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Gauge symmetries in teleparallel gravity, together with the identities among the dynamical equations
they provide, are analyzed in relation to the way they condition the coupling between matter and gravity.
Particularly, the coupling of fermionic matter seems to be excluded in a wide range of teleparallel theories.
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I. INTRODUCTION

One of the distinctive features of Maxwell and Einstein
equations is the automatic conservation,

∂μ∂νð
ffiffiffiffiffi
jgj

p
FμνÞ≡ 0; Gμν

;μ ≡ 0; ð1Þ

which are off-shell identities evidencing that the dynamical
equations are not independent; they imply a restriction
on the number of genuine degrees of freedom (dof) the
dynamical equations govern. Noether’s second theorem
traces the automatic conservation to a gauge symmetry
of the action. The electromagnetic Lagrangian Lem ∝
jgj1=2FμνFμν is made of the field Fμν ¼ ∂μAν − ∂νAμ which
is invariant under gauge transformations

Aμ → Aμ þ ∂μξ: ð2Þ

Thus the action is insensitive to the local variations
δAμ ¼ ∂μξ, not only on the solution to the dynamical
equations but on arbitrary field evolutions. These variations
are unable to generate dynamics; as a consequence, the
resulting dynamical equations cannot be independent.
Function ξðxÞ in Eq. (2) is called the generator of the
gauge transformation. The gauge freedom of the potential
Aμ can be completely fixed by means of two gauge

conditions (for instance, ∇⃗ · A⃗ ¼ 0 and A0 ¼ 0). Then
the gauge symmetry (2) involves two spurious dof, so
leaving the potential with two genuine dof (transversal
modes). The reason why two spurious dof are associated
with just one gauge generator comes from the fact that ∂0A0

is not present in Fμν. Thus A0 lacks a kinetic term in the
Lagrangian, which means that A0 is not a genuine dof.
Besides, since A0 is differentiated only along spatial

directions, the variation of the action with respect to A0

does not result in a dynamical equation for other compo-

nents of Aμ but in the constraint ∇⃗ · E⃗ ¼ ρ=ϵo, which
implies one additional spurious dof. So, let us review
how the automatic conservation ð ffiffiffiffiffijgjp

FμνÞ;νμ ≡ 0 emerges
from the gauge symmetry. The general variation of an
action S½Aμ� is

δS ¼
Z

d4x

�
δL
δAμ

δAμ þ ∂ν

�
∂L

∂ð∂νAμÞ
δAμ

��
ð3Þ

where δL=δAμ stands for the Euler-Lagrange derivative
∂L=∂Aμ − ∂νð∂L=∂ð∂νAμÞÞ. For the gauge symmetry (2), it
is δAμ ¼ ∂μξ and δSem ≡ 0; thus, after an integration by
parts one gets1

Z
d4xξ∂μ

�
δLem

δAμ

�
≡

Z
d4x∂μ

�
ξ∂ν

�
∂Lem

∂ð∂νAμÞ
�
þ ξ

δLem

δAμ

�
:

ð4Þ

If the symmetry (2) were valid only for a specific function
ξðxÞ, then Eq. (4) would express a conservation law on-shell
(i.e., when the Euler-Lagrange equations δLem=δAμ ¼ 0

are fulfilled). The bracket in the right-hand side (rhs) of
Eq. (4)would be then the (divergenceless) current associated
with the conserved charge, as stated in Noether’s first
theorem. However the gauge symmetry (2) is valid no
matter what the function ξðxÞ is. This essential feature puts
the Eq. (4) in the context of Noether’s second theorem.
While the left-hand side (lhs) of Eq. (4) depends on the
behavior of an arbitrary function ξðxÞ in the entire region of
integration, the rhs just depends on its behavior on the
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1To write the rhs of Eq. (4), we have used that ∂Lem=∂ð∂νAμÞ is
antisymmetric in μ, ν.
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boundary. Therefore, Eq. (4) makes sense only if the
integrands on each side are identically zero off-shell.
The conservation law we could deduce in this context is,
to use Emmy Noether’s words, improper [1]: the zero
divergence of the current in the rhs of Eq. (4) is not a
consequence of the dynamics but a mere off-shell identity.2

The off-shell vanishing of ∂μðδLem=δAμÞ inEq. (4) yields the
automatic conservation of Eq. (1). On the other hand, if the
field is not free but sources are present, then the automatic
conservation will force them to be conserved.
In the next sections we will discuss gauge symmetries in

theories of gravity that admit a teleparallel formulation,
the identities at the level of the dynamical equations they
provide, and the way in which these identities restrict the
coupling of the matter to gravity. Sections II and III are
devoted to the invariance associated with diffeomorphisms.
Section IV considers the invariance of general relativity
under local Lorentz transformations of the tetrad. Section V
studies the compatibility of the Dirac field with the
identities coming from the gauge symmetries. Section VI
displays the conclusions.

