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We investigate some aspects of the (2þ 1)-dimensional Gauss-Bonnet black hole proposed in Hennigar
et al. [Phys. Lett. B 808, 135657 (2020); Classical Quantum Gravity 38, 03LT01 (2021)]. The perturbations
of scalar and massless spinorial fields are studied suggesting the dynamical stability of the geometry. The
field evolution is analyzed calculating the quasinormal modes for different parameters and exploring the
influence of the coupling constant of the theory. The hydrodynamical modes are also obtained in the small
coupling limit. Furthermore, the entropy bound and the dominant semiclassical correction to the black hole
entropy are calculated.
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I. INTRODUCTION

Lower dimensional gravity has been a very active field
for a long time in theoretical physics due to both its
simplicity and its features, which have a strong similarity
to those in the four-dimensional gravity theory. Black hole
solutions were found in several lower dimensional models
like the well-known (2þ 1)-dimensional BTZ (Bañados-
Teitelboim-Zanelli) black hole [1] and the solutions of
Jackiw gravity [2] in (1þ 1)-dimensions among others
(for an extensive survey see [3]). The Gauss-Bonnet (GB)
gravity is a particular case of Lovelock theories [4], which
includes higher curvature corrections to the Einstein-Hilbert
action given in terms of the Riemann tensor. The equations
of motion are differential equations of second-order for the
metric tensor components. A special feature of those higher-
curvature terms is that they are identically zero if the
spacetime dimension is bounded by D < 5.
More recently, a proposal to evade the Lovelock theorem

and allow higher-curvature terms, in particular, the GB term,
to survive without extra fields for D < 5 was proposed in
[5]. Nevertheless, in several papers its was shown that such a
proposal leads to an ill-defined theory [6–8]. Despite such

inconsonance, it is still possible to include the four-dimen-
sional GB corrections in a consistent way [9,10], showing
that the four-dimensional solution reported in [5] could be
obtained from a scalar-tensor theory which is a subclass of
Horndeski family [11]. Following the same guidelines, a
(2þ 1)-dimensional black hole solution with GB correction
was found by Hennigar et al. [12,13]. Such a family of
solutions admits a generalization of the BTZ black hole,
which is recovered in the limit when the GB coupling goes
to zero. In our present work we are interested in a deeper
comprehension of those GB-BTZ black holes in (2þ 1)
dimensions, specially in the role that the GB coupling
constant plays on the stability when the metric is perturbed
by probe fields.
As it is essential to understand in which situations a black

hole solution is stable under small perturbations, the study
of the field propagation and the determination of the
quasinormal spectrum due to probe matter fields in the
geometry of the (2þ 1)-dimensional GB-BTZ black holes
can shed some light on this stability. Moreover, the stable or
unstable nature of the metric is closely related to the shape
of each wave potential [14].
Much work has been done on linear perturbations of GB

black holes in different dimensions. Recent studies include
the gravitational perturbations and the ringdown phase
of black holes in Einstein-dilaton-Gauss-Bonnet gravity
in four dimensions [15] and the use of quasiperiodic
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oscillations to constrain the space of parameters of the
theory [16]. In addition, in [17] the calculation of the black
hole shadow radius is implemented in the Einstein-scalar-
Gauss-Bonnet gravity with nontrivial scalar hair and in [18]
the quasinormal modes and the stability of the new four-
dimensional Gauss-Bonnet black holes were investigated.
Moreover, an interesting relation between the shadow radius
and quasinormal spectrum was established in [19–21].
Whether such a relation can be assigned to three-
dimensional black holes still remains an open question.
In addition, we are interested in exploring some ther-

modynamical aspects of the (2þ 1)-dimensional GB-BTZ
black hole. Since the pioneering works of Bekenstein [22]
and Hawking [23], which led to the identification of the
black hole surface gravity and the event horizon area with
the temperature and the entropy of a thermodynamical
system, respectively, the black hole thermodynamics has
developed and brought different techniques that have
improved our understanding of the properties of these
remarkable objects. One of these physical quantities is the
black hole entropy, which accounts for the maximum
entropy a physical system can carry. If an object is
captured by a black hole, according to the generalized
second law of thermodynamics, the entropy should always
increase as well as the event horizon area since they
are connected through the Bekenstein-Hawking classical
formula, SBH ¼ Area=4. Based on this observation,
Bekenstein proposed the existence of an upper bound
on the entropy of any system [24] carrying an energy E and
with a characteristic dimension R, i.e., S ≤ 2πER, which
proved to be universal until nowadays. Along with this
subject is the need to include quantum aspects in the
description of black hole entropy. In this way, ’t Hooft
brought a proposal forward by considering a thermal bath
of scalar fields just outside the event horizon so that they
could contribute to the entropy provided that a cutoff both
close and far from the black hole is included. This
technique is known as the brickwall method [25] and its
calculation leads to a dominant correction also correlated
to the event horizon area. In fact, the coefficient of
proportionality is universal for each spacetime dimension-
ality. It is our aim to verify if these properties can be
fulfilled by the (2þ 1)-dimensional GB-BTZ black hole.
The paper is organized as follows. In Sec. II we discuss

