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I. INTRODUCTION

The linearized gravitational waves are well understood
within general relativity. In the era of gravitational wave
astronomy, it is especially interesting to extend our intu-
itions beyond the linear regime where unexplored phenom-
ena may be hidden. One of the most basic settings are
standing gravitational waves. The studies of this type have
been initiated by Bondi [1] and Stephani [2]. More recently,
the problem has been investigated in Refs. [3,4].
The aim of this work is to clarify the role of polarization

in the context of standing gravitational waves. As a toy
model, we examine a class of exact solutions to Einstein
equations which are cosmological counterparts of the
Halilsoy cylindrical spacetimes [5]. (The Halilsoy solutions
are cross-polarized Einstein-Rosen waves.) These solutions
correspond to three-torus Gowdy models. In Gowdy models
(contrary to the original cylindrical Halilsoy spacetime), a
privileged class of stationary observers exists (at antinodes)
and one can examine properties of waves relative to this class
of observers.
The three-torus Gowdy models have been already inves-

tigated in the context of standing gravitational waves [4].
The solution presented in [4] is a special case of the class
studied here. It corresponds to “þ” polarization of thewaves.
The exact nonlinear gravitational waves studied in our article
have, in general, a nontrivial cross term [ω in the metric (1)].
Following Halilsoy [5], we call this type of solution cross
polarized (“×” polarization). However, a clarification of the
terminology is needed. Traditionally, a Gowdy class is split
into polarized and unpolarized models. The solutions studied
here correspond to unpolarized Gowdy models and the
solution studied in [4] corresponds to the polarized Gowdy
model. The majority of unpolarized models are studied
numerically, in contrast to the polarized case for which one
may write down a complete description of the spacetime.
The exact solution presented here provides a notable
exception to this rule and, as such, it is interesting on its own.
The possible polarization states of the standing waves are

well known in electromagnetism [6]. Electromagnetic waves
could be polarized, cross polarized, or could correspond to a

mixture of both polarizations (e.g., an appropriate combi-
nation of both polarizations could lead to circularly polarized
solutions). For electromagnetic standing waves, things get
more complicated. A standing wave formed by a super-
position of two counterpropagating collinearly polarized
waves has the same linear polarization along the wave axis.
If the superposed waves are linearly, but not collinearly
polarized, then the standing wave is linearly polarized at
nodes and antinodes (different polarizations) and circularly
polarized between them with sequentially changed handed-
ness. If the counterpropagating waves are circularly polar-
ized with opposite handedness, then the circular polarization
is maintained along the standing wave. If the superposed
waves are circularly polarized with the same handedness,
then the standing wave is linearly polarized at each point
with the direction of polarization periodically varying along
thewave axis. In Ref. [6], standing waves with a polarization
angle oscillating periodically along the wave axis (the
second and the latter case) is called the polarization standing
wave. The analogy between electromagnetic standing waves
and gravitational standing waves implies that the nontrivial
cross term ω in the metric (1) (cross-polarized solutions in
the Halilsoy terminology, denoted with ×) may lead to a
several different behaviors of polarization. The covariant
classification of gravitational standing waves is beyond
the scope of this article, but we present evidence that the
gravitational standing waves studied in this paper are
polarization gravitational standing waves.
In this paper, we study a geodesic deviation equation in a

toy model with nontrivially polarized gravitational waves.
However, as pointed out to us in a private communication
with Halilsoy, the topic studied here is also interesting in
the broader context. The tidal forces in the Earth-Moon
system are low-frequency gravitational waves [7] and their
cross-polarized components may have detectable observa-
tional consequences—the secondary tides.

