the magnitude
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of these quantities. Performing all the above changes, the
relativistic SN system [Eqs. (20) and (21)] is rewritten into
its dimensionless form as

i
∂S
∂τ

¼ −
1

2

∂
2S
∂ρ2

þ κVS − λ
∂
4S
∂ρ4

þ 4λκ2V2S

− 6λκ

�
∂
2V
∂ρ2

Sþ 2
∂V
∂ρ

∂S
∂ρ

þ 2V
∂
2S
∂ρ2

�
; ð30Þ

∂

∂ρ

�
ρ2

∂V
∂ρ

�
¼ jSj2: ð31Þ

For completeness, we also provide here the initial and
boundary conditions we have commented on in the
previous subsection for this dimensionless system:

Sðρ; 0Þ ¼ 2

π1=4
ρe−

ρ2

2 ; ð32Þ

Sð0; τÞ ¼ 0; Sð∞; τÞ ¼ 0;

∂
2
ρSðρ; τÞjρ¼0 ¼ 0; ∂

4
ρSðρ; τÞjρ¼0 ¼ 0; ð33Þ

∂ρVðρ; τÞjρ¼0 ¼ 0; ∂ρVðρ; τÞjρ¼∞ ¼ −
Vðρ; τÞ

ρ

����
ρ¼∞

:

ð34Þ

In this way, the only free parameters of Eqs. (30)
and (31) are the coupling constants λ and κ. On the one
hand, up to a global numerical factor, the parameter λ is the
ratio between the expectation value of the kinetic energy of a
spherical Gaussian wave packet hp2i=ð2mÞ ¼ 3ℏ2=ð4mσ2Þ
and its rest energy mc2. This coupling constant represents
the strength of the relativistic effects, and λ ¼ 0 corresponds
to the Newtonian (c → ∞) limit. On the other hand, the
parameter κ is proportional to the ratio between the
expectation values of the Newtonian gravitational energy
hGm2=ri ¼ 2Gm2=ð ffiffiffi

π
p

σ) and of the kinetic energy
hp2i=ð2mÞ for a spherical Gaussian wave packet.
Therefore, κ encodes the self-gravitational effects, and the
limit κ ¼ 0 represents the free-particle (G ¼ 0) case. Note
also that these coupling constants contain information not
only of the universal constants G, ℏ, and c, but also of
properties of the particle. In particular, once themassm of the
particle and its initial width σ are chosen, the parameters κ
and λ are fixed. Hence, the two-dimensional parameter space
of the model can be equivalently coordinatized by ðm; σÞ
or ðλ; κÞ.
It is interesting to note that relativistic and self-gravita-

tional effects have a different tendency with the mass and
the width of the particle: while increasingm and σ increases
the value of κ, it decreases the value of λ. For instance, to
give an idea of the order of magnitude of the different terms
in Eq. (30), for a proton κ ≈ 10−36 and λ ≈ 10−7, for the

He atom κ ≈ 10−31 and λ ≈ 10−13, while, for a large atom
like, for instance, Hg, one gets κ ≈ 10−25 and λ ≈ 10−18,
where we have taken σ as the characteristic diameter
of each object. For all these examples, the term κλ is
approximately of the same order of magnitude κλ≈
10−43–10−44, and the coefficient λκ2 ∝ m4 does not depend
on σ but simply increases with the mass of the particle.
Hence, as expected, all these terms are extremely small for
usual particles and atoms. However, since our aim is to test
numerically their physical effects, we will need to assume
larger values than the commented ones for the coupling
constants; otherwise, the numerical error will completely
hide the effects under study. Therefore, let us first analyze
the validity of the model and check what are the admissible
ranges of values for the different parameters.

