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We revisit the box Minkowski model [M. Maliborski, Instability of Flat Space Enclosed in a Cavity, Phys.
Rev. Lett. 109, 221101 (2012).] and provide a strong argument that, subject to the Dirichlet boundary
condition, it is unstable toward black hole formation for arbitrarily small generic perturbations. Using
weakly nonlinear perturbation theory, we derive the resonant system, which compared to systems with the
anti–de Sitter asymptotics has extra resonant terms, and study its properties, including conserved quantities.
We find that the generic solution of the resonant system becomes singular in finite time. Surprisingly, the
additional resonant interactions do not significantly affect the singular evolution. Furthermore, we find that
the interaction coefficients take a relatively simple form, making this a particularly attractive toy model of
turbulent gravitational instability.
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I. INTRODUCTION

Over the past several years, research on asymptotically
anti–de Sitter (AdS) spacetimes, in particular regarding
their stability, has greatly intensified. This surge was
triggered by [1] which demonstrated, using a direct
numerical solution of the spherically symmetric Einstein-
Scalar field system with negative cosmological constant,
together with a scaling argument, that the AdS solution is
unstable toward black hole formation for generic arbitrarily
small initial perturbations.
Subsequent works, see [2] for a recent review, identified

the key components for this instability. Namely, the
confinement realized by a suitable choice of boundary
condition at the conformal boundary, and related to that, the
resonant spectrum of linear perturbations (see below for a
definition).
Of the many works which appeared over the years on that

topic, some of the most influential were [3–5]. Those
studies extended the initial perturbative calculations of [1]
and analyzed the resonant interactions between the linear
modes to a greater extent. Incidentally, this perturbative
technique not only improved the perturbative expansion of
[1], which was prone to the secular terms identified as the
progenitors for the instability, but it also provided yet
another piece of evidence for the instability of AdS [6,7]
and thus strengthened the scaling argument presented
in [1].

In the quest to further understand spatially confined
systems and, in particular, to cast new light on the stability
of gravitational dynamics, we revise the box Minkowski
model initially studied in [8]. Using the resonant approach
[6], we investigate the future evolution of small spherically
symmetric scalar perturbations of the flat space subject to
Dirichlet boundary conditions imposed at the perfectly
reflecting cavity located at a finite radius. Our findings
strengthen the previous results [8] and provide evidence
that the model is unstable toward black hole formation for
generic arbitrarily small initial data. This study is yet
another demonstration that the confinement and the reso-
nant spectrum are indeed the key components for turbulent
instability, though not sufficient.
Although the model’s nongeometric origin might not

appeal to some, we argue that this might be one of the
simplest models that exhibit the turbulent dynamics
observed in gravitating systems [1,9]. This is the case
despite some of the most striking differences compared to
AdS, namely the existence of extra resonant interaction
channels as well as the restricted symmetry of the coef-
ficients of the resonant system.
We view the box Minkowski model as an attractive toy

model for the corresponding problem with a negative
cosmological constant. Our results indicate that the per-
turbative approximation correctly captures the energy
transfer between the eigenmodes of the linearized problem
and suggest that the perturbative solution is a good
approximation of the nonlinear solution up to apparent
horizon formation. Additionally, this study may shed new
light on the elusive nature of the singular solution of the
resonant system in AdS4 [7].
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The manuscript is structured as follows. In Sec. II, we
introduce the model and review its most important features
relevant for this work. In Sec. III, we present the derivation
of the resonant approximation and discuss its properties
(interaction coefficients and conserved quantities). The
numerical and asymptotic study of the solutions of the
resonant system and comparison with the Einstein-Scalar
field system are presented Sec. IV. We conclude in Sec. V.
In the Appendix, we discuss the effect the residual time
gauge has on the singular solution.

II. THE MODEL

A. Equations

We study the box Minkowski model of [8], which is a
minimally coupled self-gravitating massless scalar field with
zero cosmological constant in four spacetime dimensions,

Gμν ¼ 8πG

�
∇μϕ∇νϕ −

1

2
gμνgαβ∇αϕ∇βϕ

�
;

gμν∇μ∇νϕ ¼ 0: ð1Þ

To mimic the reflecting boundary condition of the asymp-
totically AdS case [1], we require the evolution to be
confined in a perfectly reflecting spherical cavity of fixed
radius r ¼ R > 0. Furthermore, we assume spherical sym-
metry, so the solution outside the cavity is that of a
Schwarzschild spacetime, with a mass parameter equal
to the total mass of the interior configuration. We do not
consider the issue of smoothness of the solution across the
boundary,1 neither do we discuss the issue of a potential
physical realization of such a model.
For clarity of presentation, we state the field equations as

they appear in [8]. We use the following ansatz of a
spherically symmetric asymptotically flat metric written in
spherical polar coordinates ðr; θ;φÞ:

ds2 ¼ −Ae−2δdt2 þ A−1dr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð2Þ

where the metric functions A and δ depend on t and r only.
The equations of motion (1) are

δ0 ¼ −rðΦ2 þ Π2Þ; ð3Þ

A0 ¼ 1 − A
r

− rAðΦ2 þ Π2Þ; ð4Þ

_ϕ ¼ ΠAe−δ; ð5Þ

_Π ¼ 1

r2
ðr2Ae−δϕ0Þ0; ð6Þ

where we introduced auxiliary variables Φ≡ ϕ0 and
Π≡ eδ _ϕ=A. We adopt the notation where _ and 0 stand
for time and radial derivatives, respectively. We use the
units where c ¼ 1 and 4πG ¼ 1. Without loss of generality,
we set R ¼ 1 (which can always be obtained by a suitable
rescaling of time and radial coordinates).
Wewant to study the future evolution of small initial data

subject to the reflective boundary condition at the cavity.
These follow from the consideration of the mass of the
system. The total mass of the system

M ¼ 1

2

Z
1

0

AðΦ2 þ Π2Þr2dr; ð7Þ

is constant whenever ΦΠjr¼1 ¼ 0 is satisfied, cf., [10].
Then there is no energy flux through the boundary.
Below we motivate our choice of the Dirichlet condition
ϕjr¼1 ¼ 0.

B. Linear problem

First, we look at linear perturbations of the vacuum
solution ϕ≡ 0, A ¼ 1, δ ¼ 0. In this case, (3)–(6) reduce to
a free wave equation in spherical symmetry

ϕ̈þ Lϕ ¼ 0; L ¼ −
1

r2
∂rðr2∂rÞ; ð8Þ

with Dirichlet condition at the cavity ϕjr¼1 ¼ 0. The
eigenvalues and eigenfrequencies of the operator L are

ejðrÞ¼
ffiffiffi
2

p sinωjr

r
; ωj ¼ðjþ1Þπ; j¼ 0;1;…: ð9Þ

The functions ejðrÞ form an orthonormal basis on the
Hilbert space L2ð½0; 1�; r2drÞ with respect to the inner
product

ðξjχÞ ¼
Z

1

0

ξðrÞχðrÞr2dr: ð10Þ

As for the linear perturbations of AdS space [1], the
spectrum (9) is completely resonant. This means that the
eigenfrequencies are rational multiples of one another,
which then implies that for any i; j; k ¼ 0; 1;…, a combi-
nation ωi � ωj � ωk is (modulo sign) also an eigenfre-
quency. This fact and the nonlinearities of the governing
equations lead to resonant interactions between modes,
which result in complex, turbulent dynamics [1]. To capture
these interactions, we use a weakly nonlinear expansion,
the main topic of the following sections.
We note that for the boundary condition ∂rϕjr¼1 ¼ 0, for

which the total mass (7) is also conserved, the eigenfre-
quencies are only asymptotically resonant, i.e., ωj ∼
πðjþ 1=2Þ for j → ∞. Numerical data suggests that
the dispersion introduced by the nonresonant spectrum

1The global solution, i.e., solution which extends to all radii, is
continuous but not differentiable at r ¼ R.
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obstructs the collapse of very small initial data [10,11]. On
the perturbative level, there are no couplings between
modes for nonresonant eigenfrequencies, as the resonant
system is trivial. Of course, there still could be self-
interactions. However, they merely affect mode phases,
but not their amplitudes. This supports the observation that
no black hole forms, at least not at the timescale ε−2, where
ε → 0 measures the size of the initial perturbation. The
model can be extended to higher dimensions, but the linear
spectrum is resonant in four spacetime dimensions and for
the Dirichlet boundary condition only. The other choices
lead to the asymptotically resonant eigenfrequencies. This
motivates the study of the particular case we consider here,
as it corresponds to the completely resonant spectrum of
scalar perturbations of AdS [1].
Note that a solution to the initial-boundary value

problem introduces corner conditions at the cavity. In order
to guarantee a smooth evolution, certain relations on the
coefficients of the Taylor expansion at the time-like
boundary r ¼ 1 need to be satisfied, see [10]. This, in
turn, restricts permissible initial data. In particular, any
finite combination of eigenfunctions (9) violates these
conditions, as verified in [10]. Therefore, in this work,
we consider initial data with sufficient decay as r → 1 so
that the corner conditions are automatically satisfied.

C. Nonlinear evolution

The solution to the initial-boundary value problem was
already presented in [8,11], see also [10]. Here we briefly
review those results which are essential for the subsequent
analysis.
We solved the Einstein-Scalar field equations and the

resonant system for various “Gaussian-like” initial con-
ditions and observed a similar behavior within this class of
data, i.e., turbulent evolution leading to the growth of the
Ricci scalar and the development of polynomial spectra of
mode energies with a universal exponent.2 For clarity of
presentation, we focus on the particular choice

Φð0;rÞ¼ 0; Πð0;rÞ¼ εexp

�
−64tan2

�
π

2
r

��
; ð11Þ

and we only present the evidence that the instability is
generic by considering also

ϕð0; rÞ ¼ ε expð−ððr − 1Þ−2r−2 − 16ÞÞ;
Φð0; rÞ ¼ ∂rϕð0; rÞ; Πð0; rÞ ¼ ∂rϕð0; rÞ; ð12Þ

see Fig. 10 below. In both cases, ε is a small parameter.

