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Applying the inverse scattering method to static and biaxisymmetric Einstein equations, we construct a
nonrotating black lens inside a bubble of nothing whose horizon is topologically lens space,
Lðn; 1Þ ¼ S3=Zn. Using this solution, we discuss whether a static black lens can be in equilibrium by
the force balance between the expansion and gravitational attraction.
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I. INTRODUCTION

The studies on higher-dimensional black hole solutions
to the Einstein equations have played important roles in the
microscopic derivation of black hole entropy [1] and in
fundamental research on the scenario of large extra dimen-
sions [2] through black hole production in an accelerator.
Although recent developments in solution-generation tech-
niques have enabled us to find various exact solutions of
higher-dimensional black holes, our knowledge about them
is still incomplete. For example, according to the topology
theorem for five-dimensional black holes [3–6], the top-
ology of the spatial cross section of the event horizon must
be either a sphere (S3), ring (S1 × S2), or lens space
(Lðp; qÞ) if a spacetime with two commuting rotational
Killing vector fields and a timelike Killing vector field is
asymptotically flat. For the first two topologies, the exact
solutions to the vacuum Einstein equations [7–10] have
already been found. For lens-space topology, however, it
has been difficult to find a regular vacuum solution since
the resultant solutions have naked singularities.
The inverse scattering method (ISM) is perhaps one of

the most powerful tools to obtain exact solutions of the
Einstein equations with (D − 2) Killing isometries, where
D is a spacetime dimension. In particular, combined with
the rod structure [11,12], this method has allowed for the
derivation of five-dimensional vacuum black hole solu-
tions. The first example of the construction of black hole
solutions using the ISM was the rederivation of the five-
dimensional Myers-Perry black hole solution [13]. Next, a

black ring with S2 rotation (first derived in Refs. [14,15])
was rederived using the ISM [16], but it turned out that the
generation of a black ring with S1 rotation has a serious
problem on how to choose the seed, namely an easy choice
for the seed always results in the generation of a
singular solution. A suitable seed to derive the black ring
with S1 rotation was first considered in Refs. [17,18].
Subsequently, the more general black ring solution with
both S1 and S2 rotations was constructed by Pomeransky
and Sen’kov [10]. Moreover, the ISM was used to find
vacuum solutions with multiple horizons, such as black
Saturns [19], black di-rings [20,21],1 and bicycling black
rings (orthogonal black di-rings) [22,23].
Using the ISM, some authors attempted to construct

asymptotically flat black lens solutions to the five-
dimensional vacuum Einstein equations. First, Evslin [24]
attempted to construct a static black lens with the lens space
topology Lðn2 þ 1; 1Þ but found that curvature singularities
cannot be eliminated, whereas both conical and orbifold
singularities can be removed. Moreover, by using the ISM,
Chen and Teo [25] constructed black hole solutions with the
horizon topologyLðn; 1Þ ¼ S3=Zn, but these solutionsmust
have either conical singularities or naked curvature singu-
larities. Thus, the major obstacle in constructing a black lens
solution is always the existence of naked singularities.
However, a sudden breakthrough has come from super-
symmetric solutions.Kunduri andLucietti [26] succeeded in
deriving the first regular supersymmetric solution of an
asymptotically flat black lens with the horizon topology
Lð2; 1Þ ¼ S3=Z2. This solution was further generalized
to the more general supersymmetric black lens with the
horizon topology Lðn; 1Þ ¼ S2=Znðn ≥ 3Þ [27,28].
Building upon thework of Kunduri and Lucietti, the authors
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1After this solution was first constructed using the Bäcklund
transformation in Ref. [20], it was reconstructed using the ISM in
Ref. [21].
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of Ref. [29] attempted to construct the vacuum solution of a
black lenswithLð2; 1Þwithout singularities, but the solution
has unavoidable closed timelike curves (CTCs). Thereafter,
Ref. [30] discussed the nonexistence of vacuum black
lenses.
Supersymmetric black lenses carry mass, electric charge