C. Validity of the model and studied cases

The model has been constructed by considering a post-
Newtonian expansion and dropping terms of an order
higher than 1=c2. Thus, to describe accurately the physical
system under consideration, all relativistic correction terms
must be small. Since the functions S and V are dimension-
less and normalized (their values are of order 1), taking into
account the coefficients of the relativistic terms that appear
in the SN equation [Eq. (30)], a sensitive choice of bounds
for the positive parameters λ and κ are given by the
following three conditions: κ2λ≲ ϵ, κλ≲ ϵ, and λ≲ ϵ,
with ϵ being a small positive constant. It is easy to see
that the second condition is redundant, which leaves only
two independent bounds: κ2λ≲ ϵ and λ≲ ϵ. These con-
ditions can be translated to bounds for the mass m and
the initial width σ of the particle: m≲ ð8ϵÞ1=4mP and
mσ ≳ ð8ϵÞ−1=2mPlP. In particular, this means that, in order
to keep the perturbative terms small, the mass of an initial
wave packet is bounded from above. However, note that
this bound is very large: even if this model were valid only
up to a very small value of ϵ—say, for instance, ϵ ≈ 10−20,
the upper bound of the mass would be around 10−5mP. In
Fig. 1, the regions of the planes (λ, κ) and (m, σ) satisfying
the discussed conditions are shown for the particular value
of ϵ ¼ 0.02. Therefore, any system with the values (λ, κ) or
(m, σ) lying in those regions could be described by the
present model, whereas for a system with values outside
these regions, one would need to consider higher-order
post-Newtonian correction terms.
In order to analyze the parameter space in the most

efficient way, we will choose a particle of fixed mass
and then change its width σ in the range of its allowed
values. Since we want the relativistic effects to be as large
as possible while respecting the bounds given above, the
mass will be chosen of the same order of magnitude as
the maximum allowed mass. For concreteness, if we set
ϵ ¼ 0.02 for our practical purposes, the conditions for
the mass m and the width σ read m≲ 0.63mP and
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mσ ≳ 2.5mPlP. Therefore, we will choose a particle with
a fixed mass m ¼ 0.45mP, and its width σ will then
need to obey σ ≳ 5.6lP. Starting from this minimum
value, we will increase σ following the red line shown
in Fig. 1. For the different values of ðm; σÞ, we will
numerically solve the perturbed system [Eqs. (30)
and (31)] as well as its background version, which is
obtained just by setting λ ¼ 0 in Eq. (30), and compare
the differences in the evolution of the wave function.
These differences will thus be the relativistic 1PN effects.
The technical details about the numerical methods are
presented in Appendix A.

D. Results and discussion

Since the relativistic effects considered in our numerical
study are small, the observed evolution of the system is
quite similar for both relativistic and nonrelativistic sys-
tems. Let us thus begin this section by providing a
qualitative description of the dynamics, which applies to
both cases.
Note that in Fig. 1, the validity regions of the model

commented above have been colored, either in orange or
blue, depending on whether the corresponding κ is larger or
smaller than a certain value κc. This critical value separates
two qualitatively distinct evolutions of the wave packet.
On the one hand, small values of κ define the weak self-
gravitational regime, where the gravitation is not large
enough to counteract the natural dispersion of the wave
function. In this case, the wave function evolves in a similar
fashion as in the free-particle case, but slower due to the
gravitational attraction. On the other hand, one can define

the strong self-gravitational regime, where self-gravitation
fully compensates the quantum spreading of the wave
function. In this regime, the wave packet oscillates around
an equilibrium point, and it eventually decays to a sta-
tionary state. During this process, known as gravitational
cooling, part of the probability is slowly radiated away to
infinity, while the amplitude of the oscillations decreases
until the wave function becomes completely stationary [8].
The transition between these two regimes is quite sharp and
approximately happens at the value κc ≈ 1.48. This precise
value for κc has been obtained in numerical analyses of the
nonrelativistic SN equation [12]. However, one can provide
a heuristic derivation, based on the Newtonian escape
velocity, which can be helpful for understanding the
underlying physics.
Let us define the velocity of the particle as

v ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2=m2i

p
. For the initial state (24), it is then

straightforward to obtain the corresponding initial velocity
v ¼ ffiffiffiffiffiffiffiffi

3=2
p

ℏ=ðmσÞ. Further, the escape velocity for a
particle located at a distance ασ from a central mass M
is given by ð2GM=ðασÞÞ1=2. In the SN model, this central
mass and the position of the particle are related with M
being the mass located in the interior of the sphere of
radius ασ—that is, M ¼ m

R
ασ
0 jχj2dr, which, for the initial

state, takes the explicit form M ¼ mðerfðαÞ − 2ffiffi
π

p αe−α
2Þ.

