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This paper studies the deflection of charged particles in a dipole magnetic field in Schwarzschild
spacetime background in the weak field approximation. To calculate the deflection angle, we use Jacobi
metric and Gauss-Bonnet theorem. Since the corresponding Jacobi metric is a Finsler metric of Randers
type, we use both the osculating Riemannian metric method and generalized Jacobi metric method. The
deflection angle up to fourth order is obtained and the effect of the magnetic field is discussed. It is found
that the magnetic dipole will increase (or decrease) the deflection angle of a positively charged signal when
its rotation angular momentum is parallel (or antiparallel) to the magnetic field. It is argued that the
difference in the deflection angles of different rotation directions can be viewed as a Finslerian effect of
the nonreversibility of the Finsler metric. The similarity of the deflection angle in this case with that for the
Kerr spacetime allows us to directly use the gravitational lensing results in the latter case. The dependence
of the apparent angles on the magnetic field suggests that by measuring these angles the magnetic dipole
might be constrained.
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I. INTRODUCTION

The study of particle motions in the gravitational field
leads to important discoveries. In particular, trajectory
deflection and gravitational lensing (GL) have become
important tools in astrophysics. They are used not only in
measuring the mass of galaxies and clusters but also in
detecting dark matter and dark energy [1]. In addition to the
traditional null messengers (i.e., light rays) in GL, in recent
years, the deflection and GL of particles with nonzero mass
have also aroused the continuous interest of researchers
[2–11]. Besides the common neutral particles such as
photons and neutrinos, charged particles, such as cosmic
rays, are also common in our Universe. These charged
signals can experience not only the gravitational interaction
but also the electromagnetic field existing in/near compact
celestial bodies. Investigation of motion of charged par-
ticles in both gravitational and electromagnetic fields plays
an important role in testing the weak cosmic censorship
conjecture [12,13], accretion disks rotating around Kerr
Black Holes [14] and magnetic Penrose process [15–17].
The first motivation of this paper is to study the deflection

of charged particles in an electromagnetic field in curved
spacetime, which is a generalization of the deflection of
light and massive neutral particles in pure gravity. More

specifically, we will concentrate on the motion of charged
particles in a weak magnetic field in curved spacetime
backgrounds. The magnetic field is weak in the sense that
the correction caused by its energy-momentum tensor to the
spacetime metric is negligible compared to the background
metric caused by the primary matter distribution. We study
this kind of magnetic/gravitational field because there are
no well-known exact solutions admitting a nontrivial and
physical magnetic field in gravity. Such magnetic fields
include the cases of a black hole surrounded by a uniform
magnetic field [18], and a Schwarzschild spacetime with a
dipole magnetic field [19]. The latter is particularly interest-
ing because it is believed that neutron stars might allow a
magnetic dipole component around it [20–22]. The motion
of charged test particles in this spacetime was then studied in
Refs. [23] for the nongeodesic corrections to the particles’
orbital and epicyclic frequencies and in Ref. [24] for the
existence and properties of circular orbits. As far
as we know however, the investigation on the particles’
deflection and gravitational lensing (GL) in this situation is
still lacking.
In calculating such deflections, a geometric method

based on optical geometry and Gauss-Bonnet (GB) theo-
rem introduced by Gibbons andWerner [25,26] has become
very popular over the years [27–34]. The optical geometry
corresponding to a stationary (and axisymmetric) space-
time is defined by a Finsler metric of Randers type, but the
use of GB like theorem on Finsler geometry to calculate
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deflection angles is an open problem. To overcome this
difficulty, two formalisms have been developed in the
study of light deflection. The first is the osculating
Riemannian metric method introduced by Nazım in
Ref. [35], and promoted by Werner for calculating the
deflection angle of light rays in the equatorial plane in
stationary spacetimes [26]. In this formalism, the deflec-
tion angle formula is the same as in static spacetime. The
second is the generalized optical metric method intro-
duced by Ono, Ishihara, and Asada in Ref. [36].
Furthermore, according to optical metrics in special
medium [37,38] or Jacobi metric [39–42], these methods
were extended to the calculation of the deflection of
massive particles. In particular, some authors of the
current work studied the deflection of charged particles
by a Kerr-Newman lens which intrinsically couples the
gravitational and electric fields [43].
The second motivation of this work is to extend our

previous studies to the case of the deflection of charged
particles by a black hole with a dipole magnetic field. In
doing so, we will continue to use the geometric method
and more importantly, we will test explicitly whether the
osculating Riemannian metric method suggested in
Ref. [26] is truly applicable to the case with a magnetic
field. We also hope to reveal how the deflection and GL of
charged signals are affected by a magnetic dipole, and if
possible, to use the former to constrain the strength of such
a magnetic field.
The outline of the paper is as follows. In Sec. II, we

enumerate the preliminaries, including the Finsler metric
and its nonreversibility, the Jacobi metric and the orbital
equations, GB theorem, and deflection angle formula. In
Sec. III, we introduce the magnetic dipole in a
Schwarzschild background and solve the orbit up to the
third order in the weak field limit. In Secs. IV and V
respectively, the osculating Riemannian metric method and
generalized Jacobi metric method are used to obtain the
deflection angle up to the fourth order in this spacetime.
These results, especially the effect of the magnetic dipole
on the deflection and GL, are analyzed and discussed in
Sec. VI. Throughout the paper, we use the natural units
G ¼ c ¼ 1 and spacetime signature ð−;þ;þ;þÞ.

II. PRELIMINARIES

A. Finsler geometry and nonreversibility
of metric

Finsler geometry is just the Riemannian geometry with-
out the quadratic restriction [44]. LetM be a n-dimensional
smooth manifold. It becomes a Finsler manifold ðM;FÞ if
we could equip M with a non-negative function F defined
on the tangent bundle TM, satisfying [45,46]:
(1) Regularity: F is smooth on TMnf0g,
(2) Positive 1-homogeneity: Fðx; ξyÞ ¼ ξFðx; yÞ for all

ξ > 0, where x ∈ M, y ¼ yi∂i ∈ TxM,

(3) Strong convexity: the Hessian matrix of F2

ðg̃ijÞ ¼
�
1

2

∂
2F2

∂yi∂yj

�
; ð1Þ

is positive definite, where g̃ij is called the funda-
mental tensor of F.