(saturating the Bogomol’nyi-Prasad-Sommerfield bound),
two angular momenta, and magnetic fluxes [18,26]. As was
discussed in Ref. [18], there exists no limit such that all of
the magnetic fluxes vanish. Therefore, as for the super-
symmetric solutions, the existence of the magnetic fluxes
seems to play an essential role in supporting the horizon of
a black lens. In general, however, it is not clear whether
such magnetic fluxes are necessarily needed to construct a
black lens. Recently, a different type of solution within a
class of generalized Weyl solutions—static black hole
binaries and black rings in expanding bubbles of nothing
—was studied in Ref. [31], although equilibrium configu-
ration of black holes in bubble had been studied only in the
context of Kaluza-Klein theory [32–34]. As is well known,
an asymptotically flat, static black ring cannot be in
equilibrium since the horizon collapses due to the self-
gravitational force. However, the black ring in Ref. [31] is
allowed to be in static equilibrium by the balance between
the expanding force of a bubble and the gravitational force,
so it has no conical singularities. This solution leads a
simple, interesting question: is a nonrotating black lens in a
bubble of nothing allowed to be in equilibrium? Studying
such a solution may show us what (except for magnetic
fluxes) is needed to obtain a regular black lens. Thus, the
goal of this paper is to investigate whether an expanding
bubble of nothing admits the existence of a black lens in
equilibrium. In this paper, to derive such a solution, we
apply the ISM to the five-dimensional vacuum Einstein
equations with staticity and biaxisymmetry, and construct a
one-soliton solution by considering a static black ring
inside of a bubble (as in Ref. [31]) as a seed solution. Note
that our procedure in the ISM is entirely the same as the
work of Chen and Teo where the seed solution was chosen
as a static black ring, namely, the only different point is the
seed solution.
The remainder of the paper is organized as follows. In

Sec. II, under the assumptions of staticity and biaxisym-
metry, we present a vacuum solution of a nonrotating black
lens with the horizon topology Lðn; 1Þ in bubble of nothing
as a one-soliton solution in five dimensions by using the
ISM. In Sec. III we impose the boundary conditions such
that the spacetime has no curvature, conical singularities, or
orbifold singularities on the axis and horizon. In Sec. IV we
further impose that there are no CTCs in the domain of
communication. In Sec. V we discuss whether a non-
rotating black lens in a bubble of nothing indeed exists. In
Sec. VI we confirm the limit of our solution to the Chen-
Teo static solution. Finally, Sec. VII is devoted to a
summary and discussion of our results.

II. STATIC BLACK RING IN A BUBBLE OF
NOTHING AS A SEED SOLUTION

In general, the metric for a stationary and biaxisymmetric
spacetime can be written in canonical coordinates as

ds2¼gabdxadxbþfðdρ2þdz2Þ; ða;b¼ t;ϕ;ψÞ; ð1Þ

where gab and f depend on only ðρ; zÞ. The following
constraint condition must be satisfied:

detðgabÞ ¼ −ρ2: ð2Þ

According to the procedure of Chen and Teo [25], we
construct the static black lens in a bubble of nothing using
the ISM, where a static black ring as the seed solution is
replaced with a black ring in a bubble of nothing [31] (see
Fig. 1 for the rod structure).
Therefore, let us start with the exact solution to the five-

dimensional vacuum Einstein equations of a black ring in a
bubble of nothing, whose metric is given by

G0 ¼ diag

�
−ρ2

μ1
μ0μ2

;
μ0μ2
μ1μ3

; μ3

�
; ð3Þ

f0 ¼ Cf
μ3W2

01W03W2
12W23

W2
02W13W00W11W22W33

; ð4Þ

where for i, j ¼ 0, 1, 2, 3,

μi ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − ziÞ2

q
− ðz − ziÞ; ð5Þ

μ̄i ≔ −
ρ2

μi
; ð6Þ

Wij ≔ ρ2 þ μiμj: ð7Þ

First, let us remove a trivial antisoliton with the Belinsky-
Sakharov (BZ) vector (0,0,1) at z ¼ z3:

g0 ¼ diag

�
1; 1;−

μ̄23
ρ2

�
G0 ¼ diag

�
1; 1;−

ρ2

μ23

�
G0: ð8Þ

In turn, let us add back a nontrivial antisoliton with
ð0;−a; 1Þ; then, we can obtain a new one-soliton solution,
a solution of a static black lens in a bubble of nothing,