The escape velocity is thus a function of α, and it is possible
to see that it reaches its maximum value at α ≈ 1.51.
Requesting then that this maximum escape velocity be
equal to the initial velocity, and taking into account the
definition (29), one obtains the critical value for
κ ¼ κc ≈ 1.43, which approximates very well the numerical

FIG. 1. In these plots, we show the parameter space of the model, both in the representation given by the couple ðλ; κÞ and ðm; σÞ.
The regions where the model is valid (that is, where κ2λ≲ ϵ and λ ≲ ϵ are obeyed) for the particular choice ϵ ¼ 0.02 are bounded by
black continuous lines. Note that the upper boundary in both graphs is represented as a dotted line, since it is not an actual limit, and
the region of possible states continues beyond. The allowed regions are colored either in orange or blue, which correspond to states
with strong (κ > κc) or weak (κ < κc) self-gravitational interaction, respectively. The discontinuous black line κ ¼ κc ≈ 1.48
separates both regimes. Finally, the red dot-dashed line shows the particles with fixed mass m ¼ 0.45mP, which are the ones
considered for the numerical study.
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value mentioned above. Therefore, for κ < κc, the initial
velocity exceeds the local escape velocity at all radii ασ.
Following this interpretation, in this weak self-gravitational
regime, the particle can escape to infinity no matter what is
its actual initial position. Thus, the wave function will
disperse, tending to a flat curve, which will imply a
decrease of its kinetic energy hp2=ð2mÞi and an increase
on the uncertainty of the position.
Concerning the strong self-gravitational regime, as

already commented above, the wave function tends to a
stationary state. However, there is a particular value κeq for
which the peak (the maximum of the norm of the wave
function) of the initial state is already at its equilibrium
position. Let us obtain an estimation for this value. In the
stationary state, the virial theorem should be obeyed, which,
for the nonrelativistic SN system, reads 2K −Q ¼ 0 with
K ≔ hp2=ð2mÞi and Q ≔ hmr dΦ

dri. Computing these
expectation values for the initial state (24), it is easy to find
that K ¼ 3ℏ2=ð4mσ2Þ and Q ¼ Gm2=ð ffiffiffiffiffiffi

2π
p

σÞ. Therefore,
considering again the definition (29), the virial theorem is
obeyed by the initial Gaussian wave packet if
κ ¼ κeq ≔ 3

ffiffiffiffiffiffiffiffi
π=2

p
≈ 3.76. In this case, the peak simply

oscillates around its initial position ρ ¼ 1. The equilibrium
value κeq separates two qualitative behaviors. On the one
hand, if κc < κ < κeq, the kinetic energy dominates
ð2K −Q > 0Þ, and the system begins to expand by moving
the peak of thewave function to larger radii. After expanding,
it will start oscillating around its equilibrium radius ρ > 1.
On the other hand, if κeq < κ, the potential term dominates
ð2K −Q < 0Þ, and the initial evolution of the system is a
collapse to smaller radii. In this latter case, the peak of the
wave function will end up oscillating around certain ρ < 1.
As already commented above, the described qualitative

picture is unchanged when considering small relativistic
corrections. Now, in order to analyze and discuss the

specific effects produced by the relativistic terms, we will
first consider the weak and afterwards the strong self-
gravitational regimes. At this point, it is important to recall
that all the presented simulations correspond to a particle
with fixed mass m ¼ 0.45mP and varying width σ > 3.5lP.
Note that, for this set of states, increasing σ corresponds to
increasing κ (29) and to decreasing λ (28). In fact, from the
above value for κc, one can define the critical value
σc ≈ 16.2lP, so that narrow states ð3.5lP < σ < σcÞ are
in the weak self-gravitational regime, while wide states
ðσc < σÞ follow the strong self-gravitational behavior.

1. Weak self-gravitational regime ðκ < κc;σ < σcÞ
Concerning the nonrelativistic evolution of the wave

function, in this weak self-gravitational regime, and in
accordance with other studies in the literature (see, e.g.,
Refs. [12,13,15]), we observe that the initial state evolves
qualitatively as a free particle, except for the dispersion
velocity, which is slightly lower. Considering the evolution
of the same initial wave packet under the relativistic system
[Eqs. (30)–(31)], the wave function is observed to be
spreading even slower, while still keeping the dispersive
tendency. In order to show the differences between the
relativistic and nonrelativistic cases, in Fig. 2 the profile of
the probability distribution jSj2 is plotted at different times.
As time passes by, in both cases the bell shape of the
probability distribution is kept, while the peak (the maxi-
mum of jSj2), initially located at ρ ¼ 1, moves to larger
radii, and its width (standard deviation) increases.
However, it is clearly seen that in the relativistic case, this
dispersive process is slower.
In addition, in Fig. 2, the evolution of the ratio between

the expectation value of the kinetic energy and the kinetic
energy of the initial state RðτÞ ≔ 2σ2