The solution of the initial-boundary value problem (3)–
(6) uses techniques described in detail in [8,10,11], see also
[13]. The code is an improved, and parallelized version
used in [8,10]. It is based on the method of lines with a
fourth-order spatial finite-difference discretization scheme.
For time integration, we take the fourth-order classical
Runge-Kutta method. The time step Δt is adjusted so that
1=6 ≤ Δt=Δre−δmax ≤ 1=3, δmax ≡maxr δðt; rÞ, for fixed
spatial resolution Δr. Typical spatial resolutions vary from
216 to 218 uniform grid points depending on the amplitude
of the initial data (lower amplitudes require finer grid
spacing to resolve steep gradients and for the data to
collapse; the apparent horizon is indicated by the minimum
of the metric function A dropping below 23−k=2 on grids
with 2k points). We add the Kreiss-Oliger type artificial
dissipation to filter out high frequencies. The code was
demonstrated to be fourth-order convergent and highly
accurate in following the solution up to a black hole
formation [10].
By decreasing the magnitude of the initial data, we

observe the onset of instability and eventual formation of an
apparent horizon (AH) at later times.3 The scaling of the
Ricci scalar evaluated at the coordinate origin suggests that
ε−2 is the instability timescale, see Fig. 1. Indeed, the fit to
the AH formation time tAHðεÞ presented in Fig. 2 strongly
suggests that the limit

τAH ≔ lim
ε→0

ε2tAHðεÞ ð13Þ

exists and is finite. For the considered initial data (11), we
find

τAH ≈ 5499.02: ð14Þ

Later, we will see that this limit agrees well with the
prediction obtained from the resonant approximation.
Moreover, to quantify the energy transfer between the

modes and to investigate the solution close to the AH
formation, we rewrite the total mass (7) as the Parseval sum

M ¼
X
j≥0

EjðtÞ; ð15Þ

where

Ej ¼Π2
j þω−2

j Φ2
j ; Φj¼ðA1=2Φje0jÞ; Πj¼ðA1=2ΠjejÞ;

ð16Þ

and Ej can be interpreted as the energy contained in the
linear mode ej. Close to the time of AH formation, we see
the development of a power law spectrum2We expect that there exist initial conditions which belong to

islands of stability spanned by the time-periodic solutions of the
model, constructed in [10]. Such solutions avoid the collapse at
least at the timescale ε−2 [11,12].

3The AH formation is indicated by the metric function A
dropping to zero.
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Ejðt ≈ tAHÞ ∼ j−μ; μ ≈ 6=5; ð17Þ

see Fig. 3. This indicates that the solution loses smoothness
during the collapse. The value of the exponent in (17)
appears universal, independent of an initial perturbation,
for a class of data exhibiting scaling as in (13). We note that
a similar exponent was observed in the AdS4 case [1].
However, the exponent depends both on the spacetime
dimension and on the particular “matter” model [9,13]. Up
to now, there is no satisfactory explanation or derivation of
its value.4

We remark that these results were obtained for the origin
time gauge, where t is the proper time of the centre
observer. We repeated the analysis using the data obtained
for the alternative boundary time gauge in which the time
coordinate t corresponds to the proper time of the observer

located at r ¼ 1. Although defining the AH formation time
is more difficult in that case, due to the redshift effect as the
AH is about to form, we obtained very similar results by
tweaking the threshold for black hole formation. In
particular, the extrapolation as in (13) gives τAH ≈ 5484.59.

III. RESONANT APPROXIMATION

A. Resonant system

The derivation of the resonant approximation closely
follows [4,5]. We start with the standard perturbative
expansion, as in [4,5], but contrary to these works, we
arrive at the resonant system by using multiscale analysis
[15] as it was done in [3].
We start with the perturbative ansatz

ϕðt; rÞ ¼ εϕ1ðt; rÞ þ ε3ϕ3ðt; rÞ þ � � � ; ð18Þ

Aðt; rÞ ¼ 1 − ε2A2ðt; rÞ þ � � � ; ð19Þ

δðt; rÞ ¼ ε2δ2ðt; rÞ þ � � � ; ð20Þ

where ε is a small parameter controlling the size of a
perturbation of flat space ϕ≡ 0, A≡ 1 and δ≡ 0. We plug
in the series (18)–(20) into (3)–(6) expand around ε ¼ 0
and set to zero terms with equal powers of ε. As a result, we
get a sequence of differential equations that we solve order
by order. At the leading order, we find

ϕ̈1 þ Lϕ1 ¼ 0; ð21Þ

cf. (8), thus a generic solution satisfying ϕ1ðt; r ¼ 1Þ ¼ 0
can be written as

ϕ1ðt; rÞ ¼
X
j≥0

cjðtÞejðrÞ; ð22Þ

where

cjðtÞ ¼ αjeiωjt þ ᾱje−iωjt; ð23Þ

FIG. 1. The upper envelope of the Ricci scalar evaluated at the origin for solutions with different sizes of initial perturbation in (11).
The right plot shows the rescaled ε−2Πðε2t; 0Þ2 function.

FIG. 2. The apparent horizon formation time tAH as a function
of the amplitude ε in the initial data (11). The solid line shows
the fit ln tAHðεÞ ¼ −2 ln εþ aþ bε2. From this we find τAH ¼
limε→0 ε

2tAHðεÞ ¼ expðaÞ ≈ 5499.02.

4For the Einstein-Scalar field-AdS model in (dþ 1) spacetime
dimensions the dimensional argument of Bizoń and Rostworowski
[14] predicts the energy spectra Ej ∼ j−ðd−2Þ, but cf. [13] for
another suggestion which is based on numerical results performed
for AdS in different dimensions.
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and αj are constant parameters uniquely determined by the
initial data ϕjt¼0 ¼ εfðrÞ and ∂tϕjt¼0 ¼ εpðrÞ.
At the second order, we get the equations

A0
2 ¼ −

A2

r
þ rððϕ0

1Þ2 þ ð _ϕ1Þ2Þ; ð24Þ

δ02 ¼ −rððϕ0
1Þ2 þ ð _ϕ1Þ2Þ; ð25Þ

with respective solutions

A2ðt; rÞ ¼
1

r

Z
r

0

dss2ðϕ0
1ðt; sÞ2 þ _ϕ1ðt; sÞ2Þ; ð26Þ

δ2ðt; rÞ ¼ −
Z

r

0

dssðϕ0
1ðt; sÞ2 þ _ϕ1ðt; sÞ2Þ: ð27Þ

Combining (24) and (25), we get the identity

A0
2 þ δ02 ¼ −

1

r2

Z
r

0

dss2ðϕ0
1ðt; sÞ2 þ _ϕ1ðt; sÞ2Þ; ð28Þ

which we will use at the later stages of the derivation.
Note that here we use the residual gauge freedom and set

δðt; 0Þ ¼ 0 so that the coordinate time t is the proper time of

the central observer. The gauge δðt; 1Þ ¼ 0 is discussed in
Appendix.
At third order, we find

ϕ̈3 þ Lϕ3 ¼ S3

≡−ðA0
2 þ δ02Þϕ0

1 − ð _A2 þ _δ2Þ _ϕ1 − 2ðA2 þ δ2Þϕ̈1:

ð29Þ

We solve (29) by decomposingϕ3 in terms of eigenbasis (9):

ϕ3ðt; rÞ ¼
X
j≥0

cð3Þj ðtÞejðrÞ; ð30Þ

cf. (22).
Using (30) and projecting (29) onto the mode el we get a

system of coupled differential equations for the mode

coefficients cð3Þl

c̈ð3Þl þ ω2
l c

ð3Þ
l ¼ ðS3jelÞ: ð31Þ

In order to compute the projection in (31), we work out
each term on the right-hand side (rhs) of (31) separately and
combine the results later. We find

ððA0
2 þ δ02Þϕ0

1jelÞ ¼ −
Z

1

0

drr2elðrÞϕ0
1ðt; rÞ

1

r2

Z
r

0

dss2ðϕ0
1ðt; sÞ2 þ _ϕ1ðt; sÞ2Þ

¼ −
X∞
i;j;k¼0

ckðtÞ
Z

1

0

drelðrÞe0kðrÞ
Z

r

0

dss2½ciðtÞcjðtÞe0iðsÞe0jðsÞ þ _ciðtÞ_cjðtÞeiðsÞejðsÞ�; ð32Þ

ð _A2
_ϕ1jelÞ ¼

Z
1

0

drr2elðrÞ _ϕ1ðt; rÞ
1

r

Z
r

0

dss2
�
∂

∂t
ϕ0
1ðt; sÞ2 þ

∂

∂t
_ϕ1ðt; sÞ2

�

¼
X∞
i;j;k¼0

_ckðtÞ
Z

1

0

drrelðrÞekðrÞ
Z

r

0

dss2
�
∂

∂t
ðciðtÞcjðtÞÞe0iðsÞe0jðsÞ þ

∂

∂t
ð_ciðtÞ_cjðtÞÞeiðsÞejðsÞ

�
; ð33Þ

FIG. 3. Left: the time development of the energy spectra during the collapse. As time progresses, the energy (16) is shifted to higher
modes. Right: in the late phases of the evolution, before the AH is detected, the energy exhibits the power law Ej ∼ j−μ. The fit gives
μ ≈ 1.2, which is close to the exponent found in the study of AdS4. We present data with the smallest amplitude considered ε ¼ 4.
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ð_δ2 _ϕ1jelÞ ¼ −
Z