II. TELEPARALLEL GRAVITY

General relativity (GR) also exhibits a gauge symmetry;
the transformation of the metric tensor [2]

g → gþ £ξg; or gμν → gμν þ 2ξðμ;νÞ; ð5Þ

changes the Einstein-Hilbert action by a boundary term; so
these variations of the metric do not generate dynamics.
Thus, Einstein equations are not independent but are
linked by the automatic conservation (1). Since the gauge
transformations (5) come with four arbitrary generator
functions ξμðxÞ, they suppress eight spurious dof; thus
only two genuine dof remain among the ten components
of the metric.3

General relativity and other theories of gravity can be
formulated in terms of the tetrad field fEaðxÞg—the basis
of the cotangent space—and its dual basis feaðxÞg,

eμaEa
ν ¼ δμν ; eμaEb

μ ¼ δba: ð6Þ

The tetrad relates to the metric through the orthonormality
condition

gμνe
μ
aeνb ¼ ηab; gμν ¼ ηabEa

μEb
ν ; ð7Þ

where ηab¼diagf1;−1;−1;−1g is the Minkowski symbol.
Like F ¼ dA in electromagnetism, Ta ¼ dEa is the

fundamental magnitude in teleparallel gravity. Although
Ta is invariant under the transformations Ea → Ea þ dξa,
this is not a symmetry in teleparallel theories because
teleparallel Lagrangians are also made of vectors feag and
the volume E ¼ det½Ea

μ� ¼ jgj1=2. The set of four 2-forms
Ta can be read as a torsion, provided the Weitzenböck
connection Γρ

λμ ¼ eρbE
b
μ;λ is adopted:

Tρ
λμ ¼ eρaTa

λμ ¼ eρað∂λEa
μ − ∂μEa

λÞ ¼ Γρ
λμ − Γρ

μλ: ð8Þ

Weitzenböck connection proves to be flat (so, parallelism is
absolute; it does not depend on the path), and cancels out
the covariant derivative of the tetrad (then, it is a metric
connection).
The teleparallel equivalent of general relativity (TEGR)

is defined by Lagrangian density

LTEGR ¼ ð2κÞ−1ESρλμTρ
λμ; ð9Þ

where Sρλμ is

2Sρλμ ¼
1

2
ðTρ

λμ − 2T ½λμ�
ρ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

contorsionKλμ
ρ

Þ þ 2T ½λδμ�ρ ; ð10Þ

and Tμ ¼ Tλ
λμ ¼ Kλμ

λ is the torsion vector. On the
other hand, the Einstein-Hilbert Lagrangian is
LEH ¼ −ð2κÞ−1jgj1=2R, where the Levi-Civita curvature
R depends on second derivatives of the metric. TEGR
and GR are dynamically equivalent because, once the
relation (7) is used to write R in terms of the tetrad, their
Lagrangians differ in a divergence

LTEGR ¼ LEH þ ∂νðκ−1ETνÞ: ð11Þ

Any teleparallel theory like TEGR, whose Lagrangian
density L is homogeneous of degree 2 in first derivatives of
the tetrad, accepts the following form for L:

L ¼ 1

4κ
EEa

ν;μEb
λ;ρe

μ
ceνee

ρ
de

λ
fMab

cedf: ð12Þ

In TEGR the symbol Mab
cedf is [3]

Mab
cedf ¼ 2ηabη

c½dηf�e − 4δ½da ηf�½cδ
e�
b þ 8δ½ca ηe�½dδ

f�
b ; ð13Þ

but other combinations of its three terms are proposed in
alternative theories of gravity known as new general
relativity (NGR) [4–8]. Note that the antisymmetrized

2See Noether’s analysis of Hilbert’s assertion about the
nonexistence of a proper concept of gravitational energy in
general relativity. Noether points out that the space-time trans-
lations in general relativity are just a subgroup of an infinity
dimensional symmetry group (diffeomorphisms) for which her
second theorem applies.

