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Comparing different dark matter (DM) models, we explore the DM influence on black hole (BH)
accretion disk physics, considering corotating and counterrotating thick accretion tori orbiting a central
spinning BH. Our results identify accretion onto a central BH as a good indicator of DM presence,
signaling possible DM tracers in accretion physics. We analyze accretion around a spinning BH immersed
in perfect-fluid dark matter, cold dark matter and scalar field dark matter. Our investigation addresses
observational evidence of distinctive DM effects on toroidal accretion disks and protojet configurations,
proving that BH accretion tori immersed in DM can present characteristics, such as interdisk cusp or double
tori, which have usually been considered as tracers for superspinars and naked singularity attractors.
Therefore, in this context DM influence on the BH geometry could manifest as superspinar mimickers. DM
also affects the central spinning attractor energetics associated with accretion physics, and its influence on
accretion disks can be searched for in a variation of the central BH energetics as an increase of the mass
accretion rates.
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I. INTRODUCTION

In this work we study the dark matter (DM) influence on
black hole (BH) accretion disk physics, investigating the
accretion disk morphology for corotating and counter-
rotating geometrically thick accretion tori orbiting a central
spinning BH. Comparing three different DM models, our
analysis points out possible observational evidence of
distinctive DM effects on the accretion disks, which can
be traces of DM presence. Our investigation does not cover
all the admissible parametric DM values for the deformed
metrics, but, taking into account constraints formerly
obtained by the study of orbits, DM-BH shadows, and
emission spectra, we perform a comparative analysis of the
DMmodels and an investigation of the constraints imposed
on the accretion disks aimed at further restricting the
parameter range and pointing out possible marks of DM
in some accretion features. From a methodological view-
point we take advantage of the axial symmetry of DM
metrics, studying fully general relativistic models of sta-
tionary toroidal orbiting configurations.
The physics of accretion disks around BHs and super-

massive black holes (SMBHs), hosted in quasars and active
galactic nuclei, powers the most energetic processes of our
Universe, which are often accompanied by an ejection of
matter in jetlike structures with extremely large radiative
energy output. We investigate the DM effects on these
aspects, focusing on SMBH at the center of galaxies and the
accretion disks empowering the emissions. We analyze in
particular the limiting situation of static (and spherically

symmetric) background (with spin parameter a ¼ 0) and
the DM deformation on the Kerr extreme BH spacetime
(with spin value a ¼ M), seeing significant qualitative
detectable variations with respect to the standard vacuum
BH case. Many astrophysical observations lead to a SMBH
hosted at the Galactic Center embedded in a DM halo, and
in metric models considered here the central BH is
surrounded by a DM envelope that modifies the geometry
around the BH, not interacting directly with the accreting
matter or its radiation.
More generally, there is a large amount of observational

evidence of the presence of some kind of DM component in
our Universe, for example, from the galactic rotation curves
and galaxy cluster dynamics. However, within the variety
of different observations indicating a DM presence, there is
no single metric that encompasses all the DM effects in a
single model and that could also explain the absence of DM
observed at different scales.1 In this work we consider a
spinning BH immersed in perfect-fluid DM (PFDM) [4–7],
cold dark matter (CDM), and scalar field dark matter
(SFDM) [8,9].
These DM models have been extensively studied in the

recent literature. The PFDM model was considered in [5]

1An important issue is then the mass (or space) scale when DM
effects became significant. For example, DM results missing in
some galaxies (e.g., AGC 114905 [1,2]), and an explanation for
this situation is that the Galaxy may have been stripped of dark
matter from nearby massive galaxies, while the DM presence in
the Solar System is still an open problem [3].
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and the effects of PFDM on particle motion around a static
BH in an external magnetic field were studied in [10]. The
shadow of the spinning BH in PFDM was studied in [4],
whereas in [6] geodesic motion in PFDM Kerr and Kerr–
anti–de Sitter/de Sitter BH were studied; see also [7].
For studies of the geodesic in the Kerr–de Sitter spacetimes,
see [11–15]. In [16] superradiance and the stability of Kerr
DM enclosed by anisotropic fluid matter were studied.
Spinning BH solutions with quintessential energy were
discussed in [17]. In [8] a BH in a DM halo was considered.
Rotating black holes with an anisotropic matter field was
considered in [18], while in [9] there is a discussion of the
BH shadow of Sgr A* in a DM halo. Superradiance and
instabilities in BHs surrounded by anisotropic fluids were
considered in [19]. Galactic dark matter in the phantom
field model was considered in [20]. The case of rotating
(Kerr) naked singularities was treated in [21–24]. Here we
focus on the influence of DM on BHs governing toroidal
accretion structures.
There is an extensive literature exploring the DM effects

on the BH and BH accretion physics. Since DM influences
different aspects of the singularity, from the characteristics
of the horizon (for example, it can manifest itself in the BH
shadows) to the energetics properties of the surrounding
matter, there are various assessments of the DM effects and
parameter constraints on the models describing DM pres-
ence around BHs. In [25], for example, DM clouds of
axions around BHs were studied with superradiant insta-
bilities and accretion, which could manifest on the gravi-
tational-wave signal induced by a small compact object in
the field of the central BH; see also [26,27]. More recently
[28] the formation of SMBHs at high redshifts was studied
in connection with ultralight DM; see also [29,30] for a
growth of accretion driven scalar DM hair around a Kerr
BH. The DM effect on the quasinormal modes of massless
scalar field and electromagnetic field perturbations in a BH
spacetime surrounded by PFDM was considered in [31].
An analysis of DM in the M87 core in relation to BH
shadow effects was presented in [32] (see also [33]), and
shadows of a Sgr A* BH surrounded by a superfluid
DM halo was studied in [34], and the shadow from a
charged rotating BH in the presence of PFDM is explored
in [35].
The DM candidates are many, including string and brane

theory effects, boson clouds, hypothetical new particles,
primordial BHs, and alternative theories of gravity.2 From
an observational viewpoint, dark matter can be detected
from the products of its decay or annihilation in cosmic
rays, gamma rays, neutrinos, or even gravitons (see also
[37]), and gravitational-wave and neutrino astronomy can

then open different windows into the DM analysis.3 DM
comprehension, particularly that focused on subgalactic
DM halos, is also a goal of the Webb Telescope.4

Nevertheless, despite the variety of DM models, the
standard cosmological model is in fact the ΛCDM, which
includes a cosmological constant (Λ) (with negative pres-
sure) encoding dark energy in empty space (or vacuum
energy) that explains the Universe accelerating expansion.
(In this scenario the effects of the cosmological constant are
also treated as quintessence.5) Polytropic models of DM
halos in ΛCDM cosmology were individuated in [45]. In
this model, the DM velocity is less than the speed of light
(in this respect neutrinos component are excluded, as they
are nonbaryonic but not necessarily cold), and it is
dissipationless, as it is not cooled by radiating photons.
CDM may be constituted by hypothetical weakly interact-
ing massive particles, primordial BHs, or axions.
Although considered a DM standard model, CDM is not

exempt from various problems, emerging, for example,
from the observations of galaxies and galaxy clusters and
clusterization emerging from rotation curves and morpho-
logical studies (such as the cuspy halo problem). There is
also a more general problem in describing the effects and
presence of DM at large and small scales. The CDM model
therefore collides with small-scale structure observations.
For all these reasons the search for alternative DM models
is still an open challenge, and in this respect the SFDM
model seems to adapt to both large-scale and small-scale
structure observations, while the PFDM seems capable of
explaining the asymptotically flat rotation velocity charac-
terizing spiral galaxies.
In this analysis we study geometrically thick accretion

disk models, Polish doughnuts (PDs), which orbit the
central attractor and whose center coincides with the
equatorial plane of the central axisymmetric attractor
[46–50]. These thick accretion tori are characterized by
very high (super-Eddington) accretion rates and high
optical depth. Torus morphology and stability are essen-
tially governed by the pressure gradients on the equatorial
plane [46]. The thin (Keplerian) disks can be considered
PD limiting configurations regulated by the background
geodesic structure. The DM background metric has a
characteristic geodetic structure constituting the first major
constraint on accretion physics. The tori described by
purely hydrodynamic (barotropic) models are governed

2Dark matter was also explained with diffuse clouds of scalar
bosons interacting with gravity and gravitational waves. How-
ever, recent results in [36] set constrains on this hypothesis,
showing that there are no young scalar boson clouds in our
Galaxy.

3Concerning possible DM constituents and their presence in
our Galaxy, we mention that the DM Milky Way has been
recently studied in [38,39], whereas DM and primordial BHs are
studied in [40,41]. Constraints on DM rule out BHs constituting
only a very small possible fraction of dark matter. Finally, a
hypothesis suggesting that antimatter and DM are linked was
recently studied in [42], posing limits on the interaction of
antiprotons with axionlike DM; see also [43].

4See https://jwst.nasa.gov.
5See [44] for a recent analysis constraining the fraction of early

dark energy that was present in the early stages of the Universe.
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by the equipressure surfaces that can be closed, giving
stable equilibrium configurations, or open, giving unstable,
jetlike (protojet) structures caused by the relativistic insta-
bility due to the Paczynski mechanism, where the effects of
strong gravitational fields are dominant6 with respect to the
dissipative ones and predominant to determine the unstable
phases of the systems [53–60].
Many features of the torus dynamics and morphology,

like their thickness, their stretching in the equatorial plane,
and the location of the tori, are predominantly determined by
the geometric properties of spacetime via a fluid effective
potential function. Consequently, in models where
DM is geometrized as a metric deformation, DM has a
clear impact on the torus structure, modifying the fluid
effective potential. The gradients of the effective potential on
the torus equatorial and symmetry plane regulate the
pressure gradient of the fluid in the Euler law governing
dynamics of the perfect fluid [50]. The special case of
cusped equipotential surfaces is related to the accretion
phase in the central attractor [46,47,50,59,61]. The outflow
of matter through the cusp occurs due to an instability in the
balance of the gravitational and inertial forces and the
pressure gradients in the fluid, i.e., by the so-called
Paczynski mechanism of violation of mechanical equilib-
rium of the tori [47].
DM affects cusp formation and cusp location with

respect to the central singularity, modifying the disk
accretion throat, constraining the thickness of the accre-
tionary flow and the maximum amount of matter swal-
lowed by the central BH. Consequently, DM will influence
the energetic characteristics of the BH in accretion and the
disk characteristics, such as accretion rates and cusp
luminosity [62–64].
The article is organized as follows: Thick disks in axially

symmetric spacetimes are discussed in Sec. II. The Kerr
metric is introduced in Sec. II A. The Polish doughnut torus
models are detailed in Sec. II B. The fluid effective
potential is the subject of Sec. II B 1. The extended
geodesic structure constraining the torus modes is
explored in Sec. II B 2. Dark matter models are discussed
in Sec. III. In Sec. III A perfect-fluid dark matter is
considered. Cold and scalar field dark matter models are
studied in Sec. III B. Discussion and conclusions follow
in Sec. IV.