The line elements in Finsler space ðM;FÞ can be
written as

ds ¼ Fðx1;…; xn; dx1;…; dxnÞ: ð2Þ

If the fundamental tensor is only related to x, i.e.,
g̃ijðx; yÞ ¼ g̃ijðxÞ, then F becomes the Riemannian metric,
with the form

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g̃ijðxÞyiyj

q
; ð3Þ

and the line element

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g̃ijðxÞdxidxj

q
: ð4Þ

In other words, Riemannian geometry is Finsler geometry
with the quadratic. A special class of non-Riemannian
Finsler metrics is the Randers metric of the form

Fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αijyiyj

q
þ βiyi; ð5Þ

where αij is a Riemannian metric and βi a one-form on M,
satisfying positivity and convexity

jβj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αijβiβj

q
< 1: ð6Þ

This metric was proposed by Randers when he studied the
unification of electromagnetism and gravity [47].
The Finsler metric is nonreversible if its reverse Fðx;−yÞ

does not equal Fðx; yÞ, i.e.,

Fðx;−yÞ ≠ Fðx; yÞ: ð7Þ

For Riemannian metric (3), we have

Fðx;−yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g̃ijyiyj

q
¼ Fðx; yÞ: ð8Þ

Thus, the Riemannian metric is reversible while this is
usually not true for Randers metric

Fðx;−yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αijyiyj

q
− βiyi ≠ Fðx; yÞ: ð9Þ

Now if y is the tangent along a curve, then the reverse
metric Fðx;−yÞ can be thought as the metric of the reverse
direction along the curve.
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The (non)reversibility of the metric can affect the arc
length of a fixed curve if we measure along different
directions. Let c∶ ½a; b� → M be a curve, λ ∈ ½a; b� and
a ≤ λ1 < λ2 ≤ b, the arc length from cðλ1Þ to cðλ2Þ along
the curve is

Lðcðλ1Þ; cðλ2ÞÞ ¼
Z

λ2

λ1

F

�
cðλÞ; dcðλÞ

dλ

�
dλ: ð10Þ

Likewise, in the opposite direction, the arc length is

Lðcðλ2Þ; cðλ1ÞÞ ¼ −
Z

λ1

λ2

F

�
cðλÞ;− dcðλÞ

dλ

�
dλ: ð11Þ

The nonreversibility of metric F means

Lðcðλ1Þ; cðλ2ÞÞ ≠ Lðcðλ2Þ; cðλ1ÞÞ: ð12Þ

Recently, in Refs. [48,49] the Sagnac effect in General
Relativity is considered as a kind of Finslerian effect due to
the nonreversibility of Randers metric. In this paper, we
will show that the difference between the deflection angles
for prograde and retrograde motions also stems from the
nonreversibility of the Finsler metric. Therefore, the differ-
ence in deflection angles can also be considered as a
Finslerian effect.

B. Jacobi-Randers metric and the orbital equations

The line element of a stationary spacetime can be
written as

ds2 ¼ gttðxÞdt2 þ 2gtiðxÞdtdxi þ gijðxÞdxidxj: ð13Þ

Assuming that there is an electromagnetic field described
by electromagnetic gauge potential Aμ in spacetime, then
the motion of the charged test particle of mass m, charge q,
and energy E is described by the Lorentz equation [50]

d2xρ

dτ2
þ Γρ

μν
dxμ

dτ
dxν

dτ
¼ q

m
Fρ
μ
dxμ

dτ
; ð14Þ

where Γρ
μν is Christoffel symbols of gμν, τ is the proper

time of the test particle, and electromagnetic field tensor
Fμν ¼ ∇μAν −∇νAμ with ∇ being Levi-Civita connection.
Apparently, the motion of charged particles no longer
follows geodesics.
As one of the main tools of geometric dynamics, the Jacobi

metric has been widely used to study various mechanical
problems in the Newtonian framework [51,52], and has
been extended to curved spacetimes [53–55]. The trajectories
of a given mechanical system of constant total energy, are
geodesic within the Jacobi metric, according to Maupertuis’s
principle. The Jacobi metric for a charged particle moving in
spacetime (13) with an electromagnetic field Aμ is a Finsler
metric of Randers type [55]

dρ ¼ Fðx; dxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αijdxidxj

q
þ βidxi; ð15Þ

with

αij ¼
ðEþ qAtÞ2 þm2gtt

−gtt

�
gij −

gtigtj
gtt

�
; ð16Þ

βi ¼ qAi − ðEþ qAtÞ
gti
gtt

: ð17Þ

For convenience, we shall call it the Jacobi-Randers metric.
Setting q ¼ 0 in this leads to the Jacobi-Randers metric
for a neutral particle, and further setting m ¼ 0 and E ¼ 1 it
becomes the optical metric. In particular, if βi ¼ 0 (corre-
sponding to q ¼ 0 and gti ¼ 0, or Ai ¼ 0 and gti ¼ 0), it
becomes Riemannian metric.
For a four-dimensional stationary and axisymmetric

spacetime, we can write metric (13) in Boyer-Lindquist
coordinates ðt; r; θ;ϕÞ as

ds2 ¼ gttðr; θÞdt2 þ 2gtϕðr; θÞdtdϕþ gijðr; θÞdxidxj;
ð18Þ

where i, j ¼ 1, 2, 3, and

gijdxidxj ¼ grrdr2 þ gθθdθ2 þ gϕϕdϕ2:

The orbital equation of the particle can be derived accord-
ing to the Jacobi-Randers metric (15). The Lagrangian of
the charged particle in Jacobi metric space is written as

L ¼ Fðx; _xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð3Þij _xi _xj

q
þ βð3Þi _xi; ð19Þ

where _xi ≡ dxi
dρ . Since this paper is only interested in the

case of particles moving on the equatorial plane (θ ¼ π=2),
the θ dimension can be dropped and this Lagrangian
becomes

L ¼ Fðx; _xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð2Þij _xi _xj

q
þ βð2Þi _xi: ð20Þ

Due to the conservation of angular momentum J, we have

pϕ ¼ ∂L

∂ _ϕ
¼ βð2Þϕ þ αð2Þϕϕ

_ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð2Þij _xi _xj

q ¼ J: ð21Þ

Using L ¼ 1, Eq. (20) transforms to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð2Þij _xi _xj

q
¼ 1 − βð2Þϕ

_ϕ; ð22Þ

which, after using Eq. (21), becomes
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βð2Þϕ þ αð2Þϕϕ
_ϕ

1 − βð2Þϕ
_ϕ
¼ J; ð23Þ

or equivalently

_ϕ ¼ dϕ
dρ

¼ βð2Þϕ − J�
βð2Þϕ

�
2
− βð2Þϕ J − αð2Þϕϕ

: ð24Þ

On the other hand, the equation of motion in the radial
direction can also be obtained from Lagrangian (20) as

_r2 ¼
�
dr
dρ

�
2

¼ 1

αð2Þrr

h�
1 − βð2Þϕ

_ϕ
�
2
− αð2Þϕϕ

_ϕ2
i
: ð25Þ

Introducing the inverse radial coordinate u≡ 1
r and after

using Eq. (24), the above becomes

�
du
dϕ

�
2

¼ u4
αð2Þϕϕ

h
αð2Þϕϕ −

�
J − βð2Þϕ

�
2
i

αð2Þrr

�
J − βð2Þϕ

�
2

: ð26Þ

This is the orbital equation of the particle moving on the
equatorial plane.

C. Gauss-Bonnet theorem and deflection angle

In this subsection we shall derive the deflection angle
formula by applying the GB theorem to the lensing
geometry.
Let D be a subset of a compact and oriented two-

dimensional surface, with Riemannian metric ĝij and Euler
characteristic number χðDÞ. Its boundary ∂D is formed by a
piecewise smooth curve. The jump angle in the ith vertex of
∂D is denoted by φi, in the positive sense. The GB theorem
regarding D states [25,56]

Z Z
D
KdSþ

I
∂D

kgdlþ
X
i

φi ¼ 2πχðDÞ; ð27Þ

where K is the Gaussian curvature of D and kg is the
geodesic curvature of ∂D; dS is the area element of D and
dl is the line element of ∂D. Clearly, the GB theorem
reveals the relation between the curvature and the topology
of D.
Next we will apply the GB theorem to the lensing

geometry Dr0, a two-dimensional surface that usually can
be described by two coordinates (r;ϕ), as illustrated in
Fig. 1. Its boundary ∂Dr0 ¼ η ∪ Cr0, where η is the particle
trajectory from the source S to the receiver R, and Cr0 is a
curve defined by r ¼ r0 with r0 being a large enough
constant. Notice that the nonsingularity of the region leads
to χðDr0Þ ¼ 1.

