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I. INTRODUCTION

The macroscopic equation of state (EoS) for a simple
monoatomic gas composed of nondegenerate relativistic
particles can be derived from the microscopic kinetic theory
developed by Jüttner [1]. This relativistic gas was studied
by Synge [2], and the perfect fluids obeying this equation of
state are known as Synge fluids [3]. The relativistic Synge
gas is the only relativistic fluid for which a macroscopic
EoS has been obtained from microscopic kinetic theory [3].
Many high-energy astrophysical scenarios, such as

accretion flows, jet flows, gamma-ray bursts, and pulsar
winds, involve relativistic flows (see [4] and references
therein). Some of the earliest applications of such an
equation of state were carried out by Chandrasekhar [5]
and Bisnovatyi-Thorne [6] (see also [7] and references
therein), who used it in order to construct stellar models,
and Krautter et al. [8], who used it to study galactic jets.
Synge EoS has also been used to study a wide range of
other physically relevant phenomena: from stellar winds [9]
to relativistic shocks [4,10], which are not only interesting
to study astrophysical objects but also laboratory plasmas.
A relativistic two-dimensional hydrodynamic code

incorporating the Synge EoS was developed by Scheck
et al. [11] and later used by Perucho and Martí [12] to study
the evolution of extragalactic jets. More recently, Choi and
Wiita [13] and Perucho et al. [14] have developed three-
dimensional codes which also make use of the Synge EoS.
These codes have been applied repeatedly to study jets
from active galactic nuclei [15–17]. A relativistic gas has
also been used to investigate the description of the early
Universe and the role of dark matter [18–20].

A Synge fluid is a specific solution of the fundamental
system of relativistic hydrodynamics defined by the
following elements:

(i) A divergence-free perfect energy tensor that
describes the hydrodynamic evolution of the fluid,

∇ · T ¼ 0; T ¼ ðρþ pÞu ⊗ uþ pg: ð1Þ

This condition gives four equations for the five
hydrodynamic quantities fu; ρ; pg, namely, the unit
velocity u of the fluid, its energy density ρ and its
pressure p.

(ii) A set of thermodynamic quantities fn; s;Θg, the
rest-mass density n, the specific entropy s, and the
temperature Θ, constrained by the usual thermody-
namic laws [21]. Namely, the conservation of matter,

∇ · ðnuÞ ¼ 0; ð2Þ

and the local thermal equilibrium relation, which
can be written as

Θds ¼ dh −
1

n
dp; h≡ ρþ p

n
; ð3Þ

where h is the relativistic specific enthalpy.
(iii) The macroscopic equations of state of a relativistic

nondegenerate monoatomic gas [2,3],

p¼knΘ; h¼hðzÞ≡K3ðzÞ
K2ðzÞ

; z≡ 1

kΘ
; ð4Þ

KnðzÞ being the second kind modified Bessel
functions.
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Paterna, València, Spain.

PHYSICAL REVIEW D 106, 124032 (2022)

2470-0010=2022=106(12)=124032(12) 124032-1 © 2022 American Physical Society

https://orcid.org/0000-0002-5723-5930
https://orcid.org/0000-0002-9060-1293
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.124032&domain=pdf&date_stamp=2022-12-22
https://doi.org/10.1103/PhysRevD.106.124032
https://doi.org/10.1103/PhysRevD.106.124032
https://doi.org/10.1103/PhysRevD.106.124032
https://doi.org/10.1103/PhysRevD.106.124032


Note that points (i) and (ii) define the deterministic
fundamental system of the perfect fluid hydrodynamics,
F ≡ fð1Þð2Þð3Þg, which characterizes the evolution of any
perfect fluid in local thermal equilibrium. The first equation
of state in (4) constrains the fluid to be a generic ideal gas,
and the second equation in (4) forces this ideal gas to be a
Synge gas.
In [22], we showed (see also the more recent papers

[23,24]) that the necessary and sufficient condition for a
divergence-free energy tensor T to represent the energy
evolution of a thermodynamic perfect fluid in local thermal
equilibrium is that its hydrodynamic quantities fu; ρ; pg
fulfill the hydrodynamic sonic condition:

S∶ dχ ∧ dρ ∧ dp ¼ 0; χ ≡ uðpÞ
uðρÞ ; ð5Þ

where, for a function qðxαÞ, dq denotes its differential,
dq ¼ ∂αqdxα, and uðqÞ ¼ iðuÞdq ¼ uα∂αq, and where ∧
denotes the exterior product (antisymetritzation of the
tensorial product). Constraint (5) indicates that the indica-
trix function χ is a function of state, χ ¼ χðρ; pÞ, which
coincides with the square of the speed of sound,
c2s ¼ χðρ; pÞ.
The above result states that if T ≡ fu; ρ; pg is a solution

to the hydrodynamic flow system H≡ fð1Þð5Þg, then a
thermodynamic scheme fn; s;Θg exists such that
fu; ρ; p; n; s;Θg is a solution of the fundamental system
F ≡ fð1Þð2Þð3Þg. This means that the local thermal equi-
librium condition admits a purely hydrodynamic
characterization.
It is worth remarking that a specific fluid has a specific

expression for the function of state c2s ¼ χðρ; pÞ. In
particular, when the fluid is a generic ideal gas [the first
equation in (4) holds], the indicatrix function is
χ ¼ χðπÞ ≠ π, π ≡ p=ρ [23]. The first goal of this paper
is to show that the second equation of state in (4) imposes a
first order differential equation on χðπÞ. This leads to a
purely hydrodynamic characterization of a Synge gas.
The hydrodynamic approach to the thermodynamic

perfect fluid solutions offered by the sonic condition (5),
and to the ideal gas solutions offered by the ideal sonic
condition, χ ¼ χðπÞ, has enabled us to analyze the physical
meaning of significant families of perfect fluid solutions to
the Einstein equations [24–32].
Similarly, the current hydrodynamic approach to the