1

0

drr2elðrÞ _ϕ1ðt; rÞ
Z

r

0

dss

�
∂

∂t
ϕ0
1ðt; sÞ2 þ

∂

∂t
_ϕ1ðt; sÞ2

�

¼ −
X∞
i;j;k¼0

_ckðtÞ
Z

1

0

drr2elðrÞekðrÞ
Z

r

0

dss

�
∂

∂t
ðciðtÞcjðtÞÞe0iðsÞe0jðsÞ þ

∂

∂t
ð_ciðtÞ_cjðtÞÞeiðsÞejðsÞ

�
; ð34Þ

ðA2ϕ̈1jelÞ ¼
Z

1

0

drr2elðrÞϕ̈1ðt; rÞ
1

r

Z
r

0

dss2ðϕ0
1ðt; sÞ2 þ _ϕ1ðt; sÞ2Þ

¼
X∞
i;j;k¼0

c̈kðtÞ
Z

1

0

drrelðrÞekðrÞ
Z

r

0

dss2½ciðtÞcjðtÞe0iðsÞe0jðsÞ þ _ciðtÞ_cjðtÞeiðsÞejðsÞ�; ð35Þ

ðδ2ϕ̈1jelÞ ¼ −
Z

1

0

drr2elðrÞϕ̈1ðt; rÞ
Z

r

0

dssðϕ0
1ðt; sÞ2 þ _ϕ1ðt; sÞ2Þ

¼ −
X∞
i;j;k¼0

c̈kðtÞ
Z

1

0

drr2elðrÞekðrÞ
Z

r

0

dss½ciðtÞcjðtÞe0iðsÞe0jðsÞ þ _ciðtÞ_cjðtÞeiðsÞejðsÞ�: ð36Þ

Next, we define different types of integrals appearing in
(32)–(36) as

M�
klij ¼

Z
1

0

drele0k

Z
r

0

dss2e0ie
0
j; ð37Þ

Mklij ¼
Z

1

0

drele0k

Z
r

0

dss2eiej; ð38Þ

K�
klij ¼

Z
1

0

drrelek

Z
r

0

dss2e0ie
0
j; ð39Þ

Kklij ¼
Z

1

0

drrelek

Z
r

0

dss2eiej; ð40Þ

L�
klij ¼

Z
1

0

drr2ekel

Z
r

0

dsse0ie
0
j; ð41Þ

Lklij ¼
Z

1

0

drr2ekel

Z
r

0

dsseiej: ð42Þ

(Note that here and in the following expressions, the
asterisk � does not indicate complex conjugation, all the
integrals are real.) Using this, we find

ðS3jelÞ ¼ −
X
ijk

½−ckcicjM�
klij − ck _ci _cjMklij

þ _ckðcicj _ÞK�
klij þ _ckð_ci _cj _ÞKklij

þ ð−_ckðcicj _ÞL�
klij − _ckð_ci _cj _ÞLklijÞ

þ 2ðc̈kcicjK�
klij þ c̈k _ci _cjKklij

− c̈kcicjL�
klij − c̈k _ci _cjLklijÞ�: ð43Þ

To simplify the source term (43), we make use of the
identities

_ckðcicj _Þ ¼ _cicj _ck þ ci _cj _ck; ð44Þ

_ckð_ci _cj _Þ ¼ −ω2
i ci _cj _ck − ω2

j _cicj _ck; ð45Þ

cicjc̈k ¼ −ω2
kcicjck; ð46Þ

_ci _cjc̈k ¼ −ω2
k _ci _cjck; ð47Þ

and the definition (23) and write

ðS3jelÞ ¼ ðeiðωi−ωj−ωkÞtαiᾱjᾱk þ c:c:ÞOklij

þ ðeiðωiþωj−ωkÞtαiαjᾱk þ c:c:ÞPklij

þ ðeiðωi−ωjþωkÞtαiᾱjαk þ c:c:ÞQklij

þ ðeiðωiþωjþωkÞtαiαjαk þ c:c:ÞRklij; ð48Þ

where we defined

Oklij ¼ ωiωjωkð−ωi þ ωj þ 2ωkÞKklij

þ ωkð−ωi þ ωj þ 2ωkÞK�
klij

þ ωiωjωkðωi − ωj − 2ωkÞLklij

þ ωkðωi − ωj − 2ωkÞL�
klij

þ ωiωjMklij þM�
klij; ð49Þ

Pklij ¼ ωiωjωkðωi þ ωj − 2ωkÞKklij

þ ωkð−ωi − ωj þ 2ωkÞK�
klij

− ωiωjωkðωi þ ωj − 2ωkÞLklij

þ ωkðωi þ ωj − 2ωkÞL�
klij

− ωiωjMklij þM�
klij; ð50Þ
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Qklij ¼ ωiωjωkðωi − ωj þ 2ωkÞKklij

þ ωkðωi − ωj þ 2ωkÞK�
klij

þ ωiωjωkð−ωi þ ωj − 2ωkÞLklij

þ ωkð−ωi þ ωj − 2ωkÞL�
klij

þ ωiωjMklij þM�
klij; ð51Þ

Rklij ¼ −ωiωjωkðωi þ ωj þ 2ωkÞKklij

þ ωkðωi þ ωj þ 2ωkÞK�
klij

þ ωiωjωkðωi þ ωj þ 2ωkÞLklij

− ωkðωi þ ωj þ 2ωkÞL�
klij

− ωiωjMklij þM�
klij: ð52Þ

Renaming the dummy indices i and j in the third and sixth
term, and i and k in the fourth and seventh term, we rewrite
(48) as

ðS3jelÞ ¼
X
ijk

½αiαjαkeiðωiþωjþωkÞtRklij

þᾱiαjαkeið−ωiþωjþωkÞtðOklij þQklji þ PilkjÞ
þαiᾱjᾱkeiðωi−ωj−ωkÞtðOklij þQklji þ PilkjÞ
þᾱiᾱjᾱkeið−ωi−ωj−ωkÞtRklij� ð53Þ

¼
X
ijk

½αiαjαkeiðωiþωjþωkÞtRklij

þᾱiαjαkeið−ωiþωjþωkÞtSklij
þαiᾱjᾱkeiðωi−ωj−ωkÞtSklij
þᾱiᾱjᾱkeið−ωi−ωj−ωkÞtRklij�; ð54Þ

where we introduced

Sklij ≔ Oklij þQklji þ Pilkj: ð55Þ

Now observe that whenever a combination of eigenfre-
quencies satisfies �ωi � ωj � ωk ¼ �ωl and the respec-
tive coefficient in (53) does not vanish, the term is in
resonance with the mode el. This then produces a secular

term in the solution cð3Þl ðtÞ ∼ t and spoils the perturbative
expansion (18)–(20).
We now use multiple-scale analysis [15] to derive the

resonant system. We introduce the “slow time” dependence
τ ¼ ε2t and write

ϕ ¼ ϕðt; τ; rÞ; ð56Þ

similarly for A, δ. We treat τ as an independent variable, so
in particular

∂
2
tϕðt; rÞ → ∂

2
tϕðt; τ; rÞ þ 2ε2∂t∂τϕðt; τ; rÞ þ ε4∂2τϕðt; τ; rÞ:

ð57Þ

Expanding ϕ, A, δ as above, we get the same equations as
before at orders ε and ε2. However, the solution to the
homogeneous equation at the first order of ε is now

ϕ1ðt; τ; rÞ ¼
X
n≥0

ðαnðτÞeiωnt þ ᾱnðτÞe−iωntÞenðrÞ

≡X
n≥0

cnðt; τÞenðrÞ; ð58Þ

cf. (30). At the third order, using (57), we get the equation

ϕ̈3 þ Lϕ3 ¼ −2∂t∂τϕ1 − ðA0
2 þ δ02Þϕ0

1

− ð _A2 þ _δ2Þ _ϕ1 − 2ðA2 þ δ2Þϕ̈1; ð59Þ

which now contains a new term, cf. (29). We project this
equation onto the eigenbasis felg and get the system of
equations

c̈ð3Þl þ ω2
l c

ð3Þ
l ¼ ð−2∂t∂τϕ1 þ S3jelÞ: ð60Þ

To remove the resonant terms, we set the projection of (60)
onto the Fourier mode eiωlt to zero. This yields

Z
2

0

dtð−2∂t∂τϕ1 þ S3jelÞe−iωlt ¼ 0; ð61Þ

which represents a condition on the coefficients αjðτÞ that,
if fulfilled, eliminates secular terms from the solution to
(60). For the first term in (61) we have

Z
2

0

dtð−2∂t∂τϕ1jelÞe−iωlt

¼ −2iωl

Z
2

0

dt

�
d
dτ

αlðτÞeiωlt −
d
dτ

ᾱlðτÞe−iωlt

�
e−iωlt

¼ −4iωl
d
dτ

αlðτÞ: ð62Þ

For the second term in (61), we get

Z
2

0

dtðS3jelÞe−iωlt ¼ 2
X
ijk

½αiαjαkRklijδlþ1;iþ1þjþ1þkþ1

þᾱiαjαkSklijδlþ1;−ðiþ1Þþjþ1þkþ1

þαiᾱjᾱkSklijδlþ1;iþ1−ðjþ1Þ−ðkþ1Þ

þᾱiᾱjᾱkRklijδlþ1;−ðiþ1Þ−ðjþ1Þ−ðkþ1Þ�;
ð63Þ

where we notice that δlþ1;−ðiþ1Þ−ðjþ1Þ−ðkþ1Þ ¼ 0∀ i; j; k;
l ¼ 0; 1;…. Putting (62) and (63) together, (61) becomes
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2iωl
dαl
dτ

¼
Xþþþ

ijk

Rklijαiαjαk þ
X−þþ

ijk

Sklijᾱiαjαk

þ
Xþ−−

ijk

Sklijαiᾱjᾱk; ð64Þ

where we use the following notation for resonant sums:

Xþþþ

ijk

¼
X∞
i;j;k¼0

lþ1¼iþ1þjþ1þkþ1

;
X−þþ

ijk

¼
X∞
i;j;k¼0

lþ1¼−ðiþ1Þþjþ1þkþ1

;

Xþ−−

ijk

¼
X∞
i;j;k¼0

lþ1¼iþ1−ðjþ1Þ−ðkþ1Þ

: ð65Þ

Equation (64) is equivalent to the renormalization flow
equations as derived in [4,5]. To bring (64) to a canonical
form we define

Sþþþ
ijkl ¼ Rklij; Sþþ−

ijkl ¼ Silkj; Sþ−−
ijkl ¼ Sklij: ð66Þ

Then we can write (64) as

2iωl
dαl
dτ

¼
Xþþþ

ijk

Sþþþ
ijkl αiαjαk þ

Xþþ−

ijk

Sþþ−
ijkl αiαjᾱk

þ
Xþ−−

ijk

Sþ−−
ijkl αiᾱjᾱk: ð67Þ

In parallel to studying (67), which we refer to as the full
resonant system, we study the þþ− resonant system,
where we drop the þþþ and þ−− terms from (67).
Thus we consider

