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I. INTRODUCTION

While the exterior geometry of an astrophysically
realistic black hole is well modeled by the Kerr metric,
the region below the event horizon remains more elusive.
The inner horizon of a Kerr black hole is subject to the
Poisson-Israel [1,2] “mass inflation” instability, in which
incident outgoing and ingoing streams of accreting matter
or radiation drive an exponentially growing curvature.
The outcome of the inflationary instability, from both a
classical and quantum perspective, is a subject of active
research [3–25].
The Kerr solution [26,27] and its electrovac cousins

[28,29] are strictly stationary, strictly separable, and axi-
symmetric. References [30–32] have generalized these
spacetimes to allow for self-similar accretion, leading to
conformally stationary, conformally separable, axisymmet-
ric solutions for the interior structure of accreting, rotating
black holes. Whereas strict separability posits that all
geodesics are Hamilton-Jacobi separable, conformal sepa-
rability posits only that null geodesics are separable. The
hypothesis of conformal separability imposes all the usual
constraints on the possible form of the separable line
element [33,34] except that the overall conformal factor
is permitted to be arbitrary. The further hypothesis of
conformal stationarity posits that the spacetime has a
conformal timelike Killing vector, or in other words, that
the spacetime grows self-similarly, by accretion, and that the
accretion rate is small.
The energy-momentum tensor that sources the confor-

mally stationary, conformally separable solutions fits that of
a collisionless fluid containing a combination of outgoing
and ingoing components. It is remarkable that the entire
system of Einstein equations (and Maxwell equations, if the

black hole is charged), coupled to the equations of a
collisionless fluid, are jointly separable and solvable.
The conformally separable solutions are approximate,

holding in the asymptotic limit of small accretion rate. It is
helpful to emphasize the precise sense in which the
conformally separable solutions are approximate. The
standard Λ-Kerr-Newman line element can be derived
from three assumptions: time-translation symmetry, azimu-
thal symmetry, and the separability of the Hamilton-Jacobi
equation for geodesics of particles of rest mass m. More
specifically, the Λ-Kerr-Newman line element follows from
assuming that the Hamilton-Jacobi equation separates “in
the simplest possible way” [33], which requires that the
particle action S be a separated sum [this is Eq. (28) of
Ref. [31]]

S ¼ 1

2
m2λ − Etþ Lϕþ SxðxÞ þ SyðyÞ; ð1Þ

in which λ is an affine parameter, E and L are a conserved
energy and angular momentum associated with time t
translation and azimuthal ϕ symmetry, and SxðxÞ and
SyðyÞ are functions of two other coordinates, x and y,
respectively. The conformally separable line element
[Eq. (2)] follows from relaxing the assumption of time-
translation symmetry to conformal time-translation sym-
metry, meaning that the metric depends on a conformal time
coordinate t only through an overall conformal factor evt

with accretion rate v, and from relaxing the assumption of
strict Hamilton-Jacobi separability to conformal separabil-
ity, meaning that Eq. (1) is required to hold only for
massless particles, m ¼ 0. With the line element in
Eq. (2) in hand, it is then a laborsome matter to separate
the Einstein (and Maxwell) equations systematically. That
separation works only if certain terms are treated as
negligible, which Ref. [31] shows is valid in the asymptotic
limit of small accretion rate v. The proof that the negligible
terms can in fact be neglected is again laborsome.
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Since the accretion rate is small, the geometry of the
conformal solutions is well approximated by the Kerr (or
more general electrovac) geometry down to just above the
inner horizon. However, even in the limit of a tiny accretion
rate, hyper-relativistic counterstreaming between outgoing
and ingoing streams just above the inner horizon ignites
and then drives the Poisson-Israel mass inflation instability.
During inflation, the proper counterstreaming density and
pressure, along with the Weyl curvature, exponentiate to
huge (super-Planckian, if quantum gravity did not inter-
vene) values. The inflationary instability is the nonlinear
realization of the infinite blueshift at the inner horizon first
pointed out by Ref. [35].
The end result of mass inflation is the formation of a

singularity near where the inner horizon should have been.
Perturbation analyses in the Kerr geometry find this
singularity to be either weak and null [4] or strong and
spacelike [11,36]. The conformally stationary, conformally
separable solutions predict a singularity of the latter type.
Whereas a weak, null singularity is derived from the
assumption that the black hole remains isolated into the
indefinite future after an initial collapse or accretion event,
real astronomical black holes are not isolated, with ongoing
accretion from the cosmic microwave background, dark
matter, gas, and ambient astronomical bodies [37]. As a
result of the continued accretion, mass inflation stalls at
exponentially large curvature, at which point the spacetime
collapses (in the sense that the conformal factor shrinks to
an exponentially tiny scale) toward a spacelike singularity.
This is the general behavior predicted by the nonlinear,
dynamical solutions of Refs. [30–32].
The conformally separable solutions are unrealistic in

the sense that they require a special incident accretion flow,
which is constant in time and constant in angle over the
inner horizon. This would seem to diminish the physical
relevance of the solutions. It appears, however, that the
solutions have more general application to arbitrary
accretion flows, as long as the accretion rate is small, as
is true most of the time in most astronomical black holes.
The reason is that during the initial, inflationary phase, the
Kerr (or more general electrovac) geometry remains
essentially unchanged while outgoing and ingoing streams
focus and blueshift exponentially along the principal null
directions. During this inflationary phase, tidal forces
(second gradients of the metric) grow (exponentially)
large, but the metric itself barely budges. Eventually,
the tidal force starts to backreact on the spacetime, leading
to collapse in the transverse directions, and stretching
along the principal directions. Inflation and collapse occur
over such a tiny proper time that what happens at one point
on the inner horizon is causally disconnected from what
happens at another point. Different causal patches on the
inner horizon evolve essentially independently of each
other. The conformally separable solutions [30–32] fail
deep into the collapse regime, where rotational motions

reassert themselves. Reference [38] has explored numeri-
cally what happens at that point, finding that inflation and
collapse is followed by Belinskii-Khalatnikov-Lifshitz
(BKL) [39–43] oscillatory collapse to a spacelike singular
surface. The conformally separable inflation and collapse
regimes prove to be just the first two Kasner epochs in a
succession of Kasner epochs separated by BKL bounces.
The purpose of the present paper is to derive the wave

equations of massless, neutral fields of various spin (0, 1
2
, 1,

3
2
, and 2) in conformally separable black hole spacetimes,
extending the well-known Teukolsky solutions for sta-
tionary rotating black holes [27,44–47]. The problem is
by itself of some interest: do the wave equations in rotating
black holes remain separable if the condition of strict
separability is relaxed to conformal separability? The
answer is yes. The generalization of the Teukolsky master
equation [27,44,45] to the conformally separable solutions
is given by Eq. (60) with the potentials in Eq. (61).
The conformal wave equations are also relevant for

analyzing quantum effects near the inner horizons of
astronomically realistic black holes. Semiclassically, the
quantum backreaction to the metric is governed by the
renormalized vacuum expectation value of a field’s energy-
momentum tensor, which is built out of solutions to the
wave equation. For Kerr black holes, this quantity has
recently been calculated by Ref. [20] at the inner horizon,
revealing singular behavior at that null boundary. The full
story of what happens at the inner horizon of an astronom-
ically realistic rotating black hole is a topic of active
research [4,6,9,20,21,24,25]. One of the big outstanding
questions is whether quantum effects transform a weak, null
singularity into a strong, spacelike singularity, even in the
absence of accretion from outside.
This paper considers only uncharged black holes, even

though conformally separable solutions exist also for
charged black holes [32]. The problem is that electromag-
netic and gravitational perturbations become inextricably
linked in the presence of a finite electric field, preventing
separation of the wave equations. In his epic monograph,
Chandrasekhar [46] was able to separate the coupled
electromagnetic and gravitational perturbations for the case
of a Reissner-Nordström (charged, nonrotating) black hole,
but not for a charged, rotating black hole.
The plan of this paper is as follows. Section II reviews the

conformally separable black hole solutions, and it defines
the Newman-Penrose and spinor frames with respect to
which the wave equations are separable. Section III sum-
marizes the wave equations for massless fields of arbitrary
spin. The summary in Sec. III is based on the wave
equations derived in Secs. IV–VIII for each of the spins
s ¼ 0, 1

2
, 1, 3

2
, and 2.

Appendix A takes a deeper dive into the derivation of
wave equations in general spacetimes. Appendix B gives
a relation between differential operators needed to write
down the expressions in Eq. (116) for the boost-weight-0

ANDREW J. S. HAMILTON and TYLER MCMAKEN PHYS. REV. D 106, 124031 (2022)

124031-2



component F̃0 of an electromagnetic wave. Appendix C
translates between the notation of Chandrasekhar [46] and
the present paper.
In this paper, mid-latin indices k; l;… run over tetrad

vector indices, while early latin indices a; b;… run over
chiral spinor indices. Greek indices κ; λ;… are coordinate
indices. The units are such that the speed of light and
Newton’s gravitational constant are unity, c ¼ G ¼ 1.

II. CONFORMALLY SEPARABLE ROTATING
BLACK HOLES

A. Line element

This section summarizes results from Refs. [30,31].
The conformally separable line element is, in conformal

coordinates fx; t; y;ϕg,

ds2 ¼ ρ2
�
dx2

Δx
−

Δx

ð1 − ωxωyÞ2
ðdt − ωydϕÞ2

þ dy2

Δy
þ Δy

ð1 − ωxωyÞ2
ðdϕ − ωxdtÞ2

�
: ð2Þ

The line element (2) defines not only a metric, but also an
orthonormal tetrad (see Sec. II B), whose null directions
are chosen to align with the principal null directions. The
line element (2) is Kerr (or more general electrovac), with
two differences elaborated below: the conformal factor ρ
[Eq. (6)], and the radial horizon function Δx [Eqs. (15) and
(22c)]. Separation of the Einstein equations is most natural
with respect to the radial and angular coordinates x and y,
which are related to the usual Boyer-Lindquist radius r and
polar angle θ by

r≡ a cotðaxÞ; cos θ≡ −y; ð3Þ

where a is the angular momentum per unit mass of the
black hole, with a positive for right-handed rotation about
the axis of rotation. Note that

∂

∂x
¼ −R2

∂

∂r
; R≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
: ð4Þ

The quantities ωx and ωy in the conformally separable line
element [Eq. (2)] take their usual Kerr forms, and they are
functions only of the radial and angular coordinates,
respectively:

ωx ¼
a
R2

; ωy ¼ a sin2 θ: ð5Þ

Physically, ωx is the angular velocity of the principal null
frame through the coordinates, while ωy is the specific
angular momentum of light rays on the principal null
congruence.

The first difference in the line element (2) between
stationary (Λ-Kerr-Newman) and conformally separable
black hole spacetimes is in the conformal factor ρ. In
stationary black hole spacetimes, the conformal factor ρ is
separable, its square being a sum ρ2 ¼ ρ2s ¼ r2 þ a2 cos2 θ
of radial and angular parts. In the conformally separable
spacetimes, the conformal factor ρ is a product of the
Λ-Kerr-Newman separable factor ρs, a time-dependent
factor evt, and an inflationary factor e−ξðxÞ:

ρ¼ ρsρi; ρs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 cos2 θ

p
; ρi ¼ evt−ξðxÞ: ð6Þ

It is useful to define the complex combination

ρ̄≡ r − ia cos θ; ð7Þ

whose complex conjugate is ρ̄� ¼ rþ ia cos θ, and
whose absolute value is the separable conformal factor,
jρ̄j ¼ ffiffiffiffiffiffiffi

ρ̄ρ̄�
p ¼ ρs. The conformally separable solutions

apply in the limit of a small but nonvanishing accretion rate,

v → 0: ð8Þ

The conformally separable spacetimes possess a Killing
vector ∂=∂ϕ associated with azimuthal symmetry, a con-
formal Killing vector ∂=∂t associated with conformal time-
translation invariance, and a traceless conformal Killing
tensor Kmn [31],

Kmn ≡ 1

2
ρ2diagð1;−1; 1; 1Þ; ð9Þ

which satisfies the conformal Killing equation

DðkKmnÞ −
1

3
ηðkmDlKnÞl ¼ 0: ð10Þ

The connection between the existence of a conformal
Killing tensor and the separability of wave equations is
discussed by Ref. [48].
There is a gauge freedom in the choice of the zero point

and the scaling of conformal time t. The proper time far
from the black hole yet well inside any cosmological
horizon defines the Kerr time tKerr:

tKerr ≡
Z

evtdt ∝
evt

v
: ð11Þ

The proper mass M of the black hole increases proportion-
ally to the conformal factor, and thus linearly with Kerr time.
It is natural to scale conformal time, and hence v, so that

M ¼ vtKerr: ð12Þ

With this choice, the accretion rate v is just equal to the
dimensionless rate at which the proper mass of the black
hole increases, as measured by a distant observer,
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v ¼ _M: ð13Þ

The second difference in the line element (2) between
stationary (Λ-Kerr-Newman) and conformally separable
black hole spacetimes is in the radial horizon function Δx.
The conformally separable spacetimes share with their
separable cousins the property that the radial horizon
function Δx and the angular polar function Δy are
functions only of the radial coordinate x and the angular
coordinate y, respectively. Indeed, the polar function Δy

for the conformally separable spacetimes is unchanged
from the Λ-Kerr-Newman spacetimes, and is, including a
possible cosmological constant Λ,

Δy ¼ sin2 θ

�
1þ Λa2 cos2 θ

3

�
: ð14Þ

The analysis in this paper holds both outside and inside the
outer horizon. The conformally separable geometry is the
standard Λ-Kerr geometry down to just above the inner
horizon, where the usual Teukolsky wave equations are
recovered. In the Λ-Kerr region outside the outer horizon
and down to just above the inner horizon, the horizon
function Δx is

Δx !
r≫r−

1

R2

�
1 −

2M•r
R2

−
Λr2

3

�
; ð15Þ

where M• is the conformal mass of the black hole, a
constant, and Λ is the cosmological constant.
However, the conformally separable solutions undergo

violent inflation from just above the inner horizon inward.
Just above the inner horizon, the horizon function is
negative and tending to zero, Δx → −0. The radial coor-
dinate x is then timelike, and increasing inward, the
direction of increasing proper time, while the time coor-
dinate t is spacelike, and increasing in the outgoing
direction (at the inner horizon, outgoing particles accreted
in the past encounter ingoing particles accreted in the future,
so it is natural to choose outgoing particles inside the black
hole to be moving forward in t, while ingoing particles
move backward in t). The conformally separable solutions
are characterized by two small parameters u, v which
specify the rates u� v of accretion of outgoing (þ) and
ingoing (−) collisionless streams incident on the inner
horizon (do not confuse these accretion rates with the
ingoing and outgoing tetrad indices u and v introduced
in Sec. II B). Positivity of both accretion rates requires

u > v > 0: ð16Þ

The conformally separable solutions are valid in the limit of
small but finite u and v.
Solution of the Einstein equations for the conformally

separable line element [Eq. (2)] driven by outgoing and

ingoing null streams leads to evolutionary equations for the
inflationary exponent ξ and the horizon function Δx near
the inner horizon [30,31]. First, define radial and angular
tortoise coordinates x� and y� by

x� ≡
Z

dx
−Δx

; y� ≡
Z

dy
Δy

: ð17Þ

Outside the outer horizon rþ, the radial tortoise coordinate
x� increases outward, from −∞ at the horizon rþ, to

x� →

8><
>:

þ∞ at r → ∞ if Λ ¼ 0;

þ∞ at r → rΛ if Λ > 0;

finite at r → ∞ if Λ < 0.