II. THICK DISKS IN AXIALLY SYMMETRIC
SPACETIMES

We study geometrically thick tori in axially symmetric
DM-BH spacetimes, considered as a DM-induced defor-
mation of the Kerr geometry. Therefore, it is useful here to
review the properties of the Kerr metric and the construc-
tion of tori in this geometry. More specifically, in Sec. II A
the Kerr metric is introduced, while the Polish doughnut
torus models are discussed in Sec. II B.

A. The Kerr metric

The Kerr metric is an axially symmetric, asymptotically
flat, vacuum exact solution of the Einstein equation describ-
ing the spacetime of central spinning compact object.
According to the metric parameter values (dimensionless
spin a=M), the Kerr metric describes naked singularities
(NSs) for a > M and BHs for a ∈ ½0;M�. The Kerr BH
geometry has the limiting static solution of Schwarzschild
for a ¼ 0 and the extreme Kerr BH spacetime for a ¼ M.
In the Boyer-Lindquist (BL) coordinates ft; r; θ;ϕg, the

metric tensor reads7

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ
�
ðr2 þ a2Þ þ 2Mra2

Σ
sin2θ

�
sin2θdϕ2

−
4rMa
Σ

sin2θdtdϕ; ð1Þ

where

Δ≡a2þr2−2rM; Σ≡a2ð1−σÞþr2; σ≡sin2θ; ð2Þ

with G ¼ c ¼ 1. The horizons r− < rþ are given, respec-
tively, by

r� ≡M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð3Þ

and the horizons can be found8 by solving the equation
a ¼ a� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð2M − rÞp
for r ∈ ½0; 2M�. The outer and

inner stationary limits r�ϵ (ergosurfaces) (solutions of
gtt ¼ 0) are, respectively,

6The timescale of the dynamical processes (regulated by the
gravitational and inertial forces) is much lower than the timescale
of the thermal ones (heating and cooling processes, radiation),
which is lower than the timescale of the viscous processes. The
entropy is constant along the flow and, according to the von
Zeipel condition, the surfaces of constant angular velocity Ω and
of constant specific angular momentum l coincide. This implies
that the rotation law l ¼ lðΩÞ is independent of the equation of
state [51,52].

7We adopt the geometrical units c ¼ 1 ¼ G and the
ð−;þ;þ;þÞ signature; latin indices run in f0; 1; 2; 3g. The
radius r has the unit of mass [M] and the angular momentum
has units of ½M�2. The velocities are ½ut� ¼ ½ur� ¼ 1 and
½uϕ� ¼ ½uθ� ¼ ½M�−1, with ½uϕ=ut� ¼ ½M�−1 and ½uϕ=ut� ¼ ½M�.
For the sake of convenience, we always consider the dimension-
less energy and effective potential ½Veff � ¼ 1 and an angular
momentum per unit of mass ½L�=½M� ¼ ½M�.

8Quantities a� and a�ϵ turn out to be very useful in the
comparison of DM solutions of Sec. III with respect to Kerr
solutions in the absence of DM.
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r�ϵ ≡M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2ð1 − σÞ

q
: ð4Þ

The ergosurfaces can be found by solving the equation
a ¼ a�ϵ ≡ a�=

ffiffiffiffiffiffiffiffiffiffiffi
1 − σ

p
(for σ ≠ 1), where rþ < rþϵ on θ ≠

0 and rþϵ ¼ 2M in the equatorial plane θ ¼ π=2 (σ ¼ 1).
Static observers with a four-velocity _θ ¼ _r ¼ _ϕ ¼ 0 [where
_q indicates the derivative of any quantity q with respect to
the proper time (for timelike particles) or a properly defined
affine parameter for lightlike orbits] cannot exist inside the
(outer) ergoregion,9 but trajectories _r ≥ 0, including par-
ticles crossing the stationary limit and escaping outside the
region r ≥ rþϵ , are possible.
The constants of the geodesic motions are

E ¼−ðgtϕ _ϕþ gtt_tÞ; L¼ gϕϕ _ϕþ gtϕ_t; gabuaub ¼−μ2;

ð5Þ

with10 ua ≡ f_t; _r; _θ; _ϕg. In Eqs. (5) the quantities E and L
represent the total energy and momentum of the test particle
coming from radial infinity, as measured by a static
observer at infinity.
The relativistic angular velocity and the specific angular

momentum are

Ω≡ uϕ

ut
¼ −

Egϕt þ gttL
Egϕϕ þ gϕtL

¼ −
gtϕ þ gttl
gϕϕ þ gtϕl

;

l≡ L
E
¼ −

uϕ
ut

¼ −
gϕϕuϕ þ gϕtut

gttut þ gϕtuϕ
¼ −

gtϕ þ gϕϕΩ
gtt þ gtϕΩ

; ð6Þ

respectively. The sign of LðlÞ defines the corotation/
counterrotation of the particles (fluid). The DM models
are axis symmetric and stationary and we similarly define
the notion of corotating and counterrotating motions.

B. Geometrically thick tori:
The Polish doughnut models

Our analysis specializes on the PD tori, general relativ-
istic hydrodynamic (GRHD) toroidal configurations cen-
tered on the central BH equatorial plane, which is
coincident with the torus equatorial symmetry plane.
These toroidal models are well known and are used in
different contexts. They are analytic and general relativistic
models defined and integrable in axis-symmetric space-
times, where the results known as the von Zeipel theorem

hold, ensuring the integration condition on the equations for
the fluid. For this reason we apply these results to the
stationary DM metric models here.11

Tori are composed of one particle-species perfect fluid,
where

Tab ¼ ðϱþ pÞuaub þ pgab ð7Þ
is the fluid energy-momentum tensor and ϱ and p are the
total energy density and pressure, respectively, as measured
by an observer moving with the fluid. The timelike flow
vector field ua denotes the fluid four-velocity. The fluid
dynamics is described by the continuity equation and the
Euler equation, respectively,

ua∇aϱþðpþϱÞ∇aua¼0; ðpþϱÞua∇aucþhbc∇bp¼0;

ð8Þ

where the projection tensor hab ¼ gab þ uaub and
∇agbc ¼ 0.
We assume a barotropic equation of state (EOS)p ¼ pðϱÞ

and that the stationary and axially symmetric matter dis-
tribution moves in circular trajectories. We investigate fluid
toroidal configurations defined by the constraint ur ¼ 0.
Similarly to the test particle circular motion, no motion is
assumed for the toroidal fluid in the θ angular direction, i.e.
there is uθ ¼ 0. Because of these symmetries, the continuity
equation is identically satisfied and the orbiting configura-
tions are regulated by the Euler equation for the pressure p
only, which can be written as

∂ap
ϱþp

¼−∂aWþ Ω∂al
1−Ωl

; with W≡ lnVeff and Veff ¼ut;

ð9Þ
where Veff is the torus effective potential. Tori are regulated
by the balance of the hydrostatic and centrifugal factors due
to the fluid rotation and by the curvature effects of the
background, which are encoded in the effective potential
function Veff .
Assuming that the fluid is characterized by the specific

angular momentum l constant (see also the discussion in
[51]), we consider the equation for W: lnðVeffÞ ¼ c ¼

9The ergoregion is the range ½r−ϵ ; rþϵ � (where r�ϵ are functions
of the plane σ ∈ ½0; 1�). Here we often intend the outer ergoregion
(or simply ergoregion) in the BH spacetimes as the region
�rþ; rþϵ �. Then, on the equatorial planes in the Kerr spacetime,
r−ϵ ¼ 0 and the outer ergosurface is rþϵ ¼ 2M.

10The other constant of geodesicmotion of theKerrmetric is the
Carter constantQ ¼ ðcos θÞ2½a2ðμ2 − E2Þ þ ð L

sin θÞ2� þ ðgθθ _θÞ2. In
this work, where tori share the symmetry plane with the equatorial
plane of the central BH, this constant is irrelevant.

11The toroids are constant pressure surfaces whose construc-
tion in the axis-symmetric spacetimes is based on the application
of the von Zeipel theorem, in which the surfaces of the constant
angular velocityΩ and the constant specific angular momentum l
coincide and the toroid rotation law l ¼ lðΩÞ is independent of
the details of the equation of state. More precisely, the von Zeipel
theorem reduces to an integrability condition on the Euler
equation, in the case of barotropic fluids, where l ¼ lðΩÞ.
Consequently, in the geometrically thick disks the functional
form of the angular momentum and entropy distribution during
the evolution of dynamical processes depends on the initial
conditions of the system and not on the details of the dissipative
processes [57].
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constant or Veff ¼ K ¼ constant. By setting l ¼ constant
as a torus parameter, the maximum density points in the
disk, the pressure gradients (from the Euler equation), are
determined by the gradients of the torus effective potential
function.12 The maximum points of the torus effective
potential as a function of the radial coordinate provide the
minimum points of pressure, where fluid particles are free
on unstable circular geodetic orbits.

1. The fluid effective potential

The fluid effective potential (9) is, explicitly [57,66],

V2
eff ¼

�
E
μ

�
2

¼ g2tϕ − gϕϕgtt
gϕϕ þ 2gtϕlþ gttl2

: ð10Þ

The extremes of the pressure are regulated by the angular
momentum distributions l�∶∂rVeff ¼ 0 on the equatorial
plane θ ¼ π=2 for corotating (−) and counterrotating (þ)
fluids, respectively.13

The torus cusp r× is the minimum point of pressure and
density in the torus corresponding to the maximum point of
the fluid effective potential. The torus center rcenter is the
maximum point of pressure and density in the torus
corresponding to the minimum point of the fluid effective
potential. At the cusp (r ≤ r×) the fluid may be considered
pressure-free. Fluid effective potential defines the function
KðrÞ ¼ VeffðlðrÞÞ. Cusped tori have a parameter in
the open ranges14 K¼K×≡Kðr×Þ∈�Kcenter;1½⊂�Kmso;1½,
where Kcenter ≡ KðrcenterÞ. [We adopt the notation q• ≡
qðr•Þ for any quantity q evaluated on a radius r•.]