2iωl
dαl
dτ

¼
Xþþ−

ijk

Sþþ−
ijkl αiαjᾱk: ð68Þ

Below, we will argue that (68) is a good approximation to
(67) whenever the solution develops a singularity.
Note that both the system (67) and (68) are invariant

under

αlðτÞ → ε−1αlðε−2τÞ; ð69Þ

thus a single solution allows us to conclude about the
behavior of solutions in the limit ε → 0. A comparison with
the solution of the Einstein-Scalar field system suggests
that the resonant approach provides a good approximation
on the timescale Oðε−2Þ. The details are presented in
Sec. IV.
It is convenient to rewrite the þþ− sum, and in

particular the system (68), as [5]

2iωl
dαl
dτ

¼ Tljαlj2αl þ
X
i≠l

Riljαij2αl þ
Xþþ−

ijk

0Sþþ−
ijkl αiαjᾱk;

ð70Þ

where

Tl ¼ Sþþ−
llll ; Ril ¼ Sþþ−

ilil þ Sþþ−
liil ; ð71Þ

and the primed sum is

X0þþ−

ijk

¼
X
ijkl|{z}

iþj−k¼l
i≠k∧i≠l

: ð72Þ

B. Interaction coefficients

Evaluating the integrals (37)–(42) (some of which need
to be computed for several special cases) and using the
definitions (49)–(52) and (55), we obtain an explicit form
of the interaction coefficients. For the resonant combination
þþ− we get

Ti ¼ ω4
i ð8Cið2ωiÞ − 8 log ð2ωiÞ − 8γ þ 20Þ þ 10ω3

i ðSið4ωiÞ − 2Sið2ωiÞÞ; ð73Þ

Ril ¼ −4ω2
iω

2
l ð−2Cið2ωiÞ þ 2 logðωiÞ þ 2γ − 5þ logð4ÞÞ þ 8ωlð2ω4

l − ðω2
i − ω2

l Þ2ÞSið2ωlÞ
ω2
i − ω2

l

−
8ωið2ω4

i − ðω2
i − ω2

l Þ2ÞSið2ωiÞ
ω2
i − ω2

l

þ 2ððωi − ωlÞ4 þ ðω2
i þ ω2

l Þ2ÞSið2ðωi − ωlÞÞ
ωi − ωl

þ 2ððωi þ ωlÞ4 þ ðω2
i þ ω2

l Þ2ÞSið2ðωi þ ωlÞÞ
ωi þ ωl

; ð74Þ

recall (71), and for k ¼ iþ j − l with i ≠ l ∧ j ≠ l we find
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Sþþ−
ijkl ¼ 2ðω2

i þ ω2
l Þð−2ωlðωi þ ωjÞ þ 2ωiωj þ ω2

i þ 2ω2
j þ ω2

l ÞSið2ðωi − ωlÞÞ
ωi − ωl

þ
�
2ω2

l ðω2
i þ ω2

jÞ
ωi þ ωj

− 2ωlðω2
i þ ω2

jÞ þ 2ðωi þ ωjÞðωiωj þ ω2
i þ ω2

jÞ
�
Sið2ðωi þ ωjÞÞ

þ Sið2ωlÞ
�
2ωjω

2
l ð3ωi þ 2ωjÞ
ωi þ ωj

þ 4ω2
iω

2
j

ωi − ωl
− 4ωiω

2
j − 4ω2

jωl − 2ω3
l

�

þ 2ω2
jSið2ωjÞ

�
ωl

�
−

ωl

ωi þ ωj
þ 2ωi

ωi − ωl
þ 1

�
− ωj

�

−
2ðωi þ ωj − ωlÞ2ðωiðω2

j þ ω2
l Þ þ ω2

iωj þ ω3
i þ ωjωlðωl − ωjÞÞSið2ðωi þ ωj − ωlÞÞ

ðωi þ ωjÞðωi − ωlÞ

þ 2ω2
i Sið2ωiÞ

�
−

ω2
l

ωi þ ωj
þ 2ωj

�
ωj

ωl − ωi
− 1

�
− ωi þ ωl

�
þ 2ðωj − ωlÞ3Sið2ðωj − ωlÞÞ: ð75Þ

For the resonant combination k ¼ i − j − l − 2, we get

Sþ−−
ijkl ¼ −

2ðω2
i þ ω2

jÞð2ωlðωj − ωiÞ þ ðωi − ωjÞ2 þ 2ω2
l ÞSið2ωi − 2ωjÞ

ωi − ωj

þ 2Sið2ωlÞ
�
ωjω

2
l ð3ωi − ωjÞ
ωi − ωj

þ ω2
iω

2
j

ωl − ωi
þ ωiω

2
j þ ω2

jωl þ ω3
l

�

þ 2ω2
i Sið2ωiÞ

�
ωj

�
ωj

ωi − ωl
− 1

�
þ 2ωl

�
ωl

ωi − ωj
− 1

�
þ ωi

�

þ 2ω2
jSið2ωjÞ

�
ωl

�
2ωl

ωj − ωi
þ ωi

ωi − ωl
þ 2

�
þ ωj

�

þ 2ð−ωi þ ωj þ ωlÞ2ðωiðω2
j þ ω2

l Þ − ω2
iωl þ ω3

i − ωjωlðωj þ ωlÞÞSið2ωi − 2ωj − 2ωlÞ
ðωi − ωjÞðωi − ωlÞ

þ 2

�
ω2
i

�
2ω2

j

ωl − ωi
þ ωj þ 2ωl

�
þ ωiðω2

j − 2ω2
l Þ − ω3

i þ ωlðωjωl þ ω2
j þ ω2

l Þ
�
Sið2ωi − 2ωlÞ

− 2ðωj þ ωlÞ3Sið2ðωj þ ωlÞÞ; ð76Þ

(note that both i ¼ j and i ¼ l are excluded by the þ − − resonant condition), whereas for k ¼ l − i − j − 2 we have

Sþþþ
ijkl ¼ 2

3
ω2
l Sið2ωlÞ

�
ωl −

3ωiωj

ωi þ ωj

�
þ
�
−
2ω2

l ðω2
i þ ω2

jÞ
ωi þ ωj

þ 2ωlðω2
i þ ω2

jÞ −
2

3
ðω3

i þ ω3
jÞ
�
Sið2ðωi þ ωjÞÞ

þ 2ðωi þ ωj − ωlÞ2ð−ωiðωj þ ωlÞ þ ω2
i þ ωjðωj − ωlÞÞSið2ðωi þ ωj − ωlÞÞ

3ðωi þ ωjÞ

þ 2

3
ω2
i Sið2ωiÞ

�
3ωl

�
ωl

ωi þ ωj
− 1

�
þ ωi

�
þ 2

3
ω2
jSið2ωjÞ

�
3ωl

�
ωl

ωi þ ωj
− 1

�
þ ωj

�

−
2

3
ðωi − ωlÞ3Sið2ωi − 2ωlÞ −

2

3
ðωj − ωlÞ3Sið2ωj − 2ωlÞ: ð77Þ

The functions Si and Ci appearing in (73)–(77) are the trigonometric integrals [16], Sec. 6.2(ii)

SiðxÞ ¼
Z

x

0

sin y
y

dy; CiðxÞ ¼ −
Z

∞

x

cos y
y

dy: ð78Þ

and γ is the Euler-Mascheroni constant [16], Sec. 5.2(ii).
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The explicit evaluation of (76)–(77) shows that the þ−−
and þþþ terms are generically nonzero, as opposed to the
AdS case [4,5], where they vanish as a result of the high
symmetry of the background geometry. As a consequence,
the additional terms in the equation (67) in combination
with the specific symmetry of interaction coefficients with
respect to a permutation of indices, influence the set of
(known) integrals of motion of the resonant system (67)
and (68). This is different from the asymptotically AdS
case, where the additional terms are absent and the
coefficients have a different symmetry [2].

C. Conserved quantities

We split the discussion of conserved quantities into two
types of resonant systems: the full resonant system (67) and
the þþ− system (68).

1. The ++− resonant system

In the following, we prove that E ¼ P
i ω

2
i jαij2 is

constant along the flow generated by (68). Using the
product rule and inserting (70), we find

d
dτ

E ¼
X
l

ω2
l ð _αlᾱl þ αl _̄αlÞ

¼ 1

2i

X
l

ωl

Xþþ−

ijk

0Sþþ−
ijkl ðαiαjᾱkᾱl − ᾱiᾱjαkαlÞ

¼ 1

4i

X
l

Xþþ−

ijk

0ðSþþ−
ijkl ωl þ Sþþ−

ijlk ωkÞ

× ðαiαjᾱkᾱl − ᾱiᾱjαkαlÞ; ð79Þ

where in the second step, we note that the Tl and Ril terms
cancel out, leaving only the primed sum (72). In the last
step, we used the symmetry of the α term with respect to the
indices k and l. Next, using the identity

Sþþ−
ijkl ¼ Sþþ−

jilk ; iþ j−k¼ l; i≠ l; j≠ l; ð80Þ

we rewrite the sum as

d
dτ
E¼ 1

4i

X
l

X0þþ−

ijk

ðSþþ−
ijkl ωlþSþþ−

jikl ωkÞðαiαjᾱkᾱl− ᾱiᾱjαkαlÞ

¼ 1

4i

X
l

X0þþ−

ijk

Sþþ−
ijkl ðωlþωkÞðαiαjᾱkᾱl− ᾱiᾱjαkαlÞ;

ð81Þ

where in the last step, we used the permutation of indices
i ↔ j in Sþþ−

jikl and the symmetry of the α term to factorize
the Sþþ−

ijkl . In the next step, we use another identity satisfied
by the interaction coefficients, namely