Synge gas can be useful for studying both test solutions and
self-gravitating systems. Moreover, it enables us to analyze
whether several equations of state, which approach that of a
Synge gas, fulfill reasonable physical constraints (see
below). Our study is also of conceptual interest, and it
allows us to build the Rainich-like theory for the Einstein-
Synge solutions.
Synge EoS (4) implies that the thermodynamics of the

fluid needs to be formulated in terms of the modified Bessel

functions. Hence, it will not have a simple analytical
expression. For this reason, different approximations have
been considered in the literature in order to study the
relativistic gas.
On the one hand, some authors have used the limiting

behavior of the modified Bessel functions in order to obtain
an approximation of the Synge EoS for high and low
temperatures [6] (see also [3] and references therein).
On the other hand, Taub [33] found that the pressure p,

energy density ρ, and rest-mass density n of a simple gas
must satisfy a certain inequality in order to be consistent
with kinetic theory, namely,

Ta∶ ρðρ − 3pÞ ≥ n2: ð6Þ

Then, Mathews [34] used equality as the equation of state
for a relativistic gas, and Mignone et al. [4,35] showed it to
be a reasonable approximation to the Synge EoS.
From now on we will refer to such an equation as the

Taub-Mathews (TM) equation of state. Choi and Wiita [13]
used this approximation to construct an EoS for a multi-
component relativistic gas suitable for numerical (special)
relativistic hydrodynamics, which has been used recently to
study the process of jet deceleration [16]. Sokolov et al.
[36] also proposed an approximation to the Synge EoS,
which does not fulfill the Taub constraint [4].
The second goal of this paper is to analyze all these

approximations and to introduce new ones. Our hydro-
dynamic approach [through the indicatrix function χðπÞ]
enables us to study and compare the accuracy of the
different approximations and to analyze whether they fulfill
reasonable constraints for physical reality.
Plebański [37] energy conditions are necessary algebraic

conditions for physical reality and, in the perfect fluid case,
they state −ρ < p ≤ ρ. The determination of the spacetime
regions where these hydrodynamic constraints hold is a
basic task in analyzing a given perfect fluid solution. And a
basic physical requirement imposed on the thermodynamic
schemes is the positivity of the rest-mass density, of the
temperature, and of the specific internal energy, Θ > 0,
ρ > n > 0 (positivity conditions).
Moreover, in order to obtain a coherent theory of shock

waves for the fundamental system of perfect fluid hydro-
dynamics, one must impose the relativistic compressibility
conditions [38,39],

H1∶ ðτ0pÞs < 0; ðτ00pÞs > 0; ð7Þ

H2∶ ðτ0sÞp > 0; ð8Þ

where the function of state τ ¼ τðp; sÞ is the dynamic
volume, τ ¼ ĥ=n, ĥ ¼ h=c2 being the dimensionless
enthalpy index.
The above quoted physical constraints were inferred

from macroscopic analysis. Moreover, we will also impose
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Taub’s inequality Ta given in (6) (which was inferred from
the kinetic theory [33]) on the equations of state that
approximate that of a Synge gas.
In Sec. II, we revisit the hydrodynamic approach to

generic ideal gases. We analyze the ideal sonic condition
for a perfect energy tensor T, and we give the ideal
thermodynamic schemes associated with a T that fulfills
this hydrodynamic constraint. Moreover, the compressibil-
ity conditions H1 and H2, and Taub’s inequality Ta are
explicitly stated for the ideal gas case.
Section III is devoted to achieving the first objective of

this paper: the purely hydrodynamic labeling of Synge gas
solutions. This result is applied to analyze the behavior of a
Synge gas at low and high temperatures and to establish the
Rainich theory for the Einstein-Synge solutions.
In Sec. IV, we analyze equations of state that approxi-

mate the Synge EoS at low or at high temperatures and use
our hydrodynamic approach to determine acceptable
approximations in the entire domain of applicability. In
particular, we recover the Taub-Mathews EoS and we
analyze its accuracy.
In Sec. V, we consider the isentropic evolution of an ideal

gas, and we apply this study to obtain the Friedmann
equation for a TM ideal gas.
Finally, in Sec. VI, we comment on the conceptual and

practical interest of our results.

II. HYDRODYNAMIC FLOW
OF A GENERIC IDEAL GAS

If we are interested in a particular family of fluids
defined by a specific equation of state, we can analyze the
fundamental system of the hydrodynamics for these fluids
and (i) obtain a deductive criterion to detect whether a
perfect energy tensor T performs the evolution of a perfect
fluid in this family, that is, obtain the specific hydro-
dynamic flow (direct problem), and (ii) obtain all the
perfect fluids in this family for which a T, fulfilling this
criterion, gives a particular evolution (inverse problem).
In [23], we have solved these problems for the para-

digmatic family of ideal gases. Now we summarize these
results, and we will apply them to study the Synge gas in
Sec. III, and to analyze the approximations to the Synge gas
EoS in Sec. IV.

A. Ideal hydrodynamic sonic condition

A generic ideal gas is characterized by the first equation
of state given in (4), namely,

p ¼ knΘ; k≡ kB
m

: ð9Þ

Then, the Duhem-Gibbs balance equation (3) implies that
the specific energy e ¼ ρ=n is an effective function of the
temperature, e ¼ eðΘÞ, a function that characterizes each
specific ideal gas. Thus,Θ ¼ ΘðeÞ, and from (9), we obtain

that the hydrodynamic variable π ¼ p=ρ is also a function
of the specific energy e,

π ¼ πðeÞ≡ kΘðeÞ
e

; π ≡ p
ρ
: ð10Þ

For a generic (nonbarotropic) ideal gas, we can take
ðρ; pÞ as coordinates in the thermodynamic plane [23].
Moreover, we have π0ðeÞ ≠ 0, and thus, we can determine
the inverse function e ¼ eðπÞ. This will enable us to get a
hydrodynamic characterization of the Synge gas, since with
it, we can write all the thermodynamic quantities in terms of
the hydrodynamic quantities ðρ; pÞ. We start by doing so
for the speed of sound, which takes the expression [23]

c2sðρ; pÞ ¼ π þ 1

ϕðπÞ ; ϕðπÞ≡ ðπ þ 1Þe0ðπÞ
πeðπÞ : ð11Þ

This expression shows that the hydrodynamic sonic con-
dition (5) imposes that the indicatrix function χ ¼ c2s
depends only on the hydrodynamic quantity π. This result
solves the direct problem for the generic ideal gases [23].