3ℏ2 hp2i ¼ − 2
3

R∞
0 dρS̄ ∂

2S
∂ρ2

is shown. In both relativistic and nonrelativistic cases,

FIG. 2. The plot on the left shows the profile of the probability distribution jSj2 at different times for the evolution given by the
relativistic (orange solid line) and nonrelativistic (blue dashed line) SN systems. The initial state at τ ¼ 0 is the same for both
cases, a spherical Gaussian wave packet with mass m ¼ 0.45mP and width σ ¼ 10lP, and its corresponding profile is represented
by the black dotted line. The plot on the right corresponds to the evolution of the ratio between the expectation value of the kinetic
energy and the kinetic energy of the initial state RðτÞ for the relativistic (orange solid line) and nonrelativistic (blue dashed
line) cases.
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(a)

(c)

(b)

FIG. 3. Evolution of the position of the peak of the wave function ρpeakðτÞ for three different initial states. In each case, the evolution
under the nonrelativistic SN equation is shown on the top with a blue curve. On the bottom, with an orange curve, the evolution given by
the SN equation with relativistic corrections (SNRC) is depicted. The horizontal dashed lines represent the corresponding mean value of
the position ρ̄peak.
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the expectation value of the kinetic energy is maximum for
the initial state, and it decreases, as evolution goes on,
tending to zero in the τ → ∞ limit. But this decrease is
observed to be faster in the relativistic case. Therefore, one
can state that in this regime the relativistic corrections slow
down the dynamics of the wave function.

2. Strong self-gravitational regime ðκ > κc;σ > σcÞ
In order to describe the dynamics in this regime, we will

consider the evolution of the position of the peak (the
maximum of the module of the wave function) ρpeakðτÞ.
This function follows a damped oscillatory behavior,
slowly tending to its equilibrium value in the limit
τ → ∞, and it encodes the dynamical information about
the approach of the wave function to its final stationary
state. In particular, it is very convenient to define its mean
value as ρ̄peak ≔ 1=ðτf − τiÞ

R τf
τi ρpeakðτÞdτ, with τi and τf

being the initial and final values of τ for the corresponding
numerical evolution, respectively. This mean value is not
the exact final equilibrium point, since the oscillations are
not completely regular. However, by performing long
numerical evolutions (in our case, we have considered
up to τf − τi ¼ 500), it provides a very good approximation
of the equilibrium position. In addition, the irregularity of
the oscillations also makes it difficult to calculate its
frequency (it is not constant, it rather changes over time),
but it is possible to discuss it at a qualitative level.
Regarding the nonrelativistic evolution in the strong

self-gravitational regime, the results we have obtained are
in complete agreement with the ones presented in the
literature (see, e.g., Refs. [8,10–15]). As already described
above, the position of the peak ρpeak oscillates around a
fixed radius, while the amplitude of these oscillations
decreases, following a pattern of gravitational cooling.
The amplitude of these oscillations depends on the specific
width of the state σ, and thus on the value of κ. In particular,
it is observed to be minimum around σ ≈ 38lP, which
corresponds to κ ≈ 3.5, and it increases for both wider and
narrower states. Note that this value is very close to the κeq
derived above making use of the virial theorem, and thus
represents the case where the initial position of the peak is
already at its equilibrium point, which explains the small
amplitude of the oscillations.
As can be seen in Fig. 3, where the nonrelativistic and

relativistic evolution of the peak of the wave function is
shown for some characteristic examples, the evolution of
the same initial states under the SN equation with relativ-
istic corrections [Eqs. (30) and (31)] leads to the same
gravitational cooling pattern. However, there are three main
effects produced by the relativistic terms. First, regardless
the value of κ, in all the studied cases we observe a
reduction of around 5% of the mean value of the position of
the peak ρ̄peak as compared to the nonrelativistic evolution.