ð18Þ

Inside the outer horizon, the tortoise coordinate x�
increases inward, from −∞ at the horizon rþ. Define
the dimensionless quantity UðxÞ by

U≡ dξ
dx�

: ð19Þ

The Einstein equations near the inner horizon lead to [31]

dU
dx�

¼ 2ðU2 − v2Þ; ð20aÞ

d lnΔx

dx�
¼ 3U − Δ0

x; ð20bÞ

where Δ0
x ≡ dΔx=dxjx− , a constant, is the (positive) deriva-

tive of the electrovac horizon function at the inner horizon
x ¼ x−. The initial condition for U well above the inner
horizon is

U ¼ u: ð21Þ

The differential equations of Eq. (20) with the initial
condition in Eq. (21) solve to give the inflationary exponent
ξ, the horizon function Δx, and the radial coordinate x near
the inner horizon:

eξ ¼
�
U2 − v2

u2 − v2

�
1=4

; ð22aÞ

evx
� ¼

�ðU − vÞðuþ vÞ
ðU þ vÞðu − vÞ

�
1=4

; ð22bÞ

Δx ¼ −e3ξ−Δ0
xx� ; ð22cÞ

x − x− ¼ −
Z

ΔxdU
2ðU2 − v2Þ : ð22dÞ
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Equation (22d) says that the radial coordinate x is essen-
tially frozen at its inner horizon value x− throughout
inflation and collapse.

B. Tetrad

The line element [Eq. (2)] defines not only a metric gκλ,
which is an inner product of coordinate tangent vectors eκ,
but also, through

eκ · eλ ¼ gκλ ¼ ηklekκelλ ¼ ekκγk · elλγl; ð23Þ

a vierbein matrix ekκ, and a corresponding orthonormal
tetrad fγ0; γ1; γ2; γ3g, whose inner products form the
Minkowski metric, γk · γl ¼ ηkl. The orthonormal tetrad
behaves smoothly across horizons provided that the time
axis γ0 is chosen to be timelike and future-pointing both
outside (Δx > 0) and inside (Δx < 0) the horizon, while
the radial axis γ1 is outgoing both outside and inside the
horizon:

fγ0; γ1; γ2; γ3g ¼
� fγt; γx; γθ; γϕg Δx > 0

fγx; γt; γθ; γϕg Δx < 0
: ð24Þ

The sign of the vierbein coefficient e1x is negative outside
the horizon [because the spacelike radial coordinate x
decreases outwards, Eq. (4)], while e0x is positive inside
the horizon [because the timelike radial coordinate x
increases inwards].
Whenever dealing with massless fields, it is advanta-

geous to use the Newman-Penrose double-null tetrad
formalism. The double-null Newman-Penrose basis
tetrad fγv; γu; γþ; γ−g corresponding to the orthonormal
tetrad fγ0; γ1; γ2; γ3g is

γv
u
≡ 1ffiffiffi

2
p ðγ0 � γ1Þ; γ� ≡ 1ffiffiffi

2
p ðγ2 � iγ3Þ: ð25Þ

The choice in Eq. (24) of orthonormal axes ensures that
the Newman-Penrose basis vectors [Eq. (25)] behave
smoothly across horizons, with γv outgoing and γu
ingoing both outside and inside the outer horizon. The
tetrad metric of the Newman-Penrose basis vectors is
(k; l ¼ v; u;þ;−)

γkl ≡ γk · γl ¼

0
BBB@

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA: ð26Þ

The transverse Newman-Penrose basis vectors γ�
defined by Eq. (25) are complex conjugates of each other,

γ− ¼ γ�þ: ð27Þ

Consequently, the directed derivatives ∂� in the γ� direc-
tions are complex conjugates,

∂− ¼ ∂
�þ: ð28Þ

More generally, covariant tetrad-frame derivatives D� in
the γ� directions are complex conjugates,

D− ¼ D�þ: ð29Þ

Boosting the tetrad frame by rapidity η in the v-u plane
boosts the outgoing γv and ingoing γu basis vectors by

γv → eηγv; γu → e−ηγu; ð30Þ

while spatially rotating the tetrad frame by angle ζ in the
þ-− plane rotates the γþ and γ− basis vectors by

γþ → e−iζγþ; γ− → eiζγ−: ð31Þ

Tetrad-frame tensors inherit their transformation proper-
ties from the tetrad-frame basis vectors γk. A tensor of
boost weight σ is multiplied by eση under a Lorentz boost
by rapidity η in the v-u plane, while a tensor of spin weight
ς is multiplied by e−iςζ under a right-handed spatial rotation
by angle ζ in the þ-− plane [49]. The boost and spin
weights of a tetrad-frame tensor can be determined by
inspection, according to the rules

boost weight

¼ number of vminus number of u covariant indices; ð32aÞ

spin weight

¼ number of þminus number of − covariant indices:

ð32bÞ

Contravariant indices count oppositely to covariant indices.

C. Spinors

To deal with fields of half-integral spin, it is necessary to
introduce a matrix representation of the tetrad γk. These
matrices are commonly called Dirac γ matrices (which
accounts for the notation γk for the tetrad basis vectors).
In the chiral representation where the chiral operator is
diagonal [Eq. (35) below], the Dirac γ matrices are the 4 × 4

real unitary (γk ¼ γ†k) matrices

γv ¼
�

0 σv

−σu 0

�
; γu ¼

�
0 σu

−σv 0

�
; ð33aÞ

γþ ¼
�

0 σþ
σþ 0

�
; γ− ¼

�
0 σ−

σ− 0

�
; ð33bÞ
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where σk are the Newman-Penrose Pauli matrices

σv ≡
ffiffiffi
2

p �
1 0

0 0

�
; σu ≡

ffiffiffi
2

p �
0 0

0 1

�
; ð34aÞ

σþ ≡ ffiffiffi
2

p �
0 1

0 0

�
; σ− ≡ ffiffiffi

2
p �

0 0

1 0

�
: ð34bÞ

The Lorentz-invariant chiral operator γ5 is −i times the
pseudoscalar I,

γ5 ≡ −iI ≡ −iγ0γ1γ2γ3 ¼ γv ∧ γu ∧ γþ ∧ γ−

¼ −
i
4!
εklmnγkγlγmγn ¼

�
1 0

0 −1

�
; ð35Þ

the sign convention for the totally antisymmetric tensor
being εklmn ¼ −εklmn ¼ ½klmn� in a locally inertial frame.
The Dirac γ matrices act by matrix multiplication on

Dirac spinors, which are spin-1
2
spinors in 3þ 1 spacetime

dimensions. A Dirac spinor ψ is a complex linear combi-
nation of chiral basis spinors ϵa,

ψ ¼ ψaϵa; ð36Þ

in which ϵa is the foursome of chiral basis spinors

ϵa ¼ fϵ⇑↑; ϵ⇓↓; ϵ⇑↓; ϵ⇓↑g: ð37Þ

In the chiral representation, the chiral basis spinors ϵa are
column vectors with 1 in the ath place, zero elsewhere;
for example ϵ⇑↑ ¼ colð1; 0; 0; 0Þ. The basis spinors with
boost and spin aligned, ϵ⇑↑ and ϵ⇓↓, are right-handed, with
positive chirality, while spinors with boost and spin
antialigned, ϵ⇑↓ and ϵ⇓↑, are left-handed, with negative
chirality. The basis spinors satisfy a Lorentz-invariant,
antisymmetric Dirac scalar product

ϵa · ϵb ¼ εab ≡

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 −1
0 0 1 0

1
CCCA: ð38Þ

The spinor indices f⇑;⇓;↑;↓g are spinor analogs of the
Newman-Penrose vector indices fv; u;þ;−g. Boosting the
tetrad frame by rapidity η in the v-u plane boosts basis
spinors with boost index ⇑ and ⇓ by [compare Eq. (30)]

ϵ⇑ → eη=2ϵ⇑; ϵ⇓ → e−η=2ϵ⇓; ð39Þ

while spatially rotating the tetrad frame by angle ζ in the
þ-− plane rotates basis spinors with spin indices ↑ and ↓
by [compare Eq. (31)]

ϵ↑ → e−iζ=2ϵ↑; ϵ↓ → eiζ=2ϵ↓: ð40Þ

The boost and spin weights of a spinor tensor can be
determined by inspection, according to the rules

boost weight

¼ 1

2
number of⇑minus number of⇓ covariant indices;

ð41aÞ

spin weight

¼ 1

2
number of ↑minus number of ↓ covariant indices:

ð41bÞ

Contravariant indices count oppositely to covariant indices.
The spin-3

2
fields considered in Sec. VII carry both vector

and spinor indices. The boost and spin weights of a vector-
spinor tensor are just the sums of the boost and spin weights
of the vector and spinor indices [Eqs. (32) and (41)].

III. WAVE EQUATIONS

The bulk of this paper, Secs. IV–VIII, is devoted to
deriving wave equations for massless fields for each of the
spins s ¼ 0, 1

2
, 1, 3

2
, and 2 (in this paper, s is always

positive). This section summarizes the results, giving
expressions valid for any of the spins 0, 1

2
, 1, 3

2
, or 2.

For brevity and clarity, many of the equations in this
paper carry upper and lower indices, such as v

u and � in
Eq. (44); unless otherwise stated, such equations should be
interpreted in the “natural” way as pairs of equations in
which all upper indices apply to the upper equation, and all
lower indices apply to the lower equation.
Appendix A takes a deeper dive into the derivation of the

wave equations in a general spacetime, clarifying the origin
of the wave equations in the conformally separable space-
times considered in this paper.

A. Petrov type D

The conformally separable black hole spacetimes are
Petrov type D, meaning that the only nonvanishing com-
ponent of the Weyl tensor is its boost- and spin-weight-zero
component. The right-handed boost/spin-weight-zero Weyl
component C̃0 ≡ C̃vuvu defined by Eq. (151) is

ρ2C̃0 ¼
1

12

�
d2ðR4ΔxÞ

dr2
þ d2Δy

dy2

�

þ 1

2
ρ̄

�
∂

∂r

�
R4Δx

∂

∂r

�
þ ∂

∂y

�
Δy

∂

∂y

��
ρ̄−1: ð42Þ
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The left-handed component is the same with ρ̄ → ρ̄� on the
second line, so it is the complex conjugate of the right-
handed component.
Reference [50] has emphasized that all vacuum space-

times of Petrov type D satisfy decoupled wave equations
that can be solved by separation of variables. The con-
formally separable black hole spacetimes are type D, but
they are not vacuum; rather, the conformally separable
spacetimes are sourced by collisionless outgoing and
ingoing streams that produce an exponentially growing
proper energy-momentum in the center-of-mass frame.

B. Frequency and azimuthal mode number

Conformal time-translation symmetry and axisymmetry
of the background imply that wave amplitudes ψ can be
expanded in modes of definite conformal frequency w and
azimuthal mode number m:

ψ ¼ e−iðwtþmϕÞΨðx; yÞ: ð43Þ

The signs of w and m accord with the convention that
positive frequency w corresponds to positive energy, and
that a wave of azimuthal angular momentum m varies as
e−imϕ under a right-handed spatial rotation.
Periodicity requiresm to be integral for integral spin s, or

half-integral for half-integral spin s. Solutions with real
frequency w define normal modes. The frequency w can
also be complex. Of particular interest in gravitational wave
astronomy are quasinormal modes, a discrete spectrum of
complex frequencies for each angular mode lm, corre-
sponding to long-lived modes of decay of a perturbed black
hole [27,51–53].
Acting on modes ψ , Eq. (43), of definite (possibly

complex) frequency w and azimuthal number m, the
Newman-Penrose directed derivatives ∂k are related to
coordinate derivatives by

ffiffiffi
2

p
ρ∂v

u
ψ ¼ þ

�
1ffiffiffiffiffiffiffiffijΔxj

p �
∓ Δx

∂

∂x
þ iαx

�
ψ ; ð44aÞ

ffiffiffi
2

p
ρ∂�ψ ¼ 1ffiffiffiffiffiffi

Δy
p �

Δy
∂

∂y
� αy

�
ψ ; ð44bÞ

where the initial þ
� sign in Eq. (44a) is þ for ∂v, with þ

outside and − inside the horizon for ∂u, and where αx and
αy are defined by

αx ≡ wþmωx; αy ≡ wωy þm: ð45Þ

It is evident that the radial differential operators ρ∂v
u
are

purely radial, in the sense that they involve a derivative with
respect to the radial coordinate x and not the angular
coordinate y, while the angular differential operators ρ∂�
are purely angular, in the sense that they involve a derivative

with respect to the angular coordinate y and not the radial
coordinate x.

C. Chirality

The chiral operator γ5, Eq. (35), is a Lorentz invariant
pseudoscalar. Waves of massless fields of nonzero spin can
be decomposed into a sum of independently evolving right-
and left-handed chiral components, which are eigenstates
of γ5 with eigenvalues þ1 and −1, respectively. Physically,
the right- and left-handed chiral components correspond to
waves in which the spin axis is, respectively, aligned and
antialigned with the boost axis.
A wave of given chirality and spin s has 2sþ 1

components, with boost weights σ ¼ −s;−sþ 1;…; s,
and spin weights ς either equal (ς ¼ σ, right-handed
chirality) or opposite (ς ¼ −σ, left-handed chirality) to
the boost weight. The 2sþ 1 different components are
coupled by equations of motion, so they are not independent
of each other, but rather oscillate in harmony. In flat space
far from the black hole, a component of spin s and boost
weight σ falls off with radius as, according to Eq. (69),

ψσ ∼ r−1−s∓σ; ð46Þ

where the ∓ sign is − for outgoing waves, þ for ingoing
waves—that is, the sign of σ is opposite to the direction of
motion (the boost direction). Only the largest component
survives far from the black hole, satisfying ψσ ∼ r−1. The
large component is called the propagating component of the
wave. Each of the outgoing and ingoing components has
either of two chiralities, with spin weight ς equal (right-
handed) or opposite (left-handed) to the boost weight σ.