FIG. 1. Rod structure of the black ring inside a bubble of nothing.
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g1 ¼ −ρ2
μ1
μ0μ2

dt2 þ μ0μ2ðμ1W2
03W

2
23 þ 4a2z23μ0μ2μ

2
3W

2
13Þ

μ1μ3ðμ1W2
03W

2
23 − 4a2z23ρ

2μ0μ2W2
13Þ

dϕ2 − 2az3
2μ0μ2W03W13W23W33

μ3ðμ1W2
03W

2
23 − 4a2z23ρ

2μ0μ2W2
13Þ

dϕdψ

þ μ1μ
2
3W

2
03W

2
23 þ 4a2z23ρ

4μ0μ2W2
13

μ3ðμ1W2
03W

2
23 − 4a2z23ρ

2μ0μ2W2
13Þ

dψ2; ð9Þ

and

f1 ¼ f0
μ1W2

03W
2
23 − 4a2z23ρ

2μ0μ2W2
13

μ1W2
03W

2
23

: ð10Þ

It is easy to confirm that in the limit of a → 0, this solution
coincides with the static black ring in a bubble of nothing
[31]. One should note that t, ψ are dimensionless and ϕ has
the dimension of length. In the following section, after an
appropriate coordinate transformation, we will impose the
periodicity of ϕ;ψ so that conical singularities do not exist
on axes of symmetry.

III. BOUNDARY CONDITIONS ON THE RODS

In order to impose the appropriate boundary conditions
so that the solution has the rod structure in Fig. 2 and no
conical or orbifold singularities, let us introduce the
new parameters b ≔ z3a and new coordinates ðϕ0;ψ 0Þ,
defined by

∂

∂ϕ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z30
z30 − 2b2

r �
∂

∂ϕ
þ b
z30

∂

∂ψ

�
;

∂

∂ψ 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z30
z30 − 2b2

r �
∂

∂ψ
þ 2b

∂

∂ϕ

�
: ð11Þ

Then, the angular components are written as

gϕ0ϕ0 ¼ z30
z30 − 2b2

�
gϕϕ þ

b2

z230
gψψ þ 2b

z30
gϕψ

�
; ð12Þ

gψ 0ψ 0 ¼ z30
z30 − 2b2

ðgψψ þ 4b2gϕϕ þ 4bgϕψÞ; ð13Þ

gϕ0ψ 0 ¼ z30
z30 − 2b2

��
1þ 2b2

z30

�
gϕψ þ 2bgϕϕ þ

b
z30

gψψ

�
;

ð14Þ

where it should be noted that the constraint condition (2) is
preserved.
Focusing on the two-dimensional spaceΣ ¼ fðρ; zÞjρ > 0;

−∞ < z < ∞g, let us study the rod structure of the obtained
solution. The rod structure [11,12] allows us to easily
obtain stationary and axisymmetric solutions [more precisely,
solutions with (D − 2) commuting Killing vectors] in a
diagrammatic may. The z axis (ρ ¼ 0) of the metric, which
corresponds to a fixed point set of a certain Killing isometry, is
decomposed into five parts: I− ¼ fðρ; zÞjρ ¼ 0; z < z0g,
I0 ¼ fðρ; zÞjρ ¼ 0; z0 < z < z1g, I1 ¼ fðρ; zÞjρ ¼ 0; z1 <
z < z2g, I2 ¼ fðρ; zÞjρ ¼ 0; z2 < z < z3g, and Iþ ¼
fðρ; zÞjρ ¼ 0; z3 < zg. Thus, the boundary ∂Σ of Σ is
composed of I�; Iiði ¼ 0;…; 2Þ and the asymptotic region
I∞ ¼ fðρ; zÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
→ ∞g, with z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
finite.

Now we impose conditions on each rod so that the
solution has the same rod structure as in Fig. 2 and has no
conical singularities.
(1) I3 ¼ fðρ; zÞjρ ¼ 0; z > z3g:

The Killing vector v3 ≔ ð0; 0; 1Þ ¼ ∂=∂ψ 0 van-
ishes. The condition for the absence of conical
singularities on I3 is given by

lim
ρ→0

ffiffiffiffiffiffiffiffiffi
ρ2f1
gψ 0ψ 0

s
¼Δψ 0

2π
⇔Cf

z30−2b2

z30
¼
�
Δψ 0

2π

�
2

ð15Þ

for z ∈ ðz3;∞Þ. Hence, if we choose the periodicity
of ψ 0 as Δψ 0 ¼ 2π, the condition can be satisfied on
I3 by setting