For instance, in the particular cases depicted in Fig. 3, the
mean value of the peak is reduced from ρ̄peak ¼ 1.36 to
ρ̄peak ¼ 1.26 in the case with σ ¼ 30lP, from ρ̄peak ¼ 0.94
to ρ̄peak ¼ 0.90 for σ ¼ 40lP, and from ρ̄peak ¼ 0.76 to
ρ̄peak ¼ 0.74 for σ ¼ 50lP. This means that the oscillations
are taking place around a smaller radius. In fact, the peak of
the final stationary state will be approximately located at
this position, and thus we conclude that the relativistic
corrections produce a more compact stationary state.
Second, as can be seen in the plots shown in Fig. 3, the
amplitude of the oscillations is modified: for κ ≲ κeq, the
amplitude decreases when considering relativistic effects,
while for κ ≳ κeq, it increases. The third feature concerns
the frequency of the oscillations. Excluding the states with
a value of κ around κeq, the frequency of the oscillations
increases when relativistic corrections are taken into
account. Furthermore, and particularly for very large values
of κ, the envelope of the oscillations also shows a larger
frequency for the relativistic case. Therefore, in this sense,
the relativistic system evolves more rapidly than the non-
relativistic one.
In order to interpret these effects, let us make an analogy

with the much simpler system given by a damped harmonic
oscillator. On the one hand, in such a system the amplitude of
the oscillations is proportional to the initial deformation, and
it is exponentially modulated in terms of the corresponding
friction parameter. Therefore, the greater the initial defor-
mation, the larger the amplitude of the oscillations. In our
system, this initial deformation can be defined as the differ-
ence between the equilibrium point and the initial position
of the peak ρpeakð0Þ ¼ 1. Since, as commented above, the
equilibrium point for the relativistic case is always smaller
than in the nonrelativistic case, the corresponding initial
deformations are different, which explains the observed
behavior. More precisely, for κ ≲ κeq, the initial deformation
for the relativistic system is smaller than for the nonrelativ-
istic system, leading to smaller oscillations. For κ ≳ κeq, just
the opposite occurs: a larger initial relativistic deformation
produces oscillations with a larger amplitude. On the other
hand, if the harmonic oscillator is driven by an external
gravitational field, its frequency is proportional to the square
root of the local gravitational acceleration, and thus, the
increase of such accelerationwould produce an enhancement
of the frequency. In conclusion, all these effects are in
complete accordancewith the interpretation of the relativistic
terms effectively producing a stronger self-gravitational
interaction.

IV. CONCLUSIONS

In this article, we have presented a modification of the
Schrödinger-Newton equation considering certain relativ-
istic corrections to test whether this model is still a valid
approach to explain the localization of the wave function
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when relativistic effects are not negligible. For such a
purpose, we have started from the Hamiltonian of a particle
propagating on a curved background. Then, making use of
the parametrized post-Newtonian formalism and assuming
spherical symmetry for the background, we have performed
an expansion of the Hamiltonian in inverse powers of
the speed of light up to the 1PN order—that is, up to the
order c−2. In order to obtain a simple framework, as a first
approximation to the complete picture, we have only
considered the terms given by the Newtonian potential,
and thus other post-Newtonian potentials have been
neglected. Next, by promoting the basic variables and
their conjugate momenta to operators, we have carried out
the canonical quantization of the system. At this point, the
gravitational potential appears as a free function in the
corresponding Schrödinger equation. Therefore, imposing
that there is no other source to the potential than the self-
gravitation of the particle itself, and as it is done in the usual
nonrelativistic model, a mass density has been defined in
terms of the square of the module of the wave function.
This mass density sources the Poisson equation, which, in
turn, defines the gravitational potential. This procedure has
completed the construction of the Schrödinger-Newton
model with relativistic corrections up to the 1PN order.
The dynamics of the wave function and the gravitational
potential is thus described by the nonlinear coupled system
of differential equations [Eqs. (17) and (18)].
Due to the complexity of those equations, we have studied

the dynamical evolution of initial Gaussian wave packets
using numerical techniques. This initial state is completely
characterized by two parameters: the mass of the particle m
and theGaussianwidthσ. It is interesting to note that,making
use of these parameters, in combination with universal
constants, it is possible to obtain the dimensionless version
of the system [Eqs. (30) and (31)]. As can be seen, written
in this form, there are only two dimensionless coupling
constants, κ and λ, which weight the strength of the self-
gravitational and the relativistic effects, respectively. In order
to make the relativistic effects larger than the numerical error
while still keeping them small enough that they can be
interpreted as perturbations,wehave chosen a relatively large
mass of the particle. For concreteness, this mass has been
kept fixed for the different numerical simulations, while the
initial width of the state has been varied. This has allowed us
to explore distinct interesting regions of the parameter space.
In order to get a clear picture about how relativistic

