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The phenomenology of primordial black hole (PBH) physics and the associated PBH abundance
constraints can be used to probe the physics of the early universe. In this work, we investigate the PBH
formation during the standard radiation-dominated era by studying the effect of an early FðRÞ modified
gravity phase with a bouncing behavior which is introduced to avoid the initial spacetime singularity
problem. In particular, we calculate the energy density power spectrum at horizon crossing time, and then
we extract the PBH abundance in the context of peak theory as a function of the parameter α of our FðRÞ
gravity bouncing model at hand. Interestingly, we find that to avoid gravitational-wave overproduction
from an early PBH dominated era before big bang nucleosynthesis, α should lie within the range
α ≤ 10−19M2

Pl. This constraint can be translated to a constraint on the energy scale at the onset of the hot big
bang phase, HRD ∼

ffiffiffi
α

p
=2, which can be recast as HRD < 10−10MPl.
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I. INTRODUCTION

The theory of inflation [1–5] constitutes a very prom-
ising paradigm to account for the physical conditions that
prevailed in the early universe, being able to address a
number of cosmological issues such as the horizon and the
flatness problems. However, inflationary theories face the
problem of initial singularity [6]. One attractive alternative
to inflation is the nonsingular bouncing cosmological
paradigm [7,8], which assumes that the universe existed
forever before the hot big bang (HBB) era in a contracting
phase and at some point transitioned into the expanding
universe that we observe today. Apart from solving the
singularity problem the bounce realization can also address
the usual flatness and horizon problems of standard big
bang cosmology (for a review on bouncing cosmologies,
see [9]) and give rise to an observationally compatible
cosmological power spectrum [10–12].
To acquire a nonsingular bouncing phase, violation of

the null energy condition is necessary. Consequently, modi-
fied gravity theories [13–17] provide an ideal framework
for obtaining a bouncing universe. Hence, such bouncing
solutions have been constructed through various approaches
to modified gravity, such as the pre-big-bang [18] and the

ekpyrotic [19,20] models, gravitational theories whose
gravity actions contain higher order corrections [21,22],
FðRÞ gravity [23,24], fðTÞ gravity [25] models, braneworld
scenarios [26,27], nonrelativistic gravity [28,29], and mas-
sive gravity [30]. The above scenarios can be further
extended to the paradigm of cyclic cosmology [31–33].
As a potential candidate, the bounce scenario is expected

to be consistent with current cosmological observations and
to be distinguishable from the experimental predictions of
cosmic inflation as well as other paradigms [34,35]. One
interesting way to constrain such bouncing scenarios is the
study of their effect on the formation of primordial black
holes (PBHs) [36,37].
Primordial black holes, first proposed in the early 1970s

[38–40], are considered to form in the very early universe
out of the gravitational collapse of very high overdensity
regions, whose energy density is higher than a critical
threshold [41–47]. According to recent arguments, PBHs
can naturally act as a viable dark matter candidate [48,49]
and potentially explain the generation of large-scale struc-
tures through Poisson fluctuations [50,51], while they can
also seed the supermassive black holes residing in galactic
centers [52,53]. Furthermore, they are associated with
numerous gravitational-wave (GW) signals, from black-
hole merging events [54–58] up to primordial second-order
scalar induced GWs from primordial curvature perturba-
tions [59–64] (for a recent review see [65]) or from Poisson
PBH energy density fluctuations [66–68]. Other indications
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in favor of the PBH scenario can be found in [69].
Their abundance is constrained from a wide variety of
probes [49,70–74] over a range of masses from 10 g
up to 1020 M⊙, thus giving us access to a very rich
phenomenology.
Up to now, the majority of the literature studied PBH

formation within single-field [75–78] or multifield [79–81]
inflationary cosmology. It was also studied within modified
theory setups [82–84]. However, the study of PBHs in
bouncing scenarios is limited [85–89], most of which has
been done with a generalized approach, without any
falsification of the bouncing scenarios. Therefore, given
the aforementioned rich phenomenology and the associated
PBH abundance constraints over a range of masses which
span more than 50 orders of magnitude, PBHs can clearly
provide a novel promising way to test and constrain various
bounce scenarios.
In this work, we investigate the bounce realization

within one of the simplest modifications of general
relativity which can violate the null energy condition
and thus give rise to a bouncing phase, namely the FðRÞ
gravity theory. FðRÞ gravity forms a particular class of
theories in which the Einstein-Hilbert action is upgraded
to a general function of the Ricci scalar R [14]. FðRÞ
theories have been studied extensively in the context of
inflation [90–92], bounce [23,24,93], and late-time accel-
eration [93–95]. Additionally, this class of theories has
been highly successful in explaining both late and early
time acceleration along with the intermediate thermal
history of the universe (see [96,97] for reviews).
Therefore, it would be very interesting to examine
how such theories can be constrained or ruled out
through the study of PBH formation within them.
The manuscript is organized as follows: In Sec. II we

introduce a class of FðRÞ gravity theories which can induce
a bouncing scale factor. Then, in Sec. III we extract the
curvature power spectrum close to the bounce as a function
of the theoretical parameters evolved, namely the bouncing
parameter α, matching it to the curvature power spectrum
during the standard radiation era when PBHs are assumed
to form. Subsequently, in Sec. IV, we present the formalism
to compute the PBH mass function βðMÞ within peak
theory. Following, in Sec. Vafter investigating the effect of
an initial FðRÞ gravity phase close to the bounce on the
curvature power spectrum PδðkÞ and the PBH mass
function βðMÞ, we set constraints on α by requiring that
GWs induced from PBH Poisson fluctuations during an
early PBH dominated era before big bang nucleosynthesis
(BBN) are not overproduced. Finally, Sec. VI is devoted
to conclusions.

II. BOUNCE COSMOLOGY
THROUGH FðRÞ GRAVITY

For the present analysis we consider the flat Friedman-
Lêmaitre-Robertson-Walker (FLRW) background metric

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð1Þ

where aðtÞ is the scale factor while the gravitational action
for FðRÞ gravity in vacuum can be written as

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
FðRÞ

¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ; ð2Þ

where κ2 ¼ 8πG ¼ 1
M2

Pl
, with MPl being the reduced Planck

mass. Here, we choose FðRÞ ¼ Rþ fðRÞ, with the func-
tion fðRÞ capturing deviation effects from general relativity
(GR). In the following, we assume that the terms coming
from the function fðRÞ have considerable contributions in
and around the bounce. This is because we introduce this
extra fðRÞ function at the level of the gravitational action in
order to account for the problem of the initial spacetime
singularity. On the other hand, as we move away from the
bounce into the standard radiation-dominated (RD) era, we
gradually switch off the fðRÞ contribution and the action
reduces to that of GR, given also its very good agreement
with the current cosmological data up to the era of big bang
nucleosynthesis.
We proceed now to the reconstruction of the fðRÞ

function close to the bounce. The corresponding
Friedmann equations close to the bounce turn out to be

3H2 ¼ −
fðRÞ
2

þ 3ðH2 þ _HÞf0ðRÞ
− 18ð4H2 _H þHḦÞf00ðRÞ; ð3Þ

fðRÞ
2

¼ ð3H2 þ _HÞf0ðRÞ

− 6ð8H2 _H þ 4 _H2 þ 6HḦ þH
…Þf00ðRÞ

− 36ð4H _H þ ḦÞ2f000ðRÞ; ð4Þ

where HðtÞ≡ _a=a is the Hubble parameter.
Since we are interested in studying the bounce realiza-

tion within FðRÞ gravity, we choose the scale factor
accordingly. The general evolution of the universe in
bouncing cosmology consists of a period of contraction
followed by a cosmological bounce and then by the
standard expanding universe. Any form of the scale factor
satisfying aðtbÞ > 0; _aðtbÞ ¼ 0; äðtbÞ > 0, is capable for
giving rise to a bouncing cosmology, where tb corresponds
to the time when the bounce occurs.
Let us now present the bounce realization at the back-

ground level. Without loss of generality we consider a
bouncing scale factor of the form

abðtÞ ¼ 1þ αt2; ð5Þ
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with α being a free parameter and the bounce happening at
t ¼ 0. The above form of scale factor has been obtained by
keeping terms up to quadratic order in t in the Taylor
expansion of aðtÞ near the bounce. We neglect higher
order terms as we are interested in solutions near the bounce.
Finally, note that the bounce realization conditions men-
tioned above indicate that α > 0. For different parametriza-
tions of the scale factor close to the bounce see Appendix A.
Using the above form of the scale factor, we obtain the

expressions for the Hubble parameter and the Ricci scalar
[keeping terms up to Oðαt2Þ] as

HðtÞ ¼ 2αt
1þ αt2

≃ 2αt;

RðtÞ ¼ 12H2 þ 6 _H ¼ 12αð1þ 3αt2Þ
ð1þ αt2Þ2

≃ 12αþ 12α2t2: ð6Þ

As we can see from the above relations, the Hubble
parameter varies linearly with time around the bounce,
and becomes zero at the bounce point, as expected.
Moreover, the Ricci scalar at the bounce is Rð0Þ ¼ 12α.
Inserting the above expressions into Eq. (3) we acquire

24αðR − 12αÞf00bðRÞ þ ðR − 24αÞf0bðRÞ
þ fbðRÞ þ 2ðR − 12αÞ ¼ 0; ð7Þ

where the index b refers to background quantities. Finally,
solving the above equation for fbðRÞ and keeping terms up
to Oðαt2Þ, the solution for FbðRÞ near the bounce can be
recast as [93]

Fb ¼ Rþ e−
R
24α

�
12α − C
216α

��
12e

R
24αR

þ
ffiffiffiffiffiffiffiffi
6eπ
α

r
ðR − 12αÞ3=2Erfi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 12α

24α

r ��
; ð8Þ

where ErfiðzÞ is the imaginary error function defined as
ErfiðzÞ ¼ −iErfðizÞ and C is an integration constant that
will be fixed later. Hence, from now on the parameter α can
be considered as the FðRÞ model parameter.
The form of FðRÞ obtained above is valid in and around

the bounce, i.e., in the region where the form of the scale
factor is given by Eq. (5) with αt2 ≲ 1. For this reason, in the
following we will naturally consider that the transition to the
RD era, where one recovers the standard GR evolution,
happens around the time when the perturbative expansion of
the scale factor in Eq. (5) breaks down, namely when
αt2 ∼ 1. Consequently, one gets that tRD is given by

tRD ∼
1ffiffiffi
α

p : ð9Þ

Before deriving in the next section the comoving
curvature perturbation within our FðRÞ bouncing model
we need to make here an instability analysis of the
underlying gravity theory close to the bounce. In particular,
in order to avoid ghosts [98], the first derivative of the
function FðRÞ should be positive, i.e., F0 ≡ ∂F=∂R > 0,
while at the same time, to avoid tachyonic instabilities, the
square of the mass of scalaron field M2, where M2 ∼ 1=F00

with F00 ≡ ∂
2F=∂R2, should be positive [96]. These in turn

arise from the perturbation analysis of the theory performed
in [99,100], and in particular from the comoving curvature
perturbation R, under the requirement to have a successful
cosmological evolution from radiation era till matter
domination. Thus, the conditions for a viable FðRÞ bounc-
ing model are the following:

F0 > 0 and F00 > 0: ð10Þ

From Eq. (8) one can derive F0 and F00 which can be
recast as

F0½RðtÞ� ¼ ð12α − CÞ
36tα2

�
2tαþ t3α2

þ
ffiffiffiffiffiffi
2α

p
t2αð3 − t2αÞFD

�
t

ffiffiffi
α

pffiffiffi
2

p
��

; ð11Þ

F00½RðtÞ� ¼ ð12α − CÞ
864α3t2

�
αt2ð5 − αt2Þ þ

ffiffiffiffiffiffiffiffiffi
2αt2

p

× ½3þ αt2ðαt2 − 6Þ�FD

�
t

ffiffiffi
α

pffiffiffi
2

p
��

; ð12Þ

where FDðxÞ is the Dawson function. Below, we plot the
functions F, F0, and F00 as a function of time, by using x≡
αt2 as the time variable. Thus, we reach times up to x ¼ 1
when the perturbative expansion of the scale factor in Eq. (5)
breaks down and one enters the standard RD era as explained
before. We choose the value of the integration constant C to
be such as that C < 12α so that the conditions in (10) are
satisfied. As it can be seen from Fig. 1, for C < 12α the
conditions Eq. (10) are satisfied, making our FðRÞ bouncing
model free of ghosts and tachyonic instabilities.