Cf ¼
z30

z30 − 2b2
: ð16Þ

(2) I0 ¼ fðρ; zÞjz0 < z < z1; ρ ¼ 0g:
The Killing vector v01 ≔ ð0; 1; 0Þ ¼ ∂=∂ϕ0 van-

ishes. The condition for the absence of conical
singularities on I0 is given by

lim
ρ→0

ffiffiffiffiffiffiffiffiffi
ρ2f1
gϕ0ϕ0

s
¼Δϕ0

2π
⇔

2Cfz210ðz30−2b2Þ
z220

¼
�
Δϕ0

2π

�
2

:

ð17Þ

(3) I2 ¼ fðρ; zÞjz2 < z < z3; ρ ¼ 0g:
The Killing vector v23 ≔

�
0; 1; bz21

z30z32−2b2z31

�
¼

∂=∂ϕ̃0 vanishes. The conical-free condition is given by
FIG. 2. Rod structure of the black lens inside a bubble of
nothing.
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lim
ρ→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2f1

g1abva23v
b
23

s
¼ Δϕ̃0

2π
⇔

2Cfðz30z32 − 2b2z31Þ2
z32z31ðz30 − 2b2Þ

¼
�
Δϕ̃0

2π

�
2

: ð18Þ

Since ϕ0 and ϕ̃0 have the dimension of length, it is
useful to introduce angular coordinates φ and φ̃ with
2π periodicity by φ ≔ Lϕ0 and φ̃ ≔ Lϕ̃0. Then,
together with Eq. (16), the conditions (17) and (18)
can be written as

ð17Þ ⇔ 2z210z30
z220

¼ L2

�
Δφ
2π

�
2

; ð19Þ

ð18Þ ⇔ 2z30ðz30z32 − 2b2z31Þ2
z32z31ðz30 − 2b2Þ2 ¼ L2

�
Δφ̃
2π

�
2

: ð20Þ

Moreover, we impose a boundary condition on the
parameters ðzi; bÞ so that the spatial topology of the
horizon is the lens space Lðn; 1Þ ¼ S3=Zn (n ∈ N).
From the mathematical discussion in Ref. [3], this
condition is represented by

detðv̄01; v̄23Þ ¼ n ⇔
Lbz21

z30z32 − 2b2z31
¼ n; ð21Þ

where ðv̄01; v̄23Þ ¼ Lðv01; v23Þ.

(4) I− ¼ fðρ; zÞjz < z0; ρ ¼ 0g:
The Killing vector v− ≔ ð1; 0; 0Þ ¼ ∂=∂t van-

ishes. This semi-infinite rod corresponds to an
accelerating horizon.

(5) I1 ¼ fðρ; zÞjz1 < z < z2; ρ ¼ 0g:
The Killing vector v1 ≔ ð1; 0; 0Þ ¼ ∂=∂t vanishes.

This finite rod corresponds to an event horizon.

IV. CTCs

We require the absence of CTCs on Σ ∪ ∂Σ. The
necessary and sufficient conditions to ensure that CTCs
do not exist on Σ ∪ ∂Σ are that gϕϕ and gψψ (or gϕ0ϕ0 and
gψ 0ψ 0 ) become non-negative in the region. The condition for
the absence of CTCs is given by

μ1W2
03W

2
23 − 4b2ρ2μ0μ2W2

13 > 0; ð22Þ

which imposes an upper bound for b2 at each point,

b2 < Uðρ; zÞ ≔ μ1W2
03W

2
23

4ρ2μ0μ2W2
13

: ð23Þ

Therefore, if the minimum Umin of Uðρ; zÞ exists on Σ ∪
∂Σ and b2 < Umin holds, CTCs do not exist in the region.
To prove this, we show that the function Uðρ; zÞ has a
minimum at ðρ; zÞ ¼ ð0; z3Þ on the rod I�; Iiði ¼ 0;…; 2Þ.
It is not difficult to show that the function Uðρ; zÞ has a

minimum not on Σ but on ∂Σ. To see this, one should note
that the norm of the gradient can be written as

ð∂ρUÞ2 þ ð∂zUÞ2 ¼ μ21W
4
03W

4
23

4ρ6μ20μ
2
2W00W11W22W4

13

ððμ0 − μ1 þ μ2Þ2ρ4 þ 2μ0μ2ð2μ0μ2 − ðμ0 þ μ2Þμ1 þ μ21Þρ2 þ μ20μ
2
1μ

2
2Þ; ð24Þ

where the first line is always positive for ρ > 0, and the second line is also positive since