II. SETTING

We consider the line element of the Gowdy form (its
relation to the Halilsoy solution is described in Appendix A),
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g ¼ efð−dt2 þ dz2Þ þ tepðdxþ ωdyÞ2 þ te−pdy2; ð1Þ

where t > 0, 0 ≤ x; y; z < 2π, and xα ¼ ðt; z; x; yÞ. The
metric functions f, p, and ω depend on t and z only and
are given by
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where α is a constant, and J0 and J1 are the Bessel functions
of the first kind and orders 0 and 1, respectively. The solution
(2) satisfies the vacuum Einstein equations and corresponds
to the three-torus Gowdy model. The number of waves
on the torus is given by 1=λ, where λ is a parameter such
that 1=λ ∈ N. For α ¼ 0, the solution (2) reduces to the þ
polarized case studied in [4]. For β ¼ 0, it corresponds to the
three-torus identified Minkowski metric in coordinates
expanding along ∂y. Only nondiagonal components of the
metric depend on the sign of α (the function ω is odd in α),
so without the loss of generality we assume α ≥ 0.
In this article, in addition to the coordinate basis ∂α, we

use two sets of nonholonomic bases. They are given by
(i) the orthonormal tetrad eα̂,

e0̂ ¼ e−f=2∂t; e1̂ ¼ e−f=2∂z;

e2̂ ¼
e−p=2ffiffi

t
p ∂x; e3̂ ¼

ep=2ffiffi
t

p ð−ω∂x þ ∂yÞ; ð3Þ

(ii) and the null tetrad wᾰ ¼ fk; l; m; m̄g,

k ¼ 1ffiffiffi
2

p ðe0̂ þ e1̂Þ; l ¼ 1ffiffiffi
2

p ðe0̂ − e1̂Þ;

m ¼ 1ffiffiffi
2

p ðe2̂ − ie3̂Þ; m̄ ¼ 1ffiffiffi
2

p ðe2̂ þ ie3̂Þ; ð4Þ

where k · l ¼ −1; m · m̄ ¼ 1; k · k ¼ l · l ¼ m ·m ¼
m̄ · m̄ ¼ 0, and gᾰβ̆ ¼ −2kðᾰlβ̆Þ þ 2mðᾰm̄β̆Þ.

III. GEODESIC DEVIATION

Our research extends results obtained previously [4] to
the cross-polarized standing gravitational waves (the
polarization ×). A particular example of such nontrivially
polarized waves is provided by the metric (1) with the
auxiliary functions given by (2) and the nonzero value of
the parameter α. In this section, we clarify how this

parameter alters the effect of standing gravitational waves
on test particles.
The behavior of test particles is investigated relative to a

freely falling observer. Similar to the case studied in [4], a
preferred coordinate system exists in which nodes and
antinodes are labeled by one of coordinates.1 In
Appendix C, we show that, as in the þ polarized model,
observers at antinodes are stationary, namely, the curves
γk∈Z: z ¼ λπð1=2þ kÞ, x ¼ x0 y ¼ y0 with constants x0
and y0 are future-directed timelike geodesic. The vector
tangent to this geodesic corresponds to e0̂. Thus, e0̂ is
parallelly transported along γk: ∇e0̂

e0̂ ¼ 0. Moreover, we

have along γk: ∇e0̂
eα̂ ¼ ωβ̂

α̂ðe0̂Þeβ̂ ¼ 0, where ωβ̂
α̂ are

connection 1-forms given in Appendix E. Therefore, the
remaining orthonormal basis vectors eî are also parallelly
transported along γk, which implies that eα̂ [given by (3)] is
a freely falling frame at antinodes.
Let ξ be a deviation vector, then along γk in a freely

falling frame

d2ξα̂

dτ2
¼ −Rα̂

0̂β̂0̂ξ
β̂; ð5Þ

where τ is a proper time of the observer. In vacuum, the
Riemann and Weyl tensors are equal, so Rα̂

0̂β̂0̂ ¼ Cα̂
0̂β̂0̂.

The nonzero components of the Riemann tensor
(Appendix G) may be calculated from the curvature
2-forms presented in Appendix F using the relation
Ωα̂

β̂ ¼ 1
2
Rα̂

β̂σ̂δ̂θ
σ̂ ∧ θδ̂, where the cobasis θα̂ is given in

Appendix D. However, it is instructive to rewrite the
geodesic deviation equation in terms of the complex
Weyl coefficients (defined in a standard way [4]). (The
appropriate formulas for Weyl coefficients are too large to
be usefully cited here, but one may evaluate them with the
help of the computer system Mathematica.) The relevant
nonzero components of the Riemann tensor are