Applying the GB theorem to region Dr0 , we have

Z Z
Dr0

KdS −
Z

R

S
kgðηÞdl

þ
Z

ϕR

ϕS

�
kg

dl
dϕ

�				
Cr0

dϕþ φR þ φS ¼ 2π: ð28Þ

Without losing any generality, we can fix the coordinate
system such that ϕS ¼ 0 and ϕR ¼ ðπ þ δÞ when r0 → ∞.
Here δ is the small deflection angle that we will attempt to
find in this work. The two jump angles clearly satisfy φR þ
φS → π in the limit r0 → ∞. Taking this limit, Eq. (28)
becomes

Z Z
D∞

KdS − lim
r0→∞

Z
R

S
kgðηÞdl

þ
Z

πþδ

0

limr0→∞

�
kg

dl
dϕ

�				
Cr0

dϕ ¼ π: ð29Þ

To solve the deflection angle, we will have to deal with the
integrals in this equation first.
We first consider the geodesic curvature of the curve Cr0 .

We concentrate on the case that the lensing geometryDr0 is
asymptotically Euclidean, i.e., we assume its metric has the
following limit when r → ∞

dl2 → W2ðdr2 þ r2dϕ2Þ; ð30Þ

where W is a constant. We will also assume that the source
S and receiver R are in the asymptotically Euclidean region.
Therefore, in the limit r0 → ∞, we have

kgðCr0Þ →
1

Wr0
;

dl
dϕ

				
Cr0

→ Wr0; ð31Þ

which yields

FIG. 1. The lensing geometry Dr0 with boundary
∂Dr0 ¼ η ∪ Cr0 . S, R, and L denote the source, the receiver,
and the lens, respectively. δ is the deflection angle. Note that
φS þ φR → π as r0 → ∞ if M is asymptotically Euclidean.
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lim
r0→∞

�
kg

dl
dϕ

�				
Cr0

¼ 1: ð32Þ

Substituting this into Eq. (29), the deflection angle δ is
expressed as

δ ¼ −
Z Z

D∞

KdSþ lim
r0→∞

Z
R

S
kgðηÞdl: ð33Þ

For the geodesic curvature along η, then clearly if η is a
geodesic we would have kgðηÞ ¼ 0 and the deflection angle
in this case simplifies to

δ ¼ −
Z Z

D∞

KdS: ð34Þ

Finally, one extra point worth noting is that if the
lensing geometry Dr0 is not asymptotically Euclidean,
one also needs to calculate the geodesic curvature of curve
Cr0 . Choosing its arc length as the parameter, and denoting

its tangent as _Cr0 , then the geodesic curvature of curve
Cr0 is [28]

kgðCr0Þ ¼ j∇ _Cr0

_Cr0 j: ð35Þ

In the case of the optical metric or when Jacobi metric is
Riemannian, the study of deflection of light or massive
particles in the static spacetimes using the GB theorem is
straightforward [25,39]. However, if the space in which
the particle lives is Finslerian [see Eqs. (15) with (16) and
(17)], in order to use GB theorem, we need to “convert” it to
a Riemannian space first. As mentioned in the introduction,
there are two formalisms: the osculating Riemannian metric
method and the generalized optical metric method. In the
next section, we will see that the Jacobi metric correspond-
ing to charged particles in Schwarzschild spacetime with a
dipole magnetic field is just a Finsler metric of Randers
type. Therefore, in order to study the deflection of charged
particles using the GB theorem in this case, the two
methods mentioned above will be used in Secs. IV and
V, respectively.

III. SCHWARZSCHILD SPACETIME
IN A DIPOLE MAGNETIC FIELD

In this section, we introduce the Schwarzschild space-
time in a dipole magnetic field. This configuration is
useful in modeling many spherical mass distributions with
dipole magnetic field, including pulsars (or even planets)
whose magnetic field is generated by internal matter/
charge flows, and compact objects (including neutron
stars and BHs) with an accretion that might contribute to
the magnetic field.

A. Schwarzschild metric with magnetic field
& induced Jacobi-Randers metric

In flat spacetime, assuming the magnetic dipole is
centered at the origin and oriented along the z direction,
then its vector form in ðr; θ;ϕÞ coordinates can be written as

B ¼ 2μ

r3

�
cos θ;

1

2
sin θ; 0

�
: ð36Þ

where μ is the magnetic dipole moment.
In Schwarzschild spacetime described by the line element

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð37Þ

where

fðrÞ≡ 1 −
2M
r

ð38Þ

with M being the mass, however, the dipole magnetic field
needs to be modified if it is generated by a loop of current
I and of radius R0 on the equatorial plane [19]. The
generating electromagnetic potential Aμ has only one non-
zero component Aϕ, which takes the form

Aϕ ¼ −
3

8

μr2sin2θ
M3

�
ln fðR0Þ þ

2M
R0

�
1þ M

R0

��
ð39Þ

in the inner region of 2M < r < R0 and

Aϕ ¼ −
3

8

μr2sin2θ
M3

�
ln fðrÞ þ 2M

r

�
1þM

r

��
; ð40Þ

in the outer region of r ≥ R0. Here μ ¼ πIR2
0

ffiffiffiffiffiffiffiffiffiffiffiffi
fðR0Þ

p
is the

asymptotic dipole moment of the field. In this work, sincewe
only concentrate on the weak field limit, it is the external
vector potential (40) that will be used. On the equatorial
plane, the potential (40) generates a magnetic field in the
local Lorentz frame with the only nonzero component

Bθ ¼ 3μ

ffiffiffiffiffiffiffiffiffi
fðrÞp

4M3

�
ln fðrÞ þ 2M

r
ð1 −M=rÞ

fðrÞ
�
; ð41Þ

When ðr ≫ R0 > 2MÞ, this magnetic field becomes its
asymptotic value given in Eq. (36). Note that in this work,
we do not restrict the sign of μ, i.e., μ can be negative so that
the dipole is pointed to the −ẑ direction.
Using spacetime geometry (37) and electromagnetic

potential (40), we can derive the corresponding Jacobi
metric for a charged test particle. Noting the facts that
gtϕ ¼ 0 in the metric and At ¼ Ar ¼ Aθ ¼ 0 in the electro-
magnetic potential, Jacobi metric Eq. (15) is found to be
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dρ ¼ Fðx; dxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð3Þij dx

idxj
q

þ βð3Þi dxi; ð42Þ

with

αð3Þij dx
idxj ¼ ðE2fðrÞ−1 −m2Þ

× ½fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�; ð43aÞ

βð3Þi dxi ¼ −
3

8

qμr2sin2θ
M3

�
ln fðrÞ þ 2M

r

�
1þM

r

��
dϕ:

ð43bÞ

Due to the presence of the nonzero magnetic dipole
moment μ, this metric is a Finsler metric of Randers type,
which is different from previous observations, where the
Jacobi metric for neutral or charged particles in the static
spacetime is merely a Riemannian metric [39,41].
Concentrating on the equatorial plane (θ ¼ π