The necessary and sufficient condition for a nonbaro-
tropic and nonisoenergetic (_ρ ≠ 0) divergence-free
energy tensor T to represent the energy evolution of
a generic ideal gas in local thermal equilibrium is that
its hydrodynamic quantities fu; ρ; pg satisfy
χ ¼ χðπÞ ≠ π, that is, they fulfill the ideal sonic
condition,

SG∶ dχ ∧ dπ ¼ 0; χ ≠ π; ð12aÞ

χ ≡ uðpÞ
uðρÞ ; π ≡ p

ρ
: ð12bÞ

The above result states (i) if fu; ρ; p; n; s;Θg is a solution
of the fundamental system of the ideal gas hydrodynamics
FG ≡ fð1Þð2Þð3Þð9Þg, then fu; ρ; pg is a solution of the
ideal hydrodynamic flow system HG ≡ fð1Þð12Þg, and
conversely, (ii) if fu; ρ; pg is a solution of the ideal
hydrodynamic flow system HG, then a solution
fu; ρ; p; n; s;Θg of the ideal fundamental system FG
exists. The specific expression of these thermodynamic
quantities in terms of the hydrodynamic ones is provided by
the inverse problem, which was analyzed and solved
in [23].

If a nonbarotropic and nonisoenergetic (_ρ ≠ 0) diver-
gence-free energy tensor T ≡ fu; ρ; pg satisfies (12),
then it represents the energy evolution of a generic
ideal gas with specific energy e, temperature Θ, rest-
mass density n, and specific entropy s given by

eðπÞ ¼ e0 exp

�Z
ψðπÞdπ

�
; ð13aÞ
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ψðπÞ≡ π

ðπ þ 1Þ½χðπÞ − π� ; ð13bÞ

ΘðπÞ ¼ π

k
eðπÞ; nðρ; pÞ ¼ ρ

eðπÞ ; ð14Þ

sðρ; pÞ ¼ k ln
fðπÞ
ρ

; ð15aÞ

fðπÞ≡ f0 exp

�Z
ϕðπÞdπ

�
; ð15bÞ

ϕðπÞ≡ 1

χðπÞ − π
: ð15cÞ

Note that the ideal gas thermodynamic scheme
fð13Þð14Þð15Þg associated with a solution T of the ideal
flow system HG depends on the real parameters e0 and f0.
The first one, e0, should be taken such that eð0Þ ¼ 1
because ρ ¼ n at zero temperature. The second one, f0,
fixes the additive constant that determines the specific
entropy for a given temperature.
It is worth remarking that the richness of thermodynamic

schemes associated with any thermodynamic energy tensor
T by the inverse problem depends on two arbitrary
functions of the specific entropy [23]. Nevertheless, only
the ideal thermodynamic scheme fð13Þð14Þð15Þg is com-
patible with the equation of state (9) of a generic ideal gas.

B. Constraints for physical reality

For an ideal gas, the equation of state (9) and the
positivity of the temperature and of the rest-mass density
imply a positive thermodynamic pressure, p > 0.
Consequently, the energy conditions become

EG∶ ρ > 0; 0 < π ≤ 1; π ¼ p=ρ: ð16Þ

On the other hand, in [24], we have proved that the
compressibility conditions H1 constrain the hydrodynamic
evolution of the fluid, and for an indicatrix function of the
form χ ¼ χðπÞ, they can be written as

HG
1 ∶

0 < χ < 1;

ζ ≡ ð1þ πÞðχ − πÞχ0 þ 2χð1 − χÞ > 0:
ð17Þ

In addition, the remaining compressibility condition H2

constrains the associated thermodynamic schemes
fs; n;Θg [24]. However, for the ideal thermodynamic
scheme fð13Þð14Þð15Þg, condition H2 can also be
expressed in terms of the indicatrix function χðπÞ as [24]

HG
2 ∶ ξ≡ ð2π þ 1Þχ − π > 0: ð18Þ

Finally, Taub’s inequality Ta given in (6) can be written
for the ideal gas case as

TaG∶ η≡ e2ðπÞð1 − 3πÞ ≥ 1: ð19Þ

In order to analyze when a specific function of state χðπÞ
corresponds to a physically realistic ideal gas, we must
analyze its behavior in the domain �0; 1�, where the energy
conditions EG hold. This behavior should be compatible
with the compressibility conditions HG

1 and HG
2 . Moreover,

the specific energy eðπÞ given by (13) should fulfill Taub’s
inequality TaG.

III. HYDRODYNAMIC FLOW OF A SYNGE
RELATIVISTIC GAS

A Synge gas is characterized by two equations: the EoS
of a generic ideal gas (9) and the second one in Eq. (4),
namely,

ρþ p ¼ nhðzÞ; z≡ 1

kΘ
; hðzÞ≡ K3ðzÞ

K2ðzÞ
; ð20Þ

Kn being the modified Bessel functions of the second kind.
It is worth remarking that the relation between the pair of
thermodynamic quantities ðz; hÞ given in (20) is not the
only way to characterize the Synge gas. This equation of
state leads to relations between other pairs of quantities
which also characterize the Synge gas. Now, the objective
is to find one of these equations of state that only involves
hydrodynamic quantities.
We know (see Sec. II) that, as a consequence of the ideal

gas EoS (9), the speed of sound is a function of the
hydrodynamic quantity π ¼ p=ρ, c2s ¼ χðπÞ. Now we show
that the Synge equation of state (20) determines χðπÞ by
imposing a specific first-order differential equation.

A. Hydrodynamic characterization of the Synge gas

Based on the properties of the Bessel functions, the
Synge equation (20) can be written as

hðzÞ ¼ 2

z
−
K0

2ðzÞ
K2ðzÞ

: ð21Þ

The function K2ðzÞ is a solution of the Bessel equation,

z2K00
2ðzÞ þ zK0

2ðzÞ − ð4þ z2ÞK2ðzÞ ¼ 0; ð22Þ

the only one fulfilling the boundary condition K2ð∞Þ ¼ 0.
Then, the function h ¼ hðzÞ may be characterized by the
following differential equation equivalent to (22):

z½h0ðzÞ − h2 þ 1� þ 5h ¼ 0; ð23Þ
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together with the boundary condition hð∞Þ ¼ 1. Moreover,
this condition ensures that hðzÞ is greater than 1 in all the
domain, as required by the definition (3) of the relativistic
specific enthalpy and the positivity conditions. Using
Eqs. (9) and (14), we can obtain the function of state that
relates the quantities ðz; πÞ,

