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We show that the equation of null geodesics in spherically symmetric spacetimes in isotropic coordinates
is identical to the equation of light ray trajectories in isotropic media in flat spacetime. Based on this
analogy we introduce an exact simulation of the light ray trajectories both in these spacetimes and in their
metamaterial analogs in terms of the spacetime index of refraction. As unstable light trajectories, the photon
spheres form in these metamaterial analogs at exactly the same radial distances as expected from the
corresponding black hole geometries. Using the same ray-tracing simulation we find the analog of a simple
black hole shadow formed by the metamaterial analog of a Schwarzschild black hole, eclipsing a line of
light sources near its analog horizon. Designing such a metamaterial could provide a laboratory setting to
explore this recently observed phenomenon.
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I. INTRODUCTION

Metamaterial analogs of different spacetimes, based on
the so-called transformation optics [1,2], have attracted a
lot of attention in recent years (see Ref. [3] and references
therein). Historically, one could trace this analogy back to
the analogy between a spacetime and a material medium
with respect to light propagation through which one could
assign an index of refraction as well as other optical
characteristics to the corresponding spacetime [4–7]. On
the other hand, the same analogy appears in the study of
Maxwell’s equations in a curved spacetime leading to
constitutive equations with the geometric analog of the
magneto-electric coupling (effect). Through this analogy,
one could establish a correspondence between geometric
entities of a curved spacetime and the electromagnetic
features of a medium such as its electric permittivity and
magnetic permeability [6,7].
In this opto-geometric relation one could start from a

given spacetime and find its optical characteristics and,
based on them, design its optical analog using metamate-
rials in which the light trajectories mimic the null geodesics
of the corresponding spacetime. Unlike the natural materi-
als which have restricted optical features, the metamaterial
designs could demonstrate nontrivial optical features (such
as a negative index of refraction), and that is why one
uses the term metamaterial analogs instead of optical
analogs. Obviously, the more exotic a spacetime, the more

interesting its optical features; consequently, their meta-
material analogs will enable one to realize these exotic
optical features. In other words, these metamaterial analogs
could help us examine interesting and perhaps observatio-
nally inaccessible optical characteristics of the correspond-
ing spacetime, which could include, for example,
interesting optical features associated with black hole
spacetimes. To this end, one needs to simulate light rays,
as exactly as possible, in the metamaterial analogs of the
corresponding black hole spacetimes. In previous studies
full-wave simulations were employed to study light propa-
gation in the metamaterial analogs of different spacetimes
[8–10]; it was then compared with the light ray trajectories
in the geometric optics limit, formulated in the Hamiltonian
language [9] or through a ray-tracing mechanism [10]. Here
we introduce a new direct and, at the same time, exact
simulation of light ray trajectories in the metamaterial
analogs of static spherically symmetric black holes, based
only on their indices of refraction, which are adapted from
the corresponding spacetimes. The simulated trajectories
are exact duplicates of those in the corresponding space-
time. In particular, we find the analog of black hole photon
spheres in their metamaterial analogs at the same exact
radial distance as expected from the spacetime geometry.
Indeed, by increasing the precision level, rays could be
orbiting the analog photon sphere as many times as the
simulation cost allows. This means that in the metamate-
rials designed with isotropic refractive indices borrowed
from these black hole geometries, one could obtain photon
spheres at specified radii. This process could potentially
find diverse applications both in electro-optical devices and
in the investigation of the properties of so-called optical
black holes [11,12]. One such interesting application is
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provided by showing how a simple metamaterial analog of
a black hole shadow could be simulated.

II. SPACETIME INDEX OF REFRACTION

Applying Fermat’s principle to light rays in stationary
spacetime, in the context of (1þ 3) or a threading formu-
lation of spacetime decomposition [6,13], we obtain the
following relation [14,15]:

δ

Z �
1ffiffiffiffiffiffi
g00

p þ g:k̂

�
dlc ¼ 0 ð1Þ

in which g is the so-called gravitomagnetic vector potential
with components gα ¼ − g0α

g00
(α ¼ 1, 2, 3), k̂ is the unit

vector along the ray, and dlc is the spatial line element in
the curved spacetime [6,13]. Obviously, from the above
equation one could assign the following index of refraction
to the 3-space on which dlc is the spatial line element
between any two events in stationary spacetimes,

ns ¼ n0 þ g:k̂; ð2Þ

in which n0 ¼ 1ffiffiffiffiffi
g00

p is the index of refraction assigned to a

static spacetime (gα ¼ 0). Note that for a curved spacetime,
the spatial line element is not necessarily flat. Now if we
restrict our attention to the static spacetimes and look for
their (meta)material analogs in a flat spacetime back-
ground, we could rewrite Eq. (1) in the following general
form:

δ

Z
1ffiffiffiffiffiffi
g00

p
�
dlc
dlf

�
dlf ¼ 0 ð3Þ

where dlf is the spatial line element in flat spacetime. The
above relation shows that the metamaterial analog of a
static spacetime could be assigned with the following index
of refraction:

nf ¼ 1ffiffiffiffiffiffi
g00

p
�
dlc
dlf

�
; ð4Þ

in which case the light ray trajectories in the designed
metamaterial mimic the null geodesics in the corresponding
spacetime. The above argument shows that one could, in
principle, assign an appropriate index of refraction to the
static spacetime if there is a coordinate system in which the
spatial part of the metric is conformally flat.
Specifically, in the case of static spherically symmetric

spacetimes with the general form of (c ¼ 1),

ds2 ¼ dτ2 − dl2c ¼ fðrÞdt2 −
�

1

fðrÞ dr
2 þ r2dΩ2

�
; ð5Þ

the line element could be transformed to the following
isotropic form by introducing the radial coordinate

ρ ¼ const exp
�R

drffiffiffiffiffiffiffiffiffi
r2fðrÞ

p
�
[16],

ds2 ¼ fðrðρÞÞdt2 − FðρÞdl2f: ð6Þ

Using the above isotropic form of the spacetime metric and
Eq. (3), a static spherically symmetric spacetime, compared
to the flat spacetime, is endowed with the following index
of refraction [17],

nsph ¼
ffiffiffiffiffiffiffiffiffiffi
FðρÞ
fðρÞ

s
: ð7Þ

For some spherically symmetric spacetimes, ρðrÞ can be
obtained analytically. These include the Schwarzschild and
Reissner-Nordstrom (RN) black hole geometries for which

FSchðρÞ ¼
�
1þ M

2ρ

�
4

; ð8Þ

FRNðρÞ ¼
��

1þ M
2ρ

�
2

−
Q2

4ρ2

�
2

; ð9Þ

and we are led to the following indices of refraction,

nSch ¼
ð1þ M

2ρÞ3
ð1 − M

2ρÞ
; ð10Þ

nRN ¼ ½ðM þ 2ρÞ2 −Q2�2
4ρ2ðQ2 −M2 þ 4ρ2Þ : ð11Þ

Since the isotropic coordinates only cover the region
outside the black hole horizon (e.g., for Schwarzschild
2M < r < ∞ or M=2 < ρ < ∞) [18], the above relations
are also valid only for the same region. Consequently, our
simulations are also limited to the same analog region in the
corresponding metamaterial.

III. NULL GEODESICS IN SPHERICALLY
SYMMETRIC SPACETIMES IN TERMS OF THE

SPACETIME INDEX OF REFRACTION

Starting from the general form of the metric of
spherically symmetric spacetimes in isotropic coordinates,
namely (6), we introduce the Lagrangian

L ¼ fðρÞ_t2 − FðρÞð_ρ2 þ ρ2 _θ2 þ ρ2 sin θ2 _ϕ2Þ ð12Þ

where : ≡ d=dλ and λ is an affine parameter along the
null geodesics. Due to spherical symmetry, without loss
of generality, we take geodesics on the equatorial plane
θ ¼ π=2 for which L reduces to
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L ¼ fðρÞ_t2 − FðρÞð_ρ2 þ ρ2 _ϕ2Þ: ð13Þ

Since the Lagrangian is independent of t and ϕ, we have
the following two first integrals from the Euler-Lagrange
equations,

fðρÞ_t ¼ E; ð14Þ

FðρÞρ2 _ϕ ¼ D; ð15Þ

representing the energy and angular momentum, respec-
tively. Now, since the spatial part of the spherically
symmetric spacetimes (6) is conformally flat, the angles
are given by the flat space formula; thus, for a small part of
the ray trajectory making angle Θ with the radial direction,
we have (Fig. 1)

sinΘ ¼ ρdϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2dϕ2 þ dρ2

p ¼ ρ _ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 _ϕ2 þ _ρ2

q ¼ ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðdρdϕÞ2

q :