III. THE CURVATURE POWER SPECTRUM

Since we have studied in the previous section the
background behavior of a bouncing scenario realized
within FðRÞ gravity and we have extracted the function
FðRÞ around the bounce, we proceed to the calculation of
the curvature power spectrum by deriving the correspond-
ing comoving curvature perturbation.

A. The curvature perturbation

Before launching our calculation, we should examine
which primordial perturbation modes are relevant for
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present-day observation. As we saw above, the Hubble
parameter vanishes at the bounce point, thus giving rise to
an infinite comoving Hubble radius (1=aH) there. In the
following, we match the bouncing phase with the standard
hot big bang radiation phase, which in turn, according to
the standard cosmological evolution as dictated by the
current cosmological probes, is connected to a matter epoch

and then at late times with an accelerated expansion phase.
Consequently, the Hubble horizon decreases and tends to
zero for late times, while for cosmic times near the
bouncing point the Hubble horizon has an infinite size.
Therefore, all the perturbation modes at that time are
contained within the horizon, and at later epochs they
cross the Hubble radius becoming relevant for current
observations. Hence, in the following we focus on the
perturbation equations near the bounce, namely near t ¼ 0.
Choosing to work in the comoving gauge, the spatial part

of the perturbed scalar metric tensor reads as

δgij ¼ a2ðtÞ½1 − 2ζðx⃗; tÞ�δij; ð13Þ

where ζðx⃗; tÞ denotes the comoving curvature perturbation.
The corresponding action for the scalar perturbations reads
as [101–103]

δSζ ¼
Z

dtd3x⃗aðtÞzðtÞ2
�
_ζ2 −

1

a2
ð∂iζÞ2

�
; ð14Þ

with zðtÞ given by the following expression [93]:

zðtÞ ¼ aðtÞ
κ
h
HðtÞ þ 1

2F0ðRÞ
dF0ðRÞ

dt

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2F0ðRÞ
�
dF0ðRÞ

dt

�
2

s
: ð15Þ

Using the solution for FðRÞ, i.e., Eq. (8), the expression for
dF0ðRÞ=dt where 0 denotes differentiation with respect to
the Ricci scalar is given by

dF0ðRðtÞÞ
dt

¼ tð12α − CÞft2αð5 − t2αÞg
36t2α

þ
tð12α − CÞ

n ffiffiffiffiffiffi
2α

p
t½3þ t2αð−6þ t2αÞ�FD

	
t
ffiffi
α

pffiffi
2

p

o

36t2α
:

ð16Þ

F0ðRÞ is given by Eq. (11).
As mentioned earlier, the perturbation modes are gen-

erated close to the bounce; therefore we solve the above
equation for cosmic times near the bouncing point. As a
result, we keep terms up to Oðαt2Þ for the rest of our
analysis. The corresponding expression for zðtÞ, keeping
terms up to Oðαt2Þ in F0ðRÞ and dF0ðRðtÞÞ

dt , becomes

zðtÞ ¼ ð1=αÞ3=2α ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12α − C

p

31=2ðt2 þ 1Þκ þ 2α2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12α − C

p
t2

31=24α3=2κ
: ð17Þ

At the end, the perturbed action leads to the following
Lagrange equation for the Fourier mode of the comoving
curvature perturbation, ζk:

FIG. 1. The functions F (upper graph), F0 (middle graph),
and F00 (lower graph), in terms of the time variable x
defined as x≡ αt2, with FGR ¼ R and F0 ¼ ð12α − CÞ,
F0
0 ¼ ð12α − CÞ=α, and F00

0 ¼ ð12α − CÞ=α2.
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1

aðtÞz2ðtÞ
d
dt

½aðtÞz2ðtÞ_ζk� þ
k2

a2
ζkðtÞ ¼ 0: ð18Þ

In the above equation, by using (17) and keeping terms up
to Oðαt2Þ, the quantity aðtÞzðtÞ2 becomes

aðtÞzðtÞ2 ¼ U þ Vt2; ð19Þ

with U ¼ ð12α−CÞ
12ακ2

and V ¼ ð12α−CÞ
4κ2

.
At the end, the Lagrange equation for ζk can be recast at

leading order as

ζ̈k þ
2V
U

t_ζk þ k2ζkðtÞ ¼ 0; ð20Þ

whose solution is

ζkðtÞ ¼ C1ðkÞe−V
Ut

2

H

�
−1þ k2U

2V
;

ffiffiffiffi
V
U

r
t

�

þ C2ðkÞe−V
Ut

2

1F1

�
1

2
−
k2U
4V

;
1

2
;

ffiffiffiffi
V
U

r
t2
�
; ð21Þ

where C1ðkÞ and C2ðkÞ are integration constants,Hðn; xÞ is
the nth order Hermite polynomial, and 1F1ða; b; xÞ is the
Kummer confluent hypergeometric function.
The expressions for the integration constants C1ðkÞ and

C2ðkÞ are obtained by setting the initial conditions for the
curvature perturbations. Given the fact that close to the
bounce the Hubble radius is infinitely large as mentioned
above, the primordial modes are well inside the Hubble
radius, thus satisfying the condition k ≫ aH. Therefore,
the initial conditions for ζk will be set through the
Mukhanov-Sasaki variable, defined in the present context
as vkðtÞ≡ zðtÞζkðtÞ [93], and whose value on sub-Hubble
scales is set by the Bunch-Davies vacuum state, i.e.,

vk;k≪aH ¼ e−ikηffiffiffiffiffi
2k

p ; ð22Þ

where the time variable η is the conformal time defined by
dη≡ dt=aðtÞ. Using the expression (5) for the scale factor
near the bounce, we obtain from Eq. (22) that

η ¼
Z

t

0

dt0=aðt0Þ ¼ arctanð ffiffiffi
α

p
tÞffiffiffi

α
p : ð23Þ

Consequently, the initial conditions satisfied by vk and its
derivative become

vkðt → 0Þ ¼ 1ffiffiffiffiffi
2k

p ;

_vkðt → 0Þ ¼ −
ik

ffiffiffi
α

pffiffiffiffiffi
2k

p : ð24Þ

Using these conditions and the fact that _zðt → 0Þ ¼ 0,
we finally acquire straightforwardly the expressions for the
integration constants C1 and C2 as

C1ðkÞ ¼
3iκ2

5
2
−k2
6α

ffiffiffi
k

p
α3=2Γð3

2
− k2

12αÞffiffiffi
π

p ð6α − k2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12α − C

p ; ð25Þ

C2ðkÞ ¼
ffiffiffi
2

p
κ

k1=2ð6α − k2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12α − C

p
Γð1 − k2

12αÞ

�
−6ikα3=2

× Γ
�
3

2
−

k2

12α

�
þ

ffiffiffiffiffiffi
3α

p
ð6α − k2ÞΓ

�
1 −

k2

12α

��
;

ð26Þ

where ΓðxÞ denotes the Gamma function. At the end, the
corresponding curvature power spectrum can be recast as
follows:

Pζðk; tÞ≡ k3

2π2
jζkðtÞj2

¼ k3

2π2

����C1ðkÞe−V
Ut

2

H

�
−1þ k2U

2V
;

ffiffiffiffi
V
U

r
t

�

þ C2ðkÞe−V
Ut

2

1F1

�
1

2
−
k2U
4V

;
1

2
;

ffiffiffiffi
V
U

r
t2
�����2: ð27Þ

B. Matching the bounce with a radiation-dominated era

As explained in Sec. II, close to the bounce the under-
lying gravity theory is described by a FðRÞ modified
gravity setup with FðRÞ given by Eq. (8). During this
phase, the scale factor evolution is dictated by Eq. (5),
which is nothing other than a perturbative expansion close
to the bounce, valid for αt2 ≲ 1, and corresponds to a fluid
dominated universe with an equation-of-state parameter
w ¼ −2=3. Then, FðRÞ gravity modifications are switched
off and one recovers the standard HBB phase which is
described by GR. Consequently, matching the two phases
and requiring continuity of the scale factor at the onset of
the RD era, one gets that

aðtÞ ¼
�
1þ αt2; t < tRD;

aRDð t
tRD
Þ1=2; t > tRD;

ð28Þ

with tRD being the transition time between the exotic phase
close to the bounce with w ¼ −2=3 and the RD phase given
by Eq. (9), and aRD the respective scale factor at the onset
of the RD era. We mention that in order to keep the scale
factor continuous during the transition we choose aRD to
be aRD ¼ 1þ αt2RD.
Given the fact that in the following we elaborate the

power spectrum at the horizon crossing time during the RD
era, i.e., k ¼ aðtÞHðtÞ with t > tRD, one can find the

CONSTRAINING FðRÞ BOUNCING COSMOLOGIES THROUGH … PHYS. REV. D 106, 124012 (2022)

124012-5



horizon crossing time tHCðk; αÞ by solving k ¼ aH with
aðtÞ ¼ aRDð t

tRD
Þ1=2 and HðtÞ ¼ 1

2t. At the end, we extract
that

tHCðk; αÞ ¼
ffiffiffi
α

p
k2

: ð29Þ

At this point it is important to stress that in the expression
(27) we derived the curvature power spectrum close to the
bounce by parametrizing the scale factor as in Eq. (5).
Equation (5) describes actually quite well the background
dynamical evolution up to the onset of the RD era when the
perturbative expansion of the scale factor breaks down.
Hence, one can compute Pζðk; tÞ at horizon exiting time
during the initial FðRÞ gravity phase before the RD era,
namely when k ¼ aðtÞHðtÞ with t < tRD. At this point, we
need to stress that in general within the context of bouncing
cosmologies, as we pass from the contraction to the
expansion phase the comoving curvature perturbation ζk
is not necessarily conserved [11]. However, for nonsingular
bouncing scenarios as the one we consider here one finds a
nonsingular evolution of ζk through the bounce [104,105]
and a conservation of the curvature perturbation on super-
horizon scales during the expanding phase [106–108]. The
conservation of ζk on superhorizon scales can be viewed as
well as a consequence of the local energy conservation that
is valid for any relativistic gravitational theory [109,110].
In view of these considerations, the curvature power
spectrum at horizon crossing time during the RD era will
be the same as the curvature power spectrum at horizon
exiting time during the initial FðRÞ gravity phase between
the bounce and the RD era, namely

Pζ½k; tHCðk; αÞ� ¼ Pζ½k; texitðk; αÞ�; ð30Þ

where tHCðk; αÞ is given by (29) and texitðk; αÞ ¼ k
2α.

Finally, we can then use Pζ½k; tHCðk; αÞ� and proceed to
the calculation of the PBH abundance at horizon crossing
time during the RD era, which is considered to be the PBH
formation time.