R1̂
0̂1̂0̂ ¼ 2ℜðΨ2Þ;

R2̂
0̂2̂0̂ ¼

1

2
ℜ½−2Ψ2 þ Ψ0 þ Ψ4�;

R3̂
0̂3̂0̂ ¼

1

2
ℜ½−2Ψ2 − Ψ0 −Ψ4�;

R2̂
0̂3̂0̂ ¼

1

2
ℑ½Ψ0 −Ψ4�; ð6Þ

whereℜ andℑ denote real and imaginary parts. At antinodes
Ψ1¼Ψ3¼0 and Ψ4 ¼ Ψ0, hence R2̂

0̂3̂0̂ ¼ R3̂
0̂2̂0̂ ¼ 0. For

α ¼ 0, Ψ0 and Ψ2 are real (not only at antinodes). The
geodesic deviation equation can be written at antinodes as

1The nodes and antinodes of the gravitational waves corre-
spond to nodes and antinodes of the metric functions p and f,
which coincide with antinodes and nodes of ω, respectively.
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d2ξ0̂

dτ2
¼ 0;

d2ξ1̂

dτ2
¼ −2ℜðΨ2Þξ1̂;

d2ξ2̂

dτ2
¼ ℜðΨ2 −Ψ0Þξ2̂;

d2ξ3̂

dτ2
¼ ℜðΨ2 þ Ψ0Þξ3̂: ð7Þ

The polarization of waves is not directly observable at
antinodes because the metric function ω equals zero there.

The vanishing of R2̂
0̂3̂0̂ and R

3̂
0̂2̂0̂ implies that d

2ξα̂

dτ2 ∼ ξα̂. The
equations decouple and the standard effect of cross polari-
zation is not visible at antinodes. However, the parameter α
changes the global evolution of spacetime and, in this sense,
it alters the trajectories of test particles at antinodes (via Ψ0

and Ψ2). The Tissot diagrams are very similar to those
presented in [4] and we do not include them here.

IV. GEODESIC NULL CONGRUENCES

The geodesic deviation equation studied at antinodes in
the previous section does not reveal the effect of polari-
zation on test particles directly. The orthonormal frame (3)
is not freely falling beyond antinodes, which complicates
the studies in the remaining regions of spacetime. In this
section, we use a different method to show the effect of
nontrivial polarization of standing gravitational waves on
test particles. We investigate the behavior of massless test
particles instead of massive test particles. We show that the
polarization of gravitational waves alters shear axes of
geodesic null congruences parallel to the z axis.
The symmetry of the spacetime implies that the vectors k

and l are tangent to null congruences. Since our standing
wave spacetime may be seen as a “nonlinear” superposition
of two gravitational waves moving in opposite directions,
the null tetrad (4) is well adapted to the problem (a
symmetry between k and l). However, it is easy to see
that k and l do not correspond to an affine parametrization.
Therefore, it is more convenient to utilize boost freedom
and introduce an alternative tetrad with k and l substituted
by k0 ¼ e−f=2k and l0 ¼ ef=2l. The spin coefficients of the
new Newman-Penrose tetrad that will be useful for us are

κ ¼ m ·∇k0k0 ¼ 0;

ρ ¼ m ·∇m̄k0 ¼
1

2
ffiffiffi
2

p
t
e−f;

σ ¼ m ·∇mk0 ¼
1

2
ffiffiffi
2

p e−f½p;t þ p;z þ iepðω;t þ ω;zÞ�;

ϵ ¼ 1

2
ðl ·∇k0k0 − m̄ ·∇k0mÞ ¼ i

4
ffiffiffi
2

p e−fþpðω;t þ ω;zÞ: ð8Þ

The equality κ ¼ 0 implies that k0 is tangent to geodesic
null congruences and ℜϵ ¼ 0 implies an affine paramet-
rization. In this setting, −ℜρ, ℑρ, and jσj correspond to the
expansion, twist (vanishing for the congruence k0), and
shear, respectively. The argument of σ describes the shear
axes. For α ¼ 0 (the þ polarized model), ω ¼ 0 and the
shear axes do not rotate.
Let us consider a light beam sent by one of the stationary