ðμ0 − μ1 þ μ2Þ2ρ4 þ 2μ0μ2ðμ21 − ðμ0 þ μ2Þμ1 þ 2μ0μ2Þρ2 þ μ20μ
2
1μ

2
2

¼
�
ðμ0 − μ1 þ μ2Þρ2 þ

μ0μ2ðμ21 − ðμ0 þ μ2Þμ1 þ 2μ0μ2Þ
μ0 − μ1 þ μ2

�
2

þ 4μ30μ
3
2ðμ0 − μ1Þðμ1 − μ2Þ
ðμ0 − μ1 þ μ2Þ2

; ð25Þ

where the positivity of the last term can be shown from

ðμ0 − μ1Þðμ1 − μ2Þ ¼
z10z21ðμ1 þ μ0Þðμ2 þ μ1Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − z1Þ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − z0Þ2

p
Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − z2Þ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − z1Þ2

p
Þ > 0: ð26Þ

Therefore, the gradient of a smooth function Uðρ; zÞ cannot be zero on Σ, which means that Uðρ; zÞ must have a minimum
not on Σ but on ∂Σ. Hence, in what follows we consider a minimum of Uðρ; zÞ on ∂Σ, which corresponds to
Iiði ¼ �; 0;…; 2Þ; I∞.
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First, let us consider the minimum of Uð0; zÞ on the rod
ρ ¼ 0, i.e., on Iiði ¼ �; 0;…; 2Þ. On Iþ, we have

Uð0; zÞ ¼ ðz − z0Þðz − z2Þ
2ðz − z1Þ

;

U;zð0; zÞ ¼
ðz − z1Þ2 þ z10z21

2ðz − z1Þ2
> 0; ð27Þ

and hence the monotonically increasing functionUð0; zÞ on
Iþ has a minimum at z ¼ z3, which is written as

Uð0; z3Þ ¼
z30z32
2z31

: ð28Þ

On the other hand, since on I2

Uð0; zÞ ¼ ðz − z1Þz230z232
2ðz − z0Þðz − z2Þz231

;

U;zð0; zÞ ¼ −
½ðz − z1Þ2 þ z10z21�z230z232
2ðz − z0Þ2ðz − z2Þ2z231

< 0; ð29Þ

the monotonically decreasing function Uð0; zÞ on I2 has a
minimum at z ¼ z3, and hence

Uð0; zÞ ≥ Uð0; z3Þ: ð30Þ

Moreover, observing that on I0,

Uð0; zÞ ¼ ðz − z2Þz230
2ðz − z0Þðz − z1Þ

; ð31Þ

U;zð0; zÞ ¼ −
½ðz − z2Þ2 − z20z21�z230
2ðz − z0Þ2ðz − z1Þ2

×

	
< 0 ðz0 < z < z2 −

ffiffiffiffiffiffiffiffiffiffiffiffi
z20z21

p Þ;
> 0 ðz2 − ffiffiffiffiffiffiffiffiffiffiffiffi

z20z21
p

< z < z1Þ;
ð32Þ

we find that the functionUð0; zÞ on I0 has a local minimum
at z ¼ z� ≔ z2 −

ffiffiffiffiffiffiffiffiffiffiffiffi
z20z21

p
, and hence

Uð0; zÞ ≥ Uð0; z�Þ ¼
z230

2ðz20 þ z21 − 2
ffiffiffiffiffiffiffiffiffiffiffiffi
z20z21

p Þ ; ð33Þ

where we note that the ratio of these minima on I0; I2; Iþ is
computed as

Uð0;z�Þ
Uð0;z3Þ

¼
�
1þz21

z32

��
1þz32

z20

��
1−

ffiffiffiffiffiffi
z21
z20

r �
−2

>1: ð34Þ

Furthermore, near I− and I1, the function Uðρ; zÞ behaves,
respectively, as

Uðρ; zÞ ≃ 2ðz0 − zÞðz2 − zÞðz3 − zÞ2
ðz1 − zÞρ2 ;

Uðρ; zÞ ≃ 2ðz − z1Þðz2 − zÞðz3 − zÞ2z230
ðz − z0Þz231ρ2

; ð35Þ

which implies Uð0; zÞ ¼ ∞ on I− and I1. To summarize,
we have shown that the minimum of Uð0; zÞ on Iiði ¼
�; 0;…; 2Þ is given by Eq. (28).
Next, let us consider the function Uðρ; zÞ in the asymp-

totic region, namely, on I∞. We can show that in the
asymptotic region Uðρ; zÞ behaves as