C. The scales involved

Regarding the relevant scales for the problem at hand,
here we consider modes whose first horizon crossing time,
i.e., when the modes exit the horizon, occurs before the RD
era, that is, texit < tRD. Thus, accounting for the fact that
texitðk; αÞ ¼ k

2α and tRD ¼ 1=
ffiffiffi
α

p
, one can trivially find an

upper bound on the comoving scale k reading as

k < 2
ffiffiffi
α

p
: ð31Þ

This upper bound on k is equivalent with a minimum PBH
mass. In particular, considering the fact that the PBH mass
is roughly the mass within the cosmological horizon at the

horizon crossing time during the RD era, one can trivially
find that

M >
2πM2

Plffiffiffi
α

p : ð32Þ

IV. THE PBH FORMATION FORMALISM

In this section we present a general formalism for the
computation of the mass function of PBHs formed due to
the collapse of enhanced cosmological perturbations once
they reenter the cosmological horizon. Basically, this
happens when the energy density contrast of the collapsing
overdensity region, or the respective comoving curvature
perturbation, becomes greater than a critical threshold δc or
ζc. In the following, we first describe how the comoving
curvature perturbation is connected to the energy density
contrast, extracting the nonlinear relation between them,
and then we proceed by presenting the formalism for
the computation of the PBH mass function and the PBH
abundance within the context of peak theory [111]. At this
point, it is important to highlight that we study PBH
formation during the standard RD era described by general
relativity. Therefore, the use of the peak theory formalism,
developed within GR, for the computation of the PBH
abundance is absolutely legitimate within our work.

A. From the comoving curvature perturbation
to the energy density contrast

Assuming spherical symmetry on superhorizon scales,1

the local region of the universe describing the aforemen-
tioned collapsing cosmological perturbations is described
by the following asymptotic form of the metric:

ds2 ¼ −dt2 þ a2ðtÞeζðrÞ½dr2 þ r2dΩ2�; ð33Þ

where aðtÞ is the scale factor and ζðrÞ is the comoving
curvature perturbation which is conserved on superhorizon
scales. In this regime one can perform a gradient expansion
approximation, where all the hydrodynamic and metric
quantities are nearly homogeneous, and their perturbations
are small deviations away from their background values

1In principle, one could expect nonspherical superhorizon
perturbations due to the presence of an exotic equation of state
with w < −1 after the bounce. In particular, the authors of [112],
starting from spheroidal superhorizon perturbations and studying
the role of nonsphericities on the PBH threshold in the case of
PBH formation during an RD era, found that their effect is
negligibly small. Thus, as a first approximation, we will assume
spherical symmetry on superhorizon scales as it is normally
assumed in the literature. However, to fully assess the effect of
nonsphericities on PBH formation due to the presence of a
preceding exotic phase with a negative w before the RD era, one
should perform high-cost numerical simulations that go beyond
the scope of this work.
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[109,110,113,114]. In this approximation, the energy
density perturbation profile is related to the comoving
curvature perturbation through the following expression
[42,115,116]:

δρ

ρb
≡ ρðr; tÞ − ρbðtÞ

ρbðtÞ

¼ −
�

1

aH

�
2 4ð1þ wÞ
5þ 3w

e−5ζðrÞ=2∇2eζðrÞ=2; ð34Þ

where w is the total equation-of-state parameter defined as
the ratio between the total pressure p and the total energy
density ρ, i.e., w≡ p=ρ. In the linear regime, where ζ ≪ 1,
the above expression is reduced to

δρ

ρb
≃ −

1

a2H2

2ð1þ wÞ
5þ 3w

∇2ζðrÞ

⇒ δk ¼ −
k2

a2H2

2ð1þ wÞ
5þ 3w

ζk: ð35Þ

Note that the last expression is obtained by Fourier trans-
forming the energy density contrast δ and the curvature
perturbation ζ.
From the above form we can see that there is a one-to-

one relation between the comoving curvature perturbation
and the energy density contrast. Thus, if the curvature
perturbation is a Gaussian variable, then the same is true for
the density contrast within the linear regime described by
(35). However, the amplitude of the critical threshold δc or
ζc is in general nonlinear, and as a consequence one should
consider the full nonlinear expression between ζ and δ,
namely (34).
Here it is very important to stress that within the context

of bouncing cosmological scenarios one expects in general
the presence of non-Gaussianities with an amplitude larger
than the one predicted in simple inflationary setups
[117,118]. In particular, for our case for perturbations
whose first horizon crossing is before the onset of the
RD era, the curvature perturbation ζ will become a super-
horizon during the intermediate exotic contracting phase
with w ¼ −2=3 possibly developing non-Gaussianity and
eventually becoming highly nonlinear. After the onset of
the RD era, due to the conservation of ζ in the expanding
phase, it will remain constant. In view of these consid-
erations we assume that the curvature perturbation field
remains Gaussian and linear (to avoid the breaking of
perturbation theory) during the intermediate phase which
connects the bounce with the RD era [119].
At this point, we should also highlight the fact that the

use of ζ for the computation of the PBH abundance vastly
overestimates the number of PBHs, since scales larger than
the PBH scale, which are unobservable, are not properly
removed when the PBH distribution is smoothed [120].
Therefore, one should instead use the energy density

contrast, given the fact that with this prescription the
superhorizon scales are naturally damped by k2, as it can
be seen by (34).
From a mathematical point of view, by performing a

coordinate transformation on superhorizon scales, one can
always shift the comoving curvature perturbation by an
arbitrary constant, making the calculation of the PBH
abundance not physical. On the other hand, if the density
contrast is adopted instead, a dependence on spatial deriv-
atives of the curvature perturbation is obtained as it can be
seen by Eq. (35), making the problem physical. This is
another way to see that the choice towork with δ instead of ζ
for the computation of the PBH abundance is the correct one.
Consequently, smoothing the energy density contrast

with a Gaussian window function over scales smaller than
the horizon scale and using (34), we can straightforwardly
find that the smoothed energy density contrast is related to
the comoving curvature perturbation in radiation era, where
w ¼ 1=3, as [121]

δm ¼ −
2

3
rmζ0ðrmÞ½2þ rmζ0ðrmÞ�: ð36Þ

The scale rm is the comoving scale of the collapsing
overdensity, which can be found by maximizing the
compaction function C defined as [42]

Cðr; tÞ≡ 2
Mðr; tÞ −Mbðr; tÞ

Rðr; tÞ ; ð37Þ

where Rðr; tÞ is the areal radius, Mðr; tÞ is the Misner-
Sharp mass [122,123] within a sphere of a radius R, and
Mb ¼ 4πR3ðr; tÞ=3 is the background mass with respect to
a FLRW metric. Finally, by maximizing the compaction
function, namely C0ðrmÞ ¼ 0, the rm scale will be given by
the solution of the following equation:

ζ0ðrmÞ þ rmζðrmÞ ¼ 0: ð38Þ

Now, given the fact that ζ is assumed to have a Gaussian
distribution, its derivative will have a Gaussian distribution,
too. Hence, we can identify a linear Gaussian variable
δl ¼ − 4

3
rmζ0ðrmÞ with a probability distribution function

(PDF) given by

PðδlÞ ¼
1ffiffiffiffiffiffiffiffi
2πσ

p e−
δ2
l

2σ2 ; ð39Þ

where σ is the smoothed variance of δl written as

σ2 ≡ hδ2l i ¼
Z

∞

0

dk
k
Pδlðk; RÞ

¼ 16

81

Z
∞

0

dk
k
ðkRÞ4W̃2ðk; RÞPζðkÞ: ð40Þ
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The function W̃ðk; RÞ is the Fourier transformation of a
Gaussian window function2 and reads as

W̃ðk; RÞ ¼ e−k
2R2=2: ð41Þ

Finally, the smoothed energy density contrast is related
with the linear Gaussian energy density contrast through
the following expression [121,126]:

δm ¼ δl −
3

8
δ2l : ð42Þ

B. The PBH mass function within peak theory

To extract the mass function of PBHs that form due to the
gravitational collapse of non-Gaussian energy density
perturbations, we work with the Gaussian component of
the smoothed non-Gaussian energy density contrast
denoted as δl. Regarding the critical threshold of the linear
Gaussian component, this can be found by solving Eq. (42)
for δl with δm ¼ δc. Hence, we find that

δc;l� ¼ 4

3

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 3δc

2

r �
: ð43Þ

From the above expression we acquire a critical threshold
for δl. As explained in [121], only δc;l− corresponds to a
physical solution, and since the argument of the square root
should be positive, we require δc < 2=3. In summary, we
find that the physical range of δl is δc;l− < δl < 4=3.
Regarding the PBH mass, it should be of the order of the

horizon mass at PBH formation time, which is considered
as the horizon crossing time. More precisely, the PBH mass
spectrum, as it has been shown in [127–130], should follow
a critical collapse scaling law which can be recast as

MPBH ¼ MHKðδ − δcÞγ; ð44Þ

where MH is the mass within the cosmological horizon at
horizon crossing time, γ is the critical exponent that
depends on the equation-of-state parameter at the time
of PBH formation, and for radiation it is γ ≃ 0.36. The
parameterK is a parameter that depends on the equation-of-
state parameter and on the particular shape of the collapsing
overdensity region. In the following we consider a repre-
sentative value of K ≃ 4.
Concerning now the value of the PBH formation thresh-

old δc, its value should vary roughly within the range 0.4≲
δc ≲ 0.6 depending on the shape of the curvature power
spectrumPζðkÞ. Following the procedure developed in [44]
we found that for the values of α studied here, namely for
α ∈ ½10−24M2

Pl ≤ α ≤ 10−14M2
Pl�, δc ≃ 0.5898 independ-

ently of the value of α. This is somehow expected since

as it can be seen from Fig. 2 the shape of PζðkÞ slightly
changes with respect to α. In particular, as one varies α, we
observe a change in terms of the overall amplitude of PζðkÞ
and not in terms of its shape.
Thus, working with the Gaussian linear component of

the energy density contrast, we can calculate the PBH
abundance in the context of peak theory, where the density
of sufficiently rare and large peaks for a random Gaussian
density field in spherical symmetry is given by [111]

N ðνÞ ¼ μ3

4π2
ν3

σ3
e−ν

2=2: ð45Þ

In this expression, ν≡ δ=σ and σ is given by (40), while the
parameter μ is the first moment of the smoothed power
spectrum given by

μ2 ¼
Z

∞

0

dk
k
Pδlðk; RÞ

�
k
aH

�
2

¼ 16

81

Z
∞

0

dk
k
ðkRÞ4W̃2ðk; RÞPζðkÞ

�
k
aH

�
2

: ð46Þ

Finally, the fraction βν of the energy of the universe at a
peak of a given height ν, which collapses to form a PBH,
will be given by

βν ¼
MPBHðνÞ

MH
N ðνÞΘðν − νcÞ; ð47Þ

and the total energy fraction of the universe contained in
PBHs of mass M can be recast as

βðMÞ ¼
Z

4
3σ

νc−

dν
K
4π2

�
νσ −

3

8
ν2σ2 − δc

�
γ
�
μ

σ

�
3

ν3e−ν
2=2;

ð48Þ

FIG. 2. The curvature power spectrum versus k for different
values of α.

2As regards the choice of the window function and its effect on
the calculation of the PBH abundance see [124,125].
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where νc− ¼ δc;l=σ. Last, the overall PBH abundance,
defined as ΩPBH ≡ ρPBH

ρtot
, where ρtot is the total energy

density of the universe, will be the integrated PBH mass
function. Thus, at time t during the RD era, ΩPBH will be
recast as

ΩPBHðtÞ ¼
Z

Mmax

Mmin

�
MHðtÞ
M

�
1=2

βðMÞd ln M; ð49Þ

whereMHðtÞ is the mass within the cosmological horizon at
time t. Note that in Eq. (49) we have accounted for the fact
that during the RD era MH ∼ a2.