3In Eq. (5) £ denotes the Lie-derivative; the semicolon stands for
the Levi-Civita covariant derivative. In a chart where the Levi-
Civita connection locally vanishes, it is gμν → gμν þ 2gλðμξλ;νÞ,
which coincides with the infinitesimal transformation of the metric
components under the change of coordinates xλ → xλ þ ξλ.
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indices of Mab
cedf make the derivatives of the tetrad enter

the Lagrangian only through the components of the
Weitzenböck torsion.
Lagrangian density (12) takes its most elegant form

when written in terms of the anholonomy or commutation
coefficients fabc,

£ebec ≡ ½eb; ec� ¼ fabcea ⇒ fabc
¼ −ð£ebEaÞðecÞ ¼ −2eμceνbEa

½μ;ν� ¼ eμceνbT
a
μν ð14Þ

(Eq. (6) is used to solve fabc). Thus the Lagrangian is written
in terms of scalar objects valued in the tangent space,

L ¼ 1

16κ
EfacefbdfMab

cedf ≔ ð2κÞ−1ET; ð15Þ

since no coordinate indices are left in its constituent parts
(cf. Ref. [9,10]).
Teleparallel dynamics is invariant under the infinitesimal

local transformation [the analogous of (5)]

Ea →Eaþ £ξEa; ea → eaþ £ξea ¼ eaþ½ξ;ea�; ð16Þ
which keeps the duality (6). In fact, on the one hand
Eq. (14) implies that4

δfabc ¼ δðeμceνbðdEaÞμνÞ ¼ £ξfabc ¼ ξμfabc;μ; ð17Þ

then it is δT ¼ ξμT;μ. On the other hand, the change of the
volume is

δE ¼ EeλaδEa
λ ¼ EeλaðξνEa

λ;ν þ Ea
νξ

ν
;λÞ ¼ ðEξνÞ;ν: ð18Þ

The behavior of the Lagrangian (15) under the trans-
formation (16) is then

δL ¼ δðETÞ ¼ ðEξνTÞ;ν ¼ ðL ξνÞ;ν: ð19Þ

Equation (19) implies the action gets a boundary term
under the transformation (16), so the dynamics is not
affected. This conclusion can be extended to other tele-
parallel formulations, like fðTÞ gravity; in fact,

δ½EfðTÞ�¼fðTÞδEþEf0ðTÞδT
¼fðTÞðEξνÞ;νþEf0ðTÞδT¼ðEfðTÞξνÞ;ν: ð20Þ

The result δL ¼ ðL ξνÞ;ν is common to any theory of the
spacetime geometry whose Lagrangian scalar is made of a
chart-independent combination of the commutation coeffi-
cients. Thus teleparallel actions are not strictly gauge
invariant under the transformation (16), but δS turns out to be5

δSjδEa
μ¼ð£ξEaÞμ

¼
Z

d4x

�
δL
δEa

μ
δEa

μ þ ∂ν

�
∂L

∂ð∂νEa
μÞ
δEa

μ

��
δEa

μ¼ð£ξEaÞμ

¼
Z

d4x ∂νðL ξνÞ; ð21Þ

i.e., Z
d4x

δL
δEa

μ
ð£ξEaÞμ ¼

Z
d4x divergence: ð22Þ

The components of £ξEa can be written in different ways,

ð£ξEaÞμ ¼ ξλEa
μ;λ þ Ea

λξ
λ
;μ

¼ ðEa
λξ

λÞ;μ þ ξλðEa
μ;λ − Ea

λ;μÞ
¼ ðEa

λξ
λÞ;μ þ ξλTa

λμ; ð23Þ
wewill replace the last one inEq. (22)which, after integration
by parts, turns out to beZ

d4xξλð−Ea
λ∂μ þ Ta

λμÞ
δL
δEa

μ
¼

Z
d4x divergence: ð24Þ

In this equation the lhs depends on the behavior of the
arbitrary infinitesimal vector field ξ in the entire region of
integration, while the rhs only depends on the behavior of ξ
and its first derivatives at the boundary. Therefore, Eq. (24)
makes sense only if both integrands are identically zero
off-shell, which leads to the automatic conservation

ðEa
λ∂μ − Ta

λμÞ
δL
δEa

μ
≡ 0: ð25Þ

By rearranging this result, or using the first of the forms
of ð£ξEaÞμ in Eq. (23), we can also write

∂μ

�
Ea
λ

δL
δEa

μ

�
− Ea

μ;λ
δL
δEa

μ
≡ 0: ð26Þ

These identities about the tensor density Ea
λδL=δE

a
μ, which

possesses the structure of the dynamical equations, express
the content of Noether’s second theorem in teleparallel
gravity regarding the gauge symmetry (16). They can be
used to write the Levi-Civita divergence of the tensor
E−1Ea

λδL=δE
a
μ, to give the identity a more familiar look.