D. Boost and spin raising and lowering operators

The boost and spin weight of a field can be read off from
its covariant chiral indices [Eqs. (32) and (41)]. Operating
on a field with one of the Newman-Penrose directed
derivatives, ∂k yields an object whose boost weight (if k ¼
v or u) or spin weight (if k ¼ þ or −) differs by �1 from
that of the field. In effect, the Newman-Penrose directed
derivatives “raise” and “lower” the boost and spin weights
of a field. However, the directed radial derivatives ∂v and ∂u
do not commute with the directed angular derivatives
∂þ and ∂−.
It is advantageous to define modified versions of the

Newman-Penrose directed derivatives with the property
that the radial (boost) derivatives commute with the angular
(spin) derivatives, besides having the property that, like the
directed derivatives ρ∂k [Eq. (44)], when acting on modes
of definite frequency w and azimuthal number m, the radial
derivatives are purely radial, and the angular derivatives are
purely angular. Define therefore boost and spin raising and
lowering operators σðk by [49,54,55] (see Appendix A for
an exposition of how these operators are defined in a
general spacetime)
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σðv
u
≡þ

�
ffiffiffi
2

p
ðR2

ffiffiffiffiffiffiffiffi
jΔxj

p
Þ�σρ∂v

u
ðR2

ffiffiffiffiffiffiffiffi
jΔxj

p
Þ∓σ; ð47aÞ

ςð� ≡�
ffiffiffi
2

p
ð ffiffiffiffiffiffi

Δy

p Þ�ςρ∂�ð
ffiffiffiffiffiffi
Δy

p Þ∓ς; ð47bÞ

where the initial þ
� sign in Eq. (47a) is þ for the raising

operator σðv, with þ outside and − inside the horizon for
the lowering operator σðu. The operators in Eq. (47) are
constructed so that the boost raising and lowering operators
σðv and σðu commute with the spin raising and lowering
operators ςðþ and ςð−, for arbitrary boosts σ and spins ς.
The initial signs in Eq. (47) ensure that the raising and
lowering operators are Hermitian conjugates of each other
[Eq. (48)]. The

ffiffiffi
2

p
factor brings the operators to conven-

tional normalization. The definition [Eq. (47a)] of the boost
raising and lowering operators holds both outside the
horizon, where the horizon function is positive, Δx > 0,
and inside the horizon, where the horizon function is
negative, Δx < 0.
The boost/spin index σ or ς on the boost/spin raising and

lowering operators σðv
u
or ςð� is often suppressed in this

paper, since it equals the boost/spin weight of the object
being operated on. The boost and spin raising and lowering
operators, respectively, raise and lower by 1 the boost and
spin weight of the object they are operating on.
Acting on modes [Eq. (43)] of given frequency w and

azimuthal mode m, the boost raising and lowering oper-
ators in Eq. (47a) connecting adjacent boost weights
are Hermitian conjugates with respect to the integration
measure dr over a suitable integration interval; and like-
wise, the spin raising and lowering operators in Eq. (47b)
connecting adjacent spin weights are Hermitian conju-
gates with respect to the integration measure dy over the
interval ½−1; 1�:

σð
†
v ¼ σþ1ðu; ð48aÞ

ςð†þ ¼ ςþ1ð−: ð48bÞ

Hermitian conjugacy of the spin raising and lowering
operators follows from the fact that for any differentiable
functions χ and ψ of the same definite (possibly complex)
frequency w and azimuthal modem, an integration by parts
shows that

Z
χðςðþψÞdy ¼ ½ ffiffiffiffiffiffi

Δy

p
χψ � þ

Z
ðςþ1ð−χÞψdy: ð49Þ

The surface term vanishes if the integration interval is
½−1; 1�, since the polar function Δy vanishes at these limits.
Similarly, Hermitian conjugacy of the boost raising and
lowering operators follows from an analogous integration
by parts,

Z
χðσðvψÞdr ¼ ∓½R2

ffiffiffiffiffiffiffiffi
jΔxj

p
χψ � þ

Z
ðσþ1ðuχÞψdr; ð50Þ

where the sign ∓ on the surface term is − outside the
horizon (Δx > 0) and þ inside the horizon (Δx < 0). The
surface term vanishes at horizons, where Δx ¼ 0, and also
at infinity, provided that the functions χ and ψ decrease
sufficiently rapidly at infinity.

E. Wave operators

As remarked after Eq. (46), the propagating component
of a spin-s wave is the component with the most negative
boost weight σ along the direction of motion, σ ¼ −s in the
outgoing direction, and σ ¼ þs in the ingoing direction.
For propagating waves of right-handed chirality, the spin
weight equals the boost weight, ς ¼ σ, and the spin-s wave
equations derived in Secs. IV–VIII are of the form

ð�s
□vu

uv
− �s

□þ−−þÞψ̂�s ¼ 0; ð51Þ

where the wave operators σ□kl are defined by Eq. (57). For
left-handed chirality, the spin weight is the negative of the
boost weight, ς ¼ −σ, and �s

□þ−−þ → ∓s
□−þ

þ− in the wave

equation (51). Components with general boost weights σ
satisfy wave equations similar to Eq. (51), but with the
addition of a term proportional to the boost/spin-weight-
zero component C̃0 of the Weyl tensor [Eq. (42)],

ðσ□vu
uv
− σ□þ−−þ þ csjσjρ2C̃0Þψ̂ σ ¼ 0; ð52Þ

in which csjσj is a constant that depends on the spin s and on
the absolute value jσj of the boost weight of the component
[see Eqs. (109c), (109d), (139b)–(139e), and (156c),
(156d)]. The constant csjσj vanishes if jσj ¼ s, as is true
for propagating waves and their complements of opposite
boost, in which case the wave equation reduces to
Eq. (51). If ρ2C̃0 were a separated sum of radial and
angular coordinates x and y, then the wave equations in
Eq. (52) for general boost weights would indeed become
separable, but the term on the second line of the expression
(42) for ρ2C̃0 is a mixed function of radial and angular
coordinates, preventing separability.
The scaled wave amplitude ψ̂σ (with a hat) in Eq. (51) is

related to the native wave amplitude ψσ by

ψσ ¼
�
fsψ̂σ right chirality

f�s ψ̂σ left chirality
; ð53Þ

where (note that s is positive)

fs ≡ 1

ρ̄sρsþ1
i

; ð54Þ
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with ρi, the inflationary conformal factor, defined by
Eq. (6), and ρ̄, the complex conformal factor, defined by
Eq. (7). The scaling factors fs and f�s for right- and left-
handed chiralities are complex conjugates of each other.
The wave equations (51) admit separated solutions

(ς ¼ �σ right-/left-handed)

ψ̂σ ¼ e−iðwtþmϕÞXσðxÞYςðyÞ; ð55Þ

with the equations (51) separating as

ðσ□vu
uv
− λσÞψ̂σ ¼ 0; ðσ□þ−−þ − λσÞψ̂σ ¼ 0; ð56Þ

for some eigenvalues λσ. For normal modes, the frequency
w is real, in which case the angular wave operators□þ− and
□−þ [Eq. (57)], are Hermitian, so the eigenvalues λσ are
real. For quasinormal modes, the frequency w is complex,
and the eigenvalues λσ are complex. As demonstrated in
Secs. IV–VIII for spins s ¼ 0, 1

2
, 1, 3

2
, and 2, in terms of the

boost and spin raising and lowering operators ðk defined by
Eq. (47), the radial and angular spin-s wave operators □kl

acting on waves ψ̂σ of boost σ are (spin weight ς ¼ þσ
right-handed, ς ¼ −σ left-handed)

σ□vu
uv
ψ̂σ ≡

�
−sgnðΔxÞσ∓1

ðv
uσ
ðu

v
þ 4i

�
σ ∓ 1

2

�
wr

þ 1

3

�
σ ∓ 1

2

�
ðσ ∓ 1Þ d

2ðR4ΔxÞ
dr2

�
ψ̂σ; ð57aÞ

ς□þ−−
þ
ψ̂ ς ≡

�
ς∓1ð�ςð∓ − 4

�
ς ∓ 1

2

�
way

−
1

3

�
ς ∓ 1

2

�
ðς ∓ 1Þ d

2Δy

dy2

�
ψ̂ ς: ð57bÞ

Note that the indices σ or ς on the radial and angular wave
operators σ□ and ς□ are always equal to the boost/spin
weights σ and ς of the field ψ̂ that they operate on, so they
could be omitted for brevity. For normal modes, for which
by definition the frequency w is real, each of the angular
operators □þ− and □−þ is Hermitian thanks to the
Hermitian conjugacy of the angular operators ðþ and ð−
[Eq. (48)]. The radial operators □vu and □uv, on the other
hand, are Hermitian only if the imaginary term 4iðσ ∓ 1

2
Þ in

Eq. (57a) vanishes; thus,□vu is Hermitian only for σ ¼ þ 1
2
,

while □uv is Hermitian only for σ ¼ − 1
2
.

Equations (A7) and (A8) in Appendix A give expres-
sions for the difference □vu

uv
−□þ−−þ of radial and angular

wave operators [Eq. (57)] which enter the wave equa-
tions (51) and (52).
Operating on separated solutions [Eq. (55)], the boost

and spin raising and lowering operators [Eq. (47)] yield

σðu
v
ψ̂σ ¼ e−iðwtþmϕÞYςðyÞ

�
σðu

v
−

iαxffiffiffiffiffiffiffiffijΔxj
p �

XσðxÞ; ð58aÞ

ςð∓ψ̂ ς ¼ e−iðwtþmϕÞXσðxÞ
�

ςð∓ þ αyffiffiffiffiffiffi
Δy

p �
YςðyÞ; ð58bÞ

where αx and αy are defined by Eq. (45). In terms of
coordinate derivatives, the boost and spin raising and
lowering operators acting on the functions XσðxÞ of boost
weight σ and YςðyÞ of spin weight ς are, with x� and y�

being the tortoise coordinates defined by Eq. (17),

ðv
u
XσðxÞ ¼

1ffiffiffiffiffiffiffiffijΔxj
p �

� d
dx�

−
σ

2

d lnðR4jΔxjÞ
dx�

�
XσðxÞ; ð59aÞ

ð�YςðyÞ ¼
1ffiffiffiffiffiffi
Δy

p �
� d
dy�

−
ς

2

d lnΔy

dy�

�
YςðyÞ: ð59bÞ

In terms of coordinate derivatives, the wave equations (56)
acting on separated solutions [Eq. (55)] for propagating
outgoing (σ ¼ −s) and ingoing (σ ¼ s) right-handed
(ς ¼ σ) and left-handed (ς ¼ −σ) waves reduce to

1

RΔx

�
d2

dx�2
þ
�
αx −

iσ
2

d ln jΔxj
dx�

�
2

þ Vσ

�
RXσ ¼ 0; ð60aÞ

−
1

Δy

�
d2

dy�2
−
�
αy −

ς

2

d lnΔy

dy�

�
2

þWς

�
Yς ¼ 0; ð60bÞ

where the radial and angular potentials Vσ and Wς are

Vσ ¼
�
1

6
ð1þ 2σ2Þ d

2Δx

dx2
−
1

3
ð1 − 4σ2Þa2Δx

− 2iσ
dαx
dx

− λσς

�
Δx; ð61aÞ

Wς ¼
�
1

6
ð1þ 2ς2Þ d

2Δy

dy2
− 2ς

dαy
dy

þ λσς

�
Δy; ð61bÞ

the derivatives of αx and αy defined by Eq. (45) being

dαx
dx

¼ 2mar
R2

;
dαy
dy

¼ −2way: ð62Þ

Equation (60) with the potentials in Eq. (61) constitute the
generalization of the Teukolsky master equation [27,44,45]
to the conformally separable solutions for accreting, rotating
black holes. The angular eigenfunctions Yς are unchanged
from those of Λ-Kerr(-Newman) (stationary) black holes.
For Kerr(-Newman) (zero cosmological constant), the

angular eigenfunctions can be expressed as spin-weighted
spheroidal harmonics [56] (with parameter c ¼ −wa), or as
confluent Heun functions [57].
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For spherical black holes, the angular eigenfunctions Yς

reduce to spin-weighted spherical harmonics, whose eigen-
values are

λς ¼ lðlþ 1Þ þ 1

3
ð1 − ς2Þ ðsphericalÞ; ð63Þ

with harmonic number l ¼ l0;l0 þ 1;… starting
from l0 ¼ maxðjςj; jmjÞ.
The wave equations (60) with Eq. (61) satisfy some

discrete symmetries. If the frequency w is real (or if w is
complex, but left unconjugated, so that αx and αy are
unconjugated), then the wave equation (60a) for X−σ is the
complex conjugate of that for Xσ. The wave equations (60)
are unchanged if the boost and spin weights σ and ς are
flipped, and at the same time the signs of the frequency w
and azimuthal number m, hence αx and αy, are flipped:

σ → −σ; ς → −ς; w → −w; m → −m: ð64Þ

F. Asymptotics

The radial wave equation (60a) simplifies whenever the
radial potential Vσ is negligible,

Vσ ∼ 0: ð65Þ

This happens if the horizon function Δx, Eq. (15), is small,
and the angular momenta [the azimuthal numberm, and the
eigenvalue λς of the angular wave equation (60b)] are not
too large. The horizon function Δx goes to zero at horizons
(inner, outer, or cosmological), and at spatial infinity in
asymptotically flat space (which happens if the cosmo-
logical constant is zero). In the case of the inner horizon,
the term Δxd2Δx=dx2 in the potential Vσ grows large
during inflation and collapse, and it must be retained; this
case is deferred to the end of Sec. III F.
When the potential Vσ is negligible, the Wentzel—

Kramers—Brillouin (WKB) solution of the radial wave
equation (60a) gives

RXσ ∼ e�iðwx�þmω�
xÞjΔxj�σ=2; ð66Þ

where ω�
x is an ωx-weighted tortoise coordinate,

ω�
x ≡ −

Z
ωxdx
Δx

: ð67Þ

Consider first spatial infinity in asymptotically flat
(Minkowski) space. In this case, the horizon function
[Eq. (15)] falls off as Δx ∼ 1=r2 as r → ∞, so that the
WKB solution [Eq. (66)] for the radial wave Xσ is

Xσ ∼ e�iðwx�þmω�
xÞr−1∓σ r → ∞: ð68Þ

The Weyl tensor also goes to zero at infinity, so the wave
equations (52) for arbitrary boost weights σ become

separable, and the WKB solution in Eq. (68) holds for
arbitrary boost weight. The upper sign in Eq. (68) is for an
outgoing wave, where ψ ∼ e−iωðt−x�Þ, while the lower sign
is for an ingoing wave, where ψ ∼ e−iωðtþx�Þ. The scaling
factor fs, Eq. (53), contributes an additional factor of r−s.
The net wave function ψσ , Eq. (55), of a component of
boost weight σ far from the black hole is

ψσ ∼ r−1−s
�
r−σe−i½wðt−x�Þþmðϕ−ω�

xÞ� outgoing

rþσe−i½wðtþx�Þþmðϕþω�
xÞ� ingoing

: ð69Þ

The propagating component is the one that falls off most
slowly at infinity, so the propagating wave has σ ¼ −s for
an outgoing wave and σ ¼ þs for an ingoing wave, as
already claimed following Eq. (46). For the propagating
wave, the radial factor is ψσ ∼ r−1. Equation (69) holds for
both right-handed (ς ¼ þσ) and left-handed (ς ¼ −σ)
chiralities.
Now, consider waves in the vicinity of the outer horizon,

or the cosmological horizon if the cosmological constant Λ
is positive. Near a horizon, the propagating wave functions
ψσ are (σ ¼ −s outgoing, σ ¼ þs ingoing)

ψσ ∼ jΔxj−s=2
�
e−i½wðt−x�Þþmðϕ−ω�

xÞ� outgoing

e−i½wðtþx�Þþmðϕþω�
xÞ� ingoing

; ð70Þ

which diverge as jΔxj−s=2 for both outgoing and ingoing
waves. A tensor of boost weight σ is multiplied by eση

under a boost by rapidity η in the v-u plane. The rapidity η
is positive for an outward boost, and negative for an inward
boost. The divergence of the propagating components at
the outer horizon can be removed by an outward boost of
the outgoing wave by boost factor eη ¼ jΔxj−1=2, and by
an inward boost of the ingoing wave by boost factor
eη ¼ jΔxj1=2:

ψσ ∼

8>>>><
>>>>:

e−i½wðt−x�Þþmðϕ−ω�
xÞ� out wave; out frame

e−i½wðt−x�Þþmðϕ−ω�
xÞ�jΔxj−s out wave; in frame

e−i½wðtþx�Þþmðϕþω�
xÞ� in wave; in frame

e−i½wðtþx�Þþmðϕþω�
xÞ�jΔxj−s in wave; out frame

:

ð71Þ

Equation (71) says that a (suitably boosted) outgoing
observer sees an outgoing wave as having constant ampli-
tude near the horizon, and similarly an ingoing observer
sees an ingoing wave as having constant amplitude; but an
outgoing observer sees an ingoing wave, and an ingoing
observer sees an outgoing wave, boosted by a diverging
factor jΔxj−s.
The apparent divergence of outgoing waves seen by an

ingoer, and of ingoing waves seen by an outgoer, should be
interpreted with care. Near the outer horizon of a black
hole, outgoing waves, whether outside or inside the
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horizon, always move away from the horizon, so an
ingoer always sees the amplitude of an outgoing wave
near the outer horizon as smaller than when the outgoing
wave was emitted. Similarly, near a cosmological hori-
zon, ingoing waves, whether outside or inside the
horizon, always move away from the horizon, so again
an outgoer always sees the amplitude of an ingoing wave
near the cosmological horizon as smaller than when the
outgoing wave was emitted. Thus, observers near the
outer horizon or cosmological horizon do not see any
actual divergence.
An asymptotic analysis applies also in the inflationary/

collapse regime near the inner horizon, where the horizon
function Δx is small (negative) and the angular momenta
(m and λς) are not too large; but the Δxd2Δx=dx2 term in
the potential Vσ grows large during inflation and col-
lapse, and must be retained. The Einstein equations (20)
allow the radial wave equation (60a) to be recast in terms
of the inflationary variable U defined by Eq. (19),��

2ðU2 − v2Þ d
dU

�
2

þ
�
αx −

iσ
2
ð3U − Δ0

xÞ
�

2

þ ð1þ 2σ2ÞðU2 − v2Þ
�
Xσ ¼ 0; ð72Þ

the term on the second line being the Δxd2Δx=dx2 term
in the potential Vσ [Eq. (61a)]. The solutions to Eq. (72)
can be expressed in terms of hypergeometric functions

2F1, but the expressions are unenlightening. A more
insightful approach is to take the v → 0 limit of Eq. (72),
in which case the solutions are Whittaker functions
Mκ;λðzÞ and Wκ;λðzÞ, which are scaled versions of
Kummer confluent hypergeometric functions 1F1 [58].
The solutions to Eq. (72) with v → 0 are [where ðMjWÞ
in the following denotes either of the two Whittaker
functions M or W]

Xσ ¼ ðMjWÞ3σ
4
;σ
4

�
−2iαx þ σΔ0

x

2U

�
; ð73Þ

the tortoise coordinate x� in this case reducing to

x� ¼ constant −
1

2U
ð74Þ

from Eq. (20a).
The radial wave solutions [Eq. (73)] may seem abstruse,

but it is worth noting that Whittaker functions are solutions
to the radial wave equation for fields of spin s in flat
(Minkowski) spacetime. Specifically, waves of spin s and
boost weight σ in flat spacetime are (ς ¼ þσ right-handed,
ς ¼ −σ left-handed)

ψσ ¼ r−1−se−iðwtþmϕÞYςðyÞ
�Mσ;lþ1

2
ð2iwrÞ outgoing

Wσ;lþ1
2
ð2iwrÞ ingoing

!
r→∞

r−1−sYςðyÞ
�
r−σe−i½wðt−rÞþmϕ� outgoing

rþσe−i½wðtþrÞþmϕÞ� ingoing
: ð75Þ

Note that in flat spacetime, αx as defined by Eq. (45)
reduces to the temporal frequency αx ¼ w, and YςðyÞe−imϕ

reduce to standard spin-weighted spherical harmonics.

G. Cosmological constant

The outgoing and ingoing hyper-relativistic streams that
drive inflation near the inner horizon in the conformally
separable solutions carry an exponentially growing proper
energy-momentum. But because the streams are null, the
trace of their energy-momentum is zero. The only possible
nonvanishing contribution to the Ricci scalar R in the
conformally separable solutions is from a cosmological
constant Λ, which contributes a Ricci scalar

R ¼ 4Λ: ð76Þ

In the real Universe, the cosmological constant Λ is tiny
compared to the energy density of any astronomical black
hole, so it is negligible in practice. It is nevertheless useful
for the sake of completeness to consider the possibility of a
cosmological constant in the wave equations.
For spin half, one, or two, s ¼ 1

2
, 1, or 2, the wave

equations for propagating waves remain separable in the
presence of a cosmological constant, the only effect of
the cosmological constant being on the functional form of
the horizon function Δx, Eq. (15). For spins s ¼ 0 or 3

2
, the

effect of a cosmological constant (besides modifying the
horizon function Δx) is to replace the difference of radial
and angular wave operators in the wave equations by

□vu
uv
−□þ−−þ → □vu

uv
−□þ−−þ þ χsρ

2Λ ð77Þ

for some spin-dependent constant χs. In the Λ-Kerr-
(Newman) regime away from the inner horizon, the con-
formal factor is separable, ρ2 → ρ2s ¼ r2 þ a2y2 [Eq. (6)],
and the wave equations remain separable if the radial
and angular wave operators □vu

uv
and □þ−−þ are adjusted by

þχsr2Λ and −χsa2y2Λ, respectively. This adjustment fails
in the inflationary regime near the inner horizon, because the
conformal factor ρ ¼ ρsρi ceases to be separable. However,
the conformally separable solutions hold in the asymptotic
limit [Eq. (8)] of small accretion rate. In this limit, the
conformal factor can be effectively separated as
ρ2 ¼ ðρ2 − a2y2Þ þ a2y2, and the radial and angular wave
operators □vu

uv
and □þ−−þ defined by Eq. (57) adjusted as
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□vu
uv
→ □vu

uv
þ χsðρ2 − a2y2ÞΛ;

□þ−−þ → □þ−−þ − χsa2y2Λ; ð78Þ

once again yielding separable wave equations. The adjust-
ment in Eq. (78) works in the Λ-Kerr(-Newman) regime
where the conformal factor ρ is separable; in the early
inflationary regime, where the derivatives ∂ξ=∂x and
∂
2ξ=∂x2 of the inflationary factor grow exponentially huge
but the inflationary factor ξðxÞ itself remains sensibly equal
to zero, so the inflationary conformal factor is still equal
to one, ρi ¼ 1; and in the late inflationary and collapse
phases, where ξðxÞ grows exponentially huge but the
angular coordinate y is frozen at a constant value, its value
on the inner horizon.
A possible cosmological constant Λ is retained for

completeness throughout this paper. Throughout this paper,
the radial and angular wave operators □vu

uv
and □þ−−þ are as

defined by Eq. (57), without the adjustment in Eq. (78)
from a cosmological constant.

IV. SPIN-0 WAVES

The wave equation for a minimally coupled massless
scalar field φ is

DkDkφ ¼ 0: ð79Þ

Denote the scalar field φ≡ ψ0 and define a scaled scalar φ̂
by Eq. (53):

φ≡ f0φ̂; ð80Þ

with f0 ≡ 1=ρi ¼ e−vtþξðxÞ [Eq. (54)]. The d’Alembertian
DkDk for the scalar field φ can be written in terms of the
spin s ¼ 0 wave operators □kl defined by Eq. (57),

ρ2DkDkφ ¼ f0

�
□vu −□þ− þ 1

6
ρ2R

�
φ̂; ð81Þ

where R is the Ricci scalar. A more detailed exposition of
the derivation of wave equations is given in Appendix A; the
scalar d’Alembertian is given by Eq. (A10). As discussed in
Sec. III G, the only possible contribution to the Ricci scalar
in the conformally separable black hole spacetimes is from a
cosmological constant Λ, in which case R ¼ 4Λ. If the
cosmological constant is nonzero, there are two possibilities
that yield a separable spin-0 wave equation: The first is to
adjust the radial and angular wave operators□ per Eq. (78).
The second is to take the Ricci scalar over to the left-hand
side of Eq. (81), in which case the equation becomes the
conformally coupled scalar wave equation [59]

ρ2
�
DkDk −

1

6
R

�
φ ¼ f0ð□vu −□þ−Þφ̂ ¼ 0: ð82Þ

Equation (82) establishes the correctness of the claimed
wave equation (51) for the case of zero spin, s ¼ 0.

V. SPIN-12 WAVES

The wave equation for massless spin-1
2
waves is the

massless Dirac equation

Dψ ¼ 0; ð83Þ

where ψ is a Dirac spinor [Eq. (36)], D is the covariant
derivative

D≡ γkDk; ð84Þ

and γk are Dirac γ matrices given by Eq. (33). To make the
boost and spin weights transparent, according to the rules in
Eq. (32), it is convenient to work with the covariant
components ψa of the spinor,

ψ ¼ ψaϵa: ð85Þ

This is consistent with the convention that, for example,
γvðv with covariant ðv, and not γvðv with contravariant ðv,
is a raising operator. The covariant components ψa are
related to the contravariant components ψa of the expansion
[Eq. (36)] by

ψa ¼

0
BBBB@

ψ⇑↑

ψ⇓↓

ψ⇑↓

ψ⇓↑

1
CCCCA ¼ εabψ

b ¼

0
BBBB@

ψ⇓↓

−ψ⇑↑

−ψ⇓↑

ψ⇑↓

1
CCCCA: ð86Þ

The top two components ψ⇑↑ and ψ⇓↓ are right-handed,
with boost and spin weights σ ¼ ς ¼ � 1

2
, while the bottom

two components ψ⇑↓ and ψ⇓↑ are left-handed, with boost
and spin weights σ ¼ −ς ¼ � 1

2
.

The massless spin-1
2
wave equation (83) can be written

γk
�
∂k þ

1

2
Γk

�
ψ ¼ 0; ð87Þ

where the tetrad-frame connection Γk is the set of four
bivectors

Γk ¼ Γklmγl ∧ γm ð88Þ

implicitly summed over distinct antisymmetric pairs of
indices lm. The tetrad-frame connections Γklm are also
called Lorentz connections, or Ricci rotation coefficients,
or spin coefficients in the context of the Newman-Penrose
formalism.
Massless spin-1

2
waves of opposite chirality do not mix.

The right- and left-handed chiral components ψ̃ of the
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Dirac spinor are (the tilde on ψ̃ signifies a right- or left-
handed chiral component)

ψ̃ ≡ 1

2
ð1� γ5Þψ ; ð89Þ

where the � sign indicates þ for right-handed, and − for
left-handed. The right- and left-handed spinor fields each
have two distinct nonvanishing complex components, with
boost weights σ ¼ þ1=2 and σ ¼ −1=2, respectively, and
spin weights ς ¼ σ for right-handed, ς ¼ −σ for left-
handed:

ψ̃σ ¼
�
ψ̃þ1=2

ψ̃−1=2

�
≡

8>>>><
>>>>:

�
ψ̃⇑↑

ψ̃⇓↓

�
right

�
ψ̃⇑↓

ψ̃⇓↑

�
left

: ð90Þ

Define the scaled right- and left-handed spinors ψ̂σ (with
hats) by

ψ̃σ ¼
(
f1

2
ψ̂σ right

f�1
2

ψ̂σ left
; ð91Þ

in accordance with Eq. (53). In terms of the scaled spinors
ψ̂σ, the spin-1

2
wave equation (87) is [Eq. (A11) in

Appendix A gives these equations in a general spacetime]

Dψ ¼ 1

ρ

0
BBBBB@

−f�1
2

ððvψ̂⇓↑ þ ðþψ̂⇑↓Þ
f�1

2

ðð−ψ̂⇓↑ ∓ ðuψ̂⇑↓Þ
f1

2
ððvψ̂⇓↓ þ ð−ψ̂⇑↑Þ

−f1
2
ððþψ̂⇓↓ ∓ ðuψ̂⇑↑Þ

1
CCCCCA ¼ 0; ð92Þ

where the ∓ sign in the second and last rows indicates −
outside the horizon (Δx > 0), and þ inside the horizon
(Δx < 0). The γ matrices [Eq. (33)], and hence the covariant
derivative D≡ γkDk, connect spinors of opposite chirality,
so the top two components of the wave equation (92) are
equations for the left-handed spinor components, while the
bottom two are for the right-handed spinor components.
Equation (92) shows that the two left-handed spinor
components are coupled to each other, and the two right-
handed spinor components are coupled to each other, but the
left-handed spinor is decoupled from the right-handed
spinor. Since the boost operators ðv and ðu commute with
the spin operators ðþ and ð−, the four components in the
column vector in the wave equation (92) can be combined in
pairs to yield wave equations for each spinor component
separately:

ð□vu −□þ−Þψ̂⇑↑ ¼ 0; ð93aÞ

ð□uv −□−þÞψ̂⇓↓ ¼ 0; ð93bÞ

ð□vu −□−þÞψ̂⇑↓ ¼ 0; ð93cÞ

ð□uv −□þ−Þψ̂⇓↑ ¼ 0; ð93dÞ

where the spin-1
2
wave operators□kl are defined by Eq. (57).

Equation (93) establishes the correctness of the claimed
wave equation (51) for the case of spin half, s ¼ 1

2
. The

wave equations in Eq. (93) admit separated solutions of
the form

ψ̂σ ¼ e−iðwtþmϕÞXσðxÞYςðyÞ; ð94Þ

where σ and ς each run over boost and spin weights� 1
2
. The

corresponding eigenvalues are λσς.
The Teukolsky-Starobinski [60,61] identities follow

immediately from the simple form □kl ¼ ðkðl modulo a
sign [Eq. (57)] of the spin-1

2
wave operators:

ð□uvðu − ðu□vuÞψ̂⇑↑ ¼ 0; ð95aÞ

ð□vuðv − ðv□uvÞψ̂⇓↓ ¼ 0; ð95bÞ

ð□−þð− − ð−□þ−Þψ̂⇑↑ ¼ 0; ð95cÞ

ð□þ−ðþ − ðþ□−þÞψ̂⇓↓ ¼ 0: ð95dÞ

The identities in Eq. (95) are for the right-handed compo-
nents; a similar set of identities holds for the left-handed
components. The first Teukolsky-Starobinski identity
[Eq. (95a)] shows that ðuψ̂⇑↑ is an eigenfunction of □uv

with eigenvalue λ⇑↑, while the last Teukolsky-Starobinski
identity [Eq. (95d)] shows that ðþψ̂⇓↓ is an eigenfunction
of□þ− with eigenvalue λ⇓↓. But the fourth row of Eq. (92)
shows that ðuψ̂⇑↑ equals ðþψ̂⇓↓ modulo a sign, so it
follows that the eigenvalues must be equal, λ⇑↑ ¼ λ⇓↓ ¼ λ.
The eigenvalue λ is real and positive. This follows from

the fact that the spin-1
2
wave operators are positive definite,

being the product of an operator and its Hermitian con-
jugate [Eq. (48)]:

□vu ¼ ðvðu ¼ ð†uðu; □þ− ¼ ðþð− ¼ ð†−ð−: ð96Þ

Thus, λ can be written as the square of some real number μ,

μ2 ¼ λ: ð97Þ

The third row of Eq. (92) shows that X−1=2 raised once is
proportional to Xþ1=2, and that Yþ1=2 lowered once is
proportional to Y−1=2. Similarly, the last row of Eq. (92)
shows that Xþ1=2 lowered once is proportional to X−1=2,
and that Y−1=2 raised once is proportional to Yþ1=2. With a
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convenient choice of relative normalization, the eigenfunc-
tions are related by

ðvX−1=2 ¼−μXþ1=2; ðuXþ1=2 ¼ sgnðΔxÞμX−1=2; ð98aÞ

ðþY−1=2 ¼ μYþ1=2; ð−Yþ1=2 ¼ μY−1=2: ð98bÞ

Equation (98) specifies the relation between the boost/
spin-weight � 1

2
components of an eigenmode of given

chirality, right or left. Modes of opposite chirality evolve
independently of each other.