V. RESULTS

In the previous sections we extracted the curvature power
spectrum, and we presented the mathematical setup through
which one can calculate the PBH mass function and
abundance during the standard RD era which follows the
exotic FðRÞ gravity phase close to the bounce. Thus, in this
section we present the main results of our work. Initially,
we study the behavior of the curvature power spectrum by
varying the parameters of the problem at hand, namely the
bouncing parameter α. Then, we compute numerically the
PBHmass function, and we show how it varies by changing
α. Finally, by demanding that GWs induced from PBH
Poisson fluctuations during an early PBH dominated era
before BBN are not overproduced, we set constraints on α.

A. The curvature power spectrum

Given the fact that the scales collapsing to PBHs are
initially super-Hubble before crossing the Hubble radius
and collapse to PBHs, we perform a Taylor expansion of
the comoving curvature perturbation (21) on super-Hubble
scales, i.e., when k ≪ aH. By keeping terms up to
O½ð k

aHÞ3=2� we obtain that

ζk;k≪aH ≃ κe3αt
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

tð12α − CÞ

s �
k

aðtÞHðtÞ
�
−1=2

− i
καtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tð12α − CÞp ½e3αt2 ffiffiffi
π

p
− 2Hð−1; t

ffiffiffiffiffiffi
3α

p
Þ�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

aðtÞHðtÞ

s
−

καt3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð12α − C

p 1F
ð1;0;0Þ
1

×

�
1

2
;
1

2
; 3αt2

��
k

aðtÞHðtÞ
�
3=2

; ð50Þ

where 1F
ð1;0;0Þ
1 ðx; y; zÞ stands for the derivative of the

Kummer confluent hypergeometric function with respect
to its first argument.
Therefore, inserting this expression in Eq. (27) and

following the procedure described in Sec. IV, we can
calculate the curvature power spectrum PζðkÞ at horizon

crossing time by fixing the bouncing parameter α and the
integration constantC. As it was checked numerically,PζðkÞ
is independent of the value ofC, and in the following wewill
fix its value to C ¼ 0.1α. In the following, we will use the
above expression for ζk;k≪aH when computing the comoving
curvature perturbation and subsequently the matter power
spectrumPδðkÞ following theprocedure described inSec. IV.
As it was confirmed numerically the curvature power
spectrum PζðkÞ computed using Eq. (50) matches quite
well the exact PζðkÞ all along the k range.
In Fig. 2, we depict the curvature power spectrum PζðkÞ

[Eq. (27)] on superhorizon scales, for different values of α
and for C ¼ 0.1α. As we can see, the power spectrum
increases by increasing the value of α. This behavior can be
understood if one sees how the maximum allowed value of
k, which corresponds to the lowest scale of the problem at
hand, varies with α. In particular, as we can see from
Eq. (31), the value of kmax increases with an increase of α;
hence the power spectrum shifts to higher values of k, i.e.,
to smaller scales. Consequently, as approaching smaller
and smaller scales one starts to probe the granularity of the
energy density field, entering in this way the nonlinear
regime where PζðkÞ ≫ 1. Hence, one can clearly under-
stand the tendency of the power spectrum to increase with
increasing α, given the fact that it probes smaller scales that
become nonlinear.
To avoid the presence of nonlinearities, one could

abruptly cut the curvature power spectrum at values smaller
than unity in order to ensure the validity of the linear
perturbative regime. However, given the fact that PBH
formation is a nonlinear process since it takes place in
overdensity regions where δ > δc ∼Oð1Þ the introduction
of an abrupt cutoff would dramatically decrease the PBH
abundance to values orders of magnitude smaller than its
real value. The correct way to remove these nonlinear
scales is actually through the introduction of the nonlinear
transfer function that has not yet been extracted and
requires high cost N body simulations that go beyond
the scope of this work [125]. Consequently, as it is
standardly adopted within the context of the PBH literature,
these small nonlinear scales are naturally smoothed out
when computing the PBH mass function through the use of
a window function introduced in Sec. IV.

B. The PBH mass function

Since we have extracted above the curvature power
spectra for different values of α, we proceed to the
calculation of the PBH mass function within peak theory.
In particular, we follow the mathematical formalism pre-
sented in Sec. IV B, accounting for the nonlinear relation
between δ and ζ as well as the critical collapse law for the
PBH masses. Below, we show how the PBH mass function
changes by varying the parameter α. As a first general
comment, one may notice from Fig. 3 that we are met with
an extended PBH mass distribution as it can be expected if
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one sees Fig. 2 wherePζðkÞ is not peaked but instead varies
over a wide range of comoving scales k.
In the left panel of Fig. 3, we show how the PBH

mass function changes with respect to the comoving
scale k for different values of the parameter α. In
particular, the mass function increases its overall ampli-
tude as one increases the value of the parameter α, a
behavior which is kind of expected since as explained in
Sec. VA by increasing α one starts to probe more and
more smaller scales which become nonlinear and can
easily collapse to PBHs.
Interestingly, one can also notice that for values of αmore

or less larger than 10−19M2
Pl, the peak of the mass function

saturates at a value close to 0.1 independently of the value of
α. This behavior can be explained if one sees Fig. 2wherewe
see that for α > 10−19M2

Pl, the curvature power spectrum
enters gradually as we increase the value of α deep into the
nonperturbative regime where PζðkÞ ≫ 1. Consequently,
because of the effect of smoothing these enhanced perturba-
tion modes do not contribute to the increase of the mass
function as we go to high k values. On the contrary, the
overall effect of smoothing is to make the maximum
amplitude of β to saturate for α > 10−19M2

Pl.
One can also infer a shift of the position of the peak of

βðkÞ toward the smaller scales, namely large k values, a
behavior which can be explained from the fact that kmax ∼ffiffiffi
α

p
[see Eq. (31)].

Additionally, we witness as well a slight increase on the
large k region. This slight increase is due to the fact that in
the high k region where δ is very large, the PBH mass
function (48) scales as βðMÞ ∝ 1=σ6 with σ2 being sup-
pressed on the very small PBH scales due to the effect of
smoothing, which becomes very important on these scales.
As a consequence, at a scale around k� ∼ kmax=4 all βðkÞ
curves start to slightly increase as one probes smaller scale
modes k. (See the discussion in Appendix B.)

In the right panel of Fig. 3, we show how the β function
changes with respect to the PBH mass by varying the
parameter α. The observed behavior is similar as in the left
panel of Fig. 3 with the only difference that now the position
of the peak of βðMÞ is more or less constant, independent of
the value of α. This can be understood if we see how the PBH
mass scales with α and k. In particular, by defining the PBH
mass being roughly equal to the mass within the horizon at
horizon crossing time during the RD era, one obtains that

MPBH ≃MH ¼ 4πM2
Pl

H
¼ 8πM2

Pl

ffiffiffi
α

p
k2

; ð51Þ

where in the last step we used Eq. (29) as well as the fact that
during the RD era H ¼ 1=ð2tÞ. Thus, even though the
position of the peak of the β function shifts to higher values
of k, i.e., smaller scales as one increase the value of α (see left
panel of Fig. 3), when one plots β in terms of MPBH the
position of the peak of β will shift to larger masses (see right
panel of Fig. 3), since MPBH ∝

ffiffiffi
α

p
=k2 as it can be seen by

Eq. (51). At the end, the overall effect is that the position of
the peak of the function βðMPBHÞ is more or less constant
independently of the value of α.
At this point, it is useful to stress that the PBH masses

produced substantially by the FðRÞ gravity bouncing model
studied here are very small, namely less than 109 g,
evaporating very quickly before the BBN time. One
question one could ask is if with this bouncing model
one can produce higher PBH masses, close to the solar
mass as the ones probed by LIGO/VIRGO gravitational-
wave detectors. To give an order of magnitude of the value
that the FðRÞ gravity parameter α should have in order to
produce PBH masses of the order of 1 M⊙, we can simply
set in Eq. (51) MPBH ¼ 1 M⊙ and the comoving value k
equal to its maximum value, namely k ¼ kmax ¼ 2

ffiffiffi
α

p
. At

the end, one gets straightforwardly that

FIG. 3. Left panel: The PBH mass function βðkÞ as a function of the comoving number k for different values of the FðRÞ bouncing
parameter α. Right panel: The PBH mass function βðMÞ as a function of the PBH massMPBH for different values of the FðRÞ bouncing
parameter α.
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MPBH > M⊙ ⇔ α < 4 × 10−72M2
Pl: ð52Þ

For such very small values of α the PBH mass function is
dramatically suppressed as one may speculate by looking at
the decreasing tendency of β by decreasing the value of the
parameter α in Fig. 3.

C. Constraining α

We can now proceed to perform a full parameter-space
analysis by calculating the PBH abundance at formation time
ΩPBH;f , for a wide range of values of the FðRÞ parameter α.
In Fig. 4 we show how ΩPBH;f varies as a function of
the bouncing parameter α. In particular, we find that as α
increases, the PBH abundance increases as well, as it can be
speculated from Fig. 3. This behavior can be explained from
the fact that as α increases the curvature power spectrum
shifts to smaller and smaller scales widening in this way the
range of modes k which can potentially collapse to PBHs,
hence enhancing the PBH mass function. Interestingly, we
find that for values α ≥ 10−19M2

Pl, ΩPBH;f saturates to a
plateau which is related with the saturation of the amplitude
of the PBH mass function due to the effect of smoothing
becoming more and more important as α increases. (See the
discussion in Sec. V B.)
At the end, accounting for the fact that the masses of the

formed PBHs are so small, they evaporate very quickly
after their formation. Consequently, the only natural con-
dition that needs to be fulfilled so as to set constraints on
the parameter α is that ΩPBH;f < 1. However, as recently
noted in [66] such small PBHs evaporating before BBN can
dominate the energy budget of the universe and induce
at second order in cosmological perturbation theory a
GW background that can be detectable by future GW
experiments. Requiring therefore that GWs are not over-
produced during this early PBH dominated era, one can set
constraints on the parameters of the PBH production

mechanism and in our case the FðRÞ gravity parameter
α. For the case of monochromatic PBH distributions one
can show that in order for the GWs not to be overproduced
one should require that [66]

ΩPBH;f < 10−4ð109 g=MPBHÞ1=4: ð53Þ

In our case, we have a broad PBH mass spectrum but given
the fact that the position of the peak of the maximum of the
PBH mass function depends slightly on the value of the
parameter α, we can use as a first approximation Eq. (53) in
order to constrain the bouncing parameter α. To be more
precise, one should account for the full broad PBH mass
distribution and compute the GW signal today accounting
as well for the transition between the early PBH dominated
era to the RD era [131], a study that goes beyond the scope
of the present work and that we leave for a future project.
Thus, takingMPBH ≃ 2 × 105 g which is more or less the

PBH mass at the peak of the β function, one gets that
ΩPBH;f < 10−3. At the end, requiring this condition one
finds numerically (see Fig. 4) that α should lie within the
following range:

α ≤ 10−19M2
Pl: ð54Þ

This constraint can be translated to constraints on the
energy scale at the onset of the HBB phase HRD given the
fact that tRD ¼ 1=

ffiffiffi
α

p
andHRD ¼ 1=ð2tRDÞ. At the end, one

can find that HRD ¼ ffiffiffi
α

p
=2 and should vary within the

following range:

HRD ≤ 10−10MPl: ð55Þ

At this point, it is very important to stress that the energy
scale at the onset of the RD era, given by HRD, can also be
viewed as the lowest bound on the energy scale of the
universe at the bounce.