We will need the relation between Weitzenböck and
Levi-Civita connections, Γ and fg, which is given by the
contorsion tensor introduced in Eq. (10):

Kρ
μλ ¼Γρ

λμ−
�

ρ

λμ

	
⇒

�
ρ

λμ

	

¼ eρbE
b
μ;λ−Kρ

μλ;

�
μ

λμ

	
¼ eμbE

b
μ;λ¼E−1

∂λE; ð27Þ
4Lie and exterior derivatives commute.
5δEa

μ in the Euler-Lagrange derivative involves the differ-
entiation of eνb. Duality (6) implies that eνaδEa

μ ¼ −Ea
μδeνa.
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since Kμ
μλ ¼ 0. Thus, the Levi-Civita divergence of a

tensor is

Cμ
λ;μ ¼ ∂μCμ

λ þ
�

μ

μρ

	
Cρ

λ −
�

ρ

μλ

	
Cμ

ρ

¼ E−1
∂μðECμ

λÞ − ðeρbEb
μ;λ − Kρ

μλÞCμ
ρ; ð28Þ

where we have used the symmetry of the Levi-Civita
connection. By replacing the tensor density ECμ

λ with
Ea
λδL=δE

a
μ, and using Eq. (26) to cancel out terms, one

obtains

�
E−1Ea

λ

δL
δEa

μ

�
;μ

− Kρ
μλE−1Ea

ρ
δL
δEa

μ
≡ 0; ð29Þ

which is an equivalent way of writing the automatic
conservation (26).

III. THE ACTION OF MATTER

The automatic conservation is not only important as a
tracer of the spurious dof in a theory. It also forces the sources
to obey a conservation law with its same form. In electro-
dynamics, the automatic conservation ð ffiffiffiffiffijgjp

FμνÞ;νμ ≡ 0

constrains the charges to be conserved: ð ffiffiffiffiffijgjp
jμÞ;μ ¼ 0. In

turn, charge conservation is the key to have the gauge
invariance of the coupling term

ffiffiffiffiffijgjp
Aμjμ in the full field-

charge action, since it changes as

ffiffiffiffiffi
jgj

p
Aμjμ →

ffiffiffiffiffi
jgj

p
ðAμ þ ξ;μÞjμ

¼
ffiffiffiffiffi
jgj

p
Aμjμ − ξð

ffiffiffiffiffi
jgj

p
jμÞ;μ þ divergence: ð30Þ

So, the conservation of the sources and the gauge symmetry
of the coupling term are two features that go together.
In GR, the automatic conservation Gμν

;μ ≡ 0 forces
the energy-momentum tensor of the sources to satisfy
Tμν

;μ ¼ 0. This means that the automatic conservation in
theories of gravity essentially determines the dynamics of
the sources; it fixes the evolution of the matter energy-
momentum in each geometry.6 Like in electromagnetism,
the coupling matter-gravity must exhibit the symmetry that
gives rise to the automatic conservation; only then will the
dynamics of the sources be compatible with the dictates of
the automatic conservation. This is a severe restriction to
the form of the action of matter, which is entirely a matter-
gravity coupling action because it is necessarily formulated
in a geometric background. This symmetry requirement is
overcome by writing the action of matter in terms of
geometric objects, as is the case with the gravity action.
In other words the action must be invariant under

diffeomorphisms (see Note 3). Actually the action of
matter must come with all the gauge symmetries of the
gravity action to provide a consistent set of dynamical
equations.
In the case of the teleparallel gauge symmetry (16),

the action of matter must satisfy Eq. (29) on-shell. It is
expected that the matter will keep to this consistency
requirement by conserving its energy-momentum. This is
so for any type matter that couples to the metric but not to
its derivatives, like scalar or spin 1 matter. In fact, the
absence of derivatives of the tetrad implies that