2. Extended geodesic structure and notable radii

The geometry equatorial circular geodesic structure
constrains the accretion disk physics governing in the
PD model, the torus cusps, and the center locations. In
the Kerr geometry the geodesic structure constitutes the
marginally circular orbit for timelike particles r�mso, which
is also a photon circular orbit r�mco ≡ r�γ , the marginally
bounded orbit r�mbo, and the marginally stable circular orbit
r�mso [see Fig. 1].15 Radii fr�mso; r�mbo; r

�
mcog constrain the

location of the torus cusps (inner edges) with fluid specific
angular momentum l ¼ l�, respectively,

FIG. 1. Geodesic equatorial circular structure of the Kerr geometry for spin (left panel) a ∈ ½0;M� and (right panel) a > M, for
corotating [(−); red curves] and counterrotating [(þ); blue curves] orbits. Marginally stable orbits (mso) are displayed as solid curves,
marginally bounded orbits (mbo) are shown as dashed curves, and marginally circular orbits r�mco (which are also photon circular orbits)
are displayed as dotted curves. [Note that for a > M there is no last corotating circular orbit (i.e., r−mco ¼ 0).] Radius rþ is the outer
horizon, and rþϵ is the outer ergosurface on the equatorial plane. The black region is r < rþ, and the gray region is r ∈ ½rþ; rþϵ � for Kerr
BHs and r ∈ ½0; rþϵ � for Kerr NSs. On radii r�0 (black dashed curve, right panel) L ¼ 0 (where L is the test particle angular momentum),
and on radii r�δ (black curve, right panel) E ¼ 0 (where E is the test particle energy).

12The procedure adopted here borrows from the Boyer theory
on the equipressure surfaces applied to a thick torus [57,65]. The
Boyer surface tori are given by the surfaces of constant pressure.

13Note that, in the test particle analysis and accretion torus
models for slowly spinning NSs (a ∈�M; 1.29M½), there are
circular geodesic orbits with ðE < 0;L < 0Þ and ðE > 0;L <
0Þ on the equatorial plane of the ergoregion; see Fig. 1. These
solutions correspond to the relativistic angular velocity (the
Keplerian velocity with respect to static observers at infinity
Ω ¼ dϕ=dt) Ω > 0. Therefore, in this sense, they are all
corotating with respect to the static observers at infinity, but
they can be counterrotating according to L < 0 and l < 0 or
counterrotating according to L < 0 but corotating according to
l > 0. There can also be orbits with l ¼ Ω ¼ 0; see, for
example, [22,67–72]. This possibility has not been discussed
in the analysis of DM models.

14The notation is as follows: the (closed) interval between
quantities ql and qr, including ql and qr, is denoted as ½ql; qr� ¼fq ∈ R∶ql ≤ q ≤ qrg, while the notation �ql; qr½¼ fq ∈ R∶ql <
q < qrg denotes the open interval. Similarly, �ql; qr� ¼fq ∈ R∶ql < q ≤ qrg and ½ql; qr½¼ fq ∈ R∶ql ≤ q < qrg.15In the Kerr spacetime r�mco is the marginal circular orbit (a
photon circular orbit) where timelike circular orbits can fill the
spacetime region r > r�mco. Stable circular orbits are in r > r�mso
for counterrotating and corotating test particles, respectively. The
marginal bounded circular orbit is r�mbo, where E�ðr�mboÞ ¼ 1.
More details and the exact forms of these radii can be found, for
example, in [68].
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where r�mco < r�mbo < r�mso < r�ðmboÞ < r�ðmcoÞ; ð11Þ

where we also introduced the radii ðr�ðmboÞ; r
�
ðmcoÞÞ, which

are defined as

r�ðmboÞ∶l
�ðr�mboÞ ¼ l�ðr�ðmboÞÞ≡ l�

mbo;

r�ðmcoÞ∶l
�ðr�mcoÞ ¼ l�ðr�ðmcoÞÞ≡ l�

mco;

which is significant since the radii govern the location of
the torus centers. More precisely, the ranges ðL1;L2;L3Þ
of the fluid specific angular momentum l govern the torus
topology, according to the geodesic structure of Eq. (11), as
follows.
L1.—For l ∈ L1 there are quiescent (i.e., not cusped)

and cusped tori where there is∓ L1
� ≡ ½∓ l�

mso;∓ l�
mbo½.

The cusp is r�× ∈�r�mbo; r
�
mso� (with K�

× < 1) and the center
with maximum pressure in r�center ∈�r�mso; r�ðmboÞ�.
L2.—For l ∈ L2 there are quiescent tori and protojets

(open configurations) where ∓ L2
� ≡ ½∓ l�

mbo;∓ l�
mco½.

The cusp r�× ∈�r�mco; r�mbo� is associated with the protojets,
with K× > 1, and the center with maximum pressure is in
r�center ∈�r�ðmboÞ; r

�
ðmcoÞ�. Protojets are associated with

(noncollimated) open structures, with matter funnels along
the BH rotational axis; see [58,73–75].
L3.—For l ∈ L3 there are only quiescent tori where ∓

L3
�≡ ∓ l ≥∓ l�

mco and the torus center is at
r�center > r�ðmcoÞ. In the metric models that we consider,

the DM affects the orbiting fluids modifying the Kerr
axially symmetric geometry and the fluid effective
potential; see also [76]. Therefore, we study the radii
limiting the torus construction, defined through the
fluid effective potential for the geometries modified by
the DM. More precisely, we identify the marginally circular
orbit r�mco as the radius r�mco∶K�ðrÞ ¼ ∞, the marginally
bounded orbit defined by r�mbo∶K�ðrÞ ¼ 1 (asymptoti-
cally flat spacetimes), and the marginally stable orbits
r�mso∶∂rl� ¼ 0.
The orbiting fluid is governed by the geodesic structure

of the considered spacetime. The tori are specified by the
profile of the distribution of the specific angular momentum
of the orbiting matter (in the equator) and its relation to the
radial profile of the specific angular momentum of equa-
torial circular geodesics. The so-called Keplerian distribu-
tion of the circular geodesic angular momentum related to a
given spacetime is generally given by the relation

l ¼ lK ≡
Φo ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦΦ2

ð−Þ
q
Φ⋆

; where Φð∓Þ ≡ g2tϕ ∓ gttgϕϕ; Φ≡ ðg0tϕÞ2 − g0ttg0ϕϕ;

Φo ≡ g0tϕΦðþÞ − gtϕðgϕϕgttÞ0; Φ⋆ ≡ g2tϕg
0
tt þ g2ttg0ϕϕ − gttðg2tϕÞ0; ð12Þ

for θ ¼ π=2, where the primes represent the derivative
with respect to r. The Keplerian profile intersection
with the torus profile determines centers and cusps of
the tori. In the standard Kerr spacetime it takes the well-
known form

lKðr; aÞ ¼ l∓ ≡ a3 ∓ r3=2Δ − að4M − 3rÞr
a2 − ðr − 2MÞ2r : ð13Þ

III. DARK MATTER MODELS

We analyze accretion tori orbiting spinning BHs with
spacetimes influenced by different DM models. The
metrics reduce, for some limiting values of the DM
parameters, to the Kerr BH geometry. Thus, using
Eq. (10) we consider the BH DM metric components
fgtt; gtϕ; gϕϕg in BL coordinates, and we refer the reader to
the literature for details on the metric tensor and the
geometry properties. We investigate the equatorial circular
geodesic structures for the fluid effective potential, the
effective potential function, and the torus structure for
corotating and counterrotating tori in three DM models:

In Sec. III A we address the PFDM model of [4]. Cold
and scalar field DM models of [8,9] are discussed in
Sec. III B.

A. Perfect-fluid dark matter

A rotating BH solution in PFDM was discussed in [4],
with

gtt ¼ −
�
1−

2Mr− fDðrÞ
Σ

�
; gtϕ ¼ −

σa½2Mr− fDðrÞ�
Σ

;

gϕϕ ¼ σ

�
a2σ½2Mr− fDðrÞ�

Σ
þ ða2 þ r2Þ

�
; ð14Þ

grr ≡ Σ
ΔD

; gθθ ¼ Σ;

where ΔD ≡ Δþ fDðrÞ and fDðrÞ≡ kr log
r
jkj : ð15Þ

See also [5–7], where k is the parameter describing
the intensity of the PFDM, set in the ranges
k ∈� − 7.18M; 2M½. For k ¼ 0 the line element reduces
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to the Kerr metric.16 The metric singularities r� defining
the DM deformations on the Kerr horizons can be found by
solving the equation a ¼ a� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð2M − rÞ − fDðrÞ
p

, or
from the equation k ¼ k� ≡ Δ=½rWðΔ=r2Þ�, where W is
the Lambert function, such that WðzÞ gives the principal
solution for w in z ¼ wew.
The deformed ergosurfaces r�ϵ can be found for σ ≠ 1 as

a solution of the equation a ¼ a�ϵ ≡ a�=
ffiffiffiffiffiffiffiffiffiffiffi
1 − σ

p
, while on

the equatorial plane (σ ¼ 1)

r�ϵ ¼

8>>><
>>>:

kW
h
e2M=k

sgnðkÞ
i
< 2; for k ≶ 0;

kW½−1;−e2M=k� > 2; for k < 0;

2; for k ¼ 0

ð16Þ

(see the red curve in Fig. 2, bottom left panel) where the
Lambert function Wðs; zÞ gives the sth solution for w in
z ¼ wew and sgnðkÞ gives the sign of k. Therefore, it is −1,
0, 1 for k negative, zero, or positive.
The PFDM horizons are independent of σ (as in the Kerr

case). The PFDM ergosurfaces are independent of spin in
the equatorial plane (as in the Kerr cases). The horizons r�
[and the ergosurfaces r�ϵ on the equatorial plane of
Eq. (16)] are shown in Fig. 2.
The red curve in Fig. 2, which represents the BH horizon

for a ¼ 0 [and the ergosurfaces in Eq. (16) on the equatorial
plane for a ≠ 0], bounds the collections of horizons at
different a ¼ constant in the plane ðr=M; a=MÞ.
The PFDM metric describes solutions with 0, 1, and 2
horizons. For BH solutions, horizons can be shifted out-
wardly or inwardly with respect to the Kerr BH spacetime
depending on the value of k. There are also spacetime
solutions with horizons for a > M.