π ¼ 1

ze
¼ 1

zhðzÞ − 1
≡ πðzÞ: ð24Þ

Equations (23) and (24) give us the differential equation
that, together with the conditions πð∞Þ ¼ 0þ and
π0ð∞Þ ¼ 0, characterize the function π ¼ πðzÞ,

zπ0ðzÞ − ð3þ z2Þπ2 − 2π þ 1 ¼ 0: ð25Þ

In this case, the boundary conditions ensure that the
function π ¼ πðzÞ takes values in the interval �0; 1=3�, a
fact that is compatible with the energy conditions EG. On
the other hand, by deriving the first equality in (24) with
respect to z and using (13) and (24) to eliminate eðπÞ and
e0ðπÞ, we have

zπ0ðzÞ ¼ πðπ þ 1Þ½π − χðπÞ�
π½χðπÞ − 1� þ χðπÞ ; ð26Þ

which can be substituted in (25) to give

z2 ¼ 1

π2
−
3

π
þ π

π½χðπÞ − 1� þ χðπÞ − 3: ð27Þ

Finally, deriving (27) with respect to z and using (26), we
obtain that the indicatrix function of a Synge gas is the
solution to the first-order differential equation

χ0ðπÞ ¼ Sðχ; πÞ≡ αχ3 þ βχ2 þ γχ þ δ

π3ðπ þ 1Þðπ − χÞ ; ð28aÞ

α ¼ αðπÞ≡ 3ð1þ 4π þ 5π2 þ 2π3Þ; ð28bÞ

β ¼ βðπÞ≡ −πð11þ 29π þ 17π2Þ; ð28cÞ

γ ¼ γðπÞ≡ π2ð13þ 17πÞ; ð28dÞ

δ ¼ δðπÞ≡ −5π3; ð28eÞ

with the boundary condition χ0ð0Þ ¼ 5=3. Then, χð0Þ ¼ 0,
and the solution χ ¼ χðπÞ takes values in the interval
½0; 1=3�, which is compatible with the first of the com-
pressibility conditions HG.
This statement certainly gives us a hydrodynamic

characterization of the Synge gas because it only uses
conditions on the hydrodynamic quantities fu; ρ; pg. But it
is not a deductive characterization because the existence of
a functional dependence between the variables χ and π does

not imply that the expression of the function χðπÞ is known,
which is a necessary requirement in order to impose
condition (28). Nevertheless, a deductive characterization
easily follows.

The necessary and sufficient condition for a nonisoe-
nergetic (_ρ ≠ 0) divergence-free energy tensor T to
represent the energy evolution of a Synge gas is that its
hydrodynamic quantities fu; ρ; pg fulfill the Synge
sonic condition,

SS∶ dχ ¼ Sðχ; πÞdπ; ð29Þ

where Sðχ; πÞ is given in (28), and Sð0; 0Þ ¼ 5=3.
The above result states: (i) if fu; ρ; p; n; s;Θg is a

solution of the fundamental system of the Synge gas
hydrodynamics F S ≡ fð1Þð2Þð3Þð9Þð20Þg, then fu; ρ; pg
is a solution of the Synge hydrodynamic flow system
HS ≡ fð1Þð29Þg, and conversely, (ii) if fu; ρ; pg is a
solution of the ideal hydrodynamic flow system HS, then
a solution fu; ρ; p; n; s;Θg of the Synge fundamental
system F S exists.
A specific ideal gas, and in particular a Synge gas, is

defined by a specific indicatrix function χðπÞ, but also by
the function e ¼ eðπÞ. The former one is an explicit
hydrodynamic quantity, χ ¼ uðpÞ=uðρÞ, and for that rea-
son, it is the right one to give the above hydrodynamic
characterization. Nevertheless, it can also be conceptually
interesting to characterize a Synge gas in terms of the pair
ðπ; eÞ. From (14) and (20), we obtain

eðzÞ ¼ hðzÞ − 1

z
: ð30Þ

Using this equation to write Eq. (23) for e ¼ eðzÞ, we get

z2e0ðzÞ þ z2½1 − e2ðzÞ� þ 3½1þ zeðzÞ� ¼ 0; ð31Þ

while, from (24), we obtain

e0ðπÞ ¼ −
π

e
½1þ πe2z0ðeÞ� ¼ −π

πe2 þ e0ðzÞ
ee0ðzÞ : ð32Þ

Then, from Eqs. (31) and (32), we have that the function
e ¼ eðπÞ of a Synge gas fulfills the boundary condition
e0ð0Þ ¼ 3=2 and the first-order differential equation

e0ðπÞ ¼ eðπÞ½1þ e2ðπÞð3π2 þ 3π − 1Þ�
π½e2ðπÞð1 − 2π − 3π2Þ − 1� : ð33Þ

Another function of state that characterizes an ideal gas
is the so-called (generalized) adiabatic index
Γ≡ ð∂ ln n=∂ lnpÞs. For a generic ideal gas, it is related
to the indicatrix function χðπÞ by the expression [3,8]
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ΓðπÞ ¼ 1þ π

π
χðπÞ: ð34Þ

Note that this expression shows that Γ can be obtained from
the hydrodynamic quantities ðu; ρ; pÞ, and thus, it can be
used to identify a specific ideal gas. Equations (28) and (34)
imply that the Γ ¼ ΓðπÞ of a Synge gas is characterized by
the first-order differential equation

Γ0ðπÞ ¼ ðΓ − 1Þ2½5ðπ þ 1Þ − 3Γð2π þ 1Þ�
π2ðΓ − 1 − πÞ ; ð35Þ

and the boundary condition Γ0ð0Þ ¼ −5=3.