Ea
λ

δLmat

δEa
μ

¼ Ea
λ

∂Lmat

∂Ea
μ

¼ Ea
λ

∂Lmat

∂gρν

∂gρν
∂Ea

μ

¼ −
ffiffiffiffiffi
jgj

p
Tρνηabδ

μ
ρEa

λE
b
ν ¼ −ETμ

λ : ð31Þ

where Tμλ ¼ −2jgj−1=2∂Lmat=∂gμλ is the metric energy-
momentum tensor (the source of Einstein equations). By
replacing this result in Eq. (29) one gets

Tμ
λ;μ − Kρ

μλTμ
ρ ¼ 0: ð32Þ

At first sight this result seems to contradict the equivalence
principle, since one expects to recover the special-relativity
law Tμ

λ;μ ¼ 0 in a chart where the Levi-Civita connection
locally vanishes and the freely falling particles locally
move on straight curves (their parametric equations are
linear in the affine parameter). However the issue is solved
by noting that the contorsion tensor is antisymmetric in its
two first indices (Kμν

λ ¼ −Kνμ
λ) and the metric energy-

momentum tensor is symmetric. Thus the second term on
the lhs of Eq. (32) is zero, and the equivalence principle is
safe (cf. Ref. [5]).

IV. LORENTZ GAUGE INVARIANCE IN TEGR

The antisymmetric part of TEGR dynamical equations is
identically zero, as stressed in several publications [5,12–15].
This is an identity exclusive to TEGR, that comes from the
TEGR gauge invariance under local Lorentz transformation
of the tetrad; so it also fallswithin the frameworkofNoether’s
second theorem. As an object of the vector representation
ð1
2
; 1
2
Þ of the Lorentz group, the tetrad in Eq. (7) transforms as

Ea0 ¼Λa0
aEa; ea ¼ ea0Λa0

a; Λa0
a ¼ exp

�
1

2
σghðMghÞa0a

�
;

ð33Þ

where the six generators Mgh are

ðMghÞab ¼ 2ηa½gδh�b : ð34Þ

If the parameters σgh ¼ σ½gh� are infinitesimal, the Lorentz
transformation becomes

6See Sec. 20.6 in Ref. [11] for nice examples and discussions
about this issue.
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δLEa
μ ¼ σghη

a½gδh�b E
b
μ ¼ σabEb

μ;

δLeνb ¼ −eνaσghηa½gδ
h�
b ¼ −eνaσab: ð35Þ

Einstein-Hilbert action is invariant under local Lorentz
transformations of the tetrad (parameters σgh become arbi-
trary functions) because it depends purely on the components
of the metric (7), which are locally Lorentz invariant. Instead
TEGR action is pseudoinvariant, since STEGR gets a boun-
dary term after the transformation due to the divergence term
in Eq. (11). The pseudoinvariance implies that the general
structure of δLSTEGR [see Eqs. (3) and (24)] is not identically
zero in this case, but it is

δLSTEGR ¼
Z

d4x

�
δLTEGR

δEa
μ

δLEa
μ þ ∂ν

�
∂LTEGR

∂ð∂νEa
μÞ
δLEa

μ

��

≡ δL

Z
d4x ∂νðκ−1ETνÞ: ð36Þ

Therefore it results

Z
d4x

δLTEGR

δEa
μ

δLEa
μ

≡
Z

d4x ∂ν

�
κ−1E δLTν −

∂LTEGR

∂ð∂νEa
μÞ
δLEa

μ

�
ð37Þ

(Lorentz matrices are unimodular, so E ¼ detEa
μ is Lorentz

invariant). The lhs in Eq. (37) depends on the behavior of the
free parameters σghðxÞ in the entire region of integration;
instead, the rhs depends on their values at the boundary. This
result makes sense only if each side identically vanishes
whatever the parameters σgh are. Thuswe obtain six off-shell
identities among the TEGR dynamical equations