VI. CONCLUSIONS

The nonsingular bouncing cosmological paradigm is one
of the most appealing alternatives to inflation. Since the
bounce realization requires the violation of the null energy
condition, it can typically be implemented in the framework
of modified gravity. On the other hand, the phenomenology
of PBH physics, and the associated PBH abundance
constraints that span a range of masses over more than
50 orders of magnitude, has recently started to be inves-
tigated in detail, since it can be used to probe and extract
constraints on the early universe behavior. Hence, studying
PBHs both at inflationary and at bounce scenarios could be
helpful to constrain such scenarios and extract possible
distinguishable features.
In this work, we focused on the bounce realization within

FðRÞmodified gravity, and we investigated the correspond-
ing PBH phenomenology. By introducing an FðRÞ gravity

FIG. 4. The PBH abundance at formation time ΩPBH;f as a
function of the FðRÞ bouncing parameter α.
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exotic phase close to the bounce compatible with a
bouncing scale factor, we studied its effect on the mass
function of PBHs that form during the standard RD era
described quite well within classical GR gravity. In
particular, we calculated the curvature power spectrum at
horizon crossing time, during the RD era, as a function of
the bounce parameter α, which is actually the involved
FðRÞ gravity parameter.
To follow,we calculated thePBHabundance in the context

of peak theory, considering the nonlinear relation between δ
and ζ as well as the critical collapse law for the PBHmasses.
At the end, in Fig. 3 we showed how the PBHmass function
changes by varying the bouncing parameter α.
Additionally, by making a full parameter-space analysis,

in Fig. 4 we gave the PBH abundance at formation time
ΩPBH;f as a function of the bouncing parameter α.
Interestingly enough, we found that in order to avoid
GW overproduction from an early PBH domination era
before BBN, α should lie within the range α ≤ 10−19M2

Pl.
This constraint can be transformed to a constraint on the
energy scale at the onset of the HBB phase HRD ∼

ffiffiffi
α

p
=2,

which can be recast as HRD ≤ 10−10MPl.
We mention that the explored parameter space can be

further constrained by evolving the PBH abundance ΩPBH
up to later times, and accounting for current observational
constraints on ΩPBH [132]. Moreover, one can extract more
stringent constraints by studying additionally the scalar
induced stochastic gravitational-wave background (SGWB)
associated with the primordial curvature perturbations
that gave rise to PBHs (see [65] for a review), as well
as the SGWB induced from PBH Poisson fluctuations
[66,131,133,134].
Since PBH formation within bouncing cosmologies may

serve as a novel tool to study alternative theories of gravity,
one should perform a similar analysis in other modified
gravity scenarios and examine whether there are qualitative
and quantitative differences among them. In particular, one
can extend our formalism by accounting as well for the effect

of modified gravity on the background and perturbation
evolution during the period of PBH formation generalizing in
a sense the peak theory formalism and investigating the full
gravitational collapse dynamics in modified gravity setups.
Such a detailed investigation is beyond the scope of this paper
and can be performed elsewhere.
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APPENDIX A: INVESTIGATING DIFFERENT
BOUNCING SCALE FACTOR

PARAMETRIZATIONS

Up to now, we have considered that the scale factor close
to the bounce is parametrized by (5), by keeping terms up to
quadratic order in t in the Taylor expansion for aðtÞ. Thus, a
legitimate question to ask is how our results will change by
changing the scale factor parametrization near the bounce.
In general, the scale factor near a nonsingular bounce can
be parametrized as [93]

abðtÞ ≃ ð1þ αt2Þn; ðA1Þ

where n is a real number. In the following we study the
cases where n ¼ 2 and n ¼ 3, and we examine how the
curvature power spectrum changes accordingly.
(1) aðtÞ ¼ ð1þ αt2Þ2:
Using this parametrization for the scale factor near the

bounce, and solving Eq. (3) for FðRÞ, we find that

FbðRðtÞÞ ¼
1

420
t2α2ð99225þ t2αð−814275þ t2αð91875þ t2αð15855þ t2αð3360þ t2αð245þ t2α½75

þ t2αð−25þ t2αÞ�ÞÞÞÞÞÞ þ 1

α5
ð105þ t2αð525þ t2αð−1050þ t2α½350þ t2αð−35þ t2αÞ�ÞÞÞC

þ 1

8
ffiffiffiffiffiffiffi
t2α

p 9πtα3=2ð105þ t2αð525þ t2αð−1050þ t2α½350þ t2αð−35þ t2αÞ�ÞÞÞ

· Erfcðt ffiffiffiffiffi
tα

p
=

ffiffiffi
2

p
ÞErfiðt ffiffiffiffiffi

tα
p

=
ffiffiffi
2

p
Þ þ 9

8
αð−et2α=2

ffiffiffiffiffiffi
2π

p
t

ffiffiffi
α

p ð105þ t2αð−790þ t2α½318þ t2αð−34þ t2αÞ�ÞÞ
þ πð105þ t2αð525þ t2αð−1050þ t2α½350þ t2αð−35þ t2αÞ�ÞÞÞ · Erfiðt ffiffiffiffiffi

tα
p

=
ffiffiffi
2

p
ÞÞErfðt ffiffiffiffiffi

tα
p

=
ffiffiffi
2

p
Þ

−
1

840
et

2α=2t12α7ð105þ t2αð−790þ t2α½318þ t2αð−34þ t2αÞ�ÞÞExpIntE
�
−
9

2
;
t2α
2

�
; ðA2Þ

where ExpIntE is the exponential integral function EnðzÞ.
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Similar to the previous case, keeping terms up to Oðαt2Þ
the expression for zðtÞ becomes

zðtÞ ¼ U þ Vt − Xt2; ðA3Þ

where

U ¼
ffiffiffiffiffiffiffiffi
105

p
α

2ακ
ffiffiffiffiffiffiffiffiffiffiffi
α7=C

p ; ðA4Þ

V ¼
ffiffiffiffiffiffiffiffiffiffiffi
α7=C

p
ð2592πα12 − 1225C2Þ
12α12κ

ffiffiffiffiffiffiffiffiffiffi
210π

p ; ðA5Þ

X ¼ ðα7=CÞ3=2
1890α18κπ

ffiffiffiffiffiffiffiffi
105

p ½419904π2α18 þ 45360πα12C

þ 1190700πα6C2 þ 42875C3�: ðA6Þ

Thus, evaluating the curvature perturbation near the
bounce, at leading order in t, we obtain

ζk ¼ C1ðkÞH
�

k2U2

2V2 þ 4UX − 4U2α
;

−UV þ tV2 þ 2tUX − 2tU2α

U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 2UðX −UαÞ

p �

þ C2ðkÞ1F1

�
−

k2U2

4½V2 þ 2UðX − UαÞ� ;
1

2
;

½−tV2 þ UðV − 2tXÞ þ 2tU2α�2
U2½V2 þ 2UðX −UαÞ�

�
: ðA7Þ

The forms of C1ðkÞ and C2ðkÞ are determined using the
initial conditions given in (24) modified appropriately for
the present case where aðtÞ ¼ ð1þ αt2Þ2.

Below, we show the curvature power spectrum PζðkÞ ¼
k3jζkj2=ð2π2Þ by varying the FðRÞ bouncing parameter α.
As one may notice from the left panel of Fig. 5 in the case
where n ¼ 2, PζðkÞ becomes very sensitive with α with a
general tendency to increase on small scales, i.e., large k
values, probing gradually the nonlinear regime. In addition, it
isworthhighlighting the fact that independentlyof thevalueof
α, PζðkÞ increases very abruptly to large values within less
than1orderofmagnitude ink signaling the fact that incontrast
with the n ¼ 1, one is met with an almost monochromatic
curvature power spectrum giving rise to PBHs.
(2) aðtÞ ¼ ð1þ αt2Þ3:
With the same reasoning as before, the solution for FðRÞ

around the bounce reads as

FbðtÞ ¼ 6αþ 324α2t2 þ
�
324t4α3ð−3þ t2αÞ

−
54

288
e
3t2α
2 tα2½1þ t2αð−8þ 3t2αÞ�C

þ 9C
ffiffiffiffiffiffi
6π

p
α9=2ð1þ 9t2α½1þ t2αð−3

þ t2αÞ�ÞErfi
� ffiffiffiffiffiffi

3α

2

r
t

��
: ðA8Þ

Once again, keeping up to Oðαt2Þ terms in the scalar
perturbation, we extract the form of zðtÞ as

zðtÞ ¼ U þ Vt − Xt2; ðA9Þ
where

U ¼
ffiffiffi
6

p

κ
; V ¼ ð−124416þ αC2Þ

24
ffiffiffi
6

p
κC

; ðA10Þ

X ¼ αð746496þ αC2Þ
6912ð ffiffiffi

6
p

κÞ : ðA11Þ

FIG. 5. The curvature power spectrum PζðkÞ for different values of α for n ¼ 2 and n ¼ 3.
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The corresponding solution for the curvature perturbation,
at leading order in t, is

ζk ¼ C1ðkÞH
�

k2U2

2V2 þ 4UX − 4U2α
;

−UV þ tV2 þ 2tUX − 2tU2α

U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 2UðX −UαÞ

p �

þ C2ðkÞ1F1

�
−

k2U2

4½V2 þ 2UðX − UαÞ� ;
1

2
;

½−tV2 þ UðV − 2tXÞ þ 2tU2α�2
U2½V2 þ 2UðX −UαÞ�

�
: ðA12Þ

In the right panel of Fig. 5 we show again the curvature
power spectrum for the n ¼ 3 case by varying the param-
eter α. In particular, as in the n ¼ 2, one can notice a power
spectrum PζðkÞ with an amplitude quite sensitive to the
variation of the FðRÞ bouncing parameter α and with a
tendency to lead to a monochromatic PBH mass distribu-
tion in contrast with the n ¼ 1 case.
Consequently, one can argue that our results are nearly

the same for ð1þ αt2Þ; ð1þ αt2Þ2; ð1þ αt2Þ3, and other
values of n in ð1þ αt2Þn with n > 1. In particular, in
contrast with the n ¼ 1 case, we find a very sensitive
behavior of the amplitude of PζðkÞ and a tendency of PζðkÞ
to lead to a monochromatic PBH mass function.
Finally, one should comment on the order of masses

produced within the parametrizations where n > 1. In

particular, as we can see from Fig. 5, kmax ∼ 10−18MPl,
and given the fact that MPBH ∝

ffiffiffi
α

p
=k2, one gets that for

α ∼ 10−36M2
Pl, MPBH ∼ 1013 g ∼ 10−20 M⊙ many orders of

magnitude larger than the order of PBHmasses produced in
the n ¼ 1 case but still quite small compared to the PBH
masses detected by the LIGO-VIRGO detectors which are
of the order of the solar mass.
We mention here that other possible bouncing scale

factor forms that have been studied in the literature are
cosh ð1þ αt2Þ and eαt2 . However, when expanded around t
their forms become similar to ð1þ αt2Þn; hence our above
results become quite general, being valid for any para-
metrization of the scale factor giving rise to a bounce.