Uðρ; zÞ ≃ 1

1þ zffiffiffiffiffiffiffiffiffi
ρ2þz2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

q
: ð36Þ

Hence, the function Uðρ; zÞ diverges on I∞, so it cannot
have a minimum on I∞.
Thus, we conclude that Eq. (28) is a minimum on both

Σ ∪ ∂Σ and ∂Σ, and hence the necessary and sufficient
condition for the absence of CTCs is given by

b2 <
z30z32
2z31

: ð37Þ

V. ON THE EXISTENCE OF SOLUTIONS

From the discussion in Sec. III, we have shown that the
absence of conical singularities and the black lens condition
require

2z210z30
z220

¼ L2; ð38Þ

2z30ðz32z30 − 2b2z31Þ2
z32z31ðz30 − 2b2Þ2 ¼ L2; ð39Þ

Lbz21
z30z32 − 2b2z31

¼ n: ð40Þ

Now, to confirm whether there is really a parameter range
such that all of these conditions can be satisfied, we
reparametrize the rod interval zi;i−1 ≔ zi − zi−1 (i ¼ 1, 2,
3) and the redefined BZ parameter b as follows:

z10 ¼ l; z21 ≔ xl; z32 ¼ yl; L ¼
ffiffiffi
l

p
L̂;

b ¼
ffiffiffi
l

p
b̂; ð41Þ

where l fixes the size of the bubble on I0, and x and y are
the size of the horizon and the distance between the horizon
and the center (so-called nut). All of the dimensionless
parameters except for n, x; y;l; L̂, and b̂ are assumed to be
positive. The condition for avoiding CTCs is now given by
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b2 −
yð1þ xþ yÞ
2ðxþ yÞ < 0: ð42Þ

From Eq. (40), we have

L̂ ¼ nðy2 − 2b̃2ðxþ yÞ þ yð1þ xÞÞ
b̂x

: ð43Þ

Eliminating L̂ from Eqs. (38) and (39) in terms of Eq. (43),
we obtain

0¼ 2b̂2ðxþ yþ 1Þf2n2ðxþ 1Þ2y2 þ 2n2ðxþ 1Þ2xyþ x2g
− 4b̂4n2ðxþ 1Þ2ðxþ yÞ2 − n2ðxþ 1Þ2y2ðxþ yþ 1Þ2;

ð44Þ

and

0 ¼ fyðxþ yþ 1Þ − 2b̂2ðxþ yÞg2

× ½4b̂4n2yðxþ yÞ − 2b̂2ðxþ yþ 1Þ
f2n2yðxþ yÞ þ x2g þ n2yðxþ yÞðxþ yþ 1Þ2�: ð45Þ

First, we consider the conical singularity-free condition
on I2 in Eq. (45), which admits three branches for b̂2:

b̂2 ¼ b̂2� ≔
ðxþ yþ 1Þðx2 þ 2n2ðxþ yÞy� x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4n2xyþ 4n2y2

p
Þ

4n2ðxþ yÞy ; ð46Þ

b̂2 ¼ b̂20 ≔
yðxþ yþ 1Þ
2ðxþ yÞ : ð47Þ

From Eq. (46), we can show that

b̂2� −
yð1þ xþ yÞ
2ðxþ yÞ ¼ xðxþ yþ 1Þðxþ 2n2y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4n2xyþ 4n2y2

p
Þ

4n2ðxþ yÞy > 0; ð48Þ

where we note that

ðxþ 2n2yÞ2 − ðx2 þ 4n2xyþ 4n2y2Þ ¼ 4n2ðn2 − 1Þy2 > 0:

ð49Þ

Therefore, this shows that the nonexistence condition of
CTCs [Eq. (42)] cannot be satisfied for any x > 0 and
y > 0. On the other hand, substituting Eq. (47) into
Eq. (43), we can show that