Sþþ−
ijkl ¼ Sþþ−

klij ; iþ j−k¼ l; i≠ l; j≠ l: ð82Þ

It follows that the product Sþþ−
ijkl ðωl þ ωkÞ is symmetric

under the pair interchange ði; jÞ ↔ ðk; lÞ, when restricted
to the resonant combination under the primed sum. Since
the α term is antisymmetric under this transformation, the
contraction in (81) vanishes, and we have

d
dτ

E ¼ 0: ð83Þ

In a similar way, we show that J ¼ P
iωijαij2 is

conserved. We have

d
dτ

J ¼
X
l

ðωl _αlᾱl þ ωlαl _̄αlÞ

¼ 1

2i

X
l

X0þþ−

ijk

Sþþ−
ijkl ðαiαjᾱkᾱl − ᾱiᾱjαkαlÞ; ð84Þ

since the Tl and Ril terms cancel and the remaining sum is
(72), as in the proof of _E ¼ 0. Because of the symmetry
(82) of the coefficients Sþþ−

ijkl under the pair interchange
ði; jÞ ↔ ðk; lÞ for the resonant condition iþ j − k ¼ l with
i ≠ k ∧ i ≠ l, the contraction in (84) vanishes, so

d
dτ

J ¼ 0: ð85Þ

Next, we look for another conserved quantity. First, we
define

V ¼
X
l

Xþþ−

ijk

Sþþ−
ijkl αiαjᾱkᾱl

¼
X
l

Tljαlj2jαlj2 þ
X
l

X
i≠l

Riljαij2jαlj2

þ
X
l

X0þþ−

ijk

Sþþ−
ijkl αiαjᾱkᾱl: ð86Þ

Taking the derivative of V with respect to ᾱn, we find

∂V
∂ᾱn

¼ 2Tnjαnj2αn þ
X
i≠n

ðRin þ RniÞjαij2αn

þ
X0þþ−

ijk

ðSþþ−
ijkn þ Sþþ−

ijnk Þαiαjᾱk

¼ 2Tnjαnj2αn þ
X
i≠n

ðRin þ RniÞjαij2αn

þ 2
X0þþ−

ijk

Sþþ−
ijkn αiαjᾱk; ð87Þ
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where we used (82) and the symmetry of the α term to
factor out Sþþ−

ijkn . Next, introducing

RA
il ¼

1

2
ðRil − RliÞ; ð88Þ

we rewrite (87) as

∂V
∂ᾱn

¼ 2Tnjαnj2αn þ 2
X
i≠n

Rinjαij2αn þ 2
X0þþ−

ijk

Sþþ−
ijkn αiαjᾱk

− 2
X
i

RA
injαij2αn; ð89Þ

note RA
ii ¼ 0. Therefore, using the equation of motion (68),

we can write

1

2

∂V
∂ᾱl

¼ 2iωl _αl −
X
i

RA
iljαij2αl: ð90Þ

Next, we compute the time derivative of V. By using (90)
and its complex conjugate, we obtain

dV
dτ

¼
X
j

�
∂V
∂αj

_αjþ
∂V
∂ᾱj

_̄αj

�
¼−2

X
ij

RA
ijjαij2

d
dτ

jαjj2: ð91Þ

An explicit calculation using the formulas in Sec. III B
gives

RA
ij¼ω2

j Ṽi−ω2
i Ṽj; Ṽi ¼ 4ω2

i ðCið2ωiÞ− logωiÞ: ð92Þ

This, in turn, allows us to rewrite (91) as

dV
dτ

¼ −2
X
ij

ðω2
j Ṽi −ω2

i ṼjÞjαij2
d
dτ

jαjj2

¼ −2
X
ij

Ṽijαij2
d
dτ

ðω2
j jαjj2Þ þ 2

X
ij

ω2
i jαij2

d
dτ

ðṼjjαjj2Þ

¼ −2
X
i

Ṽijαij2
d
dτ

Eþ 2E
d
dτ

X
j

Ṽjjαjj2: ð93Þ

Since E is conserved, we conclude

d
dτ

�
V − 2E

X
j

Ṽjjαjj2
�

¼ 0: ð94Þ

Thus, we find the third conserved quantity H of the
system (68):

H ¼ 1

2
V − E

X
j

Ṽjjαjj2; ð95Þ

analogous to the asymptotically AdS case [5].

In summary, although the coefficients in the system (68)
do not share the same symmetries as the coefficients in the
corresponding resonant system for scalar perturbations of
AdS, we find that the þþ− system has (at least) three
conserved quantities. However, as the coefficients Sþþ−

ijkl do
not satisfy the required conditions, the additional quantity
found to be conserved in the case of AdS [17] is not
preserved along the flow generated by (68).

2. The full resonant system

Due to the presence of the þþþ and þ−− terms, the
sum J is no longer preserved by the flow (67). However, the
full resonant system has at least two conserved quantities:
E and a generalization of (93), as will be demonstrated
below. The derivation builds on the analysis of the þþ−
system.
First, we show that E ¼ P

i ω
2
i jαij2 is conserved. Using

(67) and its complex conjugate, we rewrite the time
derivative of E as

d
dτ

E ¼
X
l

ω2
l ð _αlᾱl þ αl _̄αlÞ

¼ −
i
2

�Xþþþ

ijkl

ωlS
þþþ
ijkl ðαiαjαkᾱl − ᾱiᾱjᾱkαlÞ

þ
Xþþ−

ijkl

ωlS
þþ−
ijkl ðαiαjᾱkᾱl − ᾱiᾱjαkαlÞ

þ
Xþ−−

ijkl

ωlS
þ−−
ijkl ðαiᾱjᾱkᾱl − ᾱiαjαkαlÞ

�
: ð96Þ

The middle sum vanishes, as was demonstrated for the
þþ− system. We rewrite the þ−− term so that it can be
combined with the þþþ term. We have

Xþ−−

ijkl

ωlS
þ−−
ijkl ðαiᾱjᾱkᾱl − ᾱiαjαkαlÞ

¼
X
ijkl

l−j−k−2¼i

ωiS
þ−−
ljki ðᾱiᾱjᾱkαl − αiαjαkᾱlÞ

¼
Xþþþ

ijkl

ωiS
þ−−
ljki ðᾱiᾱjᾱkαl − αiαjαkᾱlÞ; ð97Þ

where by using the permutation i ↔ l, we obtained the
þþþ resonant condition within the sum. Under this
manipulation, both the þþþ and þ−− sums in (96)
contain the same resonant condition, thus they can be
put together. This way, we get
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2i
d
dτ

E ¼
Xþþþ

ijkl

ωlS
þþþ
ijkl ðαiαjαkᾱl − ᾱiᾱjᾱkαlÞ þ

Xþ−−

ijkl

ωlS
þ−−
ijkl ðαiᾱjᾱkᾱl − ᾱiαjαkαlÞ

¼
Xþþþ

ijkl

ωlS
þþþ
ijkl ðαiαjαkᾱl − ᾱiᾱjᾱkαlÞ þ

Xþþþ

ijkl

ωiS
þ−−
ljki ðᾱiᾱjᾱkαl − αiαjαkᾱlÞ

¼
Xþþþ

ijkl

ðωlS
þþþ
ijkl − ωiS

þ−−
ljki Þðαiαjαkᾱl − ᾱiᾱjᾱkαlÞ: ð98Þ

Using the fact that we can permute the summation indices i,
j, k in this sum, we can rewrite (98) as

2i
d
dτ

E ¼
Xþþþ

ijkl

Wijklðαiαjαkᾱl − ᾱiᾱjᾱkαlÞ; ð99Þ

where

Wijkl ¼
ωl

3
ðSþþþ

ijkl þ Sþþþ
jikl þ Sþþþ

kjil Þ

−
1

3
ðωiS

þ−−
ljki þ ωjS

þ−−
likj þ ωkS

þ−−
ljik Þ: ð100Þ

From the property of Wijkl

Wijkl ¼ −Wikjl; ð101Þ

which holds for iþ jþ kþ 2 ¼ l, we get

d
dτ

E ¼ 0: ð102Þ

Next, we look for a conserved quantity H analogous to
the þþ− system. We define

X ¼
Xþþþ

ijkl

Sþþþ
ijkl αiαjαkᾱl; ð103Þ

and

Z ¼
Xþ−−

ijkl

Sþ−−
ijkl αiᾱjᾱkᾱl: ð104Þ

Then

∂X
∂ᾱn

¼
Xþþþ

ijk

Sþþþ
ijkn αiαjαk; ð105Þ

and

∂Z
∂ᾱn

¼
Xþ−−

ijk

ðSþ−−
ijkn þ Sþ−−

ijnk þ Sþ−−
inkj Þαiᾱjᾱk: ð106Þ

Using the symmetry of the α factor in (106), we have

∂Z
∂ᾱn

¼
Xþ−−

ijk

�
Sþ−−
ijkn þ1

2
ðSþ−−

ijnk þSþ−−
iknj þSþ−−

inkj þSþ−−
injk Þ

�
αiᾱjᾱk:

ð107Þ
Now we use the identity for Sþ−−

ijkl

0¼Sþ−−
ijkl þSþ−−

ikjl −
1

2
ðSþ−−

ijlk þSþ−−
iklj þSþ−−

ilkj þSþ−−
iljk Þ; ð108Þ

for i − j − k − 2 ¼ l to rewrite (106) as

∂Z
∂ᾱn

¼ 3
Xþ−−

ijk

Sþ−−
ijkn αiᾱjᾱk: ð109Þ

Using X, Z, and the result for V derived in (89), we can
rewrite the resonant system (67) as

2iωl _αl ¼
∂W
∂ᾱl

þ
X
i

RA
iljαijαl; ð110Þ

where we defined

W ¼ X þ 1

2
V þ 1

3
Z: ð111Þ

Following the same steps as in the derivation of H for the
þþ− system, we show

d
dτ

W ¼ −
X
ij

RA
ijjαij2

d
dτ

jαjj2; ð112Þ

cf. (91). From the explicit form of RA
il given in (92) and the

constancy of E, it then follows that

H ¼ W − E
X
j

Ṽjjαjj2; ð113Þ

is conserved. We note that by dropping the Sþþþ and Sþ−−,
which amounts to setting X ¼ 0 ¼ Z in (113), we recover
the formula (95) for the þþ− system.
Remark: below we propose an alternative expression for

computing (113), i.e.,
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H ¼ 1