VI. SPIN-1 WAVES

Wave equations for massless, neutral spin-1 waves—
electromagnetic waves—are provided by Maxwell’s
equations,

DF ¼ j; ð99Þ

where D is the covariant derivative defined by Eq. (84), F
is the electromagnetic field bivector

F≡ Fklγk ∧ γl ð100Þ

implicitly summed over distinct antisymmetric pairs of
indices kl, and j is the electric current. The electromagnetic
units here are Heaviside; in Gaussian units, the right-hand
side of Maxwell’s equation (99) would be 4πj. In the
present case, the source current is taken to vanish,

j ¼ 0: ð101Þ

The assumption of vanishing source current requires that
the black hole be uncharged. The single equation (99)
embodies both source-free (magnetic) and source (electric)
parts of Maxwell’s equations.
Like massless Dirac spinors, massless spin-1 waves

decompose into two distinct chiralities that do not mix.
The right- and left-handed chiral components F̃ of the
electromagnetic field bivector are (the tilde on F̃ signifies a
right- or left-handed chiral component)

F̃≡ 1

2
ð1� γ5ÞF; ð102Þ

where the � sign is þ for right-handed, and − for left-
handed. Equation (102) implies that the components F̃kl of
the right- and left-handed electromagnetic field F̃ are

F̃kl ¼
1

2
ðFkl ∓ iεklmnFmnÞ ð103Þ

(implicitly summed over distinct antisymmetric indicesmn)
with − for right-handed, and þ for left-handed. Maxwell’s
equations (99) with zero source current are then

DkF̃kl ¼ 0: ð104Þ

The right- and left-handed electromagnetic field F̃kl bivec-
tors each have three distinct nonvanishing complex com-
ponents, with boost weights σ ¼ þ1, 0, and −1,
respectively, and spin weights ς ¼ σ for right-handed,
and ς ¼ −σ for left-handed:

F̃σ ≡
0
B@

F̃þ1

F̃0

F̃−1

1
CA

≡

8>>>>>>>>>><
>>>>>>>>>>:

0
B@

F̃vþ
F̃vu

F̃u−

1
CA ¼

0
B@

Fvþ
1
2
ðFvu − Fþ−Þ

Fu−

1
CA right

0
B@

F̃v−

F̃vu

F̃uþ

1
CA ¼

0
B@

Fv−
1
2
ðFvu þ Fþ−Þ

Fuþ

1
CA left

: ð105Þ

The three components F̃σ with boost weights σ ¼ þ1; 0;−1
are commonly [46] denoted ϕ0, ϕ1, ϕ2 [Eq. (C4)], but the
notation in Eq. (105) makes manifest the boost weights of
the components. The propagating component is, Eq. (46),
F̃−1 ¼ ϕ2 outgoing, and F̃þ1 ¼ ϕ0 ingoing.
Focus on the right-handed electromagnetic field; the left-

handed field is quite similar. Define the scaled right-handed
electromagnetic field tensor F̂σ (with a hat instead of a tilde
over the F) by

F̃σ ¼ f1F̂σ; ð106Þ

in accordance with Eq. (53). In terms of the scaled
electromagnetic field F̂kl and the boost and spin raising
and lowering operators [Eq. (47)],Maxwell’s equations (104)
are [Eq. (A13) in Appendix A give these equations in a
general spacetime]

Dk

0
BBBB@

F̃kv

F̃ku

F̃kþ
F̃k−

1
CCCCA ¼ f1ffiffiffi

2
p

ρ

0
BBBBB@

ρ̄−1ðvρ̄F̂0 þ ρ̄ð−ρ̄−1F̂þ1

∓ ρ̄−1ðuρ̄F̂0 − ρ̄ðþρ̄−1F̂−1

ρ̄−1ðþρ̄F̂0 ∓ ρ̄ðuρ̄−1F̂þ1

ρ̄−1ð−ρ̄F̂0 − ρ̄ðvρ̄−1F̂−1

1
CCCCCA ¼ 0;

ð107Þ

where the ∓ sign in the middle two rows is − outside the
horizon (Δx > 0), and þ inside the horizon (Δx < 0).
Equation (107) shows that the three components of the
right-handed electromagnetic field evolve not independently,
but rather in harmony with each other. Combining Eq. (107)
in pairs yields pairs of equations for each of the three
components F̂σ:
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ρ̄−1ððvρ̄2ðu � ðþρ̄−2ð−Þρ̄−1F̂þ1 ¼ 0; ð108aÞ

ρ̄−1ððuρ̄2ðv � ð−ρ̄2ðþÞρ̄−1F̂−1 ¼ 0; ð108bÞ

ð2vF̂−1 þ ð2−F̂þ1 ¼ 0; ð108cÞ

ð2uF̂þ1 þ ð2þF̂−1 ¼ 0; ð108dÞ

ρ̄ððvρ̄−2ðu � ðþρ̄−2ð−Þρ̄F̂0 ¼ 0; ð108eÞ

ρ̄ððuρ̄−2ðv � ð−ρ̄−2ðþÞρ̄F̂0 ¼ 0: ð108fÞ

The top and bottom pairs of lines in Eq. (108) can also be
written in terms of the radial and angular wave operators □
defined by Eq. (57):

ð□vu −□þ−ÞF̂þ1 ¼ 0; ð109aÞ

ð□uv −□−þÞF̂−1 ¼ 0; ð109bÞ

ð□vu −□þ− − 2ρ2C̃0ÞF̂0 ¼ 0; ð109cÞ

ð□uv −□−þ − 2ρ2C̃0ÞF̂0 ¼ 0; ð109dÞ

where C̃0 is the spin-0 component of the right-handed Weyl
tensor [Eq. (42)]. The top pair of lines in Eq. (109) establish
the correctness of the claimed wave equation (51) for the
case of electromagnetic waves, s ¼ 1. The top pair admit
separated solutions for the boost-weight �1 components of
the right-handed (ς ¼ σ) electromagnetic field,

F̂σ ¼ e−iðwtþmϕÞXσðxÞYςðyÞ: ð110Þ

The corresponding eigenvalues are λσς.
The spin-1 wave operators □kl can be checked to satisfy

the Teukolsky-Starobinsky [60,61] identities

ð□uvð2u − ð2u□vuÞF̂þ1 ¼ 0; ð111aÞ

ð□vuð2v − ð2v□uvÞF̂−1 ¼ 0; ð111bÞ

ð□−þð2− − ð2−□þ−ÞF̂þ1 ¼ 0; ð111cÞ

ð□þ−ð2þ − ð2þ□−þÞF̂−1 ¼ 0: ð111dÞ

The identities in Eq. (111) are for the right-handed compo-
nents; a similar set of identities holds for the left-handed
components. The first Teukolsky-Starobinski identity
[Eq. (111a)] shows that ð2uF̂þ1 is an eigenfunction of
□vu with eigenvalue λvþ, while the fourth Teukolsky-
Starobinski identity [Eq. (111d)] shows that ð2þF̂−1 is an
eigenfunction of □þ− with eigenvalue λu−. But Eq. (108d)
shows that ð2uF̂þ1 equals ð2þF̂−1 modulo a minus sign, so it
follows that the eigenvalues must be equal, λvþ ¼ λu− ¼ λ.

The middle pair of lines in Eq. (108) imply that Yþ1

lowered twice is proportional to Y−1, and that Y−1 raised
twice is proportional to Yþ1. A similar statement holds for
Xþ1 and X−1. Lowering Yþ1 twice, then raising the result
twice yields some constant μ2 times Yþ1. By adjusting the
relative normalization of Yþ1 and Y−1, the result of Yþ1

lowered twice can be taken to be μY−1, and that of Y−1
raised twice to be μYþ1. The middle pair of lines in
Eq. (108) imply that the radial constant of proportionality
is the negative of the angular constant. Thus,

ð2uXþ1 ¼ −μX−1; ð2vX−1 ¼ −μXþ1; ð112aÞ

ð2−Yþ1 ¼ μY−1; ð2þY−1 ¼ μYþ1: ð112bÞ

Solving for μ2 in

ðð2þð2− − μ2ÞYþ1 ¼ 0; ð113Þ

given that F̃þ1 satisfies ð□þ− − λÞF̃þ1 ¼ 0, yields the
standard result [according to Eqs. (35) and (52) of
Ref. [46]]

μ2 ¼ λ2 − 4awðawþmÞ: ð114Þ

Since the raising and lowering operators are Hermitian
conjugates [Eq. (48b)], the operator on the left-hand side of
Eq. (113) can be written

ð2þð2− ¼ ðð2−Þ†ð2−; ð115Þ

which is positive definite, being the product of an operator
and its Hermitian conjugate. It follows that the eigenvalue
μ2 is real and positive, and consequently μ is real.
Expressions for the scaled boost-weight-0 component F̂0

of the electromagnetic field follow from any of the four lines
of Eq. (107). Consider the first line of Eq. (107), which
expresses a certain derivative of F̂0 in terms of a certain
derivative of the boost-weight-1 component F̂þ1. This first
line of Eq. (107) can be solved for F̂0 by expressing the
radial part of the separated solution F̂þ1 as Xþ1 ¼
−μ−1ð2vX−1 [Eq. (112a)], and by using the relation (B1).
The first and last of the four lines of Eq. (107) redundantly
yield one expression for F̂0, while the second and third lines
redundantly yield a second expression. The two expressions

are, with F̂0 ≡ e−iðwtþmϕÞF
∘
0ðx; yÞ,

F
∘
0ðx; yÞ ¼ ∓ 1

μ

�
ðuðþ −

1

ρ̄
ð∓ R2

ffiffiffiffiffiffiffiffi
jΔxj

p
ðþ

þ ia
ffiffiffiffiffiffi
Δy

p
ðuÞ

�
Xþ1Y−1 ð116aÞ
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¼ 1

μ

�
ðvð− þ 1

ρ̄
ð∓ R2

ffiffiffiffiffiffiffiffi
jΔxj

p
ð− þ ia

ffiffiffiffiffiffi
Δy

p
ðvÞ

�
X−1Yþ1

ð116bÞ

where the∓ signs are − outside the horizon, Δx > 0, andþ
inside the horizon, Δx < 0. Unlike the boost-weight
�1 components [Eq. (110)], the boost-weight-0 function

F
∘
0ðx; yÞ is not a separated product of radial and angular

coordinates x and y.

VII. SPIN-32 WAVES

Spin-3
2
fields arise in supersymmetric local gauge theo-

ries, where the generators of the gauge group are taken to be
spinors [62–64]. The signature feature of supersymmetry is
that it transforms bosonic (integral spin) fields into fer-
mionic (half-integral spin) fields and vice versa. Spin-3

2

fields in Λ-Kerr-Newman black holes have been considered
by Refs. [65–67]. The supersymmetric gauge connection
defines the gravitino potential ψ, a vector of spinors,

ψ ≡ ψkγk ≡ ψkaγk ⊗ ϵa; ð117Þ

where γk and ϵa are vector and spinor basis elements,
respectively (Sec. II C). Each of the four vector components
of the gravitino potential ψ is a spinor ψk,

ψk ≡ ψkaϵa: ð118Þ

The gauge-covariant supersymmetric derivative is

Dþ ψ ¼ ðDk þ ψkÞγk; ð119Þ

where D [Eq. (84)] is the usual general-relativistic covariant
derivative. A vector-spinor ψ has 4 × 4 ¼ 16 complex
components, whose irreducible parts under Lorentz trans-
formations comprise a four-component spin-1

2
part and a

12-component spin-3
2
part. The spin-1

2
parts of the vector-

spinor ψ are removed, leaving only the spin-3
2
parts of the

gravitino, by imposing the four conditions (here the Dirac γ
matrices act by matrix multiplication on the spinors ψk):

γkψk ¼ 0: ð120Þ

A supersymmetric gauge transformation by a spinor λ
transforms the gravitino potential ψk as

ψk → ψk þDkλ: ð121Þ

Recall that the covariant derivative acting on a spinor is
Dkλ ¼ ð∂k þ 1

2
ΓkÞλ [Eq. (87)]. The supersymmetric gauge

freedom can be removed by imposing some gauge condition.
When dealing with waves, a convenient choice of gauge is
the analog of the Lorenz gauge of electromagnetism,

Dkψk ¼ 0: ð122Þ

The gauge condition (122) removes four of the 12 complex
degrees of freedom of the spin-3

2
gravitino potential, leaving

it with eight physical degrees of freedom. The massless
gravitino potential decomposes further into right- and left-
handed chiral parts, each with four physical degrees of
freedom (the tilde on ψ̃ signifies a right-handed or left-
handed chiral component):

ψ̃k ≡ 1

2
ð1� γ5Þψk ≡ 1

2
ð1� γ5Þψkaϵa; ð123Þ

where the � sign is þ for right-handed, and − for left-
handed.
The commutator of the supersymmetric gauge-covariant

derivative defines the curvature,

½Dþ ψ;Dþ ψ�≡ ½Dk þ ψk; Dl þ ψ l�γk ∧ γl; ð124Þ

implicitly summed over distinct antisymmetric kl. The
curvature in Eq. (124) has both a bosonic part, the Riemann
curvature tensor R, and a fermionic part, the gravitino
field Ψ:

½Dþ ψ;Dþ ψ� ¼ RþΨ: ð125Þ

The Riemann tensor R is a bivector of bivectors, while the
gravitino field Ψ is a bivector of spinors:

R≡ Rklγk ∧ γl ≡ Rklmnðγk ∧ γlÞ ⊗ ðγm ∧ γnÞ; ð126aÞ

Ψ≡Ψklγk ∧ γl ≡Ψklaðγk ∧ γlÞ ⊗ ϵa; ð126bÞ

with implicit summation over distinct antisymmetric bivec-
tor indices kl (and mn). Compared to its usual general
relativistic expression, the Riemann tensor R contains an
additional part ½ψ;ψ� ¼ ðfψkψ lg·Þγk ∧ γl proportional to a
square of the gravitino potential ψ. The factor fψkψ lg·, a
symmetric outer product of like-handed spinors (in four
spacetime dimensions) is dictated by the requirement that
the spinor product transform like a bivector (ψk ·≡ψ⊤

k ε,
with ε the spinor metric [Eq. (38)], denotes the row spinor
associated with the column spinor ψk). The contribution
½ψ;ψ� plays no role in the present paper, since the gravitino
field vanishes in the background spacetime, so ½ψ;ψ� is of
quadratic order in the gravitino field and can be neglected to
linear order of wave amplitudes. Each of the six bivector
components Ψkl of the gravitino field Ψ is a spinor,

Ψkl ≡Dkψ l −Dlψk ≡ ðDkψ la −DlψkaÞϵa: ð127Þ

As usual, the covariant derivativeDk acts on both vector and
spinor components.