FIG. 2. Horizons and ergosurfaces of the BHs in the PFDMof Eq. (14). Different values of the k ∈� − 7.18M; 2M½ parameter describing
the PFDM intensity are considered. (For k ¼ 0 the line element describes the Schwarzschild and Kerr geometries in absence of DM.)
Upper left panel: horizons r� as functions of the k parameter for different values of the spin a ≥ 0. Curves at a ⋚M are shown. The red
curves are the horizons of the static case [a ¼ 0) [and the ergosurfaces r�ϵ Eqs. (16) on the equatorial plane for a > 0]. The values k6 of
Eq. (17) are signed as dotted vertical lines. A yellow vertical line labels the Schwarzschild and Kerr geometries in the absence of DM.
Upper right panel: horizons r�=M as functions of the spin a=M for different values of k > 0 (solid curves) and k < 0 (dashed curves). The
displayed values are k ¼ �0.06M (green curve), k ¼ �0.006M (brown curve), k ¼ �0.6M (cyan curve), k ¼ �1.6M (black curve),
k ¼ −1.2M; 0.32M (purple curve), and k ¼ −1.999M; 2M (blue curve). Curve k ¼ 0 (yellow) represents the Schwarzschild and Kerr
geometries in the absence of DM. Bottom right and bottom left panels: different views of horizons r� as functions of k=M and a=M. The
mesh functions are curveswith constants r=M (solid green curve), k=M (dotted gray curve), anda=M (solid red curve). The yellowvertical
plane labels the case of k ¼ 0. Function contour colors are according to the a=M values (left panel) and k=M values (right panel).We have
marked with a black spot the extreme Kerr BH horizon ða ¼ M; r ¼ MÞ on all panels. To better highlight this point, plane a ¼ M (blue)
is included in the bottom panels (the crossing of the a ¼ M and k ¼ 0 planes occurs at the point a ¼ M; k ¼ 0; r ¼ M).

16The constraints of k=M positive were obtained by fitting the
rotation curves in spiral galaxies, with values 10−6–10−7 [4].
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Accordingly, we select the PFDM metric parameter in
the following six cases:

k6 ≡ fka ¼ −2M;kb ≈−1.399M;kc ¼ −0.1M;kd ¼ 0.1M;

ke ≈ 0.82M;kf ≡ 2Mg: ð17Þ

Cases ðka; kfÞ have as horizon r ¼ 2M for a ¼ 0 (the static
case); therefore, in this sense, these solutions can be
compared to the Schwarzschild case. Similarly, for
k ¼ kb, the geometry with a ¼ M has one horizon at
r ¼ 2M. There is one horizon17 when k ¼ ke and a ¼ M.
In Fig. 4 we show also the fluid specific angular

momentum distribution for the k6 parameters for the cases
a ¼ 0 and a ¼ M compared to the distribution on the
geometry in the absence of DM (see also Fig. 1), the
associated K parameter, and the Keplerian (test particle)
angular momentum L� ≡ l�K�, respectively, which we
have defined as related to the thick torus counterparts from
the definition of KðrÞ≡ VeffðlðrÞÞ, showing the influence
of the DM on the limiting thin Keplerian (geodesic) disk.
The thin Keplerian disk is constrained by the geodesic
structure of the gravitational background.
In general, the geodesic structure is qualitatively similar

for any spin (Fig. 3). We focus on the two limiting cases
a ¼ 0 and a ¼ M, whose equatorial circular geodesic
structures for the orbiting configurations are represented
in Fig. 3. In this model DM couples with the BH rotation,
entangled with the frame dragging, as evidenced in the
deformed rotational law l� of the orbiting matter.
According to the DM parameter k and spin a, relation (11),

i.e., r�mso > r�mbo > r�mco for the l ¼ l� cases, holds, as in
the nondeformed BH case. According to the discussion in
Sec. II B 2 of the Kerr background, this relation, for a small
magnitude of k, is reflected in the relative location of the
maximum-minimum points of pressure of the orbiting disks.
For values of k where this relation is not verified, for
example, for k > 0 in Fig. 3, the orbiting toroidal structures
show large qualitative divergences with respect to the
accretion torus formation and dynamics in the Kerr BH
spacetime.
The static attractor (a ¼ 0).—The geodesic structure is

represented in Fig. 3 (left panel) in comparison to the
Schwarzschild case. We note that for k > 0 the situation
changes qualitatively with respect to the case in the
absence of DM. Figure 4 shows the fluid specific angular
momentum l�, the torus energy parameter K�, and the
(test particle) Keplerian angular momentum L� as func-
tions of r=M for different PFDM parameters of
Eq. (14) compared to the case of k ¼ 0 describing the
Schwarzschild geometry. Notably, for ðkf; keÞ, KðrÞ > 1.
From the ðl�; K�Þ analysis it is noted how, for some
values of k, curves are lower with respect to the corre-
sponding curves in the absence of DM; Fig. 3. From the
analysis of the curves L�, we can note how in some cases
the test particle angular momentum is qualitatively differ-
ent from the corresponding value in the Schwarzschild
case. Torus and effective potentials in this case, which are
represented in Fig. 5, are constrained by the geodesic
structure of Fig. 3.
The spinning attractor (a > 0).—The geodesic struc-

ture for the spinning attractor geometry in PFDM is in
Fig. 3, right panel. The fluid specific angular momentum
l�, energy parameter K�, and (test particle) Keplerian
angular momentum L�, shown in Fig. 4 as functions

FIG. 3. Equatorial circular geodesic structures of the Kerr attractor in the PFDM of Eq. (14). Different values of the k ∈� − 7.18M; 2M½
describing the PFDM intensity are considered, where for k ¼ 0 (vertical yellow line) the line element describes the Schwarzschild (for
a ¼ 0) and extreme Kerr BH geometry (for a ¼ M). Values k6 of Eq. (17) are designated with dotted vertical lines. Left panel: a ¼ 0.
Right panel: a ¼ M. Radii r� are the horizons, r�ϵ are the ergosurfaces on the equatorial plane (coincident with the horizons of the static
case). mso is for marginally stable orbit, mbo is for the marginally bounded orbit, and mco is for marginally circular orbit for corotating
fluids (l ¼ l−, solid curves) and counterrotating fluids (l ¼ lþ, dashed curves). The horizontal gray lines show the radii of the
geodesic structure for the Kerr and Schwarzschild BH geometry in the absence of dark matter (k ¼ 0) for a ¼ 0 and a ¼ M,
respectively. See also Fig. 1.

17From Fig. 3 we note that there is one horizon at r ≈ 1.583M
for the special parameters ða⪆1.25776M; k ≈ −0.595MÞ and at
r ≈ 0.73M for ða ≈ 0.855M; k ≈ 0.27MÞ.
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FIG. 4. Fluid specific angular momentum l�, energy parameter K�, and (test particle) Keplerian angular momentum L� as functions
of r=M for corotating and counterrotating fluids, with different PFDM parameters of Eq. (14) indicated in the panels. Different values of
the k ∈� − 7.18M; 2M½ parameter describing the PFDM intensity are considered. Columns are a ¼ 0 (left) and a ¼ M (right), and rows
are l� (top), K� (middle), and L� (bottom). (For k ¼ 0 the line element describes the Schwarzschild or the Kerr geometry.) The k6
values are in Eq. (17).

FIG. 5. Case a ¼ 0. Torus orbiting BHs in the PFDM of Eq. (14). Left panel: associated torus effective potentials. The k6 values of
Eq. (17) are considered. (For k ¼ 0 the line element describes the Schwarzschild geometry.) Right panel: tori for selected values of the
k=M parameter, cusp location r×, and fluid specific angular momentum l signed on the curves. r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and σ ¼ y2=ðx2 þ y2Þ,

where σ ≡ sin2 θ.
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of r=M for the corotating and counterrotating fluids
and PFDM parameters of Eq. (14), are compared to the
case k ¼ 0 describing the Kerr geometry in the absence
of DM. Torus effective potentials for the counterrotating
(corotating) fluids are in Fig. 6. Tori are in Figs. 7
and 8.
As is clear from Fig. 3 the geodesic structure in the DM

geometry with a ¼ 0 is similar to the counterrotating
geodesic structure in the axially symmetric spacetime
(a ≠ 0). The corotating case (for a ¼ M), l ¼ l−, espe-
cially for k > 0, is remarkably different from the geodesic
structure in the geometries with a ¼ 0, and it is further
complicated by the presence of the ergoregion deformed
by the PFDM with, however, quantitative discrepancies
with respect to the Kerr spacetime for a large part of the
DM parameter values k < 0. For larger k > 0 there are

also NS solutions (for a ∈�0;M� as well) and, for even
larger values of k > 0, there are BH solutions (for a > M
as well). In general, DM influence also manifests with the
existence of extremely large cusped tori located consid-
erably far from the central singularity, as is clear when one
compares the geodesic structures in Fig. 1 and 3. In some
cases, as is clear from Fig. 7, there are double configu-
rations at equal l (the purple and blue curves in Fig. 7 and
the green curve in Fig. 8), with considerable larger tori
with respect to the case in the absence of dark matter.
Furthermore, we note the presence of outer cusps (the blue
curve in Fig. 7), or possibly the emergence of double
cusps, also in the presence of BH solutions, where the
corotating marginally stable orbit shows some remarkable
peculiarities at k ≥ ke for a ¼ M and k ∈ ½kd; ke� for
a ¼ 0.

FIG. 6. Case of a ¼ M. Effective potentials for torus orbiting BHs in the PFDM of Eq. (14) for different values of the parameter
k ∈� − 7.18M; 2M½ that describe the PFDM intensity and fluid angular momentum l are signed on the curves. The k6 values of Eq. (17)
are considered here. (For k ¼ 0 the line element describes the extreme Kerr BH geometry.) Left (right) panel: effective potentials for
counterrotating (corotating) fluids. r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and σ ¼ y2=ðx2 þ y2Þ, where σ ≡ sin2 θ. There are black curves for

ðk ¼ 0;l ¼ −4.61;l ¼ 2.14Þ, blue curves for ðkb;l ¼ −9.79;l ¼ 4.84Þ, yellow curves for ðka;l ¼ −10.8;l ¼ 3.84Þ, purple curves
for ðkd;l ¼ −3.845;l ¼ 6Þ, orange curves for ðkc;l ¼ −5.4;l ¼ 3.05Þ, green curves for ðke;l ¼ −4;l ¼ 1.83Þ, and red curves for
ðkf;l ¼ −3;l ¼ 2.63Þ.