2
ReðX þ V þ ZÞ − E

X
j

Ṽjjαjj2: ð114Þ

To show that these definitions agree, we need the result

X −
1

3
Z̄ ¼ 0; ð115Þ

which we prove below. Using the definitions (103)–(104),
we have

X −
1

3
Z̄ ¼

Xþþþ

ijkl

Sþþþ
ijkl αiαjαkᾱl −

1

3

Xþ−−

ijkl

Sþ−−
ijkl ᾱiαjαkαl

¼
Xþþþ

ijkl

�
Sþþþ
ijkl −

1

3
Sþ−−
ijkl

�
αiαjαkᾱl; ð116Þ

where we used the renaming of indices i ↔ l to factor out
the product of α’s. Note that theþ−− becomes þþþ then.
Defining

Uijkl ¼ Sþþþ
ijkl −

1

3
Sþ−−
ijkl ; ð117Þ

we rewrite (116) as

X −
1

3
Z̄ ¼

Xþþþ

ijkl

UðijkÞlαiαjαkᾱl: ð118Þ

From UðijkÞl ¼ 0, the vanishing of (115) follows immedi-
ately. Moreover, from (115), we get

Xþ1

3
Z−

�
X̄þ1

3
Z̄

�
¼X−

1

3
Z̄−

�
X̄−

1

3
Z

�
¼ 0; ð119Þ

so

X þ 1

3
Z ∈ R: ð120Þ

We also have

Re

�
X −

1

3
Z

�
¼ 1

2

�
X −

1

3
Z þ X̄ −

1

3
Z̄

�

¼ 1

2

�
X −

1

3
Z̄ þ

�
X −

1

3
Z̄

��
¼ 0: ð121Þ

Now, subtracting (113) from (114), we obtain

�
1

2
ReðX þ V þ ZÞ − E

X
j

Ṽjjαjj2
�

−
�
X þ 1

2
V þ 1

3
Z − E

X
j

Ṽjjαjj2
�

¼ 1

2
ReðX þ ZÞ −

�
X þ 1

3
Z

�
: ð122Þ

Using (120) and (121), one shows that the difference in
(122) vanishes. Consequently, the definitions (113) and
(114) agree. Using (114) instead of (113) in numerical
calculations has a great advantage, since the first term in the
expression can be efficiently computed as a dot product of
αl and dαl=dτ. Additionally, this way of computing H
reduces the rounding errors, which usually get large at late
times of the evolution of singular solutions.
The discussionof conservedquantitieswas independent of

the residual gauge choice, which does not affect the sym-
metries of the interaction coefficients used in the analysis. It
follows that the same functional form of the conserved
quantities holds both in the origin gauge δðt; r ¼ 0Þ ¼ 0 and
the boundary gauge δðt; r ¼ 1Þ ¼ 0. The boundary time
gauge is discussed in Appendix.
We note that in the boundary time gauge, where the

resonant system is Hamiltonian, the conserved quantities E,
J (for the þþ− system only) and H follow from the
respective symmetries (θ; τ0 ∈ R)

αlðτÞ → eilθαlðτÞ; αlðτÞ → eiθαlðτÞ;
αlðτÞ → αlðτ − τ0Þ: ð123Þ

The extra resonant terms present in the full resonant system
are responsible for the lack of the global phase shift
symmetry αlðτÞ → eiθαlðτÞ, from which it follows that J
is not conserved by the flow (67).

IV. RESULTS

A. Numerical solution

We truncate the system (67), i.e., we solve it for the first
N modes, thus the state vector is fαigi¼0;…;N−1, and the
sums on the rhs are truncated accordingly. We point out that
due to the structure of the equations in (67), the numerical
solution of the resonant system poses several difficulties.
Although the interaction coefficients are explicit in the case
at hand (this fact makes the system particularly interesting
from the theoretical point of view) and their computation is
not particularly involved,5 the time integration of large
systems is a limiting factor, particularly in the boundary
time gauge, see Appendix. The truncation should be
sufficiently large so that the errors do not spoil the

5To evaluate the functions (78) we use a variant of the
algorithm proposed in [18].
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numerical solution. In practice, however, N cannot be too
big, as then computations quickly become very expensive.
The memory required to store the interaction coefficients is
OðN3Þ, while the number of floating point operations is
OðN4Þ (computing the rhs requires OðN3Þ operations
whereas the integration time step should be OðN−1Þ to
accurately resolve rapid oscillations of highest modes,
cf. Eq. (133) below).
In choosing N, we make a compromise between the

computational cost and the truncation errors. We carefully
tested our results so that the artefacts were minimized. We
drop roughly half of the highest modes from the analysis,
and we make sure that we do not consider data correspond-
ing to the integration past the singularity formation. As it
turns out, the systems we studied were still too small to
reach conclusive answers (see the discussion below).
Therefore the analysis presented below, which aims at
understanding the singular solution, is less rigorous than
the content of the preceding sections.
We consider the initial conditions corresponding to the

initial values used for the Einstein equations6 in Eq. (11).
We note in passing that the data consisting of a finite
number of modes (e.g., the two-mode initial data consid-
ered in [6]) would lead to a nonsmooth solution for the
Einstein-Scalar field system due to the violation of the
corner conditions mentioned in Sec. II B. Therefore, we do
not discuss such configurations here. Nevertheless, we
observe a similar singular evolution for initial configura-
tions consisting of the two lowest modes with equal energy
(16), and no singular solution when a significant portion of
the energy is concentrated in one of the initially excited
modes, in accordance with similar experiments in the AdS
case. Due to the extra resonant interactions, for one-mode

initial data, other modes get excited in the evolution [10].
This is contrary to theþþ− system, where a single mode is
a solution to the resonant system. However, such data also
does not lead to a singular evolution. Instead, it may be
considered as a perturbation of a time-periodic solution
bifurcating from the corresponding eigenfrequency [10].
It is convenient to analyze the solutions in terms of the

mode amplitudes Al and phases Bl defined by

αlðτÞ ¼ AlðτÞeiBlðτÞ: ð124Þ

As in [6], we see a steady, monotonic growth of amplitudes
and almost immediate synchronization of phases, i.e.,
BlðτÞ ∼ l. For later times, we observe that the synchroni-
zation of phases persists, and at the same time, the
frequency of oscillations increases during the evolution.
Although not so strong as for the AdS5 case [6,7], the
growth of BlðτÞ with increasing τ is noticeable. At the same
time the amplitudes of higher modes get substantially
excited, see Fig. 4, and at later times a polynomial tail
unfolds, i.e., for l ≫ 1 we have Al ∼ l−β with a universal
exponent β > 0, see Fig. 5. This asymptotic solution is
analyzed in detail in the next section.
Interestingly, it turns out that in the evolution of initial

data leading to a singular solution, the þþþ and þ−−
resonances are subdominant, whereas the þþ− resonances
largely determine the evolution.7 We illustrate this in Fig. 6
where we compare the magnitudes of the sums þþþ,
þþ− and þ−− appearing on the rhs of (67) during the
evolution. The dominant role of the þþ− resonance is
evident. Almost from the very beginning, the evolution is
driven by this resonant term. On the scale of the plot, the
two lines corresponding to the þþ− term and the rhs of
(67) are indistinguishable. This strongly suggests that both

FIG. 4. Time evolution of sample modes. We observe qualitatively similar behavior for other modes. The frequency increases linearly
with the mode index.

6Modulo the rescaling (69), which is introduced so that the
integration interval of the resonant system equations is not too
large; the scaling is then adjusted when producing plots and
comparing with the solution to the Einstein-Scalar field system.

7All resonant terms are essential for initial data that does not
evolve toward a singular solution, e.g., single-mode initial data.

JOËL KURZWEIL and MACIEJ MALIBORSKI PHYS. REV. D 106, 124020 (2022)

124020-14



the full resonant system (67) and the þþ− system (68)
have singular solutions and that the latter serves as a good
approximation to the former.
To further test this hypothesis, we independently evolved

the same initial data using the þþ− system (68). The
detailed comparison with the full system is presented in
Fig. 7. Although the significance of the extra resonances is
clearly observable at the early stages of the evolution, this is
not the case at later times when the solutions are close to

one another in the configuration space fαigi¼0;…;N−1.
Therefore in the following analysis of the asymptotic
solution, we focus on the þþ− system (68).

B. Asymptotic solution

First, we rewrite the system (68) using amplitudes Al and
phases Bl introduced in (124). Then, the complex system
(70) is equivalent to the set of real equations

FIG. 5. Typical behavior of mode amplitudes Al ¼ jαlj and the phase derivatives _Bl ¼ ℑð _αl=jαljÞ for initial data experiencing singular
behavior. The slope of the amplitude spectra decreases monotonically with τ. At later times, before the effects of truncation of the
resonant system become visible, the spectrum unfolds a polynomial tail Al ∼ l−β. The phases get synchronized, i.e., Bl ∼ l, almost
immediately and stay so for all times. Time is color coded and increases from bluish to reddish colors.