B. Behavior of the Synge gas at low and high
temperatures

In the previous subsection, we have characterized the
indicatrix function χðπÞ of a Synge gas through the
differential equation (28), which cannot be solved analyti-
cally. Now, in this subsection, we will use it in order to
study the behavior of χðπÞ in the limiting cases at low and
high temperatures.
On the one hand, the limit Θ ¼ 0 corresponds to p ¼ 0,

and then π ¼ 0. On the other hand, the limit at high
temperature corresponds to z ¼ 0, and from expressions
(21) and (24) of hðzÞ and πðzÞ, to π ¼ 1=3. Thus, the
indicatrix function of a Synge gas χðπÞ takes values in the
domain ½0; 1=3�.
Note that Eq. (28) determines the value of χðπÞ at both

ends of the interval. Indeed, as commented in subsection
above, we have that

χð0Þ ¼ 0; χ0ð0Þ ¼ 5=3: ð36Þ

Then, these values and the successive derivatives of
Eq. (28) determine the derivatives of χðπÞ at π ¼ 0. This
fact enables us to know the behavior of the indicatrix
function χðπÞ of a Synge gas at low temperatures by writing
its Taylor expansion around π ¼ 0. For instance, the
second, third, and fourth derivatives take the values

χ00ð0Þ ¼ −
20

3
; χ000ð0Þ ¼ 45; χivð0Þ ¼ 460: ð37Þ

Based on the behavior of the Bessel functions close to
zero, it is also possible to get that

χð1=3Þ ¼ 1=3; χ0ð1=3Þ ¼ 1=2; ð38Þ

which is compatible with Eq. (28). However, as can be seen
from these values together with the derivative of Eq. (28),
the second derivative of χðπÞ is not defined at π ¼ 1=3.
This is a consequence of the fact that the functionK2ðzÞ has
a singular point at z ¼ 0. Thus, we can only know the
behavior of the indicatrix function χðπÞ for a Synge gas

around π ¼ 1=3 (at high temperatures) up to first order in
Taylor expansion.

C. Rainich-like theory for the Einstein-Synge solutions

An Einstein-Synge solution is a solution of the Einstein
field equations, GðgÞ ¼ κT, where T is a perfect energy
tensor that models the energy evolution of a Synge gas. The
Einstein-Synge equations involve the metric tensor g and
the thermodynamic quantities fu; ρ; p; n; s;Θg that are
constrained by the fundamental system of the Synge gas
hydrodynamics F S ≡ fð1Þð2Þð3Þð9Þð20Þg.
Note that, as a consequence of the hydrodynamic

characterization obtained in the subsection above, the
Einstein-Synge equations are equivalent to a system that
only involves the variables fg; u; ρ; pg: the field equations
GðgÞ ¼ κT, T ≡ fu; ρ; pg being a solution of the Synge
hydrodynamic flow system HS ≡ fð1Þð12Þð29Þg. Then, a
question naturally arises: is there a system of equations
involving only the metric tensor g that characterizes the
Einstein-Synge solutions? Answering that question and
obtaining those equations means giving the Rainich-like
theory for the Einstein-Synge solutions.
The first theory that characterizes the nonvacuum sol-

utions of the Einstein field equations corresponding to a
specific energy content was formulated by Rainich [40]. He
gave the necessary and sufficient conditions for a metric
tensor g to be an Einstein-Maxwell solution for a regular
electromagnetic field.
In [22], we developed a similar theory for the thermo-

dynamic perfect fluid solutions of the Einstein equations,
and the hydrodynamic sonic condition plays an important
role in that study. Later, we gave in [24] the necessary and
sufficient conditions for a perfect fluid solution to describe
a generic ideal gas that fulfills the compressibility con-
ditions HG

1 and HG
2 .

If we want the fluid to be a Synge gas, Eq. (29) must be
added to those conditions. Nevertheless, now HG

1 and HG
2

identically hold, and they can be removed in the charac-
terization statement. Thus, if we take into account theorems
9 and 10 in Ref. [24], we can obtain the Rainich-like theory
for the Einstein-Synge solutions. Below, we present the
explicit expressions of this invariant labeling.
Ricci concomitants: consider the following scalar

and tensor functions of the Ricci tensor R and its
derivatives:

t≡ trR; N ≡ R −
1

4
tg; ð39Þ

q≡ −2

ffiffiffiffiffiffiffiffiffiffi
trN3

3

3

r
; Q≡ N −

1

4
qg; ð40Þ

ρ ¼ 1

4
ð3qþ tÞ; p ¼ 1

4
ðq − tÞ; ð41Þ
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π ≡ p
ρ
; χ ≡Qðdp; dρÞ

Qðdρ; dρÞ ; S ≡ Sðχ; πÞ; ð42Þ

where Sðχ; πÞ is given in (28).
Characterization theorem 1: a metric is an Einstein-

Synge solution in nonisoenergetic evolution if, and only if,
the Ricci tensor R satisfies the invariant conditions

Q2 þ qQ ¼ 0; Qðy; yÞ > 0; −t < q ≤ t; ð43Þ

QðdρÞ≠ 0; dχ ¼ Sðχ;πÞdπ; Sð0;0Þ ¼ 5=3; ð44Þ

where y is any timelike vector, and whereQ,N, q, t, ρ, p, π,
χ, and S are given in (39), (40), (41), and (42).
Characterization theorem 2: a metric is an Einstein-

Synge solution in isoenergetic evolution if, and only if, the
Ricci tensor R satisfies the invariant conditions given in
(43) and

QðdρÞ ¼ 0; QðdpÞ ¼ 0; ð45Þ

where y is any timelike vector, and Q, N, q, t, ρ, and p are
given in (39), (40), and (41).

IV. APPROXIMATIONS TO THE SYNGE FLUID

The aim of this section is to take advantage of the results
of Sec. III in order to try to find some analytical expressions
for χðπÞ approximating that of a Synge gas, namely, the
solution to the differential equation (28).

A. Classical ideal gas approximation

Classical ideal gases are the ideal gases [EoS (9)]
fulfilling the γ-law equation of state p ¼ ðγ − 1Þnϵ, where
ϵ ¼ eðΘÞ − 1 is the specific internal energy and γ the
adiabatic index. They are usually considered as a good
approximation of an ideal gas at low temperatures, and they
can equivalently be characterized as those with an indica-
trix function of the form [26]

χcðπÞ ¼
γπ

π þ 1
: ð46Þ

The adiabatic index γ ¼ 5=3 corresponds to a mono-
atomic gas. In this case, χcð0Þ ¼ 0, χ0cð0Þ ¼ 5=3, and thus,
it approaches a Synge gas at first order. For the sake of
completeness, we analyze the constraints for physical
reality for any γ.
In [26], we have studied the macroscopic compressibility

conditions in this case, and we have obtained,
For a classical ideal gas with Θ > 0, ρ > n > 0, the
macroscopic constraints for physical reality EG, HG

1 ,
and HG

2 are satisfied for values of π in a nonempty
subinterval of [0, 1] if, and only if, adiabatic index
fulfills γ > 1. In fact, they hold in the interval

�
0 < π < πm ≡ γ − 1; if 1 < γ ≤ 2;

0 < π < π̃m ≡ 1
γ−1 ; if γ ≥ 2:

ð47Þ

Usually [see, for example, [41]] the adiabatic index γ is
considered to be constrained by 1 < γ ≤ 2. The statement
above shows that, under reasonable macroscopic physical
requirements, the upper limit for γ can be relaxed. Note that
the interval defined in (47) contains the domain ½0; 1=3�
if 4=3 ≤ γ ≤ 4.
Nevertheless, it is known [3,33] that the relativistic kinetic

theory imposes stronger restrictions. Indeed, Taub’s inequal-
ity TaG given in (19) now takes the expression

TaC∶ π < π̂m ≡ ðγ − 1Þð5 − 3γÞ: ð48Þ

Note that if this constraint holds for some π > 0, then
necessarily 1 < γ < 5=3. Moreover, the maximum value for
π̂m is 1=3, and it is reached when γ ¼ 4=3.
Consequently, the classical monoatomic gas (γ ¼ 5=3)

approximates a Synge gas at first order at low temperatures,
and it fulfills the macroscopic constraint for physical reality
HG

1 and HG
2 in the interval ½0; 2=3½. Nevertheless, it does not

fulfill Taub’s inequality at any point.

B. An approximation at high temperature

The ultrarelativistic limit of a monoatomic gas is usually
obtained from the Synge EoS by making the limit of
the Bessel function K2ðzÞ at z ¼ 0 (see, for example, [3]).
The thermodynamic quantities fulfill the relations

ρ ¼ aΘ4; p ¼ 1

3
aΘ4; S ¼ ns1 ¼

4

3
aΘ3; ð49Þ

where a and s1 are constant.
On the other hand, the above thermodynamic scheme can

be also obtained by considering that the fluid fulfills the
barotropic equation of state ρ ¼ 3p, and using the usual
macroscopic thermodynamic reasoning [23]. Now, we will
see that this ultrarelativistic limit can also be obtained from
our hydrodynamic approach, that is, as an approximation
from the Synge indicatrix function χðπÞ.
Let us consider the zero-order approximation at π ¼ 1=3,

that is, c2s ¼ χðπÞ ¼ 1=3. This indicatrix function corre-
sponds to a specific nonbarotropic ideal gas that, applying
the expressions (13) and (15) of the ideal inverse problem,
fulfills the following equations of state:

eðπÞ ¼ e0½ðπ þ 1Þ3ð1 − 3πÞ�−1=4; ð50aÞ

sðρ; pÞ ¼ s0 − k lnðρ − 3pÞ: ð50bÞ

If we impose that the ideal gas defined by Eqs. (50) has
an isentropic evolution, sðρ; pÞ ¼ s1 ¼ constant, then it
fulfills the following barotropic (evolution) relation:
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p ¼ 1

3
ðρ − κÞ; κ ¼ constant: ð51Þ

Then, the behavior of this model when κ → 0 is that of the
scheme given in Eq. (49). Thus, this usual ultrarelativistic
limit to a Synge gas can be obtained as the limit of a
one-parametric family of isentropic evolutions of a non-
barotropic ideal gas.
A similar reasoning would allow us to interpret the so-

called relativistic γ-law models, p ¼ ðγ − 1Þρ, as the limit
of a family of isentropic evolutions of the nonbarotropic
ideal gas defined by the indicatrix function c2s ¼ χðπÞ ¼
γ − 1.

C. Taub-Mathews approximation

From now on, we consider equations of state that are
Padé-like approximants at π ¼ 0 and π ¼ 1=3, which
approximate the indicatrix function χðπÞ of a Synge EoS
in the entire domain ½0; 1=3�. Let us start by considering for
χðπÞ a quotient P2/P1, where Pn denotes a polynomial of
degree n,

χðπÞ ¼ π2 þ c1π þ c2
c3π þ c4

; ð52Þ

ci being arbitrary constants with, at least, c3 ≠ 0.
Thus, we can impose up to four conditions on the

indicatrix function (52). Then, we can use the results of
the previous subsection in order to make sure that our
approximated indicatrix function behaves as that of a Synge
gas up to first order, at both low and high temperatures. In
other words, we can make (52) verify χð0Þ ¼ 0,
χð1=3Þ ¼ 1=3, χ0ð0Þ ¼ 5=3, and χ0ð1=3Þ ¼ 1=2. A
straightforward calculation shows that by doing so, we get

χðπÞ ¼ πð5 − 3πÞ
3ð1þ πÞ : ð53Þ

In order to check whether the fluid with the above
indicatrix function verifies the compressibility conditions
HG

1 and HG
2 , we simply have to substitute (53) in (17) and

(18), respectively. By doing so, we get

ζ ¼ 8πð5 − 10π þ 9π2Þ
9ð1þ πÞ2 > 0; ð54Þ

ξ ¼ 2πð1þ 2π − 3π2Þ
3ð1þ πÞ > 0; ð55Þ

if π ∈�0; 1=3½. So, both compressibility conditions are
fulfilled.
Now, we can determine the ideal thermodynamic scheme

by using (13) and (15), and we obtain

eðπÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3π

p ; fðπÞ ¼ f0
π

3
2

ð1 − 3πÞ2 ; ð56Þ

where we have set e0 ¼ 1 so that ϵð0Þ ¼ eð0Þ − 1 ¼ 0.
Then, we obtain the following equation of state:

e2ðπÞð1 − 3πÞ ¼ 1: ð57Þ

Note that this equation of state verifies Taub’s inequality
given in (19). In fact, it fulfills equality.
On the other hand, by inverting e ¼ eðπÞ in (56) and

using the definition of π and (14), we get that (57) becomes

p ¼ 1

3
n

�
e −

1

e

�
; ð58Þ

which is the equation of state proposed by Mathews [34]
(TM EoS). Moreover, using (9) and (14), it can be rewritten
as

ðh − kΘÞðh − 4kΘÞ ¼ 1; ð59Þ

which was proposed and analyzed byMignone et al. [4,35],
who showed it to be a reasonable approximation to the
Synge equation of state.
If we compare the indicatrix function of the TM

EoS with that of a Synge gas, we conclude that the relative
error is less than 2.36% in the entire domain ½0; 1=3�
(see Fig. 1).