observers at antinodes [z ¼ πλð1=2þ kÞ, k ∈ Z] along the
z direction at some initial moment t0. The beam is detected
by other stationary observers on subsequent antinodes. The
equation for the metric function p depends on the sign of
sinðz=λÞ, which at antinodes equals �1. Therefore, there
are two types of antinodes in our model. They corresponds
to odd and even values of k and must be investigated
separately. Without loss of generality, we will consider
below only k ¼ 0 and k ¼ 1. It follows from the form of
the metric (1) that along such null rays t ¼ zþ z0. The
unknown constant z0 can be chosen to have argðσÞ ¼ π at
t0 and z ¼ πλ=2 (k ¼ 0) or z ¼ 3πλ=2 (k ¼ 1). These
conditions imply J1ðz0 þ πλ=2Þ ¼ 0 for k ¼ 0 and J1ðz0 þ
3πλ=2Þ ¼ 0 for k ¼ 1 (for t0 ¼ πλ=2þ z0 and t0 ¼
3πλ=2þ z0, respectively). The rotation of the shear axis
of null congruences [given by argðσÞ] are presented in both
cases in Figs. 1 and 2. They are plotted for four different
values of the parameter α, which defines the polarization
of gravitational waves. The value α ¼ 0 corresponds to þ
polarized gravitational waves for which the shear axis of
geodesic null congruence does not rotate. The square
waveform (α ¼ 0) oscillates between 0 and π in both
figures, which implies that the congruence is stretched or
contracted along the x axis. The real part of the shear σ does
not change sign exactly at nodes and antinodes, as is clearly
visible in Figs. 1 and 2 for α ¼ 0. The cases k ¼ 0 and
k ¼ 1 correspond to a different direction of rotation of the
shear axes after initial moment t0.
The oscillations of the shear axes visible in Figs. 1 and 2

suggest that the standing gravitational waves studied in this
article are polarization standing waves. A more detailed
analysis of these figures reveals that for α ≠ 0 the shear
axes do not return to the initial position [argðσÞ ¼ π] at the
subsequent nodes (Fig. 3).2 This cumulative effect of the
polarization of gravitational waves on shear axes of geodesic
null congruences is observable by stationary observers at
antinodes. Therefore, the polarization of nonlinear standing
gravitational waves directly alters observables in spacetime.

V. INTERPRETATION OF THE α PARAMETER

The role of the α parameter follows from the field
equations [8]. A standing wave may be seen as a “super-
position” of two identical gravitational waves moving in

2It seems that the expansion of our cross-polarized standing
wave spacetime is necessary to “desynchronize” polarization axes
of gravitational waves and the shear axes of a null congruence.
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opposite directions. The amplitudes of these waves may be
split between two polarizations. The oscillations of the
metric function ω correspond to the rotation of polarization
between þ and × modes. This is a gravitational analog
of the Faraday rotation [8]. Since ω ¼ 0 at antinodes, then
the trajectories of test particles at antinodes depend only
indirectly on α. One may try to understand this dependency
in terms of the high-frequency limit of standing waves (e.g.,
Ref. [9]), where the energy of the gravitational waves alters
global expansion of spacetime, but such attempts lead to
counterintuitive results.

In order to evaluate the effect of the α parameter on the
global expansion explicitly, we calculated numerically a
flight time of a photon between stationary observers at
antinodes in terms of the proper time of these observers. We
note that for β ¼ 0 the metric (1) describes the three-torus
identified Minkowski spacetime in an expanding coordi-
nate system. Thus, any expansion for β ¼ 0 is of an
artificial nature and depends on the choice of coordinates.
Standing waves appear already for small β and a position of
stationary observers at antinodes is distinguished by the
geometry of spacetime. We show in Fig. 4 that in this

FIG. 2. The rotation of shear axes of geodesic null congruences for several values of the α parameter. The antinodes and nodes
correspond to solid and dashed vertical lines, respectively. The initial conditions are set to have at the second antinode z ¼ 3πλ=2:
argðσÞ ¼ π. The remaining parameters are λ ¼ 1=10, β ¼ 3. We set t0 ¼ 0.383171, which gives z0 ¼ −0.0880683.