2
; dθ ¼ 0),

the above Jacobi-Randers metric (42) with (43a) and (43b)
becomes

dρ ¼ Fðr;ϕ; dr; dϕÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð2Þij dx

idxj
q

þ βð2Þϕ dxi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð2Þrr dr2 þ αð2Þϕϕdϕ

2

q
þ βð2Þϕ dϕ; ð44Þ

with

αð2Þrr ¼ ½E2 −m2fðrÞ�fðrÞ−2; ð45aÞ

αð2Þϕϕ ¼ αrrr2fðrÞ; ð45bÞ

βð2Þϕ ¼ −
3

8

qμr2

M3

�
ln fðrÞ þ 2M

r

�
1þM

r

��
: ð45cÞ

Next we will establish the orbital equations using this
metric. If we substitute Eq. (46) into the equations of

motion (24) and (25), then observing that βð2Þi is linear to μ

while αð2Þij is independent of μ, it is clear that switching the
particle’s motion direction from anticlockwise to clock-
wise, i.e., s ¼ þ1 → s ¼ −1 and J > 0 → J0 ¼ −J [see
Eq. (49)], will be equivalent to keeping s while change the
sign of μ. This implies that the deflection angle for fixing μ
but switching s would also be the same as keeping s and
changing the sign of μ. Without losing any generality, in the
following, we will concentrate on the case s ¼ þ1 and
restore the sign to μ in the final expression.
From the geometrical point of view, for the motion in the

reverse direction, the deflection angle then can be studied
using the reverse metric Fðx;−dxÞ. Inspecting Fðx; dxÞ
and Fðx;−dxÞ, we find that we can obtain the deflection
angle in the reverse direction by simply replacing μwith −μ

(or q with −q) in the deflection angle along the prograde
direction. This indicates that the difference in deflection
angle originates from the nonreversibility of the Finsler
metric. In other words, this difference is a Finslerian effect.

B. Orbital equations of charged particle

Substituting the metric functions in Eq. (44) into
Eq. (26), the orbital equation for a charged particle moving
on the equatorial plane in Schwarzschild spacetime with a
dipole magnetic field can be obtained, as follows:

�
du
dϕ

�
2

¼ −ð1 − 2MuÞu2 þ E2 −m2ð1 − 2MuÞ
ðβð2Þϕ − JÞ2

: ð46Þ

Since we are interested in the weak field limit, this equation
can be solved perturbatively according to the asymptotic
condition limϕ→0 u ¼ 0 [38]; that is, the particle asymp-
totically approaches the ϕ ¼ 0 radial direction. Using the
undetermined coefficient method, the solution to Eq. (46)
up to the third order of (M=b) or ðqμ=b2Þ is found to be

uM ¼ u0 þ u1
M
b
þ u2

M2

b2
þ u3

M3

b3

þ u4
qμ
b2

þ u5
Mqμ
b3

þO
�½M�4

b4

�
; ð47Þ

where coefficients ui are

u0 ¼
sinϕ
b

; ð48aÞ

u1 ¼
ð1 − cosϕÞð1 − v2 cosϕÞ

bv2
; ð48bÞ

u2 ¼ −
1

8bv2
cosϕf6ð4þ v2Þϕ − 16ð1þ v2Þ sinϕ

þ ½−8þ 7v2 þ 3v2 cosð2ϕÞ� tanϕg; ð48cÞ

u3 ¼ −
1

8bv4
ð1þ v2 − 2v2 cosϕÞ sin

�
ϕ

2

�

×


12ð4þ v2Þϕ cos

�
ϕ

2

�
− 2 sin

�
ϕ

2

�

× ½40þ 7v2 þ ð8þ 6v2Þ cosϕ − v2 cosð2ϕÞ�
�
;

ð48dÞ

u4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
ð1 − cosϕÞ
bmv

; ð48eÞ

u5 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

2bmv3
½ð4þ 5v2Þϕ cosϕ

− ð4þ v2 þ 4v2 cosϕÞ sinϕ�: ð48fÞ
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Here b is the impact parameter satisfying

b ¼ J
sEv

; ð49Þ

and we have used

E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; J ¼ sbvmffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð50Þ

with v the asymptotic velocity of the particle.

IV. DEFLECTION ANGLE USING THE
OSCULATING RIEMANNIAN METRIC METHOD

The osculating Riemannian metric method developed by
Werner has proven successful in the studies of the deflec-
tion of light or particles in stationary spacetime [26,38,43].
This paper deals with a completely new situation: the
spacetime background is static, and the charged particles
are simultaneously affected by the gravitational field
(Schwarzschild spacetime) and the external magnetic field
(a dipole magnetic field). Our purpose in this section is to
show that the method is also useful in this case.
The advantage of Werner’s method is that the particle’s

trajectory is geodesic in the osculating Riemannian mani-
fold, thus we do not need to consider the effect of geodesic
curvature on deflection angle. This allows us to use
Eq. (34) to calculate the deflection angle if the osculating
Riemannian space is asymptotically Euclidean. The dis-
advantage of this method is that the calculation is cum-
bersome, thus we only consider the deflection angle up to
the second order of (M=b) or ðqμ=b2Þ.

A. Osculating Riemannian metric method

The fundamental tensor of a Finsler metric is the Hessian
of F2 defined by [also see Eq. (1)] [46]

g̃ijðx; yÞ ¼
1

2

∂
2F2ðx; yÞ
∂yi∂yj

: ð51Þ

It is not difficult to verify that the fundamental tensor for
Randers metric ðαij; βiÞ can be written as

g̃ijðx; yÞ ¼ αij þ βiβj þ
ðαijβk þ αjkβi þ αkiβjÞyk

ðαklykylÞ1=2

−
ðβkykÞαikαjlykyl
ðαklykylÞ3=2

: ð52Þ

The idea is that we can choose a smooth nonzero vector
field YðxÞ over M, such that its restriction on the geodesic
ηF is exactly the tangent vector _ηF, i.e., YðηFÞ ¼ _ηF. Then
the osculating Riemannian metric along the geodesic is
defined by

ḡijðxÞ ¼ g̃ijðx; YðxÞÞ: ð53Þ

In this construction, the geodesic in ðM;FÞ is also a
geodesic in ðM; ḡÞ [26]. Let Dr0 ⊂ ðM; ḡÞ (See Ref. [26]
for details), one then can use the GB theorem to study the
deflection of particles (see the derivation in Sec. II C).