δLTEGR

δEa
μ

ηa½gEh�
μ ≡ 0: ð38Þ

Equation (38) shows that the antisymmetric part of TEGR
dynamical equations is identically zero. The way the matter
couples to gravity inTEGR (andGR)must be consistentwith
this identity. The full actionSTEGR þ Smatter must be (pseudo)
invariant under local Lorentz transformations of the tetrad
field, otherwise the dynamical equations would be sourced
by an (incompatible) nonsymmetric energy-momentum
tensor. As shown above, this point is not a problem for
matter fields that couple to the metric.
Unlike gauge transformations (2) and (16), the trans-

formation (35) does not contain derivatives of the param-
eters σag. Therefore, the identities (38) do not have the
appearance of automatic conservation; they are six relations
among the TEGR dynamical equations (not their deriva-
tives). Neither the counting of the spurious dof develops
like in the electromagnetic case, since the TEGR Lorentz
gauge symmetry does not come from the absence of a

kinetic term. The six off-shell identities (38) actually
suppress six spurious dof, which must be added to the
eight spurious dof coming from the automatic conservation
(like in electromagnetism, each component of ξ in Eq. (16)
involves two spurious dof). In sum, the sixteen elements of
the tetrad Ea

μ contain only 16 − 2 × 4 − 6 ¼ 2 genuine dof.

V. DIRAC FIELD

We will now consider the Dirac field, which couples not
to the metric but to the tetrad field. So, we will study how
the Dirac field accommodates to the identities coming from
the gravity sector. Dirac Lagrangian

LD ¼ Eðiψ̄γceνc∂νψ −mψ̄ψÞ ð39Þ

is a scalar density under changes of chart, since ψ behaves
like a scalar field in such case, and is invariant under global
Lorentz transformations. As an object of the ð1

2
; 0Þ ⊕ ð0; 1

2
Þ

representation of the Lorentz group, the Dirac spinor has
four complex components ψα which transform as [16]

ψα0 ¼Uα0
αψ

α; ψ̄β0 ¼ ðψ†γ0Þβ0 ¼ ψ̄βUβ
β0 ;

where Uβ
α0Uα0

α¼δβα; Uα0
α¼ exp

�
1

2
σghðSghÞα0α

�
: ð40Þ

σgh ¼ σ½gh� are the six parameters characterizing the set of
Lorentz transformations.7 The generators Sgh are

Sgh ¼ 1

4
½γg; γh�; ð41Þ

and Dirac matrices γa satisfy the Clifford algebra

fγa; γbg ¼ 2ηab1: ð42Þ
As generators of different representations of the same
group, Sgh in Eq. (41) and Mgh in Eq. (34) both obey
the Lorentz algebra. The same parameters σgh must be used
to have the same Lorentz transformation in each repre-
sentation. Thus, those parameters used to rotate a vector
360° make the spinor to change the sign. The invariance of
the Dirac equation

iγceνc∂νψ −mψ ¼ 0; ieνc∂νψ̄γc þmψ̄ ¼ 0; ð43Þ

under Lorentz transformations implies that the Dirac
matrices transform as [17]

γc
0 ¼ UγcΛc0

cU−1; or Λd
c0γ

c0 ¼ UγdU−1; ð44Þ

which moves the Dirac matrices to another representation
of the Clifford algebra (42). This means that the change of

7α, β are spinor labels. They are also labels for the components
of the Dirac matrices γc, which have been omitted.
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basis Λ in the tangent space is compensated by the
respective linear transformation U in the space of spinors,
so leaving the Dirac equation invariant.
Let us compute Ea

λδLD=δEa
μ to test the consistency of

Dirac action with the automatic conservation (26). Since
LD does not contain derivatives of the tetrad, it is8

Ea
λ

δLD

δEa
μ
¼Ea

λ

∂LD

∂Ea
μ
¼LDδ

μ
λ −Eiψ̄γceμc∂λψ ¼−ETμ

λ; ð45Þ

where Tμ
λ is the canonical energy-momentum tensor of

the Dirac field. The automatic conservation (26) compels
the Dirac dynamics to make zero the quantity ðETμ

λÞ;μ−
Ea
μ;λe

ρ
aETμ

ρ. By using Eq. (43) it becomes

ðETμ
λÞ;μ − Ea

μ;λe
ρ
aETμ

ρ ¼ iψ̄γcðEeμcÞ;μ∂λψ : ð46Þ

Therefore, the compatibility with the automatic conserva-
tion could be reached in a gauge fixed scheme where
the Lorenz gauge ðEeμcÞ;μ ¼ 0 (partially) fixes the gauge
freedom (16).9