FIG. 7. Case of a ¼ M. Effective potentials and torus orbiting BHs in the PFDM of Eq. (14) for different values of the parameter
k ∈� − 7.18M; 2M½ that describe the PFDM intensity and fluid specific angular momentum l signed on the curves. Corotating l− ¼
l > 0 cases are represented. The k6 values of Eq. (17) are considered here. For k ¼ 0 the line element describes the extreme Kerr BH
geometry. r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and σ ¼ y2=ðx2 þ y2Þ, where σ ≡ sin2 θ.
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The interdisk cusp18 (see also Fig. 7) can evolve
following the change in one or two of the torus parameters
ðl; KÞ in an inner cusp followed by an inner configuration
(such as the green curve in Fig. 8) or two separate
configurations (such as the purple curve in Fig. 7). For
k ¼ ke, in the case a ¼ M, there are no horizons.
Consequently, the geometry, although not overspinning,
can be considered a naked singularity, and the green curve
in Fig. 8 can be seen as a typical double configuration
characterizing certain NS geometries. Also, the presence of
excretion cusps could be a DM indicator. Notably, these
features are usually read as tracers for the possible NSs
observations, emerging as consequences of the repulsive
gravity effects characterizing NSs solutions, and in this
sense the Kerr BH immersed in PFDM could be a
“mimicker” of superspinar solutions.

B. Cold and scalar field dark matter

In this section we consider a spinning BH in SFDM
(addressed in Sec. III B 1) and in CDM (considered in
Sec. III B 2); see, for example, [8,9].

1. Scalar field dark matter

There is

gtt ¼ −
�
1−

2Mrþ r2ð1− ξSFDMÞ
Σ

�
;

gtϕ ¼ −
aσ½2Mrþ r2ð1− ξSFDMÞ�

Σ
;

gϕϕ ≡ σ½ða2 þ r2Þ2 − a2σΔSFDM�
Σ

grr ≡ Σ
ΔSFDM

; gθθ ¼ Σ;

ð18Þ

where

ΔSFDM ≡ a2 − 2Mrþ r2ξSFDM and

ξSFDM ≡ exp

�
−
8ρcR2 sinðπrRÞ

πðπrÞ
R

�
: ð19Þ

The metric components satisfy the asymptotic flatness
condition, and the fluid potential is well defined at infinity
(r → þ∞), where Veff ¼ 1. We introduce the quantity
k∶ρc ¼ k=R3. Here ρc is the central density and R is the
radius at which the pressure and density are zero19 (where
for ρc ¼ 0 the metric reduces to the Kerr solution). The
Kerr limit occurs for k → 0 or R → þ∞. The zeros of
ΔSFDM distinguish the metric singularities r� (SFDM
deformed horizons), while the zeros of gtt define a
deformation of the Kerr ergosurfaces r�ϵ , which can be
found by solving the equations a ¼ a� and a ¼ a�ϵ ,
respectively,20 where

a� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rξ−1SFDMÞ

q
; a�ϵ ≡ a�ffiffiffiffiffiffiffiffiffiffiffi

1 − σ
p ; with

ξSFDM ≡ e
8k sinðπrR Þ

π2r : ð20Þ

In accordance with the study of the BH horizons in Fig. 9,
we explore the following two cases:

Fp ≡ fkp → 1000M;Rp → 1200Mg;
F g ≡ fkg → 20000M;Rg → 120000Mg ð21Þ

(see Fig. 9).

FIG. 8. Case of a ¼ M. Effective potentials and torus orbiting BHs in the PFDM of Eq. (14) for different values of the parameter
k ∈� − 7.18M; 2M½ describing the PFDM intensity and fluid specific angular momentum l signed on the curves. Counterrotating
lþ ¼ l < 0 cases are represented. The k6 values of Eq. (17) are considered. For k ¼ 0 the line element describes the extreme Kerr BH

geometry. The inset in the right panel is an enlargement of the inner green torus. r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and σ ¼ y2=ðx2 þ y2Þ, where σ ≡ sin2 θ.

18Like the outer cusps, the interdisk cusp is a torus cusp located
between two configurations having the same ðl; KÞ parameters,
which eventually could be interpreted as an excretion cusp
characterizing some cosmological models; see, for example,
the double separated configurations (purple curves) or the blue
curve in Fig. 7.

19In the SFDM static solution, the Klein-Gordon equation and
a quadratic potential for the scalar field have been considered
[8,9].

20The accretion tori considered here are geometrically thick
and characterized by a pronounced verticality. The torus surfaces
can therefore approach the outer ergosurface out of the equatorial
plane (i.e., σ < 1). The ergosurface location (on planes σ ≠ 1) is
an important factor regulating the Lense-Thirring effect on the
disks and on the jet flows coming from the disks [77].
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However, as is clear from Fig. 9, BH horizons also exist
for a > M.
The geometry circular geodesic structure is shown in

Fig. 10 for the parameters F g and Fp and emphasizes the
differences between the cases ðkp; RpÞ and ðkg; RgÞ and the
Kerr geometry circular structure of Fig. 1. The orbital range
in which the protojets cusps are located, bounded by the
radii r�mbo and r�mco, for fluid specific angular momentum
l ¼ l� is very narrow, and in general the geodesic
structure is shifted considerably outward with respect to
the Kerr geometry geodesic radii. Therefore, the range for
the location of the accreting disk’s inner edges is

considerably larger than the protojet cusp range, possibly
constituting a constraint on the formation of protojets and
tori with large angular momentum magnitudes. We also
note that in the corotating case, for a ∈�0;M� and for a Fp

that differs from the Kerr case in the absence of DM, radii
are located out of the ergoregion (and partially forF g). This
could imply a significant difference in the Lense-Thirring
effects in the presence of DM. [There may, however, be
overspinning BHs (with a > M) where these effects could
be present.] Unlike the PFDM case, qualitatively the
geodesic structure is not differentiated with respect to
the case in the absence of SFDM for corotating or

FIG. 9. Horizons and ergosurfaces of BHs geometries in the SFDM of Eq. (19). ParametersFp andF g are as defined in Eqs. (21). The
case of k ¼ 0 corresponds to Kerr or Schwarzschild geometries. Left panel: BH horizons r� as functions of a=M for different DM
parameters ðk; RÞ. The gray curve is the Kerr BH horizon. Center panel: the horizon radii r� as functions of the DM parameter R for
different k and spin a, red curve, for a ¼ 0 are the static limiting case and a ¼ M is the blue curve, while a ¼ 0.5M is the green curve.
The dashed curves correspond to kg and solid curves to kp. Right panel: the ergosurfaces as functions of R=M for different k=M for spin
a ¼ 0.99M and different planes σ ≡ sin2 θ, σ ¼ 1 (red curve) are the equatorial plane, the green curve is σ ¼ 0.01, the blue curve is
σ ¼ 0.1, the dashed curves correspond to kg and the solid curves to kp are as defined in Eqs. (21).

FIG. 10. Geodesic equatorial structure of SFDM geometry of Eq. (19). Upper (lower) panels show the situation for corotating
(counterrotating) fluids with l− (lþ) for parameters Fp (purple curves) and F g (blue curves), as defined in Eqs. (21). Radius rþ (black
curve) is the outer horizon, rþϵ (gray curve) is the outer ergosurface on the equatorial plane, mso (solid purple and blue curves) is for a
marginally stable orbit, mbo (dashed curves) is for the marginally bounded orbits, and mco (dotted curves) is for the marginally circular
orbits. The corresponding Kerr geodesic structure is in Fig. 1. Center panels: enlargements of the left panels.
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counterrotating fluids, and for static attractors (a ¼ 0) and
spinning attractors (a ∈�0;M�) with SFDM.
We analyze below the case of the static attractor, i.e.,

a ¼ 0, having the Schwarzschild metric as a limit in the
vacuum, we then studied the influence of the central
attractor spin combined with dark matter effects by con-
sidering the case a ¼ M, which corresponds to the DM
deformation of the vacuum solution (i.e., in the absence of
DM) of the extreme Kerr BH, and the case of the slowly
spinning attractor having a ¼ 0.1M. Let us provide the
analysis in more detail.
The static attractor (a ¼ 0).—In Fig. 11 the fluid

specific angular momentum l�, torus energy parameter
K�, and (test particle) Keplerian angular momentum L�
are shown as functions of r=M for corotating and counter-
rotating fluids, at different spins and SFDM parameters,
compared to the case k ¼ 0 corresponding to the

Schwarzschild geometry. Tori and effective potentials are
in Fig. 12.
The spinning attractors (a ¼ M and a ¼ 0.1M).—We

restrict our analysis to a ¼ M and a ¼ 0.1M while study-
ing the cusped tori limiting the closed configurations
regulated by the effective potential function. In Fig. 11,
there are the fluid specific angular momentum l�, the
energy parameter K�, and the (test particle) Keplerian
angular momentum L� as functions of r=M for corotating
and counterrotating fluids, different spins, and the SFDM
parameters of Eq. (19) with respect to the Kerr vacuum
cases. In Fig. 12 are the fluids effective potentials and tori
compared to the case of Kerr in the absence of DM. From
Fig. 11 we note that within this parameter choice, unlike the
case in which DM is absent, the fluid’s energy function
cannot converge to 1 for large values of r. In Fig. 11 the
fluid specific angular momentum distribution, compared to

FIG. 11. Fluid specific angular momentum l�, energy parameterK�, and (test particle) Keplerian angular momentumL� as a function
of r=M for corotating (−) and counterrotating (þ) fluids and different SFDMparametersFp (purple) andF g (blue), as defined inEqs. (21).
Thevalue k ¼ 0 corresponds to the Schwarzschild (a ¼ 0) extremeKerrBHcase (a ¼ M). The columns area ¼ 0 (left panels) anda ¼ M
(right panels), and rows are for l as function of r (top), K as function of r (middle panels), L as function of r (bottom panels).
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the distribution on the geometry in the absence of DM, the
associated K energy parameter and the Keplerian (test
particle) angular momentum L� ≡ l�K� are shown. From
Fig. 9 it is clear how the horizon curves in the plane a −M
are larger and shifted outward with respect to the Kerr BH
case, constituting a discriminant for the SFDM model. For
some values of the DM parameters, the BH horizons
disappear, giving rise to a “DM-induced” NS.
Large torus orbiting SFDM spinning BHs are shown in

Fig. 12 as, for example, the purple surface for the case a ¼ 0
(from the torus effective potentials we can also note how the

torus K parameter for tori orbiting in SFDM are generally
considerably lower than theK parameter in absence of DM).
This feature of theDMmodel could also be an indication that
such extremely large tori are actually not formed, and
similarly the backreaction on the metric is a predominant
factor in these configurations, where self-gravity becomes a
determinant factor in the torus equilibrium.