L̂ ¼ 0; ð50Þ

which cannot satisfy L̂ > 0. Hence, a solution without a
conical singularity on I2 cannot avoid CTCs.
Next, we consider the conical singularity-free condition

on I0 in Eq. (44), from which we can obtain two branches
for b̂2,

b̂2 ¼ b̃2� ≔
ðxþ yþ 1Þfx2 þ 2n2ðxþ 1Þ2ðxþ yÞy� x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4n2ðxþ 1Þ2ðxþ yÞy

p
g

4n2ðxþ 1Þ2ðxþ yÞ2 ; ð51Þ

which lead to

b̃2� −
yð1þ xþ yÞ
2ðxþ yÞ ¼ xðxþ yþ 1Þðx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4n2ðxþ 1Þ2ðxþ yÞy

p
Þ

4n2ðxþ 1Þ2ðxþ yÞ2 : ð52Þ

From these, we find that only the branch b̃2− can satisfy the nonexistence condition of CTCs [Eq. (42)].
In summary, if one imposes the absence of conical singularities on the whole axes of symmetry I0; I2; Iþ, the presence of

CTCs cannot be avoided around the center ðρ; zÞ ¼ ð0; z3Þ. However, if one imposes it only on I0 and Iþ, one can obtain
solutions without CTCs, in which the horizon admits the lens space topology Lðn; 1Þ for n ≥ 1.
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VI. CONSISTENCY WITH A CHEN-TEO STATIC
BLACK LENS

Here we confirm that our solution coincides with the
asymptotically flat, static black lens solution of Chen and
Teo [25] in a certain scaling limit, for which the following
variables are used:

z0 ¼ −λ2; z1 ¼ −λcκ2; z2 ¼ λcκ2;

z3 ¼ λκ2; L ¼
ffiffiffi
2

p
λL̄; a ¼ āffiffiffi

2
p

κ2
: ð53Þ

With the rescaled coordinates

ρ → λρ̄; z → λz̄ ð54Þ
and the rescaled parameters

z̄0≔ z1=λ¼−cκ2; z̄1≔ z2=λ¼cκ2; z̄1≔ z3=λ¼ κ2;

ð55Þ
the limit λ → ∞ pushes z0 to −∞, and one can see that the
rod structure in terms of the coordinates ðρ̄; z̄Þ coincides
with that of the static black lens in Ref. [25]. In the limit
λ → ∞, Eq. (38) requires

L̄ ¼ 1; ð56Þ
and then Eqs. (39) and (40) lead, respectively, to the
nonexistence condition of conical singularities on z̄ ∈
ðz̄2; z̄3Þ and the condition of horizon topology Lðn; 1Þ in
Ref. [25],

ð1 − c − ā2ð1þ cÞÞ2
ð1 − ā2Þ2ð1 − c2Þ ¼ 1;

2āc
1 − c − ā2ð1þ cÞ ¼ n;

ð57Þ
where ā corresponds to a in Ref. [25]. Moreover, the limit
of the nonexistence condition for CTCs [Eq. (37)] can be
written as

ā2 <
c − 1

cþ 1
; ð58Þ

which corresponds to the parameter region “Region I” in
Ref. [25]. Here, it should be noted that the solutions in

“Region II” in Ref. [25], which admits naked singularities
and CTCs, are excluded from our study by the nonexistence
condition (37) of CTCs.

VII. SUMMARY AND DISCUSSIONS

In this paper, using the ISM for static and biaxisym-
metric Einstein equations, we have constructed a non-
rotating black lens inside a bubble of nothing whose
horizon is topologically lens space Lðn; 1Þ ¼ S3=Zn.
Our work is entirely the parallel to the work of Chen
and Teo [25], where the static black ring as a seed solution
was replaced with a static black ring in a bubble of nothing
[31]. Using this solution, we have investigated whether a
static black lens can be in equilibrium by the force balance
between the expansion and gravitational attraction. If we
require the absence of CTCs in the domain of outer
communication, a nonrotating black lens must have conical
singularities between the horizon and the center. It has been
shown, however, that for a black lens, the existence of an
expanding bubble does not exclude conical singularities,
and hence the two forces—the force of the bubble expan-
sion and gravitational attraction—cannot be in static
equilibrium, unlike for the black ring.
The authors of Refs. [25,29] studied whether a rotating

black lens can be kept in equilibrium by the balance
between the gravitational force (attraction) and the cen-
trifugal force (repulsive force), and concluded that it cannot
be in equilibrium. The generalization of this rotating black
lens solution to one in an expanding bubble may be an
interesting issue, since whether such a black lens without
conical singularities exists depends on the balance between
the gravitational force, the centrifugal force, and the
expansion of the bubble. Such a rotating black lens solution
is expected to be more than one soliton solution. This
deserves our future work.
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