APPENDIX B: THE PBH MASS FUNCTION
ON SMALL SCALES

We show below the smoothed power spectra σ2 and μ2

with respect to the comoving scale k by varying the FðRÞ
gravity parameter α.
Writing now the fraction of the universe at a peak of

height ν≡ δ=σ, which will collapse to form a PBH [see
Eq. (47)] as a function of the energy density contrast one
can recast it as

βδ ¼
K
4π2

�
δ −

3δ2

8
− δc

�
γ

δ3e−
δ2

2σ2
μ3

σ6
: ðB1Þ

At the end, after integrating the βδ over δ one will
have that βðkÞ ¼ HðσÞμ3ðkÞ=σ6ðkÞ with the function HðσÞ
being defined as

HðσÞ≡
Z

4=3

δc;l-

K
4π2

�
δ −

3δ2

8
− δc

�
γ

δ3e−
δ2

2σ2 : ðB2Þ

As it was checked numerically (see Fig. 6) for the range of
k values considered here δ=σ ≪ 1, and thus one can

approximate e−
δ2

2σ2 ≃ 1 − δ2

σ2
. As we decrease σ, HðσÞ

decreases as well. However, because of the 1=σ6

dependence of β, as we approach the region close
to kmax, we see the slight increase in βðkÞ as can be
seen in Fig. 3. This region where one observes this
slight increase of the β function can be roughly defined

as k > kmax=4 ¼ ffiffiffi
α

p
=2.

FIG. 6. δðkÞ=σðkÞ as a function of k for different values of α.

BANERJEE, PAPANIKOLAOU, and SARIDAKIS PHYS. REV. D 106, 124012 (2022)

124012-14



[1] A. A. Starobinsky, A new type of isotropic cosmological
models without singularity, Phys. Lett. 91B, 99 (1980).

[2] A. H. Guth, The inflationary universe: A possible solution
to the horizon and flatness problems, Phys. Rev. D 23, 347
(1981).

[3] A. D. Linde, A new inflationary universe scenario: A
possible solution of the horizon, flatness, homogeneity,
isotropy and primordial monopole problems, Phys. Lett.
108B, 389 (1982).

[4] A. Albrecht and P. J. Steinhardt, Cosmology for Grand
Unified Theories with Radiatively Induced Symmetry
Breaking, Phys. Rev. Lett. 48, 1220 (1982).

[5] A. D. Linde, Chaotic inflation, Phys. Lett. 129B, 177
(1983).

[6] A. Borde and A. Vilenkin, Singularities in inflationary
cosmology: A review, Int. J. Mod. Phys. D 05, 813 (1996).

[7] V. Mukhanov and R. Brandenberger, A Nonsingular
Universe, Phys. Rev. Lett. 68, 1969 (1992).

[8] R. H. Brandenberger, V. F. Mukhanov, and A. Sornborger,
A cosmological theory without singularities, Phys. Rev. D
48, 1629 (1993).

[9] M. Novello and S. E. P. Bergliaffa, Bouncing cosmologies,
Phys. Rep. 463, 127 (2008).

[10] M. Lilley and P. Peter, Bouncing alternatives to inflation,
C. R. Phys. 16, 1038 (2015).

[11] D. Battefeld and P. Peter, A critical review of classical
bouncing cosmologies, Phys. Rep. 571, 1 (2015).

[12] P. Peter and N. Pinto-Neto, Cosmology without inflation,
Phys. Rev. D 78, 063506 (2008).

[13] E. N. Saridakis et al. (CANTATACollaboration), Modified
gravity and cosmology: An update by the CANTATA
network, arXiv:2105.12582.

[14] S. Nojiri and S. D. Odintsov, Introduction to modified
gravity and gravitational alternative for dark energy, eConf
C0602061, 06 (2006).

[15] S. Capozziello and M. De Laurentis, Extended theories of
gravity, Phys. Rep. 509, 167 (2011).

[16] D. Benisty, E. I. Guendelman, A. van de Venn, D. Vasak, J.
Struckmeier, and H. Stoecker, The dark side of the torsion:
Dark energy from propagating torsion, Eur. Phys. J. C 82,
264 (2022).

[17] D. Benisty, G. J. Olmo, and D. Rubiera-Garcia,
Singularity-free and cosmologically viable born-infeld
gravity with scalar matter, Symmetry 13, 2108 (2021).

[18] G. Veneziano, Scale factor duality for classical and
quantum strings, Phys. Lett. B 265, 287 (1991).

[19] J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok,
Ekpyrotic universe: Colliding branes and the origin of the
hot big bang, Phys. Rev. D 64, 123522 (2001).

[20] J. Khoury, B. A. Ovrut, N. Seiberg, P. J. Steinhardt, and N.
Turok, From big crunch to big bang, Phys. Rev. D 65,
086007 (2002).

[21] T. Biswas, A. Mazumdar, and W. Siegel, Bouncing
universes in string-inspired gravity, J. Cosmol. Astropart.
Phys. 03 (2006) 009.

[22] S. Nojiri and E. N. Saridakis, Phantom without ghost,
Astrophys. Space Sci. 347, 221 (2013).

[23] K. Bamba, A. N. Makarenko, A. N. Myagky, S. Nojiri,
and S. D. Odintsov, Bounce cosmology from FðRÞ

gravity and FðRÞ bigravity, J. Cosmol. Astropart. Phys.
01 (2014) 008.

[24] S. Nojiri and S. D. Odintsov, Mimetic FðRÞ gravity:
Inflation, dark energy and bounce, arXiv:1408.3561.

[25] Y.-F. Cai, S.-H. Chen, J. B. Dent, S. Dutta, and E. N.
Saridakis, Matter bounce cosmology with the f(T) gravity,
Classical Quantum Gravity 28, 215011 (2011).

[26] Y. Shtanov and V. Sahni, Bouncing brane worlds, Phys.
Lett. B 557, 1 (2003).

[27] E. N. Saridakis, Cyclic universes from general collisionless
braneworld models, Nucl. Phys. B808, 224 (2009).

[28] Y.-F. Cai and E. N. Saridakis, Non-singular cosmology in a
model of non-relativistic gravity, J. Cosmol. Astropart.
Phys. 10 (2009) 020.

[29] E. N. Saridakis, Horava-Lifshitz dark energy, Eur. Phys.
J. C 67, 229 (2010).

[30] Y.-F. Cai, C. Gao, and E. N. Saridakis, Bounce and cyclic
cosmology in extended nonlinear massive gravity,
J. Cosmol. Astropart. Phys. 10 (2012) 048.

[31] J.-L. Lehners, Ekpyrotic and cyclic cosmology, Phys. Rep.
465, 223 (2008).

[32] S. Banerjee and E. N. Saridakis, Bounce and cyclic
cosmology in weakly broken galileon theories, Phys.
Rev. D 95, 063523 (2017).

[33] E. N. Saridakis, S. Banerjee, and R. Myrzakulov, Bounce
and cyclic cosmology in new gravitational scalar-tensor
theories, Phys. Rev. D 98, 063513 (2018).

[34] Y.-F. Cai, Exploring bouncing cosmologies with cosmo-
logical surveys, Sci. China Phys. Mech. Astron. 57, 1414
(2014).

[35] Y.-F. Cai, J. Quintin, E. N. Saridakis, and E. Wilson-
Ewing, Nonsingular bouncing cosmologies in light of
BICEP2, J. Cosmol. Astropart. Phys. 07 (2014) 033.

[36] B. J. Carr, The Primordial black hole mass spectrum,
Astrophys. J. 201, 1 (1975).

[37] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, New
cosmological constraints on primordial black holes, Phys.
Rev. D 81, 104019 (2010).

[38] Y. B. Zel’dovich and I. D. Novikov, The hypothesis of
cores retarded during expansion and the hot cosmological
model, Sov. Astron. 10, 602 (1967).

[39] B. J. Carr and S. W. Hawking, Black holes in the early
Universe, Mon. Not. R. Astron. Soc. 168, 399 (1974).

[40] B. J. Carr, The primordial black hole mass spectrum,
Astrophys. J. 201, 1 (1975).

[41] T. Harada, C.-M. Yoo, and K. Kohri, Threshold of
primordial black hole formation, Phys. Rev. D 88,
084051 (2013).

[42] I. Musco, Threshold for primordial black holes: Depend-
ence on the shape of the cosmological perturbations, Phys.
Rev. D 100, 123524 (2019).

[43] A. Kehagias, I. Musco, and A. Riotto, Non-Gaussian
formation of primordial black holes: Effects on the thresh-
old, J. Cosmol. Astropart. Phys. 12 (2019) 029.

[44] I. Musco, V. De Luca, G. Franciolini, and A. Riotto,
Threshold for primordial black holes. II. A simple analytic
prescription, Phys. Rev. D 103, 063538 (2021).

[45] I. Musco and T. Papanikolaou, Primordial black hole
formation for an anisotropic perfect fluid: Initial conditions

CONSTRAINING FðRÞ BOUNCING COSMOLOGIES THROUGH … PHYS. REV. D 106, 124012 (2022)

124012-15

https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1016/0370-2693(83)90837-7
https://doi.org/10.1016/0370-2693(83)90837-7
https://doi.org/10.1142/S0218271896000497
https://doi.org/10.1103/PhysRevLett.68.1969
https://doi.org/10.1103/PhysRevD.48.1629
https://doi.org/10.1103/PhysRevD.48.1629
https://doi.org/10.1016/j.physrep.2008.04.006
https://doi.org/10.1016/j.crhy.2015.08.009
https://doi.org/10.1016/j.physrep.2014.12.004
https://doi.org/10.1103/PhysRevD.78.063506
https://arXiv.org/abs/2105.12582
https://doi.org/10.1142/S0219887807001928
https://doi.org/10.1142/S0219887807001928
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1140/epjc/s10052-022-10187-2
https://doi.org/10.1140/epjc/s10052-022-10187-2
https://doi.org/10.3390/sym13112108
https://doi.org/10.1016/0370-2693(91)90055-U
https://doi.org/10.1103/PhysRevD.64.123522
https://doi.org/10.1103/PhysRevD.65.086007
https://doi.org/10.1103/PhysRevD.65.086007
https://doi.org/10.1088/1475-7516/2006/03/009
https://doi.org/10.1088/1475-7516/2006/03/009
https://doi.org/10.1007/s10509-013-1509-z
https://doi.org/10.1088/1475-7516/2014/01/008
https://doi.org/10.1088/1475-7516/2014/01/008
https://arXiv.org/abs/1408.3561
https://doi.org/10.1088/0264-9381/28/21/215011
https://doi.org/10.1016/S0370-2693(03)00179-5
https://doi.org/10.1016/S0370-2693(03)00179-5
https://doi.org/10.1016/j.nuclphysb.2008.09.022
https://doi.org/10.1088/1475-7516/2009/10/020
https://doi.org/10.1088/1475-7516/2009/10/020
https://doi.org/10.1140/epjc/s10052-010-1294-6
https://doi.org/10.1140/epjc/s10052-010-1294-6
https://doi.org/10.1088/1475-7516/2012/10/048
https://doi.org/10.1016/j.physrep.2008.06.001
https://doi.org/10.1016/j.physrep.2008.06.001
https://doi.org/10.1103/PhysRevD.95.063523
https://doi.org/10.1103/PhysRevD.95.063523
https://doi.org/10.1103/PhysRevD.98.063513
https://doi.org/10.1007/s11433-014-5512-3
https://doi.org/10.1007/s11433-014-5512-3
https://doi.org/10.1088/1475-7516/2014/07/033
https://doi.org/10.1086/153853
https://doi.org/10.1103/PhysRevD.81.104019
https://doi.org/10.1103/PhysRevD.81.104019
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1086/153853
https://doi.org/10.1103/PhysRevD.88.084051
https://doi.org/10.1103/PhysRevD.88.084051
https://doi.org/10.1103/PhysRevD.100.123524
https://doi.org/10.1103/PhysRevD.100.123524
https://doi.org/10.1088/1475-7516/2019/12/029
https://doi.org/10.1103/PhysRevD.103.063538


and estimation of the threshold, Phys. Rev. D 106, 083017
(2022).