2. Cold dark matter

The metric components read

gtt ¼ −
�
1 −

2Mr − ξCDM þ r2

Σ

�
; gtϕ ¼ −

aσ½2Mr − ξCDM þ r2�
Σ

; gϕϕ ≡ σ½ða2 þ r2Þ2 − a2σΔCDM�
Σ

;

grr ≡ Σ
ΔCDM

; gθθ ¼ Σ; ð22Þ

FIG. 12. Fluids effective potentials (left panels) and tori (center and right panels) orbiting in scalar field dark matter (SFDM) geometry
of Eq. (19), with parameters Fp (purple curves) and F g (blue curves), as defined in Eqs. (21). The geodesic structure is in Fig. 10. The
displayed rows are a ¼ 0 (top panels), a ¼ 0.1M (middle panels), and a ¼ 0.9M (bottom panels). Black curves for k ¼ 0 are the
configurations for the case of Schwarzschild and Kerr spacetimes in the absence of DM. Tori are shown in the corresponding colors
relative to the effective potentials. Fluid specific angular momenta lþ (dashed curves) and l− (solid curves) are signed close to each tori
surface (center and right panels). Right panels: enlargement of the center panels in the region close to the central attractor. (The
integration is in the entire orbital range.) r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and σ ¼ y2=ðx2 þ y2Þ, where σ ≡ sin2 θ.
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where

ΔCDM≡a2−2MrþξCDM and ξCDM≡r2
�
r
R
þ1

�
−8πρcR3

r

:

ð23Þ

We adopt the parametrization ρc ¼ k=R3, where ρc is the
density of the Universe at the moment when the DM halo
collapsed and R is a characteristic radius. The metric is
asymptotically flat, and we find the Kerr limit in k → 0 or
R → þ∞. We first consider the metric singularities, iden-
tifying the space of the parameters used in the torus
analysis. The horizons r� can be written as solutions
of the equation a ¼ a�ðCDMÞ, R ¼ R�ðCDMÞ, or
k ¼ k�ðCDMÞ, where

a�ðCDMÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r½2M − r℘−8πk

r �
q

;

R�ðCDMÞ≡ r

�
1

1 − ς
r

8πk
− 1

�
; k�ðCDMÞ≡ r log ς−1

8π log℘
;

with ℘≡ r
R
þ 1 and ς≡ 2rM − a2

r2
: ð24Þ

The metric horizons are defined for

a ∈�0;M�∶r ∈ �r⊛; r−½; a ∈ ½0;M�∶r > rþ;

a > M∶r > r⊛; where r⊛ ≡ a2

2M

(assuming that a > 0, R > 0, and k > 0).
The ergosurfaces r�ϵ can be found for σ ≠ 1 as solutions

of the equation a ¼ a�ϵ ðCDMÞ≡ a�ðCDMÞ= ffiffiffiffiffiffiffiffiffiffiffi
1 − σ

p
and,

on the equatorial plane (σ ¼ 1), as solutions of R ¼ R�
ϵ or

k ¼ k�ϵ , where
21

k�ϵ ≡ r log r
2M

8π log℘
and R�

ϵ ≡ r

�
1

1 − ð2Mr Þ
r

8πk
− 1

�
ð25Þ

(see Fig. 13). On the equatorial plane, the outer ergosur-
face, independent of the spin a, corresponds to the metric
singularity in the static (a ¼ 0) case; see Eq. (24).

FIG. 13. Horizons r� and ergosufaces r�ϵ of the CDM geometry of Eqs. (22). The dark matter parameters F 1, F 2, and kðpÞ are from
Eqs. (26), while the parameters ðkp; kg; Rg; RpÞ are from Eqs. (21). The black curves (k ¼ 0) correspond to the Kerr horizons. σ ≡ sin2 θ,
where σ ¼ 1 is the equatorial plane. In the bottom left panel the blue curves are for a ¼ M, the red curves are for a ¼ 0, the green curves
are for a ¼ 0.5M, the dotted curves are for k ¼ kðpÞ, the dashed curves are for k ¼ kg, the solid curves are for k ¼ kp, and the black
horizontal lines correspond to k ¼ 0 for the Kerr spacetimes. Bottom right panel: ergosurfaces r�ϵ as a function of the dark matter
parameter R=M for spin a ¼ 0.99M and for different planes σ ∈ ½0; 1� and dark matter parameter k, where the red curves correspond to
σ ¼ 1, the blue curves correspond to σ ¼ 0.1, the brown curves correspond to σ ¼ 0.01, the dashed curves are for k ¼ kg, the solid
curves are for k ¼ kp and the dotted curves are for k ¼ kðpÞ.

21As is clear in Fig. 13, these relations also represent some
portions of the ergosurfaces, according to conditions on the DM
parameters.
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We consider the following sets of parameters:

F 1 ≡ fk → 1000M;R → 120000Mg;
F 2 ≡ fk → 100M;R → 1200Mg; and kðpÞ ≡ 100M

ð26Þ

(Fig. 13). The geodesic structure for this geometry is shown
in Fig. 14. As in the SFDM model, the equatorial geodesic
structure shows that for the F 2 case the range ½r�mco; r�mbo�
of the protojet cusp location is remarkably narrow. At
a ∈�0;M�, for corotating fluids, the radii for F 1 (F 2)
do not enter (are partially contained in) the outer ergo-
region. We have analyzed the static and spinning attractors
as follows.
The static attractor (a ¼ 0).—The fluid specific angular

momentum l�, the energy parameter K�, and the (test
particle) Keplerian angular momentum L� as functions of
r=M and the CDM parameters F 1 and F 2 are shown in
Fig. 15 compared to the Schwarzschild case. The effective
potential and tori are shown in Fig. 16 compared to the
Schwarzschild case.
The static attractor (a ¼ 0).—The fluid specific angular

momentum l�, the energy parameter K�, and the (test
particle) Keplerian angular momentum L� as functions of
r=M are represented in Fig. 15 for corotating and counter-
rotating fluids, different spins, and CDM parameters F 1 in

comparison to the extreme Kerr BH case in the absence of
DM. The effective potential and tori for the CDM param-
etersF 1 andF 2 are in Fig. 16 for a ¼ M and a ¼ 0.7M for
fluid specific angular momentum l ¼ l− > 0 (lþ < 0) for
corotating (counterrotating) fluids compared to the case in
the vacuum Kerr geometry. It can be proved that, in all the
cases considered, the limit K → 1 for large r holds, where
L� ≡ l�K�. Large torus orbiting CDM spinning BHs are
shown in Fig. 16 as, for example, the blue surface for the
case a ¼ 0 and the dashed-blue curve for a ¼ 0.7M
and a ¼ M (as in the SFDM case, the torus K parameter
for tori orbiting in CDM are generally considerably lower
than the K parameter in the absence of DM). From Fig. 16
we note, as with SFDM, the presence of larger cusped tori
located far from the central spinning attractor, which
distinguishes the DM deformed geometry from the
Kerr case.

IV. DISCUSSION AND FINAL REMARKS

In the DM models considered here there are NS
solutions, solutions with one horizon and two horizons,
according to the DM parameters. There are also BH
spacetime solutions with horizons at a > M or NSs for
a < M. The geodesic structure regulating the accretion
physics and the torus location around the central spinning
attractor can be shifted considerably outward with respect

FIG. 14. Geodesic equatorial structure of the CDM geometry of Eqs. (22). The dark matter parameters F 1 (green curves) and F 2 (red
curves) are in Eqs. (26). Upper (lower) panels: the structure for fluid specific angular momentum l ¼ l− > 0 (lþ < 0) for corotating
(counterrotating) fluids. Center panels: enlargements of the right panels showing the marginally stable orbits (mso solid curves),
marginally bounded orbits (mbo dashed curves), and marginally circular orbits r�mco (dotted curves), where rþ (black curves) is the
outer horizon and rþϵ (gray curves) is the outer ergosurface on the equatorial plane. The corresponding Kerr geodesic structure is in
Fig. 1.
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to the Kerr geometry. DM effects mimic Kerr attactors
with an altered spin-to-mass ratio a=M. For example, in
all the models presented, the DM affects the disk’s inner
edge, which is a tracer of the a=M ratio in the Kerr
geometry. The presence of an excretion cusp, double
cusps, or double tori, which are also typical of Kerr NS
solutions, could indicate the presence of DM.
Consequently, DM affects BH horizon physics by con-
sidering DM (models) as NS mimickers or, conversely,
DM (models) as BH mimickers for superspinar (cosmo-
logical) solutions. DM could also affect the jet emission.
The orbital range locating the protojet cusps can also be
very small, as discussed in Sec. III B 1 for SFDM and in
Sec. III B 2 for CDM. The open cusped solutions (also
constraining the jet emission) are very different from their
counterparts in the Kerr spacetime in the absence of DM.
In general, DM also manifests with the existence of

extremely large cusped tori orbiting very far from the
central singularity. From Fig. 12 we see the large dimen-
sions of the cusped torus orbiting SFDM spinning BHs.
The equilibrium of these tori may be hugely affected by
their self-gravity.
In all DMmodels considered here, however, DM affects

the geometric and causality properties, while there is no
coupling with ordinary matter (nor is there a hypothetical
accretion disk consisting of dark matter in orbit), consid-
ering gravity modified by the effects of dark matter; see
also [76]. We addressed three models, drawing qualitative
and comparative considerations, ruling out some solutions
and tracing some common patterns. We have taken as a
selection criterion in the space of the metric parameters
the observation that there are two expected regimes, where
there is a fully modified geometry, qualitatively divergent
with respect to the general relativistic onset, as a strongly