ANDREW J. S. HAMILTON and TYLER MCMAKEN PHYS. REV. D 106, 124031 (2022)

124031-16



Like massless fields of other nonzero spin, massless
spin-3

2
waves of opposite chirality do not mix. The right-

and left-handed chiral components Ψ̃kl of the gravitino field
(the tilde on Ψ̃ signifies a right- or left-handed chiral
component) are

Ψ̃kl ≡ 1

2
ð1� γ5ÞðΨkl ∓ iεklmnΨmnÞ ð128Þ

implicitly summed over distinct antisymmetric indices mn,
where the upper and lower signs are, respectively, right-
and left-handed. It can be shown that

γkΨ̃kl ¼ γlDkψ̃k; ð129Þ

so imposing the Lorenz gauge condition [Eq. (122)]
ensures that

γkΨ̃kl ¼ 0: ð130Þ

A bivector spinor Ψ has 6 × 4 ¼ 24 components, but the
projection in Eq. (128) projects both spinor and bivector
parts into their chiral components, leaving each chiral
component with six complex components. The Lorenz
gauge condition [Eq. (122)] removes two components from
each chirality, leaving each with four physical components,
which is as it should be. The right- and left-handed
components of the gravitino field Ψ̃kl subject to the gauge
condition (122) are conveniently labeled Ψ̃σ by their boost
weights σ ¼ þ 3

2
, þ 1

2
, − 1

2
, − 3

2
(spin weights ς ¼ σ right-

handed, ς ¼ −σ left-handed):

Ψ̃σ ≡

0
BBBBB@

Ψ̃þ3=2

Ψ̃þ1=2

Ψ̃−1=2

Ψ̃−3=2

1
CCCCCA≡

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

0
BBBBB@

Ψ̃vþ⇑↑

Ψ̃vu⇑↑

Ψ̃uv⇓↓

Ψ̃u−⇓↓

1
CCCCCA right

0
BBBBB@

Ψ̃v−⇑↓

Ψ̃vu⇑↓

Ψ̃uv⇓↑

Ψ̃uþ⇓↑

1
CCCCCA left

: ð131Þ

The boost � 3
2

components are gauge invariant. The
condition in Eq. (130) that follows from the Lorenz
gauge condition (122) imposes on the boost � 1

2
compo-

nents the conditions

Ψ̃1=2 ¼
(
Ψ̃vu⇑↑ ¼ Ψ̃vþ⇓↓ right

Ψ̃vu⇑↓ ¼ −Ψ̃v−⇓↑ left
;

Ψ̃−1=2 ¼
(
Ψ̃uv⇓↓ ¼ −Ψ̃u−⇑↑ right

Ψ̃uv⇓↑ ¼ Ψ̃uþ⇑↓ left
: ð132Þ

For brevity, denote the supersymmetric covariant deriva-
tive by Dk ≡Dk þΨk. Wave equations for the chiral
gravitino fields Ψ̃ follow from the Jacobi identity (also
known as Bianchi identities):

D½k½Dl;Dm�� ¼ ½D½k;Dl�Dm�: ð133Þ

The brackets around indices mean to antisymmetrize over
bracketed indices. The fermionic part of the Jacobi identity
[Eq. (133)] is

D½kΨlm� ¼
1

2
R½klψm� ð134Þ

[the right-hand side of Eq. (134) comes from the Riemann
operator acting on the spinor indices a of the gravitino
potential ψma; the possible contribution R½klm�nψn from the
Riemann operator acting on the vector indices m of ψma
vanishes to linear order because the vanishing of torsion in
the background spacetime implies R½klm�n ¼ 0 in the back-
ground]. Applied to the right- and left-handed gravitino
fields, the curl on the left-hand side of Eq. (134) can be
replaced by a divergence,

D½þΨ̃−v� ¼ ∓DkΨ̃kv; D½vΨ̃uþ� ¼ �DkΨ̃kþ; ð135aÞ

D½þΨ̃−u� ¼ �DkΨ̃ku; D½vΨ̃u−� ¼ ∓DkΨ̃k−; ð135bÞ

where the upper and lower signs are right- and left-handed,
respectively.
Focus on the right-handed gravitino field; the left-handed

field is quite similar. Define the scaled right-handed
gravitino field Ψ̂kl (with a hat instead of a tilde over the
Ψ) by

Ψ̃kl ¼ f3=2Ψ̂kl ð136Þ

in accordance with Eq. (53). The Jacobi identity
[Eq. (134)] provides six independent equations governing
the four components of the right-handed gravitino field.
The left-hand side of the Jacobi identity in Eq. (134) is
[Eq. (A16) in Appendix A gives these equations in a
general spacetime]
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Dk

0
BBBBBBBBBBBB@

Ψ̂kv⇑↑

Ψ̂kþ⇑↑

Ψ̂k−⇑↑

Ψ̂kþ⇓↓

Ψ̂k−⇓↓

Ψ̂ku⇓↓

1
CCCCCCCCCCCCA

¼ f3=2ffiffiffi
2

p
ρ

0
BBBBBBBBBBBB@

ρ̄−2ðvρ̄2Ψ̂þ1=2þ ρ̄2ð−ρ̄−2Ψ̂þ3=2

ρ̄−2ðþρ̄2Ψ̂þ1=2∓ ρ̄2ðuρ̄−2Ψ̂þ3=2

ðvΨ̂−1=2þð−Ψ̂þ1=2

∓ðuΨ̂þ1=2þðþΨ̂−1=2

ρ̄−2ð−ρ̄2Ψ̂−1=2− ρ̄2ðvρ̄−2Ψ̂−3=2

∓ ρ̄−2ðuρ̄2Ψ̂−1=2− ρ̄2ðþρ̄−2Ψ̂−3=2

1
CCCCCCCCCCCCA
;

ð137Þ

where the upper sign of � or ∓ is outside the horizon,
Δx > 0, while the lower sign is inside the horizon, Δx < 0.
Since the radial operators ðv

u
commute with the angular

operators ð�, equations for each of the four components Ψ̂σ

can be obtained by combining Eq. (137) in pairs.
Derivatives of the right-hand side of the Jacobi identity
[Eq. (134)] turn the gravitino potential ψ into the gravitino
field Ψ, yielding contributions proportional to chiral com-
ponents of the Riemann tensor that are nonvanishing in the
background spacetime—namely, the spin-0 component C̃0

of the Weyl tensor [Eq. (42)], and the Ricci scalar R, whose
only nonvanishing contribution in the conformally sepa-
rable spacetimes is from the cosmological constant, where
R ¼ 4Λ. The result is six equations for the four components
Ψ̂σ of the right-handed gravitino field:�

∓ ρ̄−2ðvρ̄4ðuρ̄−2 − ρ̄−2ðþρ̄4ð−ρ̄−2

þ ρ2
�
2C̃0 −

1

12
R

��
Ψ̂þ3=2 ¼ 0; ð138aÞ

�
∓ ρ̄2ðuρ̄−4ðvρ̄2 − ρ̄2ð−ρ̄−4ðþρ̄2

þ ρ2
�
2C̃0 −

1

12
R

��
Ψ̂þ1=2 ¼ 0; ð138bÞ

�
∓ ðvðu−ðþð−þρ2

�
−4C̃0−

1

12
R

��
Ψ̂þ1=2 ¼ 0; ð138cÞ

�
∓ ðuðv−ð−ðþþρ2

�
−4C̃0−

1

12
R

��
Ψ̂−1=2 ¼ 0; ð138dÞ

�
∓ ρ̄2ðvρ̄−4ðuρ̄2 − ρ̄2ðþρ̄−4ð−ρ̄2

þ ρ2
�
2C̃0 −

1

12
R

��
Ψ̂−1=2 ¼ 0; ð138eÞ�

∓ ρ̄−2ðuρ̄4ðvρ̄−2 − ρ̄−2ð−ρ̄4ðþρ̄−2

þ ρ2
�
2C̃0 −

1

12
R

��
Ψ̂−3=2 ¼ 0: ð138fÞ

Equations (138a)–(138f) can be recast in terms of the wave
operators defined by Eq. (57) as�

□vu −□þ− −
1

3
ρ2Λ

�
Ψ̂þ3=2 ¼ 0; ð139aÞ

�
□uv −□−þ − 4ρ2C̃0 −

1

3
ρ2Λ

�
Ψ̂þ1=2 ¼ 0; ð139bÞ

�
□vu −□þ− − 4ρ2C̃0 −

1

3
ρ2Λ

�
Ψ̂þ1=2 ¼ 0; ð139cÞ

�
□uv −□−þ − 4ρ2C̃0 −

1

3
ρ2Λ

�
Ψ̂−1=2 ¼ 0; ð139dÞ

�
□vu −□þ− − 4ρ2C̃0 −

1

3
ρ2Λ

�
Ψ̂−1=2 ¼ 0; ð139eÞ

�
□uv −□−þ −

1

3
ρ2Λ

�
Ψ̂−3=2 ¼ 0: ð139fÞ

The wave equations (139a) and (139f) for Ψ̂þ3=2 and Ψ̂−3=2
are separable, after the adjustment in Eq. (78) to the wave
operators if the cosmological constant Λ is nonvanishing.
The separated solutions can be written [Eq. (55)], and the
corresponding eigenvalues are λσς.
The Teukolsky-Starobinski identities for the gravitino

field do not work out quite so nicely in the conformally
separable spacetimes as they do in vacuum spacetimes. The
Teukolsky-Starobinski identities for the gravitino field are

ð□uvð3u − ð3u□vuÞΨ̂þ3=2 ¼
1

6
jΔxj3=2KxΨ̂þ3=2; ð140aÞ

ð□vuð3v − ð3v□uvÞΨ̂−3=2 ¼ −
1

6
jΔxj3=2KxΨ̂−3=2; ð140bÞ

ð□−þð3− − ð3−□þ−ÞΨ̂þ3=2 ¼
1

6
Δ3=2

y KyΨ̂þ3=2; ð140cÞ

ð□þ−ð3þ − ð3þ□−þÞΨ̂−3=2 ¼ −
1

6
Δ3=2

y KyΨ̂−3=2; ð140dÞ

whereKx andKy are radial and angular functions defined by

Kx ≡ R4
d5R4Δx

dr5
; Ky ≡ d5Δy

dy5
: ð141Þ

The radial and angular functionsKx andKy vanish inΛ-Kerr
(-Newman) spacetimes, where R4Δx and Δy are quartic in r
and y, respectively, but they do not vanish in the conformally
separable spacetimes. The wave operators □ in the
Teukolsky-Starobinski identities [Eq. (140)] are for the wave
operators defined by Eq. (57), not adjusted for a cosmo-
logical constant per the modification in Eq. (78). We have
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not found a comparably simple set of identities if the wave
operators are adjusted for a cosmological constant per
Eq. (78). For this reason, the cosmological constant is taken
to be zero, Λ ¼ 0, in the remainder of this Sec. VII.
For Kerr spacetime (without a charge and without a

cosmological constant), the Teukolsky-Starobinski iden-
tities [Eq. (140a)] show that Xþ3=2 lowered three times
(with ð3u) is proportional to X−3=2, and X−3=2 raised three
times (with ð3v) is proportional to Xþ3=2; and similarly
Yþ3=2 lowered three times (with ð3−) is proportional to
Y−3=2, and Y−3=2 raised three times (with ð3þ) is propor-
tional to Yþ3=2. With a convenient choice of relative
normalization, the eigenfunctions are related by

ð3uXþ3=2 ¼ −μxX−3=2; ð3vX−3=2 ¼ sgnðΔxÞμxXþ3=2;

ð142aÞ

ð3−Yþ3=2 ¼ μyY−3=2; ð3þY−3=2 ¼ μyYþ3=2: ð142bÞ

Solving for μ2x and μ2y in

ðð3vð3u þ sgnðΔxÞμ2xÞXþ3=2 ¼ 0; ð143aÞ

ðð3þð3− − μ2yÞYþ3=2 ¼ 0; ð143bÞ

given that Ψþ3=2 satisfies ð□vu − λÞΨþ3=2 ¼ ð□þ− − λÞ
Ψþ3=2 ¼ 0, shows that μx and μy are related to the
eigenvalue λ by, for Kerr,

μx ¼ μy ¼ λ3− λ

�
1

12
þ 4awðawþmÞ

�
þ 1

108

þ 2

3
awð4awþmÞ: ð144Þ

The eigenvalues agree with those in Eqs. (12) and (15) of
Ref. [67] with the substitutions (there ↔ here) ƛ ¼ 2λ − 1

3

and σ ¼ w.

VIII. SPIN-2 WAVES

Wave equations for massless spin-2 waves, gravitational
waves, follow from the Bianchi identities, which imply the
Weyl evolution equations

DkCklmn ¼ Jlmn; ð145Þ

where Cklmn is the Weyl tensor, the traceless part of the
Riemann tensor, and Jlmn is the Weyl current, defined in
terms of the Einstein tensor Gmn and its trace G by

Jlmn≡1

2
ðDmGln−DnGlmÞ−

1

6
ðγlnDmG− γlmDnGÞ: ð146Þ

Like the Weyl tensor, the Weyl current Jlmn is traceless and
satisfies the cyclic symmetry J½lmn� ¼ 0. It satisfies the
conservation law

DlJlmn ¼ 0; ð147Þ

which can be thought of as the gravitational analog of
Maxwell’s equations.
Like massless fields of other nonzero spin, massless

spin-2 waves of opposite chirality do not mix. The right-
and left-handed chiral components C̃klmn of the gravita-
tional field constitute the complex self-dual Weyl tensor
(the tilde on C̃ signifies a right- or left-handed chiral
component):

C̃klmn ≡ 1

4
ðδpk δql ∓ iεklpqÞðδrmδsn ∓ iεmn

rsÞCpqrs; ð148Þ

implicitly summed over distinct antisymmetric indices
pq and rs, the upper and lower signs being right- and
left-handed, respectively. The wave equations for the right-
and left-handed fields follow from the Weyl evolution
equations (145):

DkC̃klmn ¼ J̃lmn; ð149Þ

where J̃lmn is the complex Weyl current

J̃lmn ≡ 1

2
ðδrmδsn ∓ iεmn

rsÞJlrs; ð150Þ

the upper and lower signs again being right- and left-
handed, respectively.
The complex Weyl tensor C̃klmn is a traceless, symmetric,

complex 3 × 3 matrix of bivectors, with five complex
degrees of freedom. It is convenient to label the components
C̃σ by their boost weights σ ¼ þ2, þ1, 0, −1, −2 (spin
weights ς ¼ σ right-handed, ς ¼ −σ left-handed):

C̃σ ≡

0
BBBBBBB@

C̃þ2

C̃þ1

C̃0

C̃−1

C̃−2

1
CCCCCCCA

≡

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

0
BBBBBBB@

C̃vþvþ
C̃vuvþ
C̃vuvu

C̃uvu−

C̃u−u−

1
CCCCCCCA

right;

0
BBBBBBB@

C̃v−v−

C̃vuv−

C̃vuvu

C̃uvuþ
C̃uþuþ

1
CCCCCCCA

left:

ð151Þ

The five components of Eq. (151) are commonly [46]
denoted (minus) Ψ0, Ψ1, Ψ2, Ψ3, and Ψ4 [Eq. (C5)], but the
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notation in Eq. (151) makes manifest their transformation
properties. The propagating component is [Eq. (46)]
C̃−2 ¼ −Ψ4 outgoing, and C̃þ2 ¼ −Ψ0 ingoing.
Focus on the right-handed gravitational field; the left-

handed field is quite similar. Define the scaled Weyl tensor
Ĉσ and scaled Weyl current Ĵlmn (with hats instead of tildes
over the C and J) by

C̃σ ¼ f2Ĉσ; J̃lmn ¼ f2Ĵlmn; ð152Þ

in accordance with Eq. (53). The left-hand side of the
complex Weyl evolution equation [Eq. (149)] has eight
nonvanishing components [Eq. (A18) in Appendix A give
these equations in a general spacetime]:

Dk

0
BBBBBBBBBBBBBBBB@

Ĉkvvþ
Ĉkþvþ
Ĉk−vþ
Ĉkuvþ
Ĉkþu−

Ĉkvu−

Ĉkuu−

Ĉk−u−

1
CCCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBB@

−3ΓþvvĈ0

−3ΓþvþĈ0

0

0

0

0

−3Γ−uuĈ0

−3Γ−u−Ĉ0

1
CCCCCCCCCCCCCCCCA

þ f2ffiffiffi
2

p
ρ

0
BBBBBBBBBBBBBBBB@

ρ̄−3ðvρ̄3Ĉþ1 þ ρ̄3ð−ρ̄−3Ĉþ2

ρ̄−3ðþρ̄3Ĉþ1 ∓ ρ̄3ðuρ̄−3Ĉþ2

ρ̄−1ðvρ̄Ĉ0 þ ρ̄ð−ρ̄−1Ĉþ1

ρ̄−1ðþρ̄Ĉ0 ∓ ρ̄ðuρ̄−1Ĉþ1

�ρ̄−1ðuρ̄Ĉ0 − ρ̄ðþρ̄−1Ĉ−1

−ρ̄−1ð−ρ̄Ĉ0 − ρ̄ðvρ̄−1Ĉ−1

�ρ̄−3ðuρ̄3Ĉ−1 − ρ̄3ðþρ̄−3Ĉ−2

−ρ̄−3ð−ρ̄3Ĉ−1 − ρ̄3ðvρ̄−3Ĉ−2

1
CCCCCCCCCCCCCCCCA

: ð153Þ

The nonderivative terms to the immediate right of the
equals sign in Eq. (153) involve products of boost- and
spin-weight �2 components of Lorentz connections, also
known as shears, with the boost- and spin-weight-0 Weyl
tensor C̃0 [Eq. (42)]. As Ref. [46] has emphasized, although
the shears vanish in the conformally separable background,
their derivatives [Eq. (A20)] yield boost/spin-weight �2

Weyl components C̃�2 that contribute to the wave equa-
tions for those components. For example, the difference of
ρ̄−3ðþρ̄3 times the first row of Eq. (153) and ρ̄−3ðvρ̄3 times
the second row yields

ðρ̄−3ðvρ̄6ðuρ̄−3 � ρ̄−3ðþρ̄6ð−ρ̄−3 þ 6ρ2C̃0ÞĈþ2

¼ ρ̄−3ððvρ̄3Ĵþvþ − ðþρ̄3ĴvvþÞ; ð154Þ

with the 6ρ2C̃0 term coming from the difference of
derivatives of the shears Γþvv and Γþvþ [top row of
Eq. (A20a) with ψ sσς ¼ C̃0]. Remarkably, the combination
of derivatives of Weyl currents Ĵlmn on the right-hand side
of Eq. (154) vanishes for the conformally separable
solutions, despite the fact that neither of the Weyl currents
vanishes individually. This proves to be true for all of the
wave equations derived from combining equations in pairs
from Eq. (153): in all cases, the combinations of derivatives
of Weyl currents from the right-hand sides of the Weyl
evolution equations (149) vanish for the conformally
separable spacetimes, despite the fact that none of the
Weyl currents vanishes individually. The shear derivatives
contribute precisely what is needed to make the wave
equations for the boost/weight �2 components separable
[Eqs. (156a) and (156f)], but the same shear derivatives
complicate the wave equations for the boost/weight-spin
�1 components that follow from combining the top and
bottom pairs from Eq. (153), respectively, so these equa-
tions are omitted from Eq. (155), which follows.
Combining Eq. (153) in pairs so as to eliminate one of

the two spin components on each row yields six second-
order differential equations:

ð∓ ρ̄−3ðvρ̄6ðuρ̄−3 − ρ̄−3ðþρ̄6ð−ρ̄−3 þ 6ρ2C̃0ÞĈþ2 ¼ 0;

ð155aÞ

ð∓ ρ̄−1ðvρ̄2ðuρ̄−1 − ρ̄−1ðþρ̄2ð−ρ̄−1ÞĈþ1 ¼ 0; ð155bÞ

ð∓ ρ̄ðvρ̄−2ðuρ̄ − ρ̄ðþρ̄−2ð−ρ̄ÞĈ0 ¼ 0; ð155cÞ

ð∓ ρ̄ðuρ̄−2ðvρ̄ − ρ̄ð−ρ̄−2ðþρ̄ÞĈ0 ¼ 0; ð155dÞ

ð∓ ρ̄−1ðuρ̄2ðvρ̄−1 − ρ̄−1ð−ρ̄2ðþρ̄−1ÞĈ−1 ¼ 0; ð155eÞ

ð∓ ρ̄−3ðuρ̄6ðvρ̄−3 − ρ̄−3ð−ρ̄6ðþρ̄−3 þ 6ρ2C̃0ÞĈ−2 ¼ 0:

ð155fÞ

Equations (155a)–(155f) can be recast in terms of the wave
operators defined by Eq. (57) as

ð□vu −□þ−ÞĈþ2 ¼ 0; ð156aÞ

ð□vu −□þ−ÞĈþ1 ¼ 0; ð156bÞ

ð□uv −□−þ − 2ρ2C̃0ÞĈ0 ¼ 0; ð156cÞ

ð□vu −□þ− − 2ρ2C̃0ÞĈ0 ¼ 0; ð156dÞ

ð□uv −□−þÞĈ−1 ¼ 0; ð156eÞ

ð□uv −□−þÞĈ−2 ¼ 0: ð156fÞ
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Note the similarity of the gravitational wave equa-
tions (156e)–(156b) with boost weights �1 and 0 to the
electromagnetic wave equations (109). The gravitational
wave equations for not only the boost-weight �2 com-
ponents but also the boost-weight �1 components are
separable. Reference [46] discusses this on p. 435, where
Chandrasekhar says that the separability of the boost-
weight �1 wave equations is a gauge choice associated
with the freedom of Lorentz transformations of the tetrad
frame; but in the present case, the tetrad frame is chosen to
be aligned with the principal null directions, and that choice
leads to separable wave equations for C̃�1.
The Teukolsky-Starobinski identities for the boost-

weight �1 components C̃�1 of the gravitational field are
the same as those in Eq. (111) for the electromagnetic field,
and the relations between separated factors X�1 and Y�1 for
the gravitational field are the same as those in Eq. (113) for
the electromagnetic field.
The Teukolsky-Starobinski identities for the boost-

weight �2 components C̃�2 of the gravitational field are

ð□uvð4u − ð4u□vuÞĈþ2 ¼ −K1=2
x R3jΔxj3=2ðuðK1=2

x R−3Ĉþ2Þ;
ð157aÞ

ð□vuð4v − ð4v□uvÞĈ−2 ¼ K1=2
x R3jΔxj3=2ðvðK1=2

x R−3Ĉ−2Þ;
ð157bÞ

ð□−þð4− −ð4−□þ−ÞĈþ2 ¼−K1=2
y Δ3=2

y ð−ðK1=2
y Ĉþ2Þ; ð157cÞ

ð□þ−ð4þ−ð4þ□−þÞĈ−2¼K1=2
y Δ3=2

y ðþðK1=2
y Ĉ−2Þ; ð157dÞ

where R is the radial coordinate [Eq. (4)] (not the Ricci
scalar), and Kx and Ky are the radial and angular functions
defined by Eq. (141). As remarked following Eq. (141), the
functions Kx and Ky vanish in Λ-Kerr(-Newman) space-
times, but they do not vanish in the conformally separable
spacetimes. For the remainder of this Sec. VIII, the
spacetime is taken to be Λ-Kerr.
For Λ-Kerr spacetimes, with a convenient choice of

relative normalization, the boost- and spin-weight �2
eigenfunctions are related by

ð4uXþ2 ¼ μxX−2; ð4vX−2 ¼ μxXþ2; ð158aÞ

ð4−Yþ2 ¼ μyY−2; ð4þY−2 ¼ μyYþ2: ð158bÞ

Solving for μ2x and μ2y in

ðð4vð4u − μ2xÞXþ2 ¼ 0; ð159aÞ

ðð4þð4− − μ2yÞYþ2 ¼ 0; ð159bÞ

given that C̃2 satisfies ð□vu − λÞC̃þ2 ¼ ð□þ− − λÞC̃þ2 ¼ 0,
shows that μx and μy are related to the eigenvalue λ by, for
Λ-Kerr,

μ2x ¼ μ2y þ 144w2M2
• ; ð160aÞ

μ2y ¼
�
λ2 − 1 − 4awðawþmÞ − 1

3
a2Λ

�
14þ 1

3
a2Λ

��

×

�
λ2 − 1 − 36awðawþmÞ þ 1

3
a2Λ

�
42 −

1

3
a2Λ

��

þ 32

�
λ − 1þ 1

3
a2Λ

��
awð4awþmÞ

−
1

3
a2ΛðawþmÞð4awþ 3mÞ

�

−
16

3
a2Λ

�
8awðawþmÞ − 49

3
a2Λ

�
: ð160bÞ

Equations (160a) and (160b) agree with Eq. (61) from
p. 440 of Ref. [46], which gives the case Λ ¼ 0, with the
translations (there ↔ here) being ƛ ¼ λ − 1

2
and C ¼ μx,

D ¼ μy, σ ¼ w.

IX. CONCLUSIONS

The wave equations in the conformally separable sol-
utions of Refs. [30,31] for accreting, rotating, uncharged
black holes are solved for massless fields of spin 0, 1

2
, 1, 3

2
,

and 2, resulting in the generalized Teukolsky wave equa-
tions (60) with the potentials (61), generalizing the well-
known Teukolsky wave equations for stationary black holes
[27,44–47]. As is well known, massless waves resolve into
independently evolving right- and left-handed chiralities. A
wave of given chirality and spin s has 2sþ 1 components,
with boost weights σ ¼ −s;−sþ 1;…; s, and spin weights
ς either equal (ς ¼ σ, right-handed chirality) or opposite
(ς ¼ −σ, left-handed chirality) to the boost weight. The
2sþ 1 different components are coupled by equations of
motion, so they are not independent of each other, but
rather oscillate in harmony. The propagating components of
a wave have boost weight σ ¼ −s for outgoing waves, and
σ ¼ þs for ingoing waves. The wave equations for
components with σ ¼ �s, which include the propagating
components, are separable in the conformally separable
solutions, as they are in stationary solutions for black holes.
In addition, the wave equations for boost-weight �1
components of gravitational waves (s ¼ 2) are separable.
The Teukolsky-Starobinsky identities [60,61] carry

through essentially unchanged (with a modified horizon
function) for fields of spin 1

2
and 1, but they are more

complicated for fields of spin 3
2
and 2.
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APPENDIX A: WAVE EQUATIONS
IN A GENERAL SPACETIME

This appendix takes a deeper dive into the derivation of
wave equations in a general spacetime. Subsections A 1–A
5 give the equations of motion that lead to wave equations
for spins s ¼ 0, 1

2
, 1, 3

2
, and 2. Subsection A 6 gives a

general expression for derivatives of shear needed in the
wave equations for gravitational waves.
Massless waves are described by independently evolving

chiral fields with all-right-handed or all-left-handed bivector
and spinor indices. For example, spin-3

2
waves have a

bivector index and a spinor index, and those indices are
either both right-handed or both left-handed [Eq. (128)].
Similarly, spin-2 waves have two bivector indices, and those
indices are either both right-handed or both left-handed
[Eq. (148)]. Equations of motion yield linear differential
equations that relate components of adjacent boost (and
spin) weight to each other. The right- and left-handed
differential equations involve purely right- or purely left-
handed Lorentz connections. Right- and left-handed Lorentz
connections are defined by (the tilde on Γ̃ signifies a right- or
left-handed chiral component)

Γ̃klp ≡ 1

2
ðΓklp ∓ iεklmnΓmnpÞ: ðA1Þ

In a completely general spacetime (not necessarily a con-
formally separable spacetime), the most general right- or
left-handed linear differential operators with the properties
that (i) they involve purely right- or left-handed Lorentz
connections, and (ii) they raise and lower the boost/spin
weight by 1, are the radial

sσ
Du

v
and angular sςD� operators

defined by

sσ
Dv

u
≡ ∂v

u
� σΓuvv

vuu
þ
(∓ σΓþ−v−þu

þðs� σþ 1ÞΓþv−−uþ right

∓ σΓ−þv
þ−u þðs� σþ 1ÞΓ−vþ

þu− left
;

ðA2aÞ

sςD�≡ ∂� ∓ ςΓ−þþ
þ−− þ

(�ςΓuvþ
vu− þðs� ςþ 1ÞΓþvu−uv right

�ςΓuvþ
vu− þðs� ςþ 1ÞΓþuv−vu left

:

ðA2bÞ

Note that the boost and spin weights of the various terms of
each operator agree, as they must, per Eq. (32).
Explicit calculation shows that the index s of the operators

in Eq. (A2) denotes the spin of the field, with s ¼ 0;
1
2
; 1; 3

2
; 2 for scalar, spinor, electromagnetic, gravitino, and

gravitational fields, respectively. The index σ denotes the
boost weight of the field, which ranges over the 2sþ 1
components −s;−sþ 1;…; s, while ς ¼ �σ denotes the
spin weight of the field, with þ for right-handed, and − for
left-handed. For the most part, the spin s and boost/spin
weight σ and ς indices can be suppressed, because they
equal the spin and boost/spin weight of the field they are
acting on. Equations for the various spins are (A10), (A11)
and (A12), (A13) and (A14), (A16) and (A17), and (A18)
and (A19).
The operators D defined by Eq. (A2) do not commute

with each other, but (primed) operators defined by

sσ
D0

v
u
≡

sσ
Dv

u
þ
(
−Γ−þv

þ−u þ Γ−vþ
þu− right

−Γþ−v−þu
þ Γþv−−uþ left

; ðA3aÞ

sςD
0
� ≡ sςD� þ

(
Γuvþ

vu− − Γþuv−vu right

Γvuþ
uv− − Γþvu−uv left

ðA3bÞ

have the property that, in the conformally separable space-
times, the radial and angular D and D0 operators do
commute:

sςD
0
�sσ

Dv
u
−

sσ
D0

v
u
sςD� ¼ 0; ðA4Þ

in both right- and left-handed versions. The existence of
radial/angular operators D0 that commute with angular/
radial operators D is crucial to forming wave equations for
individual components of particular boost and spin weight.
In the conformally separable spacetimes, the D and D0
operators are related by

sσD
0
k ¼ ρ−1sσDkρ ðA5Þ

in both right- and left-handed versions, with ρ being the
conformal factor [Eq. (6)].
In conformally separable spacetimes, the raising and

lowering operators sσðk defined by Eq. (47) are related to
the sσDk operators by, in the right-handed case,

ffiffiffi
2

p
ρsσDk ¼ ð�Þfsρ̄∓2σ−1

σðkρ̄�2σþ1f−1s ; ðA6Þ

where fs is given by Eq. (54), and the initial (�) sign is þ
for k ¼ v or þ, or k ¼ u outside the horizon; − for k ¼ −,
or k ¼ u inside the horizon; while the � sign multiplying
2σ is þ for indices k ¼ v or þ, and − for k ¼ u or −. The
left-handed relation is the complex conjugate of the right-
handed relation in Eq. (A6), obtained by replacing fs → f�s
and ρ̄ → ρ̄�.
Wave equations are obtained by taking the differential

equations linear in the operators D [Eq. (A2)] that follow
from the equations of motion, applying operators D0
[Eq. (A3)], and differencing the resulting second-order
differential equations in such a way that the commutation
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[Eq. (A4)] leads to cancellation of terms. The resulting equations can be expressed in terms of the difference of the radial
and angular wave operators □ defined by Eq. (57). For arbitrary spins s and boost weights σ, the difference □vu

uv
−□þ−−þ of

radial and angular wave operators, expressed in terms of the D and D0 operators, and then in terms of the ð raising and
lowering operators [Eq. (47)] are, for right-handed (ς ¼ þσ) modes,