FIG. 1. The rotation of shear axes of geodesic null congruences for several values of the α parameter. The antinodes and nodes
correspond to solid and dashed vertical lines, respectively. The initial conditions are set to have at the first antinode z ¼ πλ=2:
argðσÞ ¼ π. The remaining parameters are λ ¼ 1=10, β ¼ 3. We set t0 ¼ 0.383171, which gives z0 ¼ 0.226091.
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setting the time flight of photons between subsequent
observers (measured in observers’ proper time) grows
initially almost linearly with the slope controlled by α
parameter. Therefore, α describes not only polarization of
waves, but also encodes initial conditions that define how
fast the distance between antinodes grows. Whether this is
merely a coincidence (or an artifact of the model studied)
needs further investigation. For larger β an exponential
expansion of spacetime becomes evident (Fig. 4), but the
role of the α parameter remains unchanged: larger α implies
faster expansion.

VI. THE POYNTING VECTOR

Stephani suggested [2] that the gravitational analog of
the Poynting vector may play an important role in the
understanding of standing gravitational waves. The gravity
is a nonlocal concept, so in general relativity the density of

gravitational energy cannot be defined. Similarly, the flow
gravitational energy can be described only in an approxi-
mate or asymptotic form. Therefore, one should refrain
from a direct physical interpretation of the gravitational
analogs of the Poynting vector. Nevertheless, we apply
this kind of concept (a super-Poynting vector and a
superenergy) as mathematical tools in a context of standing
gravitational waves. Stephani derived the gravitational
analog of the Poynting vector from the Lagrangian that
leads to the Ernst equations. We follow another approach
here. We construct the analog of the Poynting vector with
the help of the Bel-Robinson tensor Tαβγδ [10]. The Bel-
Robinson tensor is given by

Tαβγδ ¼ Cαμγ
νCδνβ

μ þ ⋆Cαμγ
ν⋆Cδνβ

μ: ð9Þ

C is the Weyl tensor and ⋆ denotes the Hodge dual, namely,

⋆Cαβγδ ¼
1

2
ηαβμνCμν

γδ;

where η is the canonical volume form. The supermomen-
tum P is defined relative to an observer with four-velocity
u: Pα ¼ −Tα

βγuβuγuδ. It might be decomposed into the
superenergy density W (which is not an energy density of
the gravitational field) and the super-Poynting vector S:
Pα ¼ Wuα þ Sα. The superenergy density and the super-
Poynting vector can be written in terms of the Bel-
Robinson tensor,

W ¼ Tαβγδuαuβuγuδ ≥ 0;

Sα ¼ −Tμ
βγδðδαμ þ uαuνÞuβuγuδ: ð10Þ

In the orthonormal frame, relative to the observer with the
four-velocity e0̂, these formulas take a form (S0̂ ¼ 0),

W ¼ T 0̂0̂0̂0̂;

Sî ¼ −Tî0̂0̂0̂: ð11Þ

The expressions for the superenergy W and the super-
Poynting vector for solutions studied in this paper are too
long to be usefully cited here. The analysis of these
formulas with the help of the computer algebra system
Mathematica reveals

(i) W oscillates periodically with extrema at antinodes,
(ii) S1̂ oscillates periodically with zeros at antinodes (no

superenergy transfer at antinodes),
(iii) S1̂ averages to zero over hypersurfaces t ¼ const,
(iv) S2̂ ¼ S3̂ ¼ 0.

We remind the reader here that beyond antinodes observers
with the four-velocity e0̂ do not move on geodesics. The
superenergy and the z component of the super-Poynting
vector are presented in Figs. 5 and 6 for a particular set of
parameters.

FIG. 3. The cumulative effect of rotation of shear axes as
measured at subsequent antinodes. The points above and at π
correspond to k ¼ 0. The points below and at π correspond to
k ¼ 1. The parameters are λ ¼ 1=10, β ¼ 3.