FIG. 6. Snapshots from the evolution of the full resonant system. We plot the absolute value of time derivatives of αl, i.e., the rhs of
Eq. (67) and compare it to the magnitude of each sum corresponding to a different resonant combination. Clearly, the rhs is dominated
by the þþ− term as the blue (dαl=dτ) and yellow (þþ−) lines are indistinguishable on the scale of the plot. This is especially evident
close to the time when the polynomial spectrum develops, where the contribution from the other resonant interactionsþþþ andþ−− is
two orders of magnitude smaller.
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2ωl
d
dτ

Al¼
X
ijk

0Sþþ−
ijkl AiAjAk sinðBiþBj−Bk−BlÞ; ð125Þ

−2ωl
d
dτ

Bl ¼ TlA2
l þ

X
i≠l

RilA2
i

þ
X
ijk

0Sþþ−
ijkl AiAjAk cos ðBi þ Bj − Bk − BlÞ:

ð126Þ
To analyze the asymptotic solution, we use the analyticity
strip method [19,20]. This amounts to writing the asymp-
totic ansatz for the amplitudes

AlðτÞ ∼ l−βðτÞe−ρðτÞl; l ≫ 1: ð127Þ

Fits to the numerical data predict that the analyticity radius
ρðτÞ tends to zero in some finite time τ�, which indicates
that the solution of the resonant system (68) becomes
singular at τ�. Increasing the truncation parameter N, we
observe a tendency for both β and τ� to grow and to
approach limiting values. The run with the largest trunca-
tion of N ¼ 2048 modes gives β ∈ ð1.55; 1.58Þ and
τ� ∈ ð5491; 5523Þ, values close to the numbers read off
from the solution of the Einstein-Scalar field system,
cf. (17) and (14).
The difficulty in determining the value of β and the

precise location of the singularity τ� from the amplitude

spectrum is caused by a combination of the fitting errors
(fits are sensitive to the fitting interval) and the truncation
error. In this model, we observe a slow convergence of the
truncated resonant system to its infinite version, see [7] for
a similar observation in the AdS4 case. To minimize the
systematic error, we only consider fitting intervals where
the variation of the result is minimal and the truncation
effects are the smallest (e.g., the right endpoint of the fitting
interval is not higher than N=2 for an N mode truncation).
Following [19] (see also [7]) we study the time evolution

of frequencies of the singular solution, assuming for τ ≲ τ�
the asymptotic form (127) with ρðτÞ ¼ ρ0ðτ� − τÞ, ρ0 > 0.
To find the asymptotic behavior of dBl=dτ as τ → τ�, we
drop the first term and the last sum in (126) (i.e., the
subdominant terms), and we consider:

−2ωl
dBl

dτ
≈
X
i≠l

RilA2
i : ð128Þ

Using the large argument expansion of the trigonometric
integrals (78), we find

Sið2ωlÞ ¼
π

2
−

1

2πl
þ 1

2πl2
þOðl−3Þ;

Cið2ωlÞ ¼ −
1

4π2l2
þOðl−3Þ; ð129Þ

for large mode numbers l ∈ N. From this, we get the
asymptotic form of (74)

FIG. 7. Comparison of the solutions of the full resonant system (67) and the þþ− system (68). Both solutions start with the same
initial data. The amplitudes jαlj of the two solutions agree so well that the blue (full) and orange (þþ−) lines coincide on the scale of the
plot, especially at late times. Although significant differences in the initial stage of the evolution are visible on the plots of cosBl and
time derivatives of phases dBl=dτ, the solutions eventually get close to each other.
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Ril ≈ l2ðr5=2i2 log iþ r2i2 þ r3=2i log iþ r1iÞ; ð130Þ

where rkðlÞ ¼ xk þ yk=lþOðl−2Þ, and xk, yk are con-
stants. Then the sum in (128) can be computed using the
ansatz (127). For large l, we get

dBl

dτ
≈ l½c1∂βLi2β−2ðe−2ρÞ þ c2Li2β−2ðe−2ρÞ
þ c3∂βLi2β−1ðe−2ρÞ þ c4Li2β−1ðe−2ρÞ�; ð131Þ

where LisðzÞ is the polylogarithm function [16], and the
ci’s are functions of l only, as follows from (130). From
the asymptotic behavior Bl ∼ l we get that Bi þ Bj − Bk −
Bl ≈ 0 for the þþ− resonant condition and also the
consistency of the ansatz (127), since then both sides of
Eq. (125) scale as l2−β for l → ∞.
The leading order behavior of the polylogarithm func-

tions appearing in (131) for ρ → 0 is

∂βLi2β−2ðe−2ρÞ ∼
�
ρ2β−3 log ρ; β < 3=2log2ρ;

β ¼ 3=21; β > 3=2
;

Li2β−2ðe−2ρÞ ∼
�
ρ2β−3; β < 3=2 log ρ;

β ¼ 3=21; β > 3=2
ð132Þ

while both ∂βLi2β−1ðe−2ρÞ and Li2β−1ðe−2ρÞ stay finite at
ρ ¼ 0. Together, (131) and (132) imply the blowup of
dBl=dτ for β ≤ 3=2 and the divergence of higher order
derivatives as ρ → 0, both for β ≤ 3=2 and β > 3=2.8

As fitting the formula (131) to the numerical data is
particularly difficult (as depending on the fitting interval
and the starting values, the fitting procedure does not
converge, or the fits would not be unique), determining the
precise value of β from dBl=dτ was not reliable (although
we consistently obtained a value of β > 3=2 for large l).
Therefore we followed a different strategy.
We fix the exponent to a value consistent with the energy

spectrum Ejðt ≈ tAHÞ ∼ j−6=5 observed prior to the AH
formation in the Einstein-Scalar field system,9 i.e., we set
β ¼ 8=5 and fit the remaining parameters. In this case,
we obtain the following leading order behavior for ρ → 0
from (131):

dBl

dτ
≈ alðρþ b1ρ1=5 þ b2ρ1=5 log ρÞ;

⇒
d2Bl

dτ2
∼ ρ−4=5 log ρ; ð133Þ

where a and the bi’s are constant. This predicts, blowup of
higher order derivatives of Bl at τ�, while the phases stay

finite at the singularity. To test this prediction, we fitted
(133) to the numerical data for several different modes and
obtained good agreement, see Fig. 8 for a representative
result. However, fixing β to other values close to 8=5, e.g.,
within the range (1.55, 1.58) suggested by the amplitude
spectra analysis, we get fits which do not vary considerably.
Thus, instead of focusing on a fixed mode, we look at the
dependence of the fitting parameters in (4) on the mode
number. It turns out that the variation of the overall
amplitude a, the coefficient ρ0, and the blowup time τ�
with respect to l is relatively small (smaller than for other
values of β considered), cf. Fig. 9, which further validates
the approximation (133). Moreover, the value of β ¼ 8=5 is
also favored by the analogous analysis of the system in
boundary time gauge, discussion of which is delegated to
the Appendix.
We remark that if β > 3=2 were the exponent of the

asymptotic solution, then the prediction that the phases
remain finite at τ�, as follows from Eqs. (131) and (132)
(and also Eq. (133) as the special case for β ¼ 8=5), would
imply that the resonant approximation should be valid up to
the time of the AH formation. Thus, there is no contra-
diction as in AdS5, where the unbounded frequency growth
is in tension with the resonant approximation,10 despite the
fact that the numerical data obtained from the approxima-
tion agreed with the nonlinear results [6]. The hypothesis
that the perturbative approach provides a good approxi-
mation up to the time of black hole horizon formation is
supported in Fig. 10, where we compare the resonant
approximation with the solution of the Einstein-Scalar field
system. Similarly to the AdS4 case [7], the convergence
with increasing truncation N is relatively slow compared to
AdS in higher dimensions. However, the curves appear to
approach a limiting solution that agrees with the rescaled

FIG. 8. The asymptotic fit (133) for the sample mode l ¼ 384.
The shaded region indicates the fitting range. The solid line is the
numerical data, while the dashed line is the fitted function.

8For precise asymptotics one would need to consider a higher
order expansion in (132), which we skip for clarity of presen-
tation; however, see (133).

9Assuming jαlj ∼ l−β, it follows that at the leading order of ε,
for l → ∞, the energy spectrum is El ∼ l2ð1−βÞ.

10In addition to the approach presented here, the resonant
system can also be derived by time averaging [6].
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solution of (3)–(6) in the limit ε → 0. This suggests that
generic initial data leads to gravitational collapse on the
timescale ε−2 as initially reported in [8].

V. CONCLUSIONS

We provide a strong argument that the box Minkowski
model [8] with Dirichlet boundary condition is unstable
toward black hole formation for arbitrarily small generic
perturbations. We demonstrated this by studying the
resonant system for the model and finding that it has a
solution that becomes singular in finite time. Our work
strengthens the argument that the role of the cosmological
constant in the instability of AdS is purely kinematical.
Other models with confinement and a resonant spectrum
of linear perturbations may also develop a turbulent
instability.
Even in the presence of extra resonant terms and in the

absence of symmetries in the interaction coefficients, the
singular evolution of the system studied here shares
features with the respective solution observed in AdS
[6,7]. In fact, we demonstrated that the singular solution
is determined mainly by the þþ− resonances.
Although we provide clear evidence for solutions of the

resonant system starting with generic initial data that
develop a singularity in finite time, the precise nature of
the singularity remains unresolved. This is due to the
particular feature of 3þ 1 dimensional gravitating systems,

e.g., in the AdS4 case [7], which causes slow convergence
of the solutions of the truncated resonant system to
the respective solution of the infinite set of equations.
However, our results indicate that the singular solution is
characterized by the polynomial spectrum of mode ampli-
tudes (127) with the exponent β being close to 8=5, the
value of which agrees with the exponent of the spectrum of
mode energies found in the solution of the Einstein-Scalar
field system (17). Moreover, contrary to the AdS in five and
higher spacetime dimensions, where the solution develops
an oscillating singularity, we find that here, phases likely
stay finite at the singularity. However their higher order
derivatives blow up independently of the residual gauge
freedom, cf. [7].
An updated and more efficient numerical code allowed

us to study much larger resonant systems and to get more
precise numerical data. As a result, we significantly
improved on previous works [6,7]. However, our efforts
to solve large resonant systems have reached current
hardware limits. Therefore, we anticipate that follow-up
studies will require developing more efficient techniques to
reduce the complexity of numerical algorithms which are
used to solve resonant systems.
Given our results, the box Minkowski model [8] could

prove attractive for further analysis. To the best of our
knowledge, this gravitating model has the simplest closed
form of interaction coefficients among the models which
manifest turbulent instability. Thus it offers an attractive

FIG. 10. The rescaled Ricci scalar at the origin computed from the solution of the Einstein-Scalar field system (dashed) and the
corresponding solution of the resonant approximation (solid) for decreasing amplitudes of initial data ε and increasing truncation N,
respectively. The left and right panels show data for initial conditions (11) and (12), respectively.