ðσ□vu
uv
− σ□þ−−þÞψ̂σ ¼ 2ρ2f−1s

�
ð−

s;σ∓1
D0

v
us;σ

Du
v
þ s;σ∓1D

0
�s;σD∓Þ þ 2

�
σ ∓ 1

2

�
ðσ ∓ 1ÞC̃0

�
fsψ̂σ

¼
�
ρ̄−ð�2σ−1Þð−sgnðΔxÞσ∓1

ðv
u
ρ̄2ð�2σ−1Þ

σðu
v
− σ∓1ð�ρ̄

2ð�2σ−1Þ
σð∓Þρ̄−ð�2σ−1Þ

þ 4ρ2
�
σ ∓ 1

2

�
ðσ ∓ 1ÞC̃0

�
ψ̂σ: ðA7Þ

The equivalent result for left-handed modes (ς ¼ −σ) is obtained by flipping angular indices þ ↔ −, and complex-
conjugating fs → f�s and ρ̄ → ρ̄�:

ðσ□vu
uv
− σ□−þ

þ−Þψ̂σ ¼ 2ρ2ðf�sÞ−1
�
ð−

s;σ∓1
D0

v
us;σ

Du
v
þ s;σ�1D

0∓s;σD�Þ þ 2

�
σ ∓ 1

2

�
ðσ ∓ 1ÞC̃0

�
f�s ψ̂σ

¼
�
ðρ̄�Þ−ð�2σ−1Þð−sgnðΔxÞσ∓1

ðv
u
ðρ̄�Þ2ð�2σ−1Þ

σðu
v
− σ�1ð∓ðρ̄�Þ2ð�2σ−1Þ

σð�Þðρ̄�Þ−ð�2σ−1Þ

þ 4ρ2
�
σ ∓ 1

2

�
ðσ ∓ 1ÞC̃0

�
ψ̂σ: ðA8Þ

1. Spin-0 waves

In a general spacetime, the d’Alembertian operator that goes in the scalar wave equation (79) is

DkDkφ ¼ ð−1;−1D
0
v∂u − 1;þ1D

0
u∂v þ 1;−1D

0þ∂− þ 1;þ1D
0
−∂þÞφ; ðA9Þ

which holds true for both right- and left-handed versions of the D0 operators [Eq. (A3)]. In conformally separable
spacetimes, Eq. (A9) can be recast as

DkDkφ ¼ 2

�
−
0;∓1

D0
v
u0;0

Du
v
þ 0;∓1D

0
�0;0D∓ þ C̃0 þ

1

12
R

�
φ; ðA10Þ

which again holds true for both right- and left-handed versions of the D and D0 operators. Note that whereas the index s on
sσD

0
k is s ¼ 1 in the general equation (A9), the index is s ¼ 0 on sσDk and sσD

0
k in the conformally separable

version [Eq. (A10)].

2. Spin-12 waves

In a general spacetime, the Dirac equation (83) for the components ψσ of the spinor field [Eq. (105)], expressed with
respect to a Newman-Penrose tetrad in terms of the differential operators defined by Eq. (A2), are, for the right-handed
components,

1ffiffiffi
2

p ðDψÞ⇓↑
⇑↓

¼ ∓1=2
Dv

u
ψ⇑↑

⇓↓
− �1=2D∓ψ⇓↓

⇑↑
¼ 0; ðA11Þ

and for the left-handed components,

1ffiffiffi
2

p ðDψÞ⇓↓
⇑↑

¼ −∓1=2
Dv

u
ψ⇑↓

⇓↑
− ∓1=2D�ψ⇓↑

⇑↓
¼ 0: ðA12Þ
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3. Spin-1 waves

In a general spacetime, Maxwell’s equations (104) for the components F̃σ of the electromagnetic field [Eq. (105)],
expressed with respect to a Newman-Penrose tetrad in terms of the differential operators defined by Eq. (A2), are, for the
right-handed components (ς ¼ þσ),

DkF̃kv
ku
¼ Γ−vv

þuu
F̃∓1 � 0Dv

u
F̃0 − �1D∓F̃�1 ¼ j̃u

v
; ðA13aÞ

DkF̃k−
kþ
¼ Γþvþ−u−F̃∓1 � 0D�F̃0 − �1

Du
v
F̃�1 ¼ j̃�; ðA13bÞ

and for the left-handed components (ς ¼ −σ),

DkF̃kv
ku
¼ Γ−vv

þuu
F̃∓1 � 0Dv

u
F̃0 − ∓1D�F̃�1 ¼ j̃u

v
; ðA14aÞ

DkF̃k−
kþ
¼ Γ−v−

þuþ
F̃∓1 � 0D∓F̃0 − �1

Du
v
F̃�1 ¼ j̃�: ðA14bÞ

The units of the currents jk are Heaviside; in Gaussian units, the currents would be multiplied by 4π. Conservation of
electric current is expressed by

Dkjk ¼ −þ1D
0
ujv − −1D

0
vju þ −1D

0þj− þ þ1D
0
−jþ ¼ 0: ðA15Þ

4. Spin-32 waves

Wave equations for the spin-3
2
gravitino field Ψ follow from the Jacobi identity [Eq. (134)]. In a general spacetime, the

left-hand sides of the Jacobi identity (134) in terms of the differential operators defined by Eq. (A2) are, for the right-handed
components,

1ffiffiffi
2

p ðDΨ̃vu
uv
Þ⇓↑
⇑↓

¼ DkΨ̃kv⇑↑
ku⇓↓

¼ DkΨ̃k−⇑↑
kþ⇓↓

¼ Γþvv
−uu
Ψ̃∓3=2 � ∓1=2

Dv
u
Ψ̃∓1=2 ∓ �1=2D∓Ψ̃�1=2 þ Γ−u−

þvþ
Ψ̃�3=2; ðA16aÞ

1ffiffiffi
2

p ðDΨ̃vþ
u−
Þ⇓↑
⇑↓

¼ DkΨ̃kv⇓↓
ku⇑↑

¼∓ 2Γþvv
−uu
Ψ̃∓1=2 � �1=2

Dv
u
Ψ̃�1=2 − �3=2D∓Ψ̃�3=2; ðA16bÞ

−
1ffiffiffi
2

p ðDΨ̃vþ
u−
Þ⇑↓
⇓↑

¼ DkΨ̃kþ⇓↓
k−⇑↑

¼∓ 2Γþvþ
−u−

Ψ̃∓1=2 � �1=2D�Ψ̃�1=2 − �3=2
Du

v
Ψ̃�3=2; ðA16cÞ

and for the left-handed components,

−
1ffiffiffi
2

p ðDΨ̃vu
uv
Þ⇓↓
⇑↑

¼ DkΨ̃kv⇑↓
ku⇓↑

¼ �DkΨ̃kþ⇓↑
k−⇑↓

¼ Γ−vv
þuu
Ψ̃∓3=2 � ∓1=2

Dv
u
Ψ̃∓1=2 � ∓1=2D�Ψ̃�1=2 − Γþuþ

−v−
Ψ̃�3=2; ðA17aÞ

1ffiffiffi
2

p ðDΨ̃v−
uþ
Þ⇓↓
⇑↑

¼ DkΨ̃kv⇓↑
ku⇑↓

¼ �2Γ−vv
þuu
Ψ̃∓1=2 � �1=2

Dv
u
Ψ̃�1=2 − ∓3=2D�Ψ̃�3=2; ðA17bÞ

1ffiffiffi
2

p ðDΨ̃v−
uþ
Þ⇑↑
⇓↓

¼ DkΨ̃k−⇓↑
kþ⇑↓

¼ �2Γ−v−
þuþ

Ψ̃∓1=2 � ∓1=2D∓Ψ̃�1=2 − �3=2
Du

v
Ψ̃�3=2: ðA17cÞ

5. Spin-2 waves

In a general spacetime, the Weyl evolution equations (149) in terms of the differential operators defined by Eq. (A2) are,
for right-handed components,

DkC̃k−vþ
kþu− ¼ −2Γþvv−uuC̃∓1 þ 0

Dv
u
C̃0 − �1D∓C̃�1 þ Γ−u−

þvþ
C̃�2 ¼ J̃−vþ

þu−; ðA18aÞ
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DkC̃kuvþ
kvu−

¼ −2Γþvþ
−u−

C̃∓1 þ 0D�C̃0 − �1
Du

v
C̃�1 þ Γ−uu

þvv
C̃�2 ¼ J̃uvþ

vu−
; ðA18bÞ

DkC̃kvvþ
kuu− ¼ −3Γþvv−uuC̃0 þ �1

Du
v
C̃�1 − �2D∓C̃�2 ¼ J̃vvþ

uu−; ðA18cÞ

DkC̃kþvþ
k−u− ¼ −3Γþvþ−u−C̃0 þ �1D�C̃�1 − �2

Du
v
C̃�2 ¼ J̃þvþ−u−; ðA18dÞ

and for left-handed components,

DkC̃kþv−
k−uþ ¼ 2Γ−vv

þuu
C̃∓1 þ 0

Dv
u
C̃0 þ ∓1D�C̃�1 þ Γþuþ−v−C̃�2 ¼ J̃þv−−uþ; ðA19aÞ

DkC̃kuv−
kvuþ

¼ 2Γ−v−
þuþ

C̃∓1 þ 0D∓C̃0 þ �1
Du

v
C̃�1 þ Γþuu−vvC̃�2 ¼ J̃uv−

vuþ
; ðA19bÞ

DkC̃kvv−
kuuþ

¼ −3Γ−vv
þuu
C̃0 − �1

Dv
u
C̃�1 − ∓2D�C̃�2 ¼ J̃vv−

uuþ
; ðA19cÞ

DkC̃k−v−
kþuþ

¼ −3Γ−v−
þuþ

C̃0 − ∓1D∓C̃�1 − �2
Du

v
C̃�2 ¼ J̃−v−

þuþ
: ðA19dÞ

6. Derivatives of shear

The Newman-Penrose formalism makes a 2þ 2 split of the tangent space of spacetime into a radial subspace (null
indices v and u) and an angular subspace (angular indices þ and −). Conformally separable black-hole spacetimes are
shear-free, meaning that the eight Lorentz connections of the form Γaza, where a and z are from opposite spaces, are all zero.
Although the shears all vanish in the unperturbed background, their derivatives yield spin �2 components of the Riemann
tensor [compare the last of Eqs. (3) and (4) on p. 431 of Ref. [46] ]

s;ς�1D
0
�ðΓþvv

−uu
ψ sσςÞ − s;σ�1

D0
v
u
ðΓþvþ

−u−
ψ sσςÞ − Γþvv

−uusς
D�ψ sσς þ Γþvþ

−u−sσ
Dv

u
ψ sσς ¼ Rvþvþ

u−u−
ψ sσς right; ðA20aÞ

s;ς∓1D
0∓ðΓ−vv

þuu
ψ sσςÞ − s;σ�1

D0
v
u
ðΓ−v−

þuþ
ψ sσςÞ − Γ−vv

þuusς
D∓ψ sσς þ Γ−v−

þuþsσ
Dv

u
ψ sσς ¼ Rv−v−

uþuþ
ψ sσς left: ðA20bÞ

Equation (A20) is valid in an arbitrary spacetime for arbitrary spin s and boost/spin weight σ and ς. The case relevant to
gravitational waves, Eq. (154), has ψ sσς ¼ C̃0, for which s ¼ σ ¼ ς ¼ 0.

APPENDIX B: A RELATION AMONG DIFFERENTIAL OPERATORS

In the conformally separable spacetimes considered in this paper, the differential operators ðk defined by Eq. (47), acting
on any arbitrary (not necessarily separable) function of the coordinates fx; t; y;ϕg, satisfy the following cubic relations:

ρ̄ðlρ̄−1ð2k ¼ ρ̄−1ðkρ̄
�
ðkðl −

1

ρ̄
ð�ksgnðΔxÞR2

ffiffiffiffiffiffiffiffi
jΔxj

p
ðl �l ia

ffiffiffiffiffiffi
Δy

p
ðkÞ

�
; ðB1aÞ

ρ̄ðkρ̄−1ð2l ¼ ρ̄−1ðlρ̄
�
ðkðl −

1

ρ̄
ð�ksgnðΔxÞR2

ffiffiffiffiffiffiffiffi
jΔxj

p
ðl �l ia

ffiffiffiffiffiffi
Δy

p
ðkÞ

�
; ðB1bÞ

where the index k is either of v or u, and the index l is either ofþ or −. The�k sign isþ or − as k ¼ v or u, while the�l sign
isþ or − as l ¼ þ or −. The relations in Eq. (B1) lead to the expressions of Eq. (116) for the boost-weight-0 component F̃0

of the electromagnetic field.

APPENDIX C: COMPARISON TO CHANDRASEKHAR [46] NOTATION

Chandrasekhar’s null directions l, n, m, m̄ [Eq. (283) on p. 41] correspond to

l ¼ γv; n ¼ γu; m ¼ γþ; m̄ ¼ γ−: ðC1Þ

Chandrasekhar’s null indices 1,2,3,4 are
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1 ¼ v; 2 ¼ u; 3 ¼ þ; 4 ¼ −: ðC2Þ

Chandrasekhar’s spin coefficients γklm [Eq. (253) on p. 37]
coincide with the Lorentz connections Γklm:

γklm ¼ Γklm: ðC3Þ

Chandrasekhar’s electromagnetic fields ϕi [Eq. (324) on
p. 51] are

ϕ0 ¼ Fþ1 ≡ F̃vþ; ðC4aÞ

ϕ1 ¼ F̃0 ≡ 1

2
ðFvu − Fþ−Þ; ðC4bÞ

ϕ2 ¼ F̃−1 ≡ Fu−; ðC4cÞ

and his gravitational fields Ψi [Eq. (294) on p. 43] are

−Ψ0 ¼ C̃þ2 ≡ Cvþvþ; ðC5aÞ

−Ψ1 ¼ C̃þ1 ≡ Cvuvþ ¼ C−þvþ; ðC5bÞ

−Ψ2 ¼ C̃0 ≡ Cvþ−u ¼
1

2
ðCvuvu − Cvuþ−Þ

¼ 1

2
ðCþ−þ− − Cvuþ−Þ; ðC5cÞ

−Ψ3 ¼ C̃−1 ≡ Cuvu− ¼ Cþ−u−; ðC5dÞ

−Ψ4 ¼ C̃−2 ≡ Cu−u−: ðC5eÞ

Chandrasekhar’s operators Dn, D0
n, Ln, L0

n [Eq. (3) on
p. 383], are related to the raising and lowering operators
[Eq. (47)] of the present paper by

Dn ¼
1

R2
ffiffiffiffiffiffi
Δx

p −2nðv; D0
n ¼ −

1

R2
ffiffiffiffiffiffi
Δx

p 2nðu;

Ln ¼ −nð−; L0
n ¼ −nðþ: ðC6Þ
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