FIG. 4. The photon’s flight time between subsequent antinodes
(numbered by N) measured in the proper time of stationary
observers at antinodes. The photon flies along the ∂z direction.
The remaining parameters are t0 ¼ 1, λ ¼ 1=10.
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VII. SUMMARY

We constructed, starting from the Halilsoy cylindrical
spacetime [5], the cosmological model of the Gowdy form
with standing gravitational waves. This solution general-
izes the spacetime studied in [4] (with þ polarization) to
cross-polarized waves (denoted with ×). Similar to the þ
case, in the × polarized model there exist stationary
observers at antinodes. The trajectories of neighboring
massive test particles for these observers differ trivially
from the trajectories in the þ polarized model. The Tissot
diagrams do not reveal standard effects of cross polariza-
tion on massive particles (although the × polarized model
expands differently than theþ polarized model). In order to
show these effects, we studied the massless test particles.

We showed that the deviation of the model from the þ
polarization alters the shear axes of geodesic null con-
gruences. The cross polarization of the standing gravita-
tional waves can be directly detected by stationary
observers at antinodes via the measurements of the
rotation of the shear axes of geodesic null congruences
aligned with the longitudinal direction of the standing
gravitational waves. This constitutes the main result of
our paper.
The deviation from theþ polarized models alters also the

expansion rate of the spacetime. In order to evaluate this
effect, we studied the time of flight of photons between
antinodes measured in the proper time of stationary
observers at antinodes. We showed that the expansion rate
of the model depends on a parameter that describes the

FIG. 5. The superenergy density for λ ¼ 1=10 and several sets of remaining parameters. The amplitude of the solid black function was
multiplied by a factor of 300. The antinodes and nodes are indicated with solid and dashed vertical lines, respectively.

FIG. 6. The S1̂ component of the super-Poynting vector for λ ¼ 1=10 and several sets of remaining parameters. It shows the
superenergy transfer in the ∂z direction. The amplitude of the solid black function was multiplied by a factor of 300. The antinodes and
nodes are indicated with solid and dashed vertical lines, respectively.

GŁÓD, SIKORA, and SZYBKA PHYS. REV. D 106, 124022 (2022)

124022-6



deviation of the model from the þ polarized model and
controls the polarization. Finally, we used the Bel-
Robinson tensor to calculate the superenergy density and
the gravitational analog of the Poynting vector. We showed
that both quantities have expected properties and are useful
tools in the studies of the standing gravitational waves
(however, we remind the reader that for fundamental
reasons they cannot be identified with the density and flux
of gravitational radiation).

APPENDIX A: FROM HALILSOY SOLUTION
TO CROSS-POLARIZED GOWDY

STANDING WAVES

Halilsoy showed [5] that the Einstein-Rosen waves
[11,12] may be extended to include the second polarization.
The exact solution to Einstein equations has a form

g ¼ e2ðγ−ψÞð−dt2 þ dρ2Þ þ ρ2e−2ψdφ2 þ e2ψðdzþ ωdφÞ2;
ðA1Þ

where ρ > 0, −∞ < t; z < ∞, and 0 ≤ φ < 2π. The metric
functions ψ , γ, and ω depend on t and ρ only and are
given by

e−2ψ ¼ eAJ0 cos σtsinh2
α

2
þ e−AJ0 cos σtcosh2

α

2
;

ω ¼ −ðA sinh αÞρJ1 sin σt;

γ ¼ 1

8
A2ðσ2ρ2ðJ20 þ J21Þ − 2σρJ0J1cos2σtÞ; ðA2Þ

where σ > 0 is a constant, and J0 ¼ J0ðσρÞ and J1 ¼
J1ðσρÞ are the Bessel functions of the first kind and orders 0
and 1, respectively.
The Einstein equations for the metric (A1) are form

invariant under the complex substitution

t ↦ iz; ρ ↦ it; φ ↦ iy; z ↦ z; ω ↦ −iω;

which brings the metric (A1) into the form (1), where the
remaining metric functions are related by f ¼ 2ðγ − ψÞ and
p ¼ − ln tþ 2ψ . Therefore, any cylindrical solution has its
cosmological counterpart. The Halilsoy solution (A2)
corresponds to (2) with additional trivial redefinitions: σ ↦
1=λ followed by z ↦ zþ λπ=2 and A ↦ 2β

ffiffiffi
λ

p
.