B. Schwarzschld-Dipole Jacobi-Randers Osculating
Riemannian metric

First substituting yi for dxi in Eq. (44), the Finsler-
Randers metric of the Schwarzschild spacetime with a
magnetic dipole field becomes

Fðr;ϕ; yr; yϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð2Þij y

iyj
q

þ βð2Þi yi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð2Þrr ðyrÞ2 þ αð2ÞϕϕðyϕÞ2

q
þ βð2Þϕ yϕ; ð54Þ

where αð2Þrr , α
ð2Þ
ϕϕ and βð2Þϕ are given by Eqs. (46). Further

substituting this into Eq. (52) and then using Eq. (53), the

osculating Riemannian metric of Randers metric ðαð2Þij ; βð2Þi Þ
becomes

ḡijðr;ϕÞ ¼ g̃ijðr;ϕ; Yrðr;ϕÞ; Yϕðr;ϕÞÞ

¼ αð2Þij þ βð2Þi βð2Þj −

�
βð2Þm Ym

�
αð2Þin α

ð2Þ
jp Y

nYp

�
αð2Þkl Y

kYl
�
3=2

þ
�
αð2Þij βð2Þk þ αð2Þjk β

ð2Þ
i þ αð2Þki β

ð2Þ
j

�
Yk

�
αð2Þkl Y

kYl
�
1=2 ; ð55Þ

where we choose Y ≡ ð_r; _ϕÞ, the vector field along the
geodesic.
In order to compute this ḡij to the order of ðM=rÞ2 or

ðqμ=r2Þ, we first note that the βð2Þi given in Eq. (45c) is
already at the order ðM=rÞ2 or ðqμ=r2Þ,

βð2Þϕ ¼ μ

r
þ 3Mμ

2r2
þ 12M2μ

5r3
þO

�½M�5
r4

�
: ð56Þ

Thus, for the tangent field Y we only need to compute it
using the lowest order geodesics, i.e., Eq. (48a) or equiv-
alently r ¼ b= sinϕ. Then, using Eqs. (24) and (25), Y
becomes

Y ¼ ð_r; _ϕÞ ¼
�
−
cosϕ
Ev

;
sin2ϕ
Ebv

�
: ð57Þ

Substituting into Eq. (55), the components of osculating
Riemannian metric up to order ðM=rÞ2 or ðqμ=r2Þ are
found to be
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ḡrr ¼ E2v2 þ 2ð1þ v2ÞE
2M
r

þ 4ð2þ v2ÞE
2M2

r2

þ Evrqμ
b3

sin6ϕ

χ
3
2

þO
�½M�3

r3

�
; ð58aÞ

ḡrϕ ¼ ḡϕr ¼ −
Evqμ
r

cos3ϕ

χ
3
2

þO
�½M�3

r2

�
; ð58bÞ

ḡϕϕ ¼ E2r2v2 þ 2E2Mrþ 4E2M2

þ Evrqμ
b

ðcos2ϕþ 2χÞsin2ϕ
χ
3
2

þO
�½M�3

r3

�
; ð58cÞ

where χ ¼ cos2ϕþ r2sin4ϕ=b2.

C. The deflection angle

In the limit of r → ∞, it is straightforward to check that
ḡij behaves to the leading order of r as

ḡijdxidxj → E2v2ðdr2 þ r2dϕ2Þ: ð59Þ

This implies the osculating Riemannian metric is asymp-
totically Euclidean and thus we can use Eq. (34) to
calculate the deflection angle. The Gaussian curvature of
Riemannian metric ḡij is known as [26]

K̄ ¼ 1ffiffiffī
g

p
�
∂

∂ϕ

� ffiffiffī
g

p
ḡrr

Γ̄ϕ
rr

�
−

∂

∂r

� ffiffiffī
g

p
ḡrr

Γ̄ϕ
rϕ

��
; ð60Þ

where ḡ and Γ̄k
ij are the determinant and Christoffel

symbols of metric ḡij, respectively.
Substituting Eq. (59) into Eq. (60), the Gauss curvature

of ḡij is calculated as

K̄dS ¼ K̄
ffiffiffī
g

p
dudϕ

¼
��

1þ 1

v2

�
M þ

�
1þ 6

v2
−

4

v4

�
M2u

þ 3Hð1=u;ϕÞ
2Ev

qμ
ub2

þOð½M�3u2
��

dudϕ ð61Þ

where for later easier integration we have changed the
integration variable from r to u ¼ 1=r and

Hðr;ϕÞ ¼ sin3ϕ

ðcos2ϕþ r2

b2 sin
4ϕÞ72

�
2cos6ϕ

�
5r
b
sinϕ − 2

�

− cos4ϕsin2ϕ

�
2 − 9

r
b
sinϕþ 10

r3

b3
sin3ϕ

�

þ 4
r
b
cos2ϕsin5ϕ

�
1þ 2

r
b
sinϕ −

r2

b2
sin2ϕ

�

þ r2

b2

�
−
r
b
sin9ϕþ 2

r3

b3
sin11ϕþ sin4ð2ϕÞ

��
:

Moreover, for the integral limits of u in Eq. (34), we can
simply use the signal trajectory to first order, i.e., uM ¼
u0 þ u1M=b where u0 and u1 are given in Eqs. (48a) and
(48b), as the upper limit, and zero (corresponding to
r → ∞) as the lower limit.
Finally, substituting K̄ into Eq. (34) and carrying out the

double integral, the deflection angle to the order ðM=bÞ2 or
qμ=b2 can be obtained, order by order as in Eq. (61), as the
following

δ¼
Z

π

0

Z
u0þu1M=b

0

ffiffiffiffiffi
jḡj

p
K̄dudϕ

¼ 2M
b

�
1þ 1

v2

�
þ
�
1þ 4

v2

�
3πM2

4b2
þ 2sqμ
Evb2

þO
�½M�3

b3

�
:

ð62Þ

Here we have restored the sign s ¼ �1 for different motion
directions. In this way, we show that it is also possible to
calculate the deflection angle of charged massive particles
in the magnetic field in curved spacetime using Werner’s
osculating Riemannian metric.

V. DEFLECTION ANGLE USING THE
GENERALIZED JACOBI METRIC METHOD

In the generalized optical/Jacobi metric method, the
particles’ trajectory is no longer a geodesic, and we need
to consider the contribution of the geodesic curvature to the
deflection angle. In particular, if the generalized optical/
Jacobi metric space is asymptotically Euclidean, we can
use Eq. (33) to calculate the deflection angle. Although the
geodesic curvature term is added, the calculation of this
method is not tedious, and it is suitable for the calculation
of high-order deflection angle [38]. In order to fully study
the effect of magnetic charge on the deflection of charged
particles, we shall calculate the deflection angle to the
fourth order.

A. Generalized Jacobi metric method

The motion of a particle in Finsler-Randers space ðαij; βiÞ
can be equivalent to themotion of the particle in Riemannian
space defined by αij, plus a disturbance of one-form βi.
Because we work with the Jacobi metric rather than optical
metric, wewill refer to the method outlined in this part as the
generalized Jacobi metric method in this paper.
This method assumes that the test particles live in the

3-dimensional Riemannian space defined by

dl2 ¼ αð3Þij dx
idxj; ð63Þ

where the Riemannian metric αð3Þij is also called the gen-
eralized Jacobi metric. The arc length l here is an affine
parameter along the particle trajectory η. The equation of
motion in this space then can be written as [36,57,58]
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d2xi

dl2
þ ð3ÞΓi

jk
dxj

dl
dxk

dl
¼ αð3Þij

�
∇jβ

ð3Þ
k −∇iβ

ð3Þ
j

� dxk

dl
; ð64Þ

with ð3ÞΓi
jk being the 3-dimensional Christoffel symbol

associated with αð3Þij . Note that since the right side of the
above equation is nonzero, the trajectory η is no longer a
geodesic in the generalized Jacobi metric space. Indeed, we
can rewrite the above equation as

d2xi

dl2
þ ð3ÞΓi

jk
dxj

dl
dxk

dl
¼ Bi

k
dxk

dl
; ð65Þ

where Bij ¼ ∇iβ
ð3Þ
j −∇jβ

ð3Þ
i . This equation is similar to the

Lorentz equation (14). It is also straight forward to verify
that this equation is invariant under the gauge transforma-
tion of Aμ. Due to the nongeodesicity of the trajectory,
when calculating the deflection angle, we will have to take
into account the contribution of geodesic curvature kg.