[46] A. Addazi et al., Quantum gravity phenomenology at the
dawn of the multi-messenger era—A review, Prog. Part.
Nucl. Phys. 125, 103948 (2022).

[47] T. Papanikolaou, Towards the primordial black hole for-
mation threshold in a time-dependent equation-of-state
background, Phys. Rev. D 105, 124055 (2022).

[48] G. F. Chapline, Cosmological effects of primordial black
holes, Nature (London) 253, 251 (1975).

[49] S. Clesse and J. García-Bellido, Seven hints for primordial
black hole dark matter, Phys. Dark Universe 22, 137
(2018).

[50] P. Meszaros, Primeval black holes and galaxy formation,
Astron. Astrophys. 38, 5 (1975).

[51] N. Afshordi, P. McDonald, and D. Spergel, Primordial
black holes as dark matter: The Power spectrum and
evaporation of early structures, Astrophys. J. Lett. 594,
L71 (2003).

[52] B. J. Carr and M. J. Rees, How large were the first
pregalactic objects?, Mon. Not. R. Astron. Soc. 206,
315 (1984).

[53] R. Bean and J. Magueijo, Could supermassive black holes
be quintessential primordial black holes?, Phys. Rev. D 66,
063505 (2002).

[54] T. Nakamura, M. Sasaki, T. Tanaka, and K. S. Thorne,
Gravitational waves from coalescing black hole MACHO
binaries, Astrophys. J. 487, L139 (1997).

[55] K. Ioka, T. Chiba, T. Tanaka, and T. Nakamura, Black hole
binary formation in the expanding universe: Three body
problem approximation, Phys. Rev. D 58, 063003 (1998).

[56] Y. N. Eroshenko, Gravitational waves from primordial
black holes collisions in binary systems, J. Phys. Conf.
Ser. 1051, 012010 (2018).

[57] J. L. Zagorac, R. Easther, and N. Padmanabhan, GUT-scale
primordial black holes: Mergers and gravitational waves,
J. Cosmol. Astropart. Phys. 06 (2019) 052.

[58] M. Raidal, V. Vaskonen, and H. Veermäe, Gravitational
waves from primordial black hole mergers, J. Cosmol.
Astropart. Phys. 09 (2017) 037.

[59] E. Bugaev and P. Klimai, Induced gravitational wave
background and primordial black holes, Phys. Rev. D
81, 023517 (2010).

[60] R. Saito and J. Yokoyama, Gravitational-Wave Back-
ground as a Probe of the Primordial Black-Hole Abun-
dance, Phys. Rev. Lett. 102, 161101 (2009).

[61] T. Nakama and T. Suyama, Primordial black holes as a
novel probe of primordial gravitational waves, Phys. Rev.
D 92, 121304 (2015).

[62] C. Yuan, Z.-C. Chen, and Q.-G. Huang, Probing
primordial–black-hole dark matter with scalar induced
gravitational waves, Phys. Rev. D 100, 081301 (2019).

[63] Z. Zhou, J. Jiang, Y.-F. Cai, M. Sasaki, and S. Pi,
Primordial black holes and gravitational waves from
resonant amplification during inflation, Phys. Rev. D
102, 103527 (2020).

[64] J. Fumagalli, S. Renaux-Petel, and L. T. Witkowski,
Oscillations in the stochastic gravitational wave back-
ground from sharp features and particle production during
inflation, J. Cosmol. Astropart. Phys. 08 (2021) 030.

[65] G. Domènech, Scalar induced gravitational waves review,
Universe 7, 398 (2021).

[66] T. Papanikolaou, V. Vennin, and D. Langlois, Gravitational
waves from a universe filled with primordial black holes,
J. Cosmol. Astropart. Phys. 03 (2021) 053.

[67] G. Domènech, C. Lin, and M. Sasaki, Gravitational wave
constraints on the primordial black hole dominated early
universe, J. Cosmol. Astropart. Phys. 04 (2021) 062.

[68] J. Kozaczuk, T. Lin, and E. Villarama, Signals of primor-
dial black holes at gravitational wave interferometers,
Phys. Rev. D 105, 123023 (2022).

[69] S. Clesse and J. García-Bellido, Seven hints for primordial
black hole dark matter, Phys. Dark Universe 22, 137
(2018).

[70] B. Carr, M. Raidal, T. Tenkanen, V. Vaskonen, and H.
Veermae, Primordial black hole constraints for extended
mass functions, Phys. Rev. D 96, 023514 (2017).

[71] F. Kühnel and K. Freese, Constraints on primordial black
holes with extended mass functions, Phys. Rev. D 95,
083508 (2017).

[72] N. Bellomo, J. L. Bernal, A. Raccanelli, and L. Verde,
Primordial black holes as dark matter: Converting con-
straints from monochromatic to extended mass distribu-
tions, J. Cosmol. Astropart. Phys. 01 (2018) 004.

[73] A. M. Green, Primordial black holes: Sirens of the early
Universe, Fundam. Theor. Phys. 178, 129 (2015).

[74] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama,
Primordial black holes—perspectives in gravitational
wave astronomy, Classical Quantum Gravity 35, 063001
(2018).

[75] J. Garcia-Bellido and E. Ruiz Morales, Primordial black
holes from single field models of inflation, Phys. Dark
Universe 18, 47 (2017).

[76] H. Motohashi and W. Hu, Primordial black holes and slow-
roll violation, Phys. Rev. D 96, 063503 (2017).

[77] J. M. Ezquiaga, J. Garcia-Bellido, and E. Ruiz Morales,
Primordial black hole production in critical Higgs infla-
tion, Phys. Lett. B 776, 345 (2018).

[78] J. Martin, T. Papanikolaou, and V. Vennin, Primordial
black holes from the preheating instability in single-field
inflation, J. Cosmol. Astropart. Phys. 01 (2020) 024.

[79] S. Clesse and J. García-Bellido, Massive primordial black
holes from hybrid inflation as dark matter and the seeds of
galaxies, Phys. Rev. D 92, 023524 (2015).

[80] G. A. Palma, S. Sypsas, and C. Zenteno, Seeding Primor-
dial Black Holes in Multifield Inflation, Phys. Rev. Lett.
125, 121301 (2020).

[81] J. Fumagalli, S. Renaux-Petel, J. W. Ronayne, and
L. T. Witkowski, Turning in the landscape: A new mecha-
nism for generating primordial black holes, arXiv:2004
.08369.

[82] S. Kawai and J. Kim, Primordial black holes from Gauss-
Bonnet-corrected single field inflation, Phys. Rev. D 104,
083545 (2021).

[83] Z. Yi, Primordial black holes and scalar-induced gravita-
tional waves from scalar-tensor inflation, arXiv:2206
.01039.

[84] F. Zhang, Primordial black holes and scalar induced
gravitational waves from the Emodel with a Gauss-Bonnet
term, Phys. Rev. D 105, 063539 (2022).

BANERJEE, PAPANIKOLAOU, and SARIDAKIS PHYS. REV. D 106, 124012 (2022)

124012-16

https://doi.org/10.1103/PhysRevD.106.083017
https://doi.org/10.1103/PhysRevD.106.083017
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1016/j.ppnp.2022.103948
https://doi.org/10.1103/PhysRevD.105.124055
https://doi.org/10.1038/253251a0
https://doi.org/10.1016/j.dark.2018.08.004
https://doi.org/10.1016/j.dark.2018.08.004
https://doi.org/10.1086/378763
https://doi.org/10.1086/378763
https://doi.org/10.1093/mnras/206.2.315
https://doi.org/10.1093/mnras/206.2.315
https://doi.org/10.1103/PhysRevD.66.063505
https://doi.org/10.1103/PhysRevD.66.063505
https://doi.org/10.1086/310886
https://doi.org/10.1103/PhysRevD.58.063003
https://doi.org/10.1088/1742-6596/1051/1/012010
https://doi.org/10.1088/1742-6596/1051/1/012010
https://doi.org/10.1088/1475-7516/2019/06/052
https://doi.org/10.1088/1475-7516/2017/09/037
https://doi.org/10.1088/1475-7516/2017/09/037
https://doi.org/10.1103/PhysRevD.81.023517
https://doi.org/10.1103/PhysRevD.81.023517
https://doi.org/10.1103/PhysRevLett.102.161101
https://doi.org/10.1103/PhysRevD.92.121304
https://doi.org/10.1103/PhysRevD.92.121304
https://doi.org/10.1103/PhysRevD.100.081301
https://doi.org/10.1103/PhysRevD.102.103527
https://doi.org/10.1103/PhysRevD.102.103527
https://doi.org/10.1088/1475-7516/2021/08/030
https://doi.org/10.3390/universe7110398
https://doi.org/10.1088/1475-7516/2021/03/053
https://doi.org/10.1088/1475-7516/2021/04/062
https://doi.org/10.1103/PhysRevD.105.123023
https://doi.org/10.1016/j.dark.2018.08.004
https://doi.org/10.1016/j.dark.2018.08.004
https://doi.org/10.1103/PhysRevD.96.023514
https://doi.org/10.1103/PhysRevD.95.083508
https://doi.org/10.1103/PhysRevD.95.083508
https://doi.org/10.1088/1475-7516/2018/01/004
https://doi.org/10.1007/978-3-319-10852-0
https://doi.org/10.1088/1361-6382/aaa7b4
https://doi.org/10.1088/1361-6382/aaa7b4
https://doi.org/10.1016/j.dark.2017.09.007
https://doi.org/10.1016/j.dark.2017.09.007
https://doi.org/10.1103/PhysRevD.96.063503
https://doi.org/10.1016/j.physletb.2017.11.039
https://doi.org/10.1088/1475-7516/2020/01/024
https://doi.org/10.1103/PhysRevD.92.023524
https://doi.org/10.1103/PhysRevLett.125.121301
https://doi.org/10.1103/PhysRevLett.125.121301
https://arXiv.org/abs/2004.08369
https://arXiv.org/abs/2004.08369
https://doi.org/10.1103/PhysRevD.104.083545
https://doi.org/10.1103/PhysRevD.104.083545
https://arXiv.org/abs/2206.01039
https://arXiv.org/abs/2206.01039
https://doi.org/10.1103/PhysRevD.105.063539


[85] B. J. Carr and A. A. Coley, Persistence of black holes
through a cosmological bounce, Int. J. Mod. Phys. D 20,
2733 (2011).

[86] B. J. Carr, Primordial black holes and quantum effects,
Springer Proc. Phys. 170, 23 (2016).

[87] J. Quintin and R. H. Brandenberger, Black hole formation
in a contracting universe, J. Cosmol. Astropart. Phys. 11
(2016) 029.

[88] J.-W. Chen, J. Liu, H.-L. Xu, and Y.-F. Cai, Tracing
primordial black holes in nonsingular bouncing cosmol-
ogy, Phys. Lett. B 769, 561 (2017).

[89] T. Clifton, B. Carr, and A. Coley, Persistent black holes in
bouncing cosmologies, Classical Quantum Gravity 34,
135005 (2017).

[90] T. Inagaki and H. Sakamoto, Exploring the inflation of
FðRÞ gravity, Int. J. Mod. Phys. D 29, 2050012 (2020).

[91] S. Nojiri and S. D. Odintsov, Unifying inflation with
LambdaCDM epoch in modified f(R) gravity consistent
with solar system tests, Phys. Lett. B 657, 238 (2007).

[92] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Constant-
roll inflation in FðRÞ gravity, Classical Quantum Gravity
34, 245012 (2017).

[93] S. D. Odintsov, V. K. Oikonomou, and T. Paul, From a
bounce to the dark energy era with FðRÞ gravity, Classical
Quantum Gravity 37, 235005 (2020).