APPENDIX B: GEODESIC EQUATION

The geodesic equation in coordinates xα ¼ ðt; z; x; yÞ for
the metric (1) has a form

̈tþ 1

2
ff;t_t2 þ 2f;z_t_zþ f;t _z2 þ e−f½ep _x2ð1þ p;ttÞ þ e−p _y2ð1 − p;ttÞ�g

þ ep−f
�
tω;t _x_yþ ω_y½ð1þ p;ttÞ þ tω;t� þ

1

2
ω2 _zð1þ p;ttÞ

�
¼ 0;

̈zþ 1

2
½f;z _z2 þ 2f;t_t_zþ f;z_t2 þ tp;ze−fð−ep _x2 þ e−p _y2Þ� − ep−f _y

�
t_xω;z þ ω_xp;z þ _yω;z þ

1

2
ω2t_yp;z

�
¼ 0;

ẍþ _xð_t=tþ p;t_tþ p;z _zÞ þ _yð_tω;t þ _zω;zÞ þ ω½2_yð_tp;t þ _zp;zÞ − e2p _xð_tω;t þ _zω;zÞ� − e2pω2 _yð_tω;t þ _zω;zÞ ¼ 0;

ÿþ _yð_t=t − p;t_t − p;z _zÞ þ e2pð_xþ ω_yÞð_tω;t þ _zω;zÞ ¼ 0; ðB1Þ

where a dot denotes differentiation in the proper time τ or
the affine parameter for timelike or null geodesics, re-
spectively. The normalization of the four-velocity/wave
vector gives rise to the first integral of the form

−ϵ ¼ efð−_t2 þ _z2Þ þ tðepð_xþ ω_yÞ2 þ e−p _y2Þ;

where the constant ϵ is equal to 1 or 0 for timelike or null
geodesics, respectively. The Killing fields ∂x and ∂y give
two more quantities cx and cy that are conserved along
geodesics

ð_xþ ω_yÞept ¼ cx;

_ye−ptþ ð_xþ ω_yÞωept ¼ cy: ðB2Þ

APPENDIX C: OBSERVERS AT ANTINODES

In this appendix, we show that the observers at antinodes
are stationary. The geodesic equation is presented in
Appendix B. For stationary solutions _z ¼ _x ¼ _y ¼ 0 it
takes the same form as for α ¼ 0, thus this part of the
analysis mimics calculations in [4]. For readers’ conven-
ience, we repeat it below. We have

0 ¼ ̈tþ 1

2
f;t_t2; ðC1Þ

0 ¼ f;z;

_t ¼ e−
1
2
f; ðC2Þ

where (C2) is the first integral of (C1). The condition
f;z ¼ 0 corresponds to antinodes. Using (2) we have
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f;z ¼ ð…Þ cos ðz=λÞ, thus z ¼ λπð1=2þ kÞ, where k ∈ Z,
implies f;z ¼ 0. Therefore, the curve γk,

xμ ¼ ½tðτÞ; λπð1=2þ kÞ; x0; y0�; ðC3Þ
with k ∈ Z and tðτÞ determined by (C2) is a future-directed
timelike geodesic and a stationary solution to the geodesic
equation.

APPENDIX D: ORTHONORMAL COBASIS
AND ITS EXTERNAL DERIVATIVE

θ0̂ ¼ ef=2dt;

θ1̂ ¼ ef=2dz;

θ2̂ ¼ ffiffi
t

p
ep=2ðdxþ ωdyÞ;

θ3̂ ¼ ffiffi
t

p
e−p=2dy;

dθ0̂ ¼ −
1

2
e−f=2f;zθ0̂ ∧ θ1̂;

dθ1̂ ¼ 1

2
e−f=2f;tθ0̂ ∧ θ1̂;

dθ2̂ ¼ 1

2
e−f=2

��
1

t
þ p;t

�
θ0̂ ∧ θ2̂ þ p;zθ

1̂ ∧ θ2̂

þ 2epðω;tθ
0̂ ∧ θ3̂ þ ω;zθ

1̂ ∧ θ3̂Þ
�
;

dθ3̂ ¼ 1

2
e−f=2

��
1

t
− p;t

�
θ0̂ ∧ θ3̂ − p;zθ

1̂ ∧ θ3̂
�
: ðD1Þ

APPENDIX E: CONNECTION 1-FORMS

The nonzero connection 1-forms in the orthonormal
frame are as follows:

ω0̂
1̂ ¼

1

2
e−f=2ðf;zθ0̂ þ f;tθ1̂Þ;

ω0̂
2̂ ¼

1

2
e−f=2

��
1

t
þ p;t

�
θ2̂ þ epω;tθ

3̂

�
;

ω0̂
3̂ ¼

1

2
e−f=2

��
1

t
− p;t

�
θ3̂ þ epω;tθ

2̂

�
;

ω1̂
2̂ ¼ −

1

2
e−f=2ðepω;zθ

3̂ þ p;zθ
2̂Þ;

ω1̂
3̂ ¼

1

2
e−f=2ðp;zθ

3̂ − epω;zθ
2̂Þ;

ω2̂
3̂ ¼ −

1

2
e−f=2epðω;tθ

0̂ þ ω;zθ
1̂Þ: ðE1Þ

APPENDIX F: CURVATURE 2-FORMS

The nonzero curvature 2-forms in the orthonormal frame
are as follows:

Ω1̂
0̂ ¼

1

2
e−f½ðf;tt − f;zzÞθ0̂ ∧ θ1̂ þ epðp;tω;z − p;zω;tÞθ2̂ ∧ θ3̂�;

Ω2̂
0̂ ¼

1

4
e−f

���
p;t þ

1

t

��
p;t − f;t þ

1

t

�
þ 2

�
p;tt −

1

t2

�
− p;zf;z − e2pω2

;t

�
θ0̂ ∧ θ2̂

−ep
�
ω;t

�
f;t − 4p;t −

2

t

�
− 2ω;tt þ ω;zf;z

�
θ0̂ ∧ θ3̂

þ
�
ðp;z − f;zÞ

�
p;t þ

1

t

�
þ 2p;tz − p;zf;t − e2pω;tω;z

�
θ1̂ ∧ θ2̂

−ep
�
ω;tðf;z − p;zÞ − 2p;tω;z − 2ω;tz þ ω;z

�
f;t − p;t þ

1

t

��
θ1̂ ∧ θ3̂

�
;

Ω3̂
0̂ ¼

1

4
e−f

�
−ep

�
ω;t

�
f;t − 4p;t −

2

t

�
− 2ω;tt þ f;zω;z

�
θ0̂ ∧ θ2̂

þ
��

f;t þ p;t −
1

t

��
p;t −

1

t

�
− 2

�
p;tt þ

1

t2

�
þ p;zf;z þ 3e2pω2

;t

�
θ0̂ ∧ θ3̂

−ep
�
ω;tðf;z − 3p;zÞ − 2ω;tz þ ω;z

�
f;t − p;t −

1

t

��
θ1̂ ∧ θ2̂

þ
�
ðf;z þ p;zÞ

�
p;t −

1

t

�
− 2p;tz þ p;zf;t þ 3e2pω;tω;z

�
θ1̂ ∧ θ3̂

�
: ðF1Þ
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APPENDIX G: RIEMANN TENSOR

Independent nonzero components of the Riemann tensor in the orthonormal frame are as follows:

R1̂
0̂1̂0̂ ¼

1

2
e−fðf;zz − f;ttÞ;

R2̂
0̂2̂0̂ ¼ −

1

4
e−f

��
p;t þ

1

t

�
2

− f;t

�
p;t þ

1

t

�
þ 2

�
p;tt −

1

t2

�
− f;zp;z − e2pω2

;t

�
;

R3̂
0̂3̂0̂ ¼ −

1

4
e−f

��
p;t −

1

t

�
2

þ f;t

�
p;t −

1

t

�
− 2

�
p;tt þ

1

t2

�
þ f;zp;z þ 3e2pω2

;t

�
;

R2̂
0̂3̂0̂ ¼

1

4
e−fþp½ð−2=tþ f;t − 4p;tÞω;t − 2ω;tt þ f;zω;z�: ðG1Þ
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