B. Gauss curvature and geodesic curvature

On the equatorial plane, the generalized Jacobi metric is

dl2 ¼ αð2Þij dx
idxj; ð66Þ

where αð2Þij are given by Eqs. (45a) and (45b). This metric is
asymptotically Euclidean, because

αð2Þij dx
idxj → E2v2ðdr2 þ r2dϕ2Þ; ð67Þ

in the limit of r → ∞. Therefore, one can use the GB
theorem formula (33) to compute the deflection angle.
For the Gaussian curvature term, a direct computation

using metric αð2Þij yields

KdS ¼
��

1þ 1

v2

�
M þ

�
1þ 6

v2
−

4

v4

�
M2u

þ 3

2

�
1þ 15

v2
−
20

v4
þ 8

v6

�
M3u2

þ 1

2

�
5þ 140

v2
−
280

v4
þ 224

v6
−
64

v8

�
M4u3

þOðu4
��

dudϕ; ð68Þ

where again we have changed the integration variable from
r to u ¼ 1=r. For a particle moving in the equatorial plane,
the geodesic curvature of the particle ray can be calculated
by the following equation [36]

kgðηÞ ¼
�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð3Þαð3Þθθ

p ∂

∂r
βð3Þϕ

�				
θ¼π=2

; ð69Þ

where αð3Þ ¼ detðαð3Þij Þ. A direct calculation using the data

of ðαð3Þij ; β
ð3Þ
i Þ given by Eqs. (43a) and (43b), yields

kgðηÞ ¼
qμ
E2v2

u3 þ
�
1 −

1

v2

�
2Mqμ
E2v2

u4

þ
�
37

10
þ 4

v4
−

8

v2

�
M2qμ
E2v2

u5 þOð½M�5u6Þ: ð70Þ

To integrate this, we will change the integration variable
from l to ϕ using relation dl=dϕ, which can be worked out
from line element (66) and trajectory solution (49). After
this, we obtain

κgðηÞdl ¼
�
kgðηÞ

dl
dϕ

�
dϕ

¼


sinϕ
Ev

qμ
b2

þ 2ð1þ 2v2 þ v2 cosϕÞ sinϕ
Ev3

Mqμ
b3

þ 2

E2v2
ð2þ cosϕÞsin2

�
ϕ

2

�
q2μ2

b4

þ sinϕ
80Ev3

½400þ 238v2 − 160ð1þ v2Þ cosϕ

− 18v2 cos 2ϕ − 60ð4þ v2Þϕ cotϕ�M
2qμ
b4

þO
�½M�5

b5

��
dϕ: ð71Þ

C. The deflection angle

If we substitute Eqs. (68) and (71) into (33) to calculate
the deflection, when carrying out the integral over ϕ
however, its upper limit depends on the deflection itself.
Therefore, to be self-consistent, what we will do is to
compute the deflection in the weak field limit iteratively. To
do this, it is important to note that when using the GB
theorem to calculate the deflection angle, to obtain the nth
order deflection angle, we need the (n − 1)th order particle
orbit and the (n − 2)th-order deflection angle [38].
Therefore we will first calculate the second order deflection
angle using first-order orbit and zeroth-order deflection,
and then increase the order one by one. Using the first-order
orbit uM ¼ u0 þ u1M=b given by Eqs. (48a) and (48b) and
the zeroth-order deflection angle δð0Þ ¼ 0 in Eq. (33), and
substituting Eqs. (68) and (71) up to second order, the
deflection angle to the second order then becomes

DEFLECTION OF CHARGED SIGNALS IN A DIPOLE … PHYS. REV. D 106, 124025 (2022)

124025-9



δ ¼
Z

πþδð0Þ

0

Z
u0þu1M=b

0

��
1þ 1

v2

�
M

þ
�
1þ 6

v2
−

4

v4

�
M2u

�
dudϕþ

Z
πþδð0Þ

0

sinϕ
Ev

qμ
b2

dϕ

¼ 2

�
1þ 1

v2

�
M
b
þ
�
3π

4

�
1þ 4

v2

�
M2

b2
þ 2

Ev
qμ
b2

�

þO
�½M�3

b3

�
; ð72Þ

where the first and second terms are respectively the first
and second order result of the deflection angle. This is
consistent with Eq. (62), the result obtained by the
osculating Riemannian metric method.
With this second order deflection, we can then compute

the fourth order deflection angle with the help of the third
order orbit given by Eq. (47). Using Eq. (33), the Gaussian
deflection to the fourth order should be obtained by the full
result in Eq. (68)

δK ¼
Z

πþδð1Þþδð2Þ

0

Z
uM

0

K
ffiffiffiffiffiffiffiffi
αð2Þ

p
dudϕ

¼ 2

�
1þ 1

v2

�
M
b
þ 3π

4

�
1þ 4

v2

�
M2

b2
þ 2

3

�
5þ 45

v2
þ 15

v4
−

1

v6

�
M3

b3
þ π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

mv

�
1þ 1

v2

�
qμM
b3

þ 105π

4

�
1

16
þ 1

v2
þ 1

v4

�
M4

b4
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

mv

�
6þ 17

v2
þ 2

v4

�
qμM2

b4
þO

�½M�5
b5

�
;

where uM is the third-order obit given by Eq. (47) with
Eqs. (48a)–(48f) and δð1Þ þ δð2Þ is given by Eq. (72). The
deflection due to geodesic curvature to the fourth order is
found using the full Eq. (71)

δkg ¼
Z

πþδð1Þþδð2Þ

0

�
kgðηÞ

dl
dϕ

�
dϕ

¼ 2

Ev
qμ
b2

þ π

2Ev

�
3þ 2

v2

�
Mqμ
b3

þ 2

5Ev

�
24þ 50

v2
þ 5

v4

�
M2qμ
b4

þ 3π

2E2v2
q2μ2

b4
þO

�½M�5
b5

�
: ð73Þ

Finally, combining the above δK and δκg , the total fourth
order deflection angle can be written into a series form

δ ¼
X4
i¼1

δðiÞ þOð½M�5=b5Þ; ð74Þ

with

δð1Þ ¼ 2M
b

�
1þ 1

v2

�
; ð75Þ

δð2Þ ¼ 3π

4

�
1þ 4

v2

�
M2

b2
þ 2sqμ
Eb2v

; ð76Þ

δð3Þ ¼ 2

3

�
5þ 45

v2
þ 15

v4
−

1

v6

�
M3

b3
þ π

2v

�
5þ 4

v2

�
sqμM
Eb3

;

ð77Þ

δð4Þ ¼ 105π

4

�
1

16
þ 1

v2
þ 1

v4

�
M4

b4

þ 6

5v

�
18þ 45

v2
þ 5

v4

�
sqμM2

Eb4
þ 3π

2v2
q2μ2

E2b4
; ð78Þ

where the sign s for the rotation direction has been restored.