ð16Þ

On the other hand, for null rays L ¼ 0, so from (13)
we have

fðρÞ_t2 ¼ FðρÞð_ρ2 þ ρ2 _ϕ2Þ: ð17Þ

Now, using the above equation along with Eqs. (14)
and (15) to substitute for _ρ and _ϕ in the second equality
in (16), we end up with

sinΘ ¼ 1

ρ

D
E

ffiffiffiffiffiffiffiffiffiffi
fðρÞ
FðρÞ

s
¼ b

ρnðρÞ ð18Þ

in which we used (7), and by definition b ¼ D
E is the impact

parameter. Substituting sinΘ back into the last equality
in (16), we find the null geodesic equation in the following
form:

dρ
dϕ

¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2n2

b2
− 1

s
: ð19Þ

This equation gives the null geodesic equation in terms of
the spacetime index of refraction. In what follows, we will
be primarily concerned with the analog photon spheres,
so we need to find the analog of the critical angle the rays
should makewith the radial direction (i.e., angle of the cone
of avoidance) to form the photon sphere. By the above
considerations, and from Eq. (18), the critical angle at any
given radial coordinate is found to be

sinΘcr ¼
bph

ρnðρÞ ð20Þ

where bph is the impact parameter of rays forming the
photon sphere at any radial coordinate ρ. In other words,
the critical angle at a given radial coordinate is given in
terms of the index of refraction at the same coordinate.
Intuitively, this is expected, as the combination nðρÞ sinΘcr
reminds one of Snell’s law and the initial refraction needed
at each radial coordinate for the rays to be trapped on the
unstable photon sphere.

IV. LIGHT RAY TRAJECTORIES
IN ISOTROPIC MEDIA

The above-mentioned analogy states that for metamaterial
media designed with isotropic refractive indices given
by (10) and (11), the light trajectories would be the same
as the null geodesics in the corresponding spacetimes. To
verify this, one should be able to simulate light rays in
isotropic media. Interestingly enough, in media with iso-
tropic indices of refraction, one could obtain the equation of
light ray trajectories by considering their geometry in such
media. This was already studied by Born and Wolf in their
classic text [19], where they showed that due to spherical
symmetry, all the rays are plane curves satisfying the relation

nr sin θ ¼ C ð21Þ

where C is a constant and θ is the angle between the radius
vector to a point on the light curve and the tangent to the
curve at the same point (Fig. 2). To find the equation of light
trajectories as plane curves, from the geometry in Fig. 2, it is
noted that

sin θ ¼ rðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðϕÞ þ ðdr=dϕÞ2

p : ð22Þ

FIG. 1. Spatial geometry of a small portion of a light ray (in red) in spherically symmetric spacetimes in isotropic coordinates.
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Now substituting for sin θ in the above equation from (21),
we end up with the trajectory equation as [19]

dr
dϕ

¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2n2

C2
− 1

s
: ð23Þ

The similarity of Eqs. (21) and (18) is a consequence of the
fact that for spherically symmetric spacetimes, in isotropic
coordinates, the spatial part of the metric is conformally flat.

V. SIMULATION OF LIGHT RAY TRAJECTORIES

One can employ Eqs. (21) and (22) [or (18) and (16)]
to simulate the light ray trajectories in an isotropic
medium (or, for that matter, in a spherically symmetric
spacetime in isotropic coordinates). For a light ray fired
from r ¼ r0 along the θ0 direction, the impact parameter
is D ¼ r0 sin θ0 (Fig. 2) and, from (21), C ¼ nðr0ÞD.
Therefore, the simulation goes as follows: For a given
impact parameter and initial distance from the center of the
metamaterial, the constant C is fixed. To find the radial
coordinate of the next point on the trajectory, we substitute
θ0 and r0 in (22) to obtain the value of dr

dϕ. From that, one

can find the radial increment Δr ¼ dr
dϕ ðΔϕ0Þ, in which

ðΔϕ0Þ is the fixed-step increment of the azimuthal angle
chosen according to the required precision. Thus, we have
r1 ¼ r0 þ Δr, and one can repeat the same steps starting
from (21), now with r ¼ r1. The results of the simulation
for ray trajectories in different (isotropic) metamaterial
analogs of spherically symmetric black holes are dis-
cussed next.