FIG. 15. Fluid specific angular momentum l� (top row), energy parameter K� (middle row), and (test particle) Keplerian angular
momentum L� (bottom row) as functions of r=M for corotating and counterrotating fluids and different CDM parameters of Eqs. (22).
The dark matter parametersF 1 (purple curves) andF 2 (blue curves) are from Eqs. (26). The columns are a ¼ 0 (left) and a ¼ M (right).
The Kerr and Schwarzschild cases are the black curves for k ¼ 0.
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FIG. 16. Effective potential and tori of the CDM geometry. The dark matter parameters F 1 (purple curves) and F 2 (blue curves) are from
Eqs. (26). The rows area ¼ 0 (top line),a ¼ 0.7M (top, second, and third lines),a ¼ M (top, fourth, and fifth lines). Theblack curves for k ¼ 0
are the configurations for the cases of Schwarzschild and Kerr spacetimes in the absence of DM. Tori are shown in the corresponding colors
association relative to the effective potentials. Fluid specific angularmomenta lþ (dashed curves) andl− (solid curves) are signed close to each
torus surface. Regions close to the central attractor are also shown as enlargements. r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and σ ¼ y2=ðx2 þ y2Þ, where σ ≡ sin2 θ.
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different horizon structures than the referenced Kerr
solution, and the second scenario consisting of an appre-
ciable quantitative deformation of the orbiting structures,
but not a qualitatively significant change of the back-
ground geometry defined by the spinning BH. The current
methods of measuring and identifying BHs are also based
on the physics of accretion. This is related to the accretion
disk inner edge, which we prove to be distorted by the DM
treated, in the metric models considered here, as a back-
ground deformation.
Spherically symmetric black hole solutions in PFDM

have been considered to be adapted to the observed
asymptotically flat rotation velocity in spiral galaxies
and a possible interaction between the DM halo and
central BH has been differently theorized. However, it has
been supposed that SMBHs could enhance the DM
density significantly.22 The results of our analysis prove
accretion to be a good indicator of the divergences
induced by the DM presence and the study of the accretion
disks in DM models to represent a valid DM model
discriminant. The torus dimensions provide an indication
of the possible effects of DM for the energetics associated
with the physics of accretion around BHs. In the PD
models, for example, the thickness of the accretion throat
(opening of the cusp for tori with specific fluid angular
momentum in L1 with K ∈�K×; 1½) determines (in the
assumptions of vanishing pressure at the inner edge)
many characteristics of torus energetics, such as mass
accretion rates and cusp luminosity, the rate of the thermal
energy carried at the cusp, the mass flow rate through the
cusp (i.e., mass loss accretion rate), the fraction of
energy produced inside the flow and not radiated through
the surface but swallowed by central BH, mass flux, the
enthalpy flux (related to the temperature parameter),
which also depends on the EOS, as the polytropic
index and constant.23 It has been shown in [71,72] that
the maximum of flow thickness and the maximum amount
of matter swallowed by the central BH is determined by
the attractor spin-mass ratio only, which is defined by the
location of the marginally stable circular orbit, and

therefore DM influences the torus dimension and the
marginally stable orbits in these models can be searched in
a variation of the central BH energetics24 [62,63,72].
It should be emphasized then that since DM BHs can

exhibit features associated with Kerr NSs, it has implica-
tions on cosmic censorship owing to the fact that observing
a compact object with such tracers (excretion cusp, double
cusps, double tori) would not require the breaking of
cosmic censorship (viewing a Kerr NSs), but instead could
mean that one is observing a BH surrounded by DM.
Finally, in this work we developed a comparative analysis
of accretion disks in different dark matter models, while we
have reserved the in-depth explorations of different DM
parametric values for future analysis.

22Thereby producing a so-called spike phenomenon [78].
23Configurations considered here have often been adopted as

the initial conditions in the setup for simulations of the general
relativistic magnetohydrodynamic (GRMHD) accretion structures
[53–55,79]. The geometrically thick axial symmetric hydrody-
namical models are widely adopted in many contexts, showing a
remarkably good fitting to themore complex dynamicalmodels, as
discussed, for example, in [51]. In current analyses of dynamical
systems of both GRHD and GRMHD setup, these tori are
commonly adopted as initial configurations for the numerical
analysis [54,55,80], which also constitutes a comparativemodel in
many numerical analyses of complex situations sharing the same
symmetries. Indeed, the general relativistic thick torus morpho-
logical features, which are related to the equilibrium (quiescent)
and accretion phases as the cusp emergence, are predominantly
determined by the centrifugal and gravitational components of the
force balance in the disks rather then the dissipative ones.

24A further relevant issue in the analysis of the DM effects on
BHs accretion is whether the features shown to track the DM
presence may be used to distinguish between the DM models. An
answer to this question comes immediately from a comparison of
the horizon structures for the PFDM model in Fig. 2, the SFDM
model in Fig. 9, and the CDM model in Fig. 13, and of the
geodesic structure (constraining the torus morphology and for-
mation) for the PFDM model in Fig. 3, the SFDM model in
Fig. 10, and the CDM model in Fig. 14. Thus, it is immediately
determined that, in general, the main differences are between the
PFDM model on the one hand and the CDM and SFDM models
on the other, including for small values of DM parameters. In
these DM models we have pointed out DM-induced NSs (slower
spinning attractors without BH horizons) and in all cases also
DM-induced BHs (overspinning solutions with one or two
horizons). Here we take into account DM model differentiation
by means of the torus characteristics possibly determining the
DM presence, as the interdisk cusps, double accretion tori, the
presence of extremely large and far tori, limited protojet ranges,
DM differentiation according to the fluid rotation orientation, and
Lense-Thirring effects in the presence of DM. While the SFDM
and CDM models show qualitatively similar characteristics in
that they do not substantially distinguish among DM effects for
fluid rotation orientation and slowly spinning from faster spin-
ning attractors, the situation for PFDM is clearly different. The
PFDM model also shows remarkable differences for a small
variation of the DM k parameter while distinguishing among DM
effects on corotating and counterrotating fluids and between
slowing spinning attractors and faster spinning attractors. The
CDM and SFDM models show for the considered parameters
ranges (a ∈ ½0;M�) a geodesics structure that is qualitatively
similar to the BH case in the absence of DM. There are very large
tori located far from the attractor, and protojet cusps constrained
in a narrow orbital range around the attractor, constraining
protojet emission and the formation of tori with large angular
momenta in magnitude. We have also noticed indications of a
possible alteration of the Lense-Thirring effects on the disks and
flows with respect to the Kerr case without DM. In the considered
parameter ranges, major differences among the PFDM models
with respect to the case in which DM is absent appear in the
formation of the intercusps, double configurations, and possible
excretion tori. It must be stressed, however, that, while we have
drawn a DM model comparative analysis here, an in-depth
exploration of more extensive DM parameter ranges in all models
would further narrow the DM parameters due to the DM effects
on the BH accretion.
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Universe 6, 26 (2020).
[14] Z. Stuchlík and S. Hledík, Classical Quantum Gravity 17,

4541 (2000).
[15] Z. Stuchlík, Mod. Phys. Lett. A 20, 561 (2005).
[16] M. Khodadi and R. Pourkhodabakhshi, Phys. Lett. B 823,

136775 (2021).
[17] B. Toshmatov, Z. Stuchlik, and B. Ahmedov, Eur. Phys. J.

Plus 132, 98 (2017).
[18] H. Kim, B. Lee, W. Lee, and Y. Lee, Phys. Rev. D 101,

064067 (2020).
[19] B. Cuadros-Melgar, R. D. B. Fontana, and J. de Oliveira,

Phys. Rev. D 104, 104039 (2021).
[20] M. Li and K. Yang, Phys. Rev. D 86, 123015 (2012).
[21] Z. Stuchlík and J. Schee, Classical Quantum Gravity 30,

075012 (2013).
[22] Z. Stuchlik, Bull. Astron. Inst. Czech. 31, 129 (1980).
[23] M. Blaschke and Z. Stuchlík, Phys. Rev. D 94, 086006

(2016).
[24] Z. Stuchlík, S. Hledík, and K. Truparová, Classical Quan-

tum Gravity 28, 155017 (2011).
[25] D. Traykova, K. Clough, T. Helfer, E. Berti, P. G. Ferreira,

and L. Hui, Phys. Rev. D 104, 103014 (2021).
[26] K. Clough, P. G. Ferreira, and M. Lagos, Phys. Rev. D 100,

063014 (2019).
[27] J. Bamber, K. Clough, P. G. Ferreira, L. Hui, and M. Lagos,

Phys. Rev. D 103, 044059 (2021).
[28] H. Davoudias, P. B. Denton, and J. Gehrlein, Phys. Rev.

Lett. 128, 081101 (2022).
[29] L. E. Padilla, T. Rindler-Daller, P. R. Shapiro, T. Matos, and

J. A. Vázquez, Phys. Rev. D 103, 063012 (2021).
[30] J. Bamber, K. Clough, P. G. Ferreira, L. Hui, and M. Lagos,

Phys. Rev. D 103, 044059 (2021).
[31] K. Jusufi, Phys. Rev. D 101, 084055 (2020).
[32] T. Lacroix, M. Karami, A. E. Broderick, J. Silk, and C.

Boehm, Phys. Rev. D 96, 063008 (2017).

[33] K. Jusufi, M. Jamil, P. Salucci, T. Zhu, and S. Haroon, Phys.
Rev. D 100, 044012 (2019).

[34] K. Jusufi, M. Jamil, and T. Zhu, Eur. Phys. J. C 80, 354
(2020).

[35] F. Atamurotov, U. Papnoi, and K. Jusufi, Classical Quantum
Gravity 39, 025014 (2022).

[36] R. Abbott et al., Phys. Rev. D 105, 102001 (2022).
[37] A. Das, S. A. R. Ellis, P. C. Schuster, and K. Zhou, Phys.

Rev. Lett. 128, 021101 (2022).
[38] T. S. Li, A. P. Ji, A. B. Pace et al., Astrophys. J. 928, 30

(2022).
[39] R. P. Naidu, C. Conroy, A. Bonaca et al., Astrophys. J. 923,

92 (2021).
[40] N. Cappelluti, G. Hasinger, and P. Natarajan, Astrophys. J.

926, 205 (2022).
[41] S. Basak, A. Ganguly, K. Haris, S. Kapadia, A. K. Mehta,

and P. Ajith, Astrophys. J. Lett. 926, L28 (2022).
[42] C. Smorra, Y. V. Stadnik, and P. E. Blessing et al., Nature

(London) 575, 310 (2019).
[43] S. Afach, B. C. Buchler, D. Budker et al., Nat. Phys. 17,

1396 (2021).
[44] A. Gomez-Valent, Z. Zheng, L. Amendola, V. Pettorino, and

C. Wetterich, Phys. Rev. D 104, 083536 (2021).
[45] Z. Stuchlí, S. Hledík, and J. Novotný, Phys. Rev. D 94,

103513 (2016).
[46] M. A. Abramowicz, M. Jaroszyński, and M. Sikora, Astron.

Astrophys. 63, 221 (1978).
[47] M. Jaroszynski, M. A. Abramowicz, and B. Paczynski, Acta

Astronomica 30, 1 (1980).
[48] D. Pugliese, G. Montani, and M. G. Bernardini, Mon. Not.