corrections influence the dynamics, we have compared the
evolution of the chosen states under both the relativistic and
the nonrelativistic Schrödinger-Newton equations. As is
well known from previous analysis of the nonrelativistic
system, two regimes can be distinguished depending on the
value of the parameter κ—or, equivalently for the set of
(fixed-mass) states we have considered, on the initial width
σ. In the weak self-gravitational regime, the wave packet

disperses as for the free-particle case, but more slowly. In
contrast, in the strong self-gravitational regime, the wave
packet oscillates around a certain fixed radius, slowly
decaying into a stationary state. On the one hand, we have
observed that, in the weak self-gravitational regime, the
dispersion of the wave packet is slower under the presence
of relativistic correction terms. On the other hand, in the
strong self-gravitational regime, the most relevant effect of
the relativistic terms is a reduction of the equilibrium radius
around which the peak of the wave function oscillates.
In particular, this behavior indicates that the wave function
will eventually settle into a more compact stationary state. In
addition, the frequency of the oscillations is increased,
producing, in this sense, a faster evolution of the relativistic
system, while the change in the amplitude depends on the
specific value of the initial width. All in all, one can state that
relativistic terms effectively increase the self-gravitation of
the particle and thus reinforce the validity of the Schrödinger-
Newton model as an explanation for the localization of
quantum states by gravitational collapse. A similar result
was found in Ref. [20], where the relativistic effects
produced in this system by the gravitomagnetic vector
potential were studied.
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APPENDIX A: NUMERICAL METHOD

In order to obtain a numerical solution to the nonlinear
coupled system of Eqs. (30) and (31), we have used the
algebraic computational software Mathematica. In this
code, the module NDSolve, included in the usual dis-
tribution, is the standard numerical solver. However, it is
unable to solve such complicated systems without previous
simplifications. Therefore, we have implemented the
numerical method of lines. This method consists in
reducing a partial differential equation to a coupled system
of N ordinary differential equations. The method has been
applied as follows: First, we have split the wave function
into its real and imaginary parts as Sðρ; τÞ ¼ Fðρ; τÞþ
iIðρ; τÞ. In this way, Eq. (30) has been divided into its real
and imaginary parts as well. The gravitational potential
Vðρ; τÞ is real, and thus no such decomposition is neces-
sary. Next, an evenly distributed grid for the spatial
coordinate ρn ¼ nΔρ with n ¼ 0;…; N and a fixed Δρ
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have been defined. At each point of the grid, one
can then define the three functions FnðτÞ ≔ Fðρn; τÞ,
InðτÞ ≔ Iðρn; τÞ, and VnðτÞ ≔ Vðρn; τÞ, which only
depend on τ. Finally, the different partial differential
equations have been rewritten in a finite difference
approach at each point of the grid, making use of the
NDSolve‘FiniteDifferenceDerivative exten-
sion of Mathematica, which replaces each derivative
by the best finite difference approach up to the desired
order of accuracy. The boundary conditions and the
initial conditions have also been discretized using
NDSolve‘FiniteDifferenceDerivative. This
completes the procedure and replaces the coupled system
of partial differential equations (30) and (31) by an
approximate coupled system of 3N ordinary differential
equations in τ.
Furthermore, one needs to take into account that the

numerical solution can only be obtained in a finite domain
of the variables τ and ρ. Hence, to avoid reflections on the
numerical boundary ρ ¼ ρN, we have used a complex

absorbing potential (CAP) as in other similar studies
(see, for instance, Refs. [8,10,11]). The CAP method is
based on adding an imaginary dispersive term on the
considered Schrödinger-like equation. This term is
expected to disperse the wave function in a limited region
near the numerical boundary (the so-called sponge), leav-
ing the dynamics on the remaining domain (physical
region) unchanged. For this reason, it has to be dominant
in the sponge, while being negligible in the physical region.
A widely used CAP is given by

i
V0

2
tanh

�
ρ − ρc

ξ

�
; ðA1Þ

where V0 provides a reference scale for this term, ρc is the
critical dimensionless radius determining the limit of the
physical region, and ξ is related to the smoothness of
the transition. These three parameters are to be optimized
for each model.