A. Metamaterial analog of a Schwarzschild black hole

The results of the simulation for a congruence of light ray
trajectories in a metamaterial analog of the Schwarzschild
black hole leading to the formation of a photon sphere
are shown in Fig. 3. It is noted that the horizon, r ¼ 2M,
and the photon sphere, r ¼ 3M are mapped, in isotropic
coordinates, to ρSch ¼ M=2 and ρph ¼ ð2þ ffiffiffi

3
p ÞM=2,

respectively. The analog photon sphere is formed by

267 rays fired from ρo ¼ 36ðM=2Þ with the critical angle
ranging from 14.98166575° to 14.98166577° (δΘcr ∼ 10−8).
In our simulations we scanned a whole range of angles
reaching the above value which matches exactly with its
theoretical value given by (20) for a Schwarzschild black
hole, namely,

sinΘcr ¼
3

ffiffiffi
3

p
M

ρ

ð1 − M
2ρÞ

ð1þ M
2ρÞ3

≡ 3
ffiffiffi
3

p
M

ρnSch
: ð24Þ

In this case the analog photon sphere is formed by rays with
the closest distance of approach ρcda ≈ 3.7321ρSch. All the
rays rotate at least three times around the hole before
escaping it. To follow different rays we have included their
blueshift as they get closer to the analog photon sphere with
the help of a color gradient according to the medium’s
isotropic index of refraction. In the case of the metamaterial
medium, both the speed and wavelength of the light ray
change as it passes through the medium, but its frequency
remains intact. Obviously, this optical feature is different
from the gravitational blueshift as the light gets closer to
the black hole horizon, in which case light frequency and
wavelength change inversely but the speed of light is
constant.

B. Metamaterial analog of Reissner-Nordstrom
black holes

The results of the simulation for the ray trajectories in a
metamaterial analog of RN and extreme RN black holes
with charges Q ¼ 0.65M and Q ¼ M are shown in Figs. 4
and 5, respectively. The photon sphere is formed by two
congruences of 334 and 351 rays fired at critical angles
around 13.810519801° and 11.50456352° for Q ¼ 0.65M

FIG. 2. Geometry of rays in an isotropic media.

FIG. 3. Light ray trajectories in the metamaterial analog of a
Schwarzschild black hole in isotropic coordinates and the
formation of a photon sphere (purple circle). Distances are scaled
to M=2.
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and Q ¼ M, respectively. Again, this is in complete
agreement with the theoretical values given by (20) for
the corresponding indices of refraction (11), and the impact
parameters given by [20]

bph ¼
9
4
M2½1þ ð1 − 8Q2

9M2Þ1=2�2
ð3
2
M2½1þ ð1 − 8Q2

9M2Þ1=2� −QÞ1=2
: ð25Þ

As expected from the RN black hole geometry, compared to
the Schwarzschild black hole with the same mass, the
analog photon spheres form at smaller radii in the corre-
sponding metamaterial analogs.
Obviously, in the above simulations M and Q are just

parameters in the metamaterial’s isotropic index of refrac-
tion, Eqs. (10) and (11). Since the metamaterial analog
of RN spacetime has two different parameters, one has
more control on designing them with the required optical
characteristics. In our simulations the maximum winding
number (number of rotations on a photon sphere) is 5 for
the extreme RN case. Obviously, we can reach higher
winding numbers for each case by increasing computa-
tional precision and cost, but the present level of precision
is high enough for our purpose. Simulation parameters for
the above three cases are listed in Table 1.