R. Astron. Soc. 428, 952 (2013).
[49] D. Pugliese and G. Montani, Europhys. Lett. 101, 19001

(2013).
[50] M. Kozłowski, M. Jaroszyński, and M. A. Abramowicz,

Astron. Astrophys. 63, 209 (1998).
[51] Q. Lei, M. A. Abramowicz, P. C. Fragile et al., Astron.

Astrophys. 498, 471 (2008).
[52] M. A. Abramowicz, ASP Conf. Ser. 403, 29 (2009).
[53] I. V. Igumenshchev and M. A. Abramowicz, Astrophys. J.

Suppl. Ser. 130, 463 (2000).
[54] P. C. Fragile, O. M. Blaes, P. Anninois, and J. D.

Salmonson, Astrophys. J. 668, 417 (2007).
[55] J-P. De Villiers and J. F. Hawley, Astrophys. J. 577, 866

(2002).
[56] J. A. Font and F. Daigne, Astrophys. J. 581, L23 (2002).
[57] M. A. Abramowicz and P. C. Fragile, Living Rev. Relativity

16, 1 (2013).
[58] D. Pugliese and G. Montani, Phys. Rev. D 91, 083011

(2015).
[59] B. Paczyński, Acta Astronomica 30, 347 (1980).
[60] J. A. Font, Living Rev. Relativity 6, 4 (2003).
[61] M. A. Abramowicz, M. Calvani, and L. Nobili, Astrophys.

J. 242, 772 (1980).
[62] M. A. Abramowicz, Publ. Astron. Soc. Jpn. 37, 727 (1985).
[63] D. Pugliese and Z. Stuchlik, Eur. Phys. J. C 79, 288 (2019).
[64] D. Pugliese and Z. Stuchlík, Classical Quantum Gravity 35,

185008 (2018).
[65] R. H. Boyer, Proc. R. Soc. A 311, 245 (1969).
[66] D. Pugliese and Z. Stuchlík, Astrophys. J. Suppl. Ser. 221,

25 (2015).

D. PUGLIESE and Z. STUCHLÍK PHYS. REV. D 106, 124034 (2022)

124034-20

https://doi.org/10.1093/mnras/stab3491
https://doi.org/10.1093/mnras/stab3491
https://doi.org/10.3847/2041-8213/ab40c7
https://doi.org/10.3847/2041-8213/ab40c7
https://doi.org/10.1093/mnras/stab3781
https://doi.org/10.1093/mnras/stab3781
https://doi.org/10.1088/1475-7516/2018/12/040
https://doi.org/10.1088/1475-7516/2018/12/040
https://doi.org/10.1016/j.physletb.2010.09.038
https://doi.org/10.1088/1361-6382/aabcb6
https://doi.org/10.1088/1361-6382/aabcb6
https://doi.org/10.1088/1361-6382/abd95b
https://doi.org/10.1088/1361-6382/abd95b
https://doi.org/10.1088/1475-7516/2018/09/038
https://doi.org/10.1088/1475-7516/2018/09/038
https://doi.org/10.1088/1475-7516/2018/07/015
https://doi.org/10.1088/1475-7516/2018/07/015
https://doi.org/10.1016/j.dark.2021.100891
https://doi.org/10.1016/j.dark.2021.100891
https://doi.org/10.1103/PhysRevD.60.044006
https://doi.org/10.1103/PhysRevD.60.044006
https://doi.org/10.3390/universe6020026
https://doi.org/10.1088/0264-9381/17/21/312
https://doi.org/10.1088/0264-9381/17/21/312
https://doi.org/10.1142/S0217732305016865
https://doi.org/10.1016/j.physletb.2021.136775
https://doi.org/10.1016/j.physletb.2021.136775
https://doi.org/10.1140/epjp/i2017-11373-4
https://doi.org/10.1140/epjp/i2017-11373-4
https://doi.org/10.1103/PhysRevD.101.064067
https://doi.org/10.1103/PhysRevD.101.064067
https://doi.org/10.1103/PhysRevD.104.104039
https://doi.org/10.1103/PhysRevD.86.123015
https://doi.org/10.1088/0264-9381/30/7/075012
https://doi.org/10.1088/0264-9381/30/7/075012
https://doi.org/10.1103/PhysRevD.94.086006
https://doi.org/10.1103/PhysRevD.94.086006
https://doi.org/10.1088/0264-9381/28/15/155017
https://doi.org/10.1088/0264-9381/28/15/155017
https://doi.org/10.1103/PhysRevD.104.103014
https://doi.org/10.1103/PhysRevD.100.063014
https://doi.org/10.1103/PhysRevD.100.063014
https://doi.org/10.1103/PhysRevD.103.044059
https://doi.org/10.1103/PhysRevLett.128.081101
https://doi.org/10.1103/PhysRevLett.128.081101
https://doi.org/10.1103/PhysRevD.103.063012
https://doi.org/10.1103/PhysRevD.103.044059
https://doi.org/10.1103/PhysRevD.101.084055
https://doi.org/10.1103/PhysRevD.96.063008
https://doi.org/10.1103/PhysRevD.100.044012
https://doi.org/10.1103/PhysRevD.100.044012
https://doi.org/10.1140/epjc/s10052-020-7899-5
https://doi.org/10.1140/epjc/s10052-020-7899-5
https://doi.org/10.1088/1361-6382/ac3e76
https://doi.org/10.1088/1361-6382/ac3e76
https://doi.org/10.1103/PhysRevD.105.102001
https://doi.org/10.1103/PhysRevLett.128.021101
https://doi.org/10.1103/PhysRevLett.128.021101
https://doi.org/10.3847/1538-4357/ac46d3
https://doi.org/10.3847/1538-4357/ac46d3
https://doi.org/10.3847/1538-4357/ac2d2d
https://doi.org/10.3847/1538-4357/ac2d2d
https://doi.org/10.3847/1538-4357/ac332d
https://doi.org/10.3847/1538-4357/ac332d
https://doi.org/10.3847/2041-8213/ac4dfa
https://doi.org/10.1038/s41586-019-1727-9
https://doi.org/10.1038/s41586-019-1727-9
https://doi.org/10.1038/s41567-021-01393-y
https://doi.org/10.1038/s41567-021-01393-y
https://doi.org/10.1103/PhysRevD.104.083536
https://doi.org/10.1103/PhysRevD.94.103513
https://doi.org/10.1103/PhysRevD.94.103513
https://doi.org/10.1093/mnras/sts051
https://doi.org/10.1093/mnras/sts051
https://doi.org/10.1209/0295-5075/101/19001
https://doi.org/10.1209/0295-5075/101/19001
https://doi.org/10.1086/317354
https://doi.org/10.1086/317354
https://doi.org/10.1086/521092
https://doi.org/10.1086/342238
https://doi.org/10.1086/342238
https://doi.org/10.1086/345942
https://doi.org/10.12942/lrr-2013-1
https://doi.org/10.12942/lrr-2013-1
https://doi.org/10.1103/PhysRevD.91.083011
https://doi.org/10.1103/PhysRevD.91.083011
https://doi.org/10.12942/lrr-2003-4
https://doi.org/10.1086/158512
https://doi.org/10.1086/158512
https://doi.org/10.1140/epjc/s10052-019-6786-4
https://doi.org/10.1088/1361-6382/aad713
https://doi.org/10.1088/1361-6382/aad713
https://doi.org/10.1098/rspa.1969.0116
https://doi.org/10.1088/0067-0049/221/2/25
https://doi.org/10.1088/0067-0049/221/2/25


[67] Z. Stuchlik, Bull. Astron. Inst. Czech. 32, 68 (1981).
[68] D. Pugliese, H. Quevedo, and R. Ruffini, Phys. Rev. D 84,

044030 (2011).
[69] K. Adamek and Z. Stuchlik, Classical Quantum Gravity 30,

205007 (2013).
[70] P. Slaný and Z. Stuchlík, Classical Quantum Gravity 22,

3623 (2005).
[71] D. Pugliese and Z. Stuchlik (unpublished).
[72] D. Pugliese and Z. Stuchlik, Mon. Not. R. Astron. Soc. 512,

5895 (2022).
[73] D. Pugliese and Z. Stuchlík, Astrophys. J. Suppl. Ser. 223,

27 (2016).
[74] D. Pugliese and Z. Stuchlík, Classical Quantum Gravity 35,

105005 (2018).

[75] D. Pugliese and Z. Stuchlik, Publ. Astron. Soc. Jpn. 73,
1333 (2021).

[76] E. Kurmanov, K. Boshkayev, R. Giambo, T. Konysbayev, O.
Luongo, D. Malafarina, and H. Quevedo, Astrophys. J. 925,
210 (2022).

[77] D. Pugliese and Z. Stuchlik, Publ. Astron. Soc. Jpn. 73,
1497 (2021).

[78] L. Sadeghian, F. Ferrer, and C. M. Will, Phys. Rev. D 88,
063522 (2013).

[79] R. Shafee, J. C. McKinney, R. Narayan, A. Tchekhovskoy,
C. F. Gammie, and J. E. McClintock, Astrophys. J. 687, L25
(2008).

[80] O. Porth, H. Olivares, Y. Mizuno, Z. Younsi et al., Comput.
Astrophys. Cosmol. 4, 1 (2017).

DARK MATTER EFFECT ON BLACK HOLE ACCRETION DISKS PHYS. REV. D 106, 124034 (2022)

124034-21

https://doi.org/10.1103/PhysRevD.84.044030
https://doi.org/10.1103/PhysRevD.84.044030
https://doi.org/10.1088/0264-9381/30/20/205007
https://doi.org/10.1088/0264-9381/30/20/205007
https://doi.org/10.1088/0264-9381/22/17/019
https://doi.org/10.1088/0264-9381/22/17/019
https://doi.org/10.1093/mnras/stac782
https://doi.org/10.1093/mnras/stac782
https://doi.org/10.3847/0067-0049/223/2/27
https://doi.org/10.3847/0067-0049/223/2/27
https://doi.org/10.1088/1361-6382/aab99d
https://doi.org/10.1088/1361-6382/aab99d
https://doi.org/10.1093/pasj/psab081
https://doi.org/10.1093/pasj/psab081
https://doi.org/10.3847/1538-4357/ac41d4
https://doi.org/10.3847/1538-4357/ac41d4
https://doi.org/10.1093/pasj/psab093
https://doi.org/10.1093/pasj/psab093
https://doi.org/10.1103/PhysRevD.88.063522
https://doi.org/10.1103/PhysRevD.88.063522
https://doi.org/10.1086/593148
https://doi.org/10.1086/593148
https://doi.org/10.1186/s40668-017-0020-2
https://doi.org/10.1186/s40668-017-0020-2