VI. DISCUSSION OF RESULTS

A. Effect of μ on deflection

Setting q ¼ 0 in result (74), it reduces to the deflection of
neutral massive particles in Schwarzschild spacetime (with
or without electromagnetic fields)

δS ¼
X4
i¼1

δðiÞS þO
�½M�5

b5

�
; ð79Þ

with

δð1ÞS ¼ 2M
b

�
1þ 1

v2

�
;

δð2ÞS ¼ 3π

4

�
1þ 4

v2

�
M2

b2
;

δð3ÞS ¼ 2

3

�
5þ 45

v2
þ 15

v4
−

1

v6

�
M3

b3
;

δð4ÞS ¼ 105π

4

�
1

16
þ 1

v2
þ 1

v4

�
M4

b4
;

which agrees with the results in Refs. [9,11].
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The deviation of the deflection angle with nonzero μ
from pure Schwarzschild spacetime is therefore

δμ ¼ δ − δS ¼
X4
i¼1

δðiÞμ þO
�½M�5

b5

�
; ð80Þ

with

δð1Þμ ¼ 0;

δð2Þμ ¼ 2sqμ
Eb2v

;

δð3Þμ ¼ π

2v

�
5þ 4

v2

�
sqμM
Eb3

;

δð4Þμ ¼ 6

5v

�
18þ 45

v2
þ 5

v4

�
sqμM2

Eb4
þ 3π

2v2
q2μ2

E2b4
:

It is seen that the magnetic effect on the deflection appears
from the second order (order 1=b2) of the impact parameter.
Comparing to the effect of pure electric field on the
deflection [see Eq. (4.4) of Ref. [59]]

δE ¼ −
2q
Ev2

Q
M

M
b
; ð81Þ

where Q is the total charge of the spacetime, we see that
the δμ is one order lower than δE. This order comparison is
also consistent with the effect of charge monopole and
magnetic dipole on the deflection of charges in flat
spacetime [60].
On the other hand, the deflection by a central magnetic

dipole is similar to the deflection by a rotating mass (i.e.,
the Kerr spacetime) in at least the following ways. Firstly,
comparing to Schwarzschild spacetime, both scenarios
assert an extra axisymmetric force field on the charged
particle. Secondly, the grr component of the Kerr metric
with angular momentum per unit mass a contains a term
asymptotically proportional to −a2=r2 ∼Φ0ðrÞ yielding a
force j∇Φ0ðrÞj ∼ a2=r3. While the magnetic dipole (36)
generates asymptotically the Lorentz force∼qvjBj∼qμ=r3.
Therefore to the leading order, we should expect that the
effect of the magnetic dipole on the radial motion of
charged signals should resemble that of the spacetime spin
to a neutral signal. Indeed, the deflection of neutral signal
in Kerr spacetime has been known to order four too [11].
To the second order, i.e., the order a first appears, this
deflection is

δK ¼ 2M
b

�
1þ 1

v2

�
þ 3π

4

�
1þ 4

v2

�
M2

b2

−
4MðsaÞ
b2v

þO
�jMj3

b3

�
: ð82Þ

Comparing to Eq. (76), we see that from the deflection
angle point of view, the equivalence relation between
dipole and Kerr spacetime spin, to the leading order is

qμ → −2EM · a: ð83Þ

B. Gravitational lensing

With the analogy (83) between the Schwarzschild
magnetic dipole result and Kerr spacetime result of the
deflection δ, it is natural to expect that the GL in the
Schwarzschild magnetic dipole case is similar to the Kerr
case: after all, the GL equation usually is only solved using
the deflection angle to the first one or two orders. If to these
orders, the GL equation and formula for images’ apparent
angles in these two cases are also the same, then we will be
able to directly use the results obtained in Kerr spacetime
[61,62] for the images’ apparent angles θSm in the current
case. Indeed this is the case for both the GL equation (see
Eq. (37) of Ref. [40] and Eqs. (4.3) and (B1) of Ref. [61])
and the formula for apparent angles [see Eq. (4.9) of
Ref. [61]]. Therefore the apparent angle for the images can
be directly quoted from Eq. (5.9) of Ref. [61]

θSm ¼ b0s
rd

þ b1s
rd

þO
�
b30s
r3d

�
; ð84Þ

where b0s and b1s are the leading and the next leading-order
impact parameters

b0s ¼
φ0rdrs

2ðrd þ rsÞ
� ffiffiffiffiffiffiffiffiffiffiffi

1þ η
p

− s
�
; ð85aÞ

b1s ¼
η½8sqμv=ðEMÞ þ 3Mπð4þ v2Þ�
32ð1þ v2Þ ffiffiffiffiffiffiffiffiffiffiffi

1þ η
p ð ffiffiffiffiffiffiffiffiffiffiffi

1þ η
p

− sÞ ; ð85bÞ

η ¼ 8Mðrd þ rsÞ
φ2
0rdrs

�
1þ 1

v2

�
: ð85cÞ

There are a few properties of these apparent angles worth
mentioning. The first is that the effect of the charge-
magnetic dipole interaction on the apparent angles is
proportional to qμ=E, but not directly on the kind of the
charge as long as they are highly relativistic. For example,
no matter whether they are electrons, protons, or even light
nuclei in the cosmic rays, their effect only depends on their
q=E values once the particles are highly relativistic. The
second point to note is that as in the deflection angle,
the magnetic dipole influences the apparent angles of the
charged signals from the next leading order too. This also
implies that because Eq. (84) is a perturbative result, it is
only valid when b1s ≪ b0s. Using the large and small η
limits of Eq. (86), this condition further restricts the
applicable parameter space to the case
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qμ=E ≪ min
n ffiffiffiffiffiffiffiffiffiffiffiffiffi

M3rs;d
q

;M2=φ0; r2s;dφ
3
0:
o
: ð86Þ

We see that the higher the energy of the charges, the more
applicable the above results.
To obtain a better intuition of the effect of μ on the

observations, in Figs. 2 and 3 we plot the apparent angles (84)
as a function of qμ=E and φ0. For the charge q of cosmic ray
particle, it can only choose a few discrete values from 1e of
protons/deuterons/tritons to ∼26e for iron nuclei. For the
energy E, we concentrate on the range E≳ 103 ½GeV�. We
will choose the Sgr A� andM87� supermassive black holes as
the lens, and assume the source of the signal roughly is
located at the same radius as the detector. For the magnetic
dipole moment, we assume that the current is due to the
accretion materials near the innermost stable circular orbit
withR0 ¼ 6M. ForM87�, there is already a rough estimate of
1 Gauss to 30 Gauss for the magnetic field B6M at this radius
[63], while for Sgr A�, this magnetic field is only known to be
tens of Gauss [64]. Using (41) with this magnetic field, we
will be able to deduce the corresponding μ as

μ ¼ 8
ffiffiffi
6

p
M3B6M

5 − 12 lnð3=2Þ : ð87Þ

That is, μ will be strictly proportional to B6M.
Figure 2 plots the θSm for M87� SMBH as functions

of φ0 and qB6M=E. From Fig. 2(a) it is seen that
when qB6M=E is smaller than a rough value λM87 ≈
10−6 eGauss=GeV, its effect on the apparent angles of
the two images s ¼ �1 are negligible. In other words,
the magnetic interaction is still weaker than gravitational
deflection. When qB6M=E exceeds this value however,
the magnetic interaction can grow stronger than the
gravitational field, and consequently the apparent angle
from the counterclockwise direction is decreased dramati-
cally by the magnetic dipole while that from the opposite
direction is increased, as can be more clearly seen
from Fig. 2(b). This dependence is also consistent with
the effect of μ on the deflection angle. This value λM87