VI. METAMATERIAL ANALOG OF A BLACK
HOLE SHADOW

As another interesting application of the above
exact simulation, we consider a metamaterial analog of a
simple Schwarzschild black hole shadow. The results of
the simulation for a line of light sources placed at
5.07ρSch − 8.06ρSch and eclipsed by the analog of a black
hole region are shown in Fig. 6. Light rays emanating from
each source (as part of an analog accretion disk), within and
at the edge of the corresponding cone of avoidance, are
strongly deflected to reach a distant observer, forming the
analog of a black hole shadow. Those light rays within the
cone of avoidances are lensed to form the outer ring, which
is basically the analog of the Einstein ring [21]. The inner
ring is produced by those rays emanating at the edge of
each cone of avoidance, rotating twice around the photon
sphere before escaping to the observer positioned at 72ρSch.
This means that, due to the spherical symmetry, an
observer/eye in that position will see the pattern shown
in Fig. 7. The inner and outer rings are formed by rays
coming from 100 point sources placed on a line of length
2.99ρSch. Widths of the outer and inner rings are 1.15ρSch
and 3.75 × 10−6ρSch, and from the observer’s position they

FIG. 4. Light ray trajectories in the metamaterial analog of a
Reissner-Nordstrom black hole with Q=M ¼ 0.65.

FIG. 5. Light trajectories in the metamaterial analog of an
extreme Reissner-Nordstrom black hole, Q=M ¼ 1.

TABLE I. Details of the simulation for metamaterial analogs of Schwarzschild and RN black holes. Note that Θcr,
ρcda, and λm are the critical angle, the closest distance of approach, and the minimum wavelength (maximum
blueshift) of the rays, respectively. All the rays have an initial wavelength of 730 nm, and ϕ is the azimuthal angle (in
radians) representing the number of rotations around the hole (the winding number).

q ¼ Q=M ρo=ρSch Θcr (in radians) ρcda=ρSch ϕ λmðnmÞ
0 36 0.2614793948 3.7321649 6π þ 4.82 292.75
0.65 36 0.2410390419 3.1896082 8π þ 4.59 270.94
1 36 0.2007925125 2.0000398 10π þ 3.13 203.34
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are seen at subtended angles 0.898° and 2.932° × 10−6,
respectively. The color gradient in Fig. 7 shows the density
of rays in each ring, and as expected, the relativistic ring
(inner ring) is denser and hence brighter than the outer
lensed ring (we have to modify the color gradient to make
the difference between the two rings visually clear).
Obviously, experimental realization of all the above

phenomena in metamaterials needs a very delicate design
specifically noting that our simulation is only valid for the
region outside the analog horizon in the designed meta-
material. So, for example, in the case of the above analog
black hole shadow, one needs sources whose light rays are

emanating only inside the cone of avoidance to avoid those
falling toward the center.

VII. CONCLUSIONS

In this study we investigated the null ray trajectories in
metamaterial (optical) analogs of spherically symmetric
black hole spacetimes based only on the metamaterial’s
index of refraction, which was taken from the spacetime
geometry in isotropic coordinates. This was done by
showing that the equation of null geodesics in spherically
symmetric spacetimes (in isotropic coordinates) is identical
to the equation of light ray trajectories in media with
isotropic indices of refraction. Using this relation we
introduced an exact ray-tracing simulation both for the
null trajectories (geodesics) in spherically symmetric
spacetimes and for light rays in isotropic metamaterials.
Assigning a metamaterial with a refractive index identical
to that of a spherically symmetric black hole spacetime in
isotropic coordinates [modulated by its spatial conformal
factor (4)], it was shown that the structure of light ray
trajectories in the metamaterial exactly mimics that of the
corresponding spacetime. This was explicitly shown for the
case of analog photon spheres in the metamaterial analogs
of Schwarzschild and RN black holes. The main advantage
of the procedure outlined here is its simplicity and
accuracy, allowing for simulation of any spherically sym-
metric spacetime which could be written in isotropic
coordinates. Finally, the same simulation method was
employed to find the optical analog of a simple black hole
shadow formed by rays escaping the photon sphere of an
analog of a Schwarzschild black hole. Designing a meta-
material with an index of refraction borrowed from a
spherically symmetric black hole spacetime could provide
a laboratory setting to explore this recently observed
phenomenon.
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FIG. 6. The side view of the metamaterial analog of a black hole
shadow produced by rays (in yellow) from a line of light sources
(black line) behind its analog horizon (black circle), reaching a
distant observer after rotating twice on its analog photon sphere
(yellow circles). Other rays (in red) could reach the observer
directly with larger impact parameters.

FIG. 7. Metamaterial analog of a black hole shadow as seen by
an observer at the radial distance ρ ¼ 72ρSch. It is produced by
rotating the side view about the optical axis.
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