FIG. 9. The dependence of the fitting parameters in (133) on the mode number l. In the asymptotic regime when τ ≈ τ� and l → ∞, the
fitting parameters should be independent of l.
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playground for future rigorous development. We hope this
work is an essential step toward a better understanding of
the instability of AdS4 and other resonant systems [2].
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APPENDIX: BOUNDARY TIME GAUGE

1. Resonant system

In the derivation of (64), we have implicitly used the
gauge condition δðt; 0Þ ¼ 0. However, (3) allows us to
redefine δðt; rÞ → δðt; rÞ þ fðtÞ. In particular, we can
choose fðtÞ in a way that gives δðt; 1Þ ¼ 0, so that t is
the proper time of the observer located at r ¼ 1. We redo

our calculation of the resonant system in this gauge and get
the equation

δ02 ¼ −rðϕ0
1ðt; rÞ2 þ _ϕ1ðt; rÞ2Þ; ðA1Þ

at second order of ε. Its solution can be written as

δ2ðt; rÞ ¼ −
Z

r

0

dssðϕ0
1ðt; sÞ2 þ _ϕ1ðt; sÞ2Þ þ fðtÞ: ðA2Þ

We require that δ2ðt; 1Þ ¼ 0, in agreement with the gauge
condition δðt; 1Þ ¼ 0. This yields the condition

fðtÞ ¼
Z

1

0

dssðϕ0
1ðt; sÞ2 þ _ϕ1ðt; sÞ2Þ: ðA3Þ

With this, the solution of (A1) can be written as

δ2ðt; rÞ ¼
Z

1

r
dssðϕ0

1ðt; sÞ2 þ _ϕ1ðt; sÞ2Þ: ðA4Þ

For the analogous calculation for AdS, see [5]. Repeating
our calculations (32)–(36), we find

ð_δ2 _ϕ1jelÞ ¼
Z

1

0

drr2elðrÞ _ϕ1ðt; rÞ
Z

1

r
dss

�
∂

∂t
ϕ0
1ðt; sÞ2 þ

∂

∂t
_ϕ1ðt; sÞ2

�

¼
X∞
i;j;k¼0

_ckðtÞ
Z

1

0

drr2elðrÞekðrÞ
Z

1

r
dss

�
∂

∂t
ðciðtÞcjðtÞÞe0iðsÞe0jðsÞ þ

∂

∂t
ð_ciðtÞ_cjðtÞÞeiðsÞejðsÞ

�
; ðA5Þ

ðδ2ϕ̈1jelÞ ¼
Z

1

0

drr2elðrÞϕ̈1ðt; rÞ
Z

1

r
dssðϕ0

1ðt; sÞ2 þ _ϕ1ðt; sÞ2Þ

¼
X∞
i;j;k¼0

c̈kðtÞ
Z

1

0

drr2elðrÞekðrÞ
Z

1

r
dss½ciðtÞcjðtÞe0iðsÞe0jðsÞ þ _ciðtÞ_cjðtÞeiðsÞejðsÞ�: ðA6Þ

The rest of the calculations (32)–(36) stays the same.
Defining the integrals

N�
klij ¼ −

Z
1

0

drr2elek

Z
1

r
dsse0ie

0
j; ðA7Þ

Nklij ¼ −
Z

1

0

drr2elek

Z
1

r
dsseiej; ðA8Þ

we get the resonant system

2iωl
dαl
dτ

¼
Xþþþ

ijk

R̃klijαiαjαk þ
X−þþ

ijk

S̃klijᾱiαjαk

þ
Xþ−−

ijk

S̃klijαiᾱjᾱk; ðA9Þ

where S̃klij ¼ Õklij þ Q̃klji þ P̃ilkj and Õklij, Q̃klij, and
P̃klij are as in (50)–(52), with

Lð�Þ
klij → Nð�Þ

klij: ðA10Þ

We can express Nklij in terms of Lklij by combining the
respective definitions to get

Lklij − Nklij ¼
Z

1

0

drr2ekel

Z
1

0

dsseiej; ðA11Þ

similarly for N�
klij. By explicit integration, we find

Nklij ¼ Lklij − δklð−Ciðωi þ ωjÞ þ logðωi þ ωjÞ
þ Ciðjωi − ωjjÞ − log jωi − ωjjÞ; ðA12Þ

and

RESONANT DYNAMICS AND THE INSTABILITY OF THE BOX … PHYS. REV. D 106, 124020 (2022)

124020-19



N�
klij ¼ L�

klij þ −δkl
�
1

2
ðω2

i þ ω2
jÞð−Ciðωi þ ωjÞ

þ logðωi þ ωjÞ þ Ciðjωi − ωjjÞ

− log jωi − ωjjÞ − ωiωj

�
: ðA13Þ

The i ¼ j cases in (A12)–(A13) are obtained by taking the
limit of the corresponding expressions.

2. Interaction coefficients

The corresponding expressions for (71) in the boundary
time gauge are

Ti ¼ 2ω3
i ð−10Sið2ωiÞ þ 5Sið4ωiÞ þ 8ωiÞ; ðA14Þ

and

Ril ¼ 16ω2
iω

2
l þ

8ωlð2ω4
l − ðω2

i −ω2
l Þ2ÞSið2ωlÞ

ω2
i −ω2

l

−
8ωið2ω4

i − ðω2
i −ω2

l Þ2ÞSið2ωiÞ
ω2
i −ω2

l

þ2ððωi−ωlÞ4þðω2
i þω2

l Þ2ÞSið2ðωi−ωlÞÞ
ωi−ωl

þ2ððωiþωlÞ4þðω2
i þω2

l Þ2ÞSið2ðωiþωlÞÞ
ωiþωl

; ðA15Þ

cf. (73)–(74), while for k ¼ iþ j − l with i ≠ l ∧ j ≠ l the
coefficients Sþþ−

ijkl remain unchanged, see (75). For the
þþþ and þ−− resonant terms, the gauge contribution
cancels out, hence the expression (76) and (77) remain valid
for the boundary time gauge.

3. Conserved quantities

Note that in this gauge, we have

Rij ¼ Rji; ðA16Þ

so RA
ij ¼ 0, see Eq. (88), and Ṽj ≡ 0, cf. (92), thus the

corresponding conserved quantity H is simply

H ¼ W ¼ X þ 1

2
V þ 1

3
Z; ðA17Þ

for the full system and

H ¼ 1

2
V; ðA18Þ

for theþþ− system, cf. the respective expressions (95) and
(113). The other known integrals of motion, E and J (for
the þþ− system only), are not affected by the residual
gauge choice.
Since, in this case, the flow is Hamiltonian, cf. (90) and

(110), these conserved quantities are the Noether charges
which follow from the respective symmetries (123), as
mentioned in the main text.

4. Numerical solution

Interestingly, as for the AdS case, we see that the
evolution of the amplitudes is independent of the gauge
choice, so that the amplitudes found in the origin gauge
agree (up to truncation errors) with the amplitudes deter-
mined in the boundary gauge. Therefore, we also observe a
singular solution here. However, the phases differ, compare
Figs. 4 and 11, which is the consequence of the distinct
coefficients (A14)–(A15) in Eq. (126). As a result, each
mode’s oscillation frequency is higher in the boundary time
gauge than in the origin time gauge. However, if the
oscillation frequency increases as the solution approaches
the singularity, the growth is less noticeable in this time

FIG. 11. Time evolution of sample modes in the boundary time gauge. Note the higher frequency of the corresponding modes
compared to the origin gauge case presented in Fig. 4.
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gauge. Regardless, the phases stay synchronized during the
evolution; see Fig. 12.
As above, we find that the þþ− resonant term domi-

nates the evolution. The comparison of solutions of the full

and the þþ− resonant systems starting from the same
initial conditions is presented in Fig. 13. The apparent
agreement between the solutions strongly suggests that the
þþ− resonances largely determine the singular solution.

5. Asymptotic solution

We follow the same steps as in Sec. IV B for the analysis
in the origin gauge. The time evolution of the amplitudes is
almost identical to the behavior in the previous case,
cf. Figs. 7 and 13, so the fits of the ansatz (127) give
similar values for the exponent β and the time τ� when the
analyticity strip radius crosses zero. (Fits to the data with
N ¼ 2048mode truncation give β ≈ 1.53 and τ� ≈ 5467. In
this case, we see a smaller variation with respect to the
fitting interval.)
The leading order expansion of Ril lacks the logarithmic

terms present in (130), thus the analog of (131) in the
boundary time gauge is

dBl

dτ
≈ l½c2Li2β−2ðe−2ρÞ þ c4Li2β−1ðe−2ρÞ�: ðA19Þ

FIG. 12. Evolution of the phase derivatives in the boundary
time gauge. As in Fig. 5 time is color coded and increases from
bluish to reddish colors.

FIG. 13. Analogue of Fig. 7 for the boundary time gauge.

FIG. 14. The dependence of the fitting parameters in (A20) on the mode number l. In the asymptotic regime when τ ≈ τ� and l → ∞,
the fitting parameters should be independent of l.
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Thus although higher order derivatives blow up for β ≤ 3=2
and β > 3=2, the first derivative stays finite at τ� for
β > 3=2 only. Fitting (A19) to the numerical data was
not successful. Therefore, as before, we fixed β ¼ 8=5 and
fitted the corresponding asymptotic formula

dBl

dτ
≈ alð1þ b1ρ1=5Þ; ⇒

d2Bl

dτ2
∼ ρ−4=5; ðA20Þ

with a and b1 constant. We find that (A20) matches the data
well. Repeating the fit for various mode numbers l, we
observe the convergence of the fitting parameters for

l → ∞, see Fig. 14. Surprisingly, although the value of
τ� from the analysis of the spectrum of amplitudes agrees
with the value computed by solving the Einstein-Scalar
field system, the estimate obtained from the analysis of the
phases differs.
Also in this case, the resonant approximation accu-

rately reproduces the Ricci scalar evaluated at r ¼ 0,
and the limiting solution is approached when the trunca-
tion N is increased. We omit the plot demonstrating this as
it appears remarkably similar to the one presented in
Fig. 10.
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