[94] W. Hu and I. Sawicki, Models of f(R) cosmic acceleration
that evade solar-system tests, Phys. Rev. D 76, 064004
(2007).

[95] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,
Is cosmic speed—up due to new gravitational physics?,
Phys. Rev. D 70, 043528 (2004).

[96] A. De Felice and S. Tsujikawa, f(R) theories, Living Rev.
Relativity 13, 3 (2010).

[97] S. Nojiri and S. D. Odintsov, Unified cosmic history in
modified gravity: From F(R) theory to Lorentz non-
invariant models, Phys. Rep. 505, 59 (2011).

[98] A. De Felice, M. Hindmarsh, and M. Trodden, Ghosts,
instabilities, and superluminal propagation in modified
gravity models, J. Cosmol. Astropart. Phys. 08 (2006) 005.

[99] L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa,
Conditions for the cosmological viability of f(R) dark
energy models, Phys. Rev. D 75, 083504 (2007).

[100] A. A. Starobinsky, Disappearing cosmological constant in
f(R) gravity, JETP Lett. 86, 157 (2007).

[101] J.-c. Hwang and H. Noh, Classical evolution and quantum
generation in generalized gravity theories including string
corrections and tachyon: Unified analyses, Phys. Rev. D
71, 063536 (2005).

[102] H. Noh and J.-c. Hwang, Inflationary spectra in general-
ized gravity: Unified forms, Phys. Lett. B 515, 231 (2001).

[103] J.-c. Hwang and H. Noh, Cosmological perturbations in a
generalized gravity including tachyonic condensation,
Phys. Rev. D 66, 084009 (2002).

[104] L. E. Allen and D. Wands, Cosmological perturbations
through a simple bounce, Phys. Rev. D 70, 063515 (2004).

[105] C. Cartier, R. Durrer, and E. J. Copeland, Cosmological
perturbations and the transition from contraction to ex-
pansion, Phys. Rev. D 67, 103517 (2003).

[106] P. Peter and N. Pinto-Neto, Primordial perturbations in a
non singular bouncing universe model, Phys. Rev. D 66,
063509 (2002).

[107] A. Kumar, Covariant perturbations through a simple non-
singular bounce, Phys. Rev. D 89, 084059 (2014).

[108] L. Battarra, M. Koehn, J.-L. Lehners, and B. A. Ovrut,
Cosmological perturbations through a non-singular Ghost-
Condensate/Galileon bounce, J. Cosmol. Astropart. Phys.
07 (2014) 007.

[109] D. H. Lyth, K. A. Malik, and M. Sasaki, A general proof of
the conservation of the curvature perturbation, J. Cosmol.
Astropart. Phys. 05 (2005) 004.

[110] D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, A
new approach to the evolution of cosmological perturba-
tions on large scales, Phys. Rev. D 62, 043527 (2000).

[111] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, The
statistics of peaks of gaussian random fields, Astrophys. J.
304, 15 (1986).

[112] C.-M. Yoo, T. Harada, and H. Okawa, Threshold of
primordial black hole formation in nonspherical collapse,
Phys. Rev. D 102, 043526 (2020).

[113] M. Shibata and M. Sasaki, Black hole formation in the
friedmann universe: Formulation and computation in
numerical relativity, Phys. Rev. D 60, 084002 (1999).

[114] D. S. Salopek and J. R. Bond, Nonlinear evolution of long
wavelength metric fluctuations in inflationary models,
Phys. Rev. D 42, 3936 (1990).

[115] T. Harada, C.-M. Yoo, T. Nakama, and Y. Koga, Cosmo-
logical long-wavelength solutions and primordial black
hole formation, Phys. Rev. D 91, 084057 (2015).

[116] C.-M. Yoo, T. Harada, J. Garriga, and K. Kohri, Primordial
black hole abundance from random Gaussian curvature
perturbations and a local density threshold, Prog. Theor.
Exp. Phys. 2018, 123E01 (2018).

[117] J. Quintin, Z. Sherkatghanad, Y.-F. Cai, and R. H.
Brandenberger, Evolution of cosmological perturbations
and the production of non-Gaussianities through a non-
singular bounce: Indications for a no-go theorem in single
field matter bounce cosmologies, Phys. Rev. D 92, 063532
(2015).

[118] X. Gao, M. Lilley, and P. Peter, Non-gaussianity excess
problem in classical bouncing cosmologies, Phys. Rev. D
91, 023516 (2015).

[119] Y.-F. Cai, W. Xue, R. Brandenberger, and X. Zhang, Non-
gaussianity in a matter bounce, J. Cosmol. Astropart. Phys.
05 (2009) 011.

[120] S. Young, C. T. Byrnes, and M. Sasaki, Calculating the
mass fraction of primordial black holes, J. Cosmol.
Astropart. Phys. 07 (2014) 045.

[121] S. Young, I. Musco, and C. T. Byrnes, Primordial black
hole formation and abundance: Contribution from the non-
linear relation between the density and curvature pertur-
bation, J. Cosmol. Astropart. Phys. 11 (2019) 012.

[122] C. W. Misner and D. H. Sharp, Relativistic equations for
adiabatic, spherically symmetric gravitational collapse,
Phys. Rev. 136, B571 (1964).

[123] S. A. Hayward, Gravitational energy in spherical sym-
metry, Phys. Rev. D 53, 1938 (1996).

CONSTRAINING FðRÞ BOUNCING COSMOLOGIES THROUGH … PHYS. REV. D 106, 124012 (2022)

124012-17

https://doi.org/10.1142/S0218271811020640
https://doi.org/10.1142/S0218271811020640
https://doi.org/10.1007/978-3-319-20046-0
https://doi.org/10.1088/1475-7516/2016/11/029
https://doi.org/10.1088/1475-7516/2016/11/029
https://doi.org/10.1016/j.physletb.2017.03.036
https://doi.org/10.1088/1361-6382/aa6dbb
https://doi.org/10.1088/1361-6382/aa6dbb
https://doi.org/10.1142/S0218271820500121
https://doi.org/10.1016/j.physletb.2007.10.027
https://doi.org/10.1088/1361-6382/aa92a4
https://doi.org/10.1088/1361-6382/aa92a4
https://doi.org/10.1088/1361-6382/abbc47
https://doi.org/10.1088/1361-6382/abbc47
https://doi.org/10.1103/PhysRevD.76.064004
https://doi.org/10.1103/PhysRevD.76.064004
https://doi.org/10.1103/PhysRevD.70.043528
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.1016/j.physrep.2011.04.001
https://doi.org/10.1088/1475-7516/2006/08/005
https://doi.org/10.1103/PhysRevD.75.083504
https://doi.org/10.1134/S0021364007150027
https://doi.org/10.1103/PhysRevD.71.063536
https://doi.org/10.1103/PhysRevD.71.063536
https://doi.org/10.1016/S0370-2693(01)00875-9
https://doi.org/10.1103/PhysRevD.66.084009
https://doi.org/10.1103/PhysRevD.70.063515
https://doi.org/10.1103/PhysRevD.67.103517
https://doi.org/10.1103/PhysRevD.66.063509
https://doi.org/10.1103/PhysRevD.66.063509
https://doi.org/10.1103/PhysRevD.89.084059
https://doi.org/10.1088/1475-7516/2014/07/007
https://doi.org/10.1088/1475-7516/2014/07/007
https://doi.org/10.1088/1475-7516/2005/05/004
https://doi.org/10.1088/1475-7516/2005/05/004
https://doi.org/10.1103/PhysRevD.62.043527
https://doi.org/10.1086/164143
https://doi.org/10.1086/164143
https://doi.org/10.1103/PhysRevD.102.043526
https://doi.org/10.1103/PhysRevD.60.084002
https://doi.org/10.1103/PhysRevD.42.3936
https://doi.org/10.1103/PhysRevD.91.084057
https://doi.org/10.1093/ptep/pty120
https://doi.org/10.1093/ptep/pty120
https://doi.org/10.1103/PhysRevD.92.063532
https://doi.org/10.1103/PhysRevD.92.063532
https://doi.org/10.1103/PhysRevD.91.023516
https://doi.org/10.1103/PhysRevD.91.023516
https://doi.org/10.1088/1475-7516/2009/05/011
https://doi.org/10.1088/1475-7516/2009/05/011
https://doi.org/10.1088/1475-7516/2014/07/045
https://doi.org/10.1088/1475-7516/2014/07/045
https://doi.org/10.1088/1475-7516/2019/11/012
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1103/PhysRevD.53.1938


[124] K. Ando, K. Inomata, and M. Kawasaki, Primordial black
holes and uncertainties in the choice of the window
function, Phys. Rev. D 97, 103528 (2018).

[125] S. Young, The primordial black hole formation criterion
re-examined: Parametrisation, timing and the choice of
window function, Int. J. Mod. Phys. D 29, 2030002
(2020).

[126] V. De Luca, G. Franciolini, A. Kehagias, M. Peloso, A.
Riotto, and C. Ünal, The ineludible non-gaussianity of the
primordial black hole abundance, J. Cosmol. Astropart.
Phys. 07 (2019) 048.

[127] J. C. Niemeyer and K. Jedamzik, Near-Critical Gravita-
tional Collapse and the Initial Mass Function of Primordial
Black Holes, Phys. Rev. Lett. 80, 5481 (1998).

[128] J. C. Niemeyer and K. Jedamzik, Dynamics of pri-
mordial black hole formation, Phys. Rev. D 59, 124013
(1999).

[129] I. Musco, J. C. Miller, and A. G. Polnarev, Primordial black
hole formation in the radiative era: Investigation of the

critical nature of the collapse, Classical Quantum Gravity
26, 235001 (2009).

[130] I. Musco and J. C. Miller, Primordial black hole formation
in the early universe: Critical behaviour and self-similarity,
Classical Quantum Gravity 30, 145009 (2013).

[131] T. Papanikolaou, Gravitational waves induced from pri-
mordial black hole fluctuations: The effect of an extended
mass function, J. Cosmol. Astropart. Phys. 10 (2022) 089.

[132] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama,
Constraints on primordial black holes, Rep. Prog. Phys.
84, 116902 (2021).

[133] T. Papanikolaou, C. Tzerefos, S. Basilakos, and E. N.
Saridakis, Scalar induced gravitational waves from pri-
mordial black hole Poisson fluctuations in Starobinsky
inflation, J. Cosmol. Astropart. Phys. 10 (2022) 013.

[134] T. Papanikolaou, C. Tzerefos, S. Basilakos, and E. N.
Saridakis, No constraints for fðTÞ gravity from gravita-
tional waves induced from primordial black hole fluctua-
tions, arXiv:2205.06094.

BANERJEE, PAPANIKOLAOU, and SARIDAKIS PHYS. REV. D 106, 124012 (2022)

124012-18

https://doi.org/10.1103/PhysRevD.97.103528
https://doi.org/10.1142/S0218271820300025
https://doi.org/10.1142/S0218271820300025
https://doi.org/10.1088/1475-7516/2019/07/048
https://doi.org/10.1088/1475-7516/2019/07/048
https://doi.org/10.1103/PhysRevLett.80.5481
https://doi.org/10.1103/PhysRevD.59.124013
https://doi.org/10.1103/PhysRevD.59.124013
https://doi.org/10.1088/0264-9381/26/23/235001
https://doi.org/10.1088/0264-9381/26/23/235001
https://doi.org/10.1088/0264-9381/30/14/145009
https://doi.org/10.1088/1475-7516/2022/10/089
https://doi.org/10.1088/1361-6633/ac1e31
https://doi.org/10.1088/1361-6633/ac1e31
https://doi.org/10.1088/1475-7516/2022/10/013
https://arXiv.org/abs/2205.06094