(10−6 ½eGauss=GeV�) for qB6M=E is expected to be reach-
able by many cosmic rays since there are plenty of signals
above the so-called “knee” structure around 106.6 ½GeV� in
the cosmic ray spectrum [65] and the magnetic field B6M is
expected to in the order of tens of Gauss. Therefore
measuring the dependence of the apparent angles of such
charged signals near the M87 galaxy center will help to
constrain the exact value of the magnetic field. Indeed, using
even higher energy cosmic rays such as those above the
“second knee” (108.0 ½GeV�) or the “ankle” (109.7 ½GeV�),
themagnetic field asweak as 10−4 ½Gauss� near the accretion
radius can also be constrained.
Figure 2(c) shows the apparent angles for two typical

source angular positions φ0 using qB6M=E as the x-axis.
The variation of θSm in this plot means that for each fixed
kind of charged signal, as their energy E varies, the

apparent angles from each side of the lens will also vary.
That is, nonmonoenergetic charged signals will form
extended images, as long as B6M is not too small. It is
seen that all the four curves are strictly linear to qB6M=E,
as dictated by Eqs. (85b) and (87). Indeed, from these

(b)

(c)

(a)

FIG. 2. The apparent angles θSm using Eq. (84) for M87�. (a) 3D
plot of θSm as a function of qB6M=E and φ0. Note there exists an
upper boundary (red curve) for qμ=E determined by Eq. (86);
(b) θSm as a function of φ0 for qB6M=E ¼ 10−7 eGauss=GeV
(solid curves) and qB6M=E ¼ 10−5 eGauss=GeV (dash curves)
for two directions s ¼ þ1 (red curves) and s ¼ −1 (blue curves);
(c) θSm as a function of qB6M=E for φ0 ¼ 0.100 (solid curves)
and φ0 ¼ 100 (dash curves) for s ¼ þ1 (red curves) and s ¼ −1
(blue curves).
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equations we can find the slope of these curves, in the
relativistic and small φ0 limits, to be

k ¼
ffiffiffi
6

p
sM2

½5 − 12 lnð3=2Þ�rd
: ð88Þ

This is also consistent with the observation in this plot that
basically all slopes are of the same absolute size, which are
determined by M and rd of the system, but not by φ0.
Figure 3 illustrates the apparent angles for the Sgr A�

SMBH. It is seen that qualitatively they are similar to the
M87� case, except the critical value of qμ=E in this case
is now about λSgrA ≈ 10−3 eGauss=GeV. This implies that
compared to the M87� case cosmic rays with the same
energy are more easily affected by the magnetic dipole of
the same strength around the Sgr A� SMBH. For the
expected Oð10Þ ½Gauss� magnetic field around the accre-
tion radius, the cosmic ray with energy as low as 103 ½GeV�
will be able to experience the large effect of the magnetic
field on its apparent angles. In other words, the cosmic rays
above the “knee” will be able to detect the magnetic field as
low as 10−3 Gauss at the accretion radius of Sgr A�. The
other qualitative features in the two-dimensional plots in
Figs. 3(b) and 3(c) are the same as in Fig. 2.

VII. CONCLUDING REMARKS

In this paper, we have studied the deflection angle of a
charged particle in the equatorial plane of a Schwarzschild
spacetime with a dipole magnetic field, using the GB
theorem with the generalized Jacobi metric method and
the osculating Riemannian metric method. The fact that the
deflection angles for trajectories in the clockwise and
anticlockwise directions are different manifests the non-
reversibility of the Finsler metric. It is found that the
magnetic dipole μ will decrease (or increase) the deflection
angle of a positively charged signal if its rotation angular
momentum is parallel (or antiparallel) to the magnetic field.
To the leading order it appears, the effect of μ on the
deflection is similar to the effect of spacetime spin in Kerr
spacetime. This similarity allows us to solve the GL
equation and study the effect of μ on the apparent angles
of the GL images. Applications of these results to M87�
and Sgr A� SMBHs suggest that by measuring the apparent
angles of high-energy cosmic rays, the magnetic field
around these SMBHs might be constrained.
We point out that the above conclusion does not have to

rely on the assumption that the magnetic dipole is generated
by the accretion materials near the innermost stable circular
orbit, although we used this as an example. Indeed, as long
as there exists a magnetic dipole, an apparent angle figure
similar to Figs. 2(a) and 3(a) can always be drawn
(replacing qB6M=E by qμ=E), and therefore the dipole
can still be constrained by the observation of the apparent
angles.
We also recognize that besides dipole magnetic field of

the central lens, there could well exists non-negligibale
interstellar magnetic field. For some lens systems, it is
believed this field can reach the OðμGÞ level. If one wants
to consider fully the effect of this field on the deflection
and lensing of the charged signals, then our treatment in
this work apparently is too simple. With that being said

(a)

(b)

(c)

FIG. 3. The apparent angles θSm using Eq. (84) for Sgr A�. (a) 3D
plot of θSm as a function of qB6M=E and φ0. Note that there exists
an upper boundary (red curve) for qμ=E determined by Eq. (86);
(b) θSm as a function of φ0 for qB6M=E ¼ 10−4 ½eGauss=GeV�
(solid curves) and qB6M=E ¼ 10−1.8 eGauss=GeV (dash curves)
for s ¼ þ1 (red curves) and s ¼ −1 (blue curves); (c) θSm as a
function of qB6M=E for φ0 ¼ 0.100 (solid curves) and φ0 ¼ 100
(dash curves) for s ¼ þ1 (red curves) and s ¼ −1 (blue curves).

DEFLECTION OF CHARGED SIGNALS IN A DIPOLE … PHYS. REV. D 106, 124025 (2022)

124025-13



however, we also expect that the interstellar magnetic field
is likely to be randomly oriented from the large scale point
of view. Therefore even around some places along the
signal trajectory the interstellar magnetic field can affect
the trajectory bending to some extent, we expect these
influences are canceled out largely after the whole journey.
If the trajectory path through some large scales with strong
and likely oriented interstellar magnetic field, then appa-
rently a theoretical work like ours will be far from sufficient
and a numerical treatment will be needed.
Regarding future direction, three questions are particularly

interesting. The first is whether the analogy between the
magnetic dipole and Kerr spacetime spin can be extended to
other quantities about the particle’s motion, such as its total
travel time and the time delay between images in GL. To
answer this question, a perturbative computation seems
unavoidable since the geometric method is only applicable
to the calculation of the deflection angle but not the travel
time. The second is to generalize the method in this work to

the Kerr case because both the black hole’s spin and dipole
magnetic field have intricate effects on charged particles
and their addition or competition might be interesting.
The third and more challenging direction is to study the
coupling between the particle spin and the magnetic field in a
curve background since these two are well known to be
coupled even in flat spacetime. It is expected that their
coupling in a curved spacetime might bring more complex
and interesting features in the particle’smotion, and deflection
in particular.
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