Tetrad ec ¼ eνc∂ν is the geometric object (independent
of the chart) that provides the Dirac equation (43) with the
information about the gravitational-inertial field, thus
taking the role that the metric plays for bosonic fields.
If gravity is governed by TEGR (or GR) dynamics, then
the tetrad will be determined modulo local Lorentz
transformations. However Dirac Lagrangian (39) is not
invariant under local Lorentz transformations because ∂νψ
does not transform as a spinor. Therefore local Lorentz
transformations are not allowed in Dirac theory unless a
covariant derivative Dνψ be introduced. The covariant
derivative Dνψ must transform as a spinor,

ðDνψÞα0 ¼ Uα0
αðDνψÞα; ð47Þ

which will require a (to be determined) connection
term [18],10

Dνψ ¼
�
∂ν þ

1

2
ΩghνSgh

�
ψ : ð48Þ

Thus,

ðDνψÞ0 ¼
�
∂νþ

1

2
Ωg0h0νSg

0h0
�
ψ 0

¼U
�
∂νþU−1ð∂νUÞþ1

2
Ωg0h0νU−1Sg

0h0U
�
ψ : ð49Þ

According to Eq. (44) it is

Sg
0h0 ¼ Λg0

gΛh0
hUSghU−1; ð50Þ

therefore

ðDνψÞ0 ¼ U

�
∂ν þU−1ð∂νUÞ þ 1

2
Ωg0h0νΛg0

gΛh0
hSgh

�
ψ :

ð51Þ

To satisfy Eq. (47) the parenthesis in the rhs should be
equal to Dν. For infinitesimal transformations we have

U−1ð∂νUÞ ¼ 1

2
σgh;νSgh: ð52Þ

This shows that a proper connection in Eq. (51) is one that
transforms as

Ωg0h0νΛg0
gΛh0

h ¼ Ωghν − σgh;ν; i:e:; δLΩghν ¼ −σgh;ν:

ð53Þ

We will try with

Ωghν ¼ −ηd½g e
ρ
h�E

d
ρ;ν þ � � � ð54Þ

since, according to Eq. (33), it fulfills the Eq. (53):

δLð−ηd½g eρh�Ed
ρ;νÞ ¼ −ηd½g e

ρ
h�ðδLEd

ρÞ;ν
¼ −ηd½g e

ρ
h� σ

d
b;νE

b
ρ ¼ −σgh;ν: ð55Þ

Equation (54) only shows the compensation term we need
to build a covariant derivative Dν. However we must
care the good behavior of Ωghν in the manifold index ν.
Then, Ed

ρ;ν in Eq. (54) has to be replaced with a covariant
derivative; its respective affine connection must be local
Lorentz invariant not to disturb the behavior (53). Thus we
are left with the Levi-Civita connection [21,22], since it
depends just on the (locally Lorentz invariant) metric
tensor. By using Eq. (27), the Levi-Civita covariant
derivative of the tetrad turns out to be

Ed
ρ;ν ¼ Ed

ρ;ν −
�

λ

νρ

	
Ed
λ ¼ Ed

ρ;ν − ðΓλ
νρ − Kλ

ρνÞEd
λ

¼ Ed
ρ;ν − ðeλfEf

ρ;ν − Kλ
ρνÞEd

λ ¼ Kλ
ρνEd

λ ð56Þ

Thus, it is11

8We have used ∂E=∂Ea
μ ¼ Eeμa, and ∂eνb=∂E

a
μ ¼ −eμbeνa (see

Note 5).
9ðEeμcÞ;μ¼Eeμc;μ relates to the torsion vector since Tλ¼−Ec

λe
μ
c;μ.

10For a historical account see [19]. For fermion coupling in the
broader context of general (linear) affine geometries see [20].

11Dνðψ̄ψÞ ¼ ∂νðψ̄ψÞ because ψ̄ψ is a local Lorentz invariant;
then it is Dνψ̄ ¼ ∂νψ̄ − 1

2
Ωghνψ̄Sgh. Besides, Dνψ ¼

∂νψ þ 1
2
ΩghνSghψ ¼ ∂νψ̄ þ 1

2
Ωghνψ

†ðSghÞ†γ0 ¼ Dνψ̄ , since it is
γ0γ0 ¼ 1, γ0γa†γ0 ¼ γa, and ðSghÞ† ¼ −γ0Sghγ0.
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Ωghν ¼ −ηd½g e
ρ
h�K

λ
ρνEd

λ ¼ −KghlEl
ν;