D. Generalized Taub-Mathews approximation

We can try to generalize the TM EoS to an arbitrary γ in
order to obtain an analytical model for a relativistic
polyatomic gas. We start from an expression of the form
(52), and we impose χ0ð0Þ ¼ γ instead of χ0ð0Þ ¼ 5

3
. In that

case, we get the following indicatrix function (TMγ):

χðπÞ ¼ π½γ þ 3πðγ − 2Þ�
1þ 3πð2γ − 3Þ ; ð60Þ

which indeed reduces to (53) for γ ¼ 5
3
.

Now, we can easily check that ζ > 0 and ξ > 0, and thus,
both compressibility conditions (17) and (18) are fulfilled
for any γ ≥ 1.
Moreover, following the same procedure as before, we

have that, in this case,

eðπÞ ¼ ð1þ πÞ 5−3γ
2ðγ−1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3π
p ; fðπÞ ¼ f0

π
1

γ−1

ð1 − 3πÞ2 ; ð61Þ

Then, we can obtain

η≡ e2ðπÞð1 − 3πÞ ¼ ð1þ πÞ5−3γγ−1 ; ð62Þ
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which implies that Taub’s inequality (19) is only verified if
1 < γ ≤ 5

3
. These results and all those that will be obtained

in this section are summarized in Table I.
The first expression in (61) can be written as

ðneþ pÞ3γ−5γ−1 ðne − 3pÞ ¼ e
2ðγ−2Þ
γ−1 n

2ð2γ−3Þ
γ−1 ; ð63Þ

or, equivalently,

h
3γ−5
γ−1 ðh − kΘÞ2ð2−γÞγ−1 ðh − 4kΘÞ ¼ 1: ð64Þ

In [36], Sokolov proposed the simplified equation of
state

hðh − 4kΘÞ ¼ 1: ð65Þ

It can easily be seen that this is a particular case of the TMγ
equation of state with γ ¼ 2. Therefore, it neither repro-
duces the correct behavior of the Synge EoS for low

TABLE I. This table summarizes the physical behavior of the equations of state that approximate the Synge EoS. The two first
columns show the indicatrix function χðπÞ and the specific energy eðπÞ, respectively. In the third and forth columns, a ✓ indicates that
the corresponding EoS fulfills the macroscopic compressibility conditionsHG

1 ,H
G
2 or the Taub constraint TaG in the full interval �0; 1=3½.

In the two first rows, the EoS depends on the adiabatic index γ; then, we indicate the values of this parameter for which these conditions
hold.

EoSAPPROX χðπÞ eðπÞ HG
1 , H

G
2 TaG

CIG γπ
1þπ

γ−1
γ−1−π 4=3 < γ < 4 γ ¼ 4

3

TMγ π½γþ3πðγ−2Þ�
1þ3πð2γ−3Þ

ð1þπÞ
5−3γ
2ðγ−1Þffiffiffiffiffiffiffiffi

1−3π
p γ > 1 1 < γ ≤ 5

3

TM πð5−3πÞ
3ð1þπÞ

1ffiffiffiffiffiffiffiffi
1−3π

p ✓ ✓

Sokolov 2π
1þ3π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−3πÞð1þπÞ

p ✓ No

P3=P1 πð5þ15π−18π2Þ
3ð1þ5πÞ

ð1þπÞ34
ð1þ3πÞ14 ffiffiffiffiffiffiffiffi

1−3π
p ✓ ✓

P3=P2 5πð3π2þ7π−4Þ
57π2−3π−12

1

ð1þπÞ 611ð1−7
4
πÞ2477ð1−3πÞ12

✓ ✓

P3 1
6
πð10 − 15π þ 9π2Þ ðπþ1Þ 314ð1−3

4
πÞ27ffiffiffiffiffiffiffiffi

1−3π
p ✓ No

P1=P2 10π
3ð3π2þ3πþ2Þ

ð1þπÞ32
ð4þ3πÞ2 ffiffiffiffiffiffiffiffi

1−3π
p ✓ No

FIG. 1. This plot shows the relative error with respect to the Synge EoS of the TM EoS and of the other proposed EoS. The P3/P2 and
P3/P1 EoS are more accurate than the TM EoS, while P3 and P1/P2 EoS are not.
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temperatures nor fulfills Taub’s condition. Nevertheless, we
consider it in Table I for the sake of completeness.

E. Other approximations

This subsection is devoted to trying to find other
indicatrix functions approximating that of a relativistic
Synge gas and to studying them following the same
approach as in the previous subsection.
Firstly, we consider χðπÞ to be the ratio of two poly-

nomials of third and first order (P3/P1) and make it behave
as the Synge indicatrix function up to second order at low
temperatures and up to first order at high temperatures.
With that, we get

χðπÞ ¼ πð5þ 15π − 18π2Þ
3ð1þ 5πÞ : ð66Þ

Then, we can check that ζ > 0 and ξ > 0, and thus, both
compressibility conditions (17) and (18) are fulfilled.
Moreover, we can determine the specific energy by using

(13), and we obtain

eðπÞ ¼ ð1þ πÞ34
ð1þ 3πÞ14 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3π
p : ð67Þ

Then, we can see that the Taub constraint (19) also holds.
If we compare the indicatrix function (66) of the P3/P1

EoS with that of a Synge gas, we conclude that the relative
error is less than 1.25%, and this EoS shows better accuracy
than that of TM in the entire domain ½0; 1=3� (see Fig. 1).
Secondly, we take χðπÞ to be the ratio of two poly-

nomials of the form P3/P2. Now, we can make it behave as
the Synge indicatrix function up to third order at low
temperatures and up to first order at high temperatures. In
this case, we obtain

χðπÞ ¼ 5πð3π2 þ 7π − 4Þ
57π2 − 3π − 12

; ð68Þ

eðπÞ ¼ 1

ð1þ πÞ 6
11ð1 − 7

4
πÞ2477ð1 − 3πÞ12 : ð69Þ

Then, we can see that this P3/P2 EoS fulfills both
compressibility conditions (17) and (18), and Taub’s
inequality (19).
If we compare the indicatrix function (68) of the P3/P2

EoS with that of a Synge gas, we conclude that the relative
error is less than 0.30% in the entire domain ½1; 1=3�
(see Fig. 1).
Finally, we look for indicatrix functions χðπÞ that

approximate the Synge EoS up to first order at both low
and high temperatures. This is the case of the TM EoS,
which corresponds to a ratio P2/P1. Now, we consider two
new cases: a third-order polynomial P3, and a ratio of
polynomials of the form P1/P2.