FIG. 4. The probability density for a free particle is depicted for different values of time. The analytical solution (orange solid
line), the numerical solution with the CAP (blue dashed line), and the numerical solution without the CAP (yellow dot-dashed line)
are plotted.

FIG. 5. On the left-hand side, the probability density of a spherical Gaussian wave packet of width σ ¼ 10lP under the SN equation
with relativistic corrections is shown at a time τ ¼ 15, when the wave packet hits the numerical boundary. On the right-hand side, the
evolution of the peak of a spherical Gaussian wave packet of width σ ¼ 30lP under the SN equation with relativistic corrections is
depicted. In both cases, the solid orange line corresponds to the solution with the CAP and the dashed blue line to the solution without
the CAP.
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In this project, different values for the parameters have
been tested, comparing the numerical and the exact
analytical solutions to the Schrödinger equation for a free
particle. In this case, the optimal parameters have been
found to be V0 ¼ 1, ρc ¼ 16, and ξ ¼ 3. With these values,
the numerical solution reproduces the analytical solution
exactly, while without the CAP, the reflection on the
numerical boundary induces spurious oscillations on the
result. This comparison can be seen in Fig. 4. In addition,
the same values for the parameters have been tested for the
Schrödinger-Newton equation with relativistic corrections.
Although in this case the numerical solution could not be
compared to an analytical solution, when using the CAP,
a reduction of some small oscillations originating in the
boundary is observed. The comparison of the dynamics
with and without the CAP in the weak and strong self-
gravitational regimes is illustrated in Fig. 5.
Once the spurious numerical boundary effects are under

control, the command NDSolve has been used to solve the
system of ordinary differential equations for each FnðτÞ,
InðτÞ, and VnðτÞ. Finally, the solutions for each point of
the spatial grid have been combined to produce the final
numerical results Sðρ; τÞ and Vðρ; τÞ using interpolation.

APPENDIX B: ALTERNATIVE MODIFICATIONS
OF THE POISSON EQUATION

As already mentioned in the text, in order to take into
account both mass and energy densities as gravitational
sources, some studies [23,24] proposed a modified Poisson
equation that, at 1PN order, reads

ΔΦ ¼ 4πGρ

�
1þ Φ

c2

�
þ ð∇ΦÞ2

2c2
:

In this appendix, we numerically study whether these
modifications affect the results of our model. First, using
the definitions in Eqs. (26)–(29), we rewrite this modified
Poisson equation into its dimensionless form

∂

∂ρ

�
ρ2

∂V
∂ρ

�
¼ jSj2 þ 8κλjSj2V þ 4κλρ2

�
∂V
∂ρ

�
2

: ðB1Þ

Hence, the new system under study is given by the
two equations (30) and (B1), along with the initial con-
dition (32) and the boundary conditions (33) and (34).
The dynamics of a wave packet under the modified

Poisson equation is qualitatively similar to the one given by
the usual Poisson equation. In fact, in the weak self-
gravitational regime, the difference is inappreciable. The
wave function spreads more slowly than for the non-
relativistic SN system, but equally as fast as in the
relativistic case (see Fig. 6). Conversely, in the strong
self-gravitational regime, there are some small differences
between the results, but they are qualitatively identical, as
can be seen in Fig. 7. The main feature that stands out is
that the mean value of the position of the peak of the wave
function increases slightly. However, despite this growth,
this mean value is still smaller than for the nonrelativistic
case, and thus the interpretation that the relativistic effects
effectively produce a stronger self-gravitation stands.

FIG. 6. The plot shows the profile of the probability distribution
jSj2 at different times for the evolution given by the non-
relativistic SN system (blue dashed line) and the relativistic
SN system with the usual Poisson equation (orange solid line).
The green dot-dashed line represents the evolution of the
relativistic SN system with the modified version of the Poisson
equation (B1). Note that the difference between the two relativ-
istic evolutions is extremely small. The initial state at τ ¼ 0 is the
same for all cases, a spherical Gaussian wave packet with mass
m ¼ 0.45mP and width σ ¼ 10lP, and its corresponding profile is
represented by the black dotted line.
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