Dνψ ¼
�
∂ν −

1

2
KghlEl

νSgh
�
ψ ð57Þ

The set of six independent 1-forms Ωgh ¼ −KghlEl is the
Levi-Civita spin connection. Ωgh cannot be made zero by
choosing a locally inertial chart since, as a geometric
object, it does not depend on the coordinates. Instead, Ωgh

is affected by local Lorentz transformations, because
contorsion Kghl is tensorial only under global Lorentz
transformations. However the local transformations are
unable to make Kghl zero, since they contain just 6
parameters to make 24 components zero. While locally
inertial charts are useful for viewing geodesics as straight
lines and bosonic field equations as in special relativity,
the effects of the spin connection on the Dirac field cannot
be suppressed by changing coordinates or the tetrad [23].
The spin connection term in the Dirac Lagrangian implies
a contribution of gravity to the fermion mass [24];
constitutes a form of nonminimal coupling.
Leaving aside the issue of compatibility between the

covariantized Dirac Lagrangian and the automatic conser-
vation (26), which would require a locally Lorentz invariant
gauge fixing of the tetrad, let us pass to examine the
consequences of the identity (38) that reflects the (pseudo)
invariance of TEGR under local Lorentz transformations of
the tetrad. For the original Lagrangian (39) it is

δLD

δEa
μ
ηa½gEh�

μ ¼ −ETμ
λeλaηa½gE

h�
μ ¼ −ET½gh�: ð58Þ

Since Tgh is nonsymmetric (even on-shell, when LD
vanishes); then the result (58) implies that Dirac
Lagrangian (39) is not compatible with TEGR gravity [25].
Dirac canonical energy-momentum tensor cannot be a
source of TEGR (or GR). The covariant derivative (48)
is unable to modify this feature; it just adds to Tgh terms
that do not contain derivatives of the Dirac field which will
not alter the nonsymmetric character of Tgh.

VI. CONCLUSIONS

We have discussed the identities emerging from the
gauge symmetry (5) in teleparallel theories of gravity;
they constitute the automatic conservation of Eq. (25)
(equivalently, (26) or (29)). Scalar and spin 1 matter are
compatible sources in teleparallel gravity since their
energy-momentum tensors are (on-shell) conserved.

Even the Dirac field, which couples to the tetrad rather
than the metric, becomes compatible with the automatic
conservation if a (locally) gauge fixed tetrad is adopted.
Contrarily, the Dirac field is not compatible with the
identities coming from the symmetry under local Lorentz
transformations of the tetrad that characterizes TEGR
(or GR), and makes the antisymmetric part of its dynamical
equations vanish [see Eq. (38)]. Although the Levi-Civita
spin connection (57) was introduced to endow the Dirac
equation with invariance under local Lorentz transforma-
tions, this does not means that the Dirac Lagrangian thus
fits the TEGR gauge symmetry (33). To emulate this
symmetry, the matter action must be invariant under local
Lorentz transformations of the tetrad alone, as happens
with scalar and spin 1 matter. The gauge symmetry of the
Dirac action requires, instead, the transformation of both
the tetrad and the spinor. This difference between bosonic
and fermionic matter is rooted in the fact that bosonic
matter couples to the metric, which is itself local Lorentz
invariant (no derivatives of the metric are needed in bosonic
Lagrangians; the introduction of the Levi-Civita affine
connection is innocuous indeed). Fermionic matter, in turn,
couples to the tetrad. The common replacement γceνc ¼
gμνγμ is misleading; it pretends a coupling to the metric but
hides the coupling to the tetrad in γμ. In sum, the Levi-
Civita spin connectionΩghν was introduced to make sense
of the Dirac theory in a gravitational context where the
tetrad is determined modulo local Lorentz transforma-
tions; however, the problem of considering fermionic
matter as the source of this type of gravity theories is not
solved in this way. Instead of forcing the coupling
between TEGR (or GR) and Dirac theory, we might
consider moving toward teleparallel theories of gravity
preserving the six dof associated with Lorentz trans-
formations of the tetrad [26], while keeping the dynamics
of the metric close to that of GR. Only the global Lorentz
symmetry would survive in such case; thus no covariant
derivative Dν would be necessary. Current teleparallel
theories of modified gravity would not be appropriate for
this purpose because they contain remnant local Lorentz
symmetries [27,28].
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