We can easily obtain the expressions for the indicatrix
function χðπÞ and the specific energy eðπÞ, which are listed
in Table I. Now, compressibility conditions (17) and (18)
are fulfilled in both cases. Nevertheless, Taub’s inequality
(19) does not hold.
Moreover, if we compare the indicatrix function of these

EoS with that of a Synge gas, we conclude that the relative
error is, in the entire domain ½0; 1=3�, less than 2.90% for
the P3 EoS, and less than 2.80% for the P1/P2 EoS
(see Fig. 1).

V. ISENTROPIC EVOLUTION
OF THE SYNGE GAS

The isentropic evolution of a nonbarotropic perfect fluid is
described by a barotropic energy tensor fulfilling a barotropic
relation implicitly defined by sðρ; pÞ ¼ constant. Now, we
analyze the isentropic evolution of a generic ideal gas, andwe
particularize it to the Synge EoS and the TM approximation.
The generalized Friedmann equation is stated for this case.

A. Isentropic evolution of a generic ideal gas

From the expression sðρ; pÞ of the specific entropy given
in (15), we find that in an isentropic evolution of a generic
ideal gas we have a barotropic relation of the form

ρ ¼ KfðπÞ; ð70Þ

where K is an arbitrary constant. If the function fðπÞ is
invertible, then (70) gives us the following explicit baro-
tropic relation:

p ¼ φðρÞ≡ ρf−1ðρ=KÞ: ð71Þ

By differentiating (70) and using (15b), we can also
characterize the barotropic relation through a differential
equation,

p0 ≡ φ0ðρÞ ¼ χðp=ρÞ ≠ π: ð72Þ

The isentropic evolution of a classical ideal gas with
adiabatic index γ leads to a barotropic relation of the form
[26,42]

ðγ − 1Þρ ¼ pþ Bp
1
γ ; B ¼ constant ≠ 0: ð73Þ

In the case of the TM approximation, the function fðπÞ is
given in (56). Thus, by substituting it in (70), we obtain an
implicit barotropic relation,

K2p3 ¼ ρðρ − 3pÞ4: ð74Þ

For the case of the exact Synge equation of state, we do
not explicitly know fðπÞ nor χðπÞ. However, if we derive
(72) with respect to ρ and use (28), we can obtain a second
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order differential equation characterizing the barotropic
relation p ¼ φðρÞ leading to the isentropic evolution of a
relativistic Synge gas,

p00ρπ3ðπ þ 1Þ þ αp03 þ βp02 þ γp0 þ δ ¼ 0; ð75Þ

with α, β, γ, and δ given in (28).

B. Generic ideal gas FLRW models

The Friedman-Lemaître-Robertson-Walker universes are
perfect fluid space-times with line element

ds2 ¼ −dt2 þ R2ðtÞ
½1þ 1

4
kr2�2 ðdr

2 þ dΩ2Þ; ð76Þ

with k ¼ 0;�1, and the homogeneous energy density and
pressure are given, respectively, by

ρ ¼ 3 _R2

R2
þ 3k
R2

þ Λ≡ ρðRÞ; ð77Þ

p ¼ −ρ −
R
3
∂Rρ≡ pðRÞ: ð78Þ

What are the generalized Friedmann equationswhen the
energy content is an ideal gas? The homogeneity of the
hydrodynamic quantities ρ and p implies that, necessarily,
we have an isentropic evolution. Then, as argued in the
previous subsection, a barotropic relation of the form (71)
holds. Then, (78) enables us to determine ρðRÞ, and (77)
becomes a Friedmann equation for RðtÞ.
In [26], we have obtained this generalized Friedmann

equation for the case of a classical ideal gas. Now, we
analyze the case of a TM ideal gas. From the TM EoS (58)
and the barotropic relation (74), we obtain the evolution
constraint

ρ ¼ ρðnÞ≡ n2ð1þ μ2n2=3Þ; ð79Þ

where μ≡ 3
ffiffiffi
3

p
=K.

On the other hand, it is known that, for the FLRW
metrics, the rest-mass density is

n ¼ n0

�
R0

R

�
3

: ð80Þ

Consequently, from (79) and (80), we obtain the following
expression for the energy density:

ρðRÞ ¼
�
n20

�
R0

R

�
6

þ ρ2r

�
R0

R

�
8
�
1=2

; ð81Þ

where ρr ≡ 3
ffiffiffi
3

p
n4=30 =K. This expression and (77) deter-

mine the generalized Friedmann equation for the TM-gas
FLRW models.
It is worth remarking that this generalized Friedmann

equation was obtained by de Berredo-Peixoto et al. [19]
using other reasoning. In fact, they also use an equation of
state equivalent to the TMEoS, which they comparewith the
exact Synge EoS. Here, we have used our hydrodynamic
approach to show that the solutions to the Friedmann
equation defined by (77) and (81) model a TM gas evolving
at constant entropy s ¼ k ln½ρr=ð3

ffiffiffi
3

p
n4=30 Þ�.

VI. CONCLUSIONS

The hydrodynamic approach to the Synge gas presented
here can be useful to look for test solutions or self-
gravitating systems that model high-energy scenarios.
This kind of procedure applied to other media has enabled
us to analyze elsewhere the physical meaning of several
families of perfect fluid solutions.
Our study is also of conceptual interest and it has allowed

us to formulate the Rainich-like theory for the Einstein-
Synge solutions in Sec. III C. It is worth remarking that the
characterization theorems presented in this subsection can
be slightly changed in order to obtain the characterization
of the perfect fluid solutions corresponding to the media
with the other EoS considered in the paper. For example,
for the TM EoS we should change condition (44) to
expression (53) of the indicatrix function of a TM gas.
Several analytical approximations to the Synge EoS have

shown their usefulness in numerical codes to model a
relativistic gas. Here, we have performed a hydrodynamic
approach to recover and to analyze the Taub-Mathews EoS.
We have established that the square of the speed of sound of
the TM EoS and the Synge EoS differ at most by 2.36%.
Furthermore, our method enabled us to obtain other

analytical EoS that approximate the Synge EoS. Those
approximated EoS with less accuracy than the TM EoS do
not fulfill Taub’s inequality. Therefore, the TM equation of
state acts as the limiting case. We have been able to find
EoS with better accuracy than that of Taub-Mathews by
reaching higher orders in the approximation.
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