the main features of (2þ 1) GB-BTZ black hole solution.
In Sec. III we compute the quasinormal modes and
frequencies due to a massless scalar probe field and discuss
the effect of the GB coupling upon the stability. In Sec. IV
the hydrodynamic approximation for the probe scalar field
in the limit of small GB coupling constant is considered
and its interpretation in terms of gauge/gravity correspon-
dence is discussed. Section V brings the massless spinorial
field as the probe field and the quasinormal modes and
spectrum are obtained. Section VI is devoted to some

thermodynamical aspects of the black hole solutions.
Finally, in Sec. VII we discuss our results and possible
perspectives for future work.

II. GAUSS-BONNET BLACK HOLE SOLUTIONS
IN (2 + 1)-DIMENSIONS

The action that describes the Gauss-Bonnet (GB) gravity
in (2þ 1)-dimensions, encoding the main characteristics of
its (3þ 1)-dimensional counterpart, is given by [12],

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p fR − 2Λþ α½ϕGþ 4Gab
∂aϕ∂bϕ

− 4ð∂ϕÞ2□ϕþ 2ðð∇ϕÞ2Þ2�g; ð1Þ

where we have the Einstein-Hilbert term plus a cosmo-
logical constant Λ, the corrections coming from the GB
term [26] G ¼ RabcdRabcd − 4RabRab þ R2, being α the GB
coupling constant, and an additional scalar field ϕ. Notice
that the same coupling between the Einstein tensorGab and
the kinetic term of ϕ is present in the Horndeski theory and,
indeed, the theory represented by the action (1) is a special
case of Horndeski class [11].
As pointed out in [12], the GB part of (1) can be obtained

at least by two different methods. Namely, a Kaluza-Klein
(KK) dimensional reduction of a D-dimensional theory
compactified on an internal maximally symmetric space
that leads to a D ¼ 3 GB gravity [9] and the generalization
of Ross-Mann method to obtain the D → 2 limit of general
relativity [27] through a conformal transformation on the
metric ˜gab ¼ eΨgab and an expansion of the action around
the spatial dimension of interest. Both methods lead to the
action (1) as long as the maximally symmetric space used in
the KK approach is flat, otherwise, additional terms are
generated [12],

Sλ ¼ −2
Z

d3x
ffiffiffiffiffiffi
−g

p ½λe−2ϕðRþ 6ð∂ϕÞ2Þ þ 3λ2e−4ϕ�; ð2Þ

where λ represents the curvature of the internal space.
In order to obtain black hole solutions to the GB gravity

in (2þ 1) dimensions we consider the equations of motion
that come from the action (1) together with the additional
terms (2) and the following ansatz for the line element [12],

ds2 ¼ −fðrÞdt2 þ 1

fðrÞhðrÞ dr
2 þ r2

�
dφ −

J
2r2

dt

�
2

; ð3Þ

where J is a constant. In addition, the scalar field ϕ depends
only on the radial coordinate, ϕ ¼ ϕðrÞ. Then, using this
ansatz and varying the action with respect to fðrÞ, hðrÞ,
and ϕðrÞ we obtain three equations of motion, whose
simplest solution is the BTZ black hole [1] when consid-
ering hðrÞ ¼ 1, ϕ ¼ constant and λ ¼ 0,
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fBTZðrÞ ¼ −M þ r2

L2
þ J
4r2

; ð4Þ

with M and J denoting the black hole mass and angular
momentum, respectively, and the cosmological constant Λ
is related to the curvature radius L by Λ ¼ L−2.
Furthermore, new black hole solutions in three dimen-

sions depending on the GB coupling are achieved by
considering a nonconstant scalar field ϕðrÞ. In the static
case J ¼ 0 and setting λ ¼ 0 the equations of motion admit
the following solution [12],

fðrÞ� ¼ −
r2

2α

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

r2

�
−M þ r2

L2

�s !
; ð5Þ

ϕðrÞ ¼ ln

�
r
L

�
: ð6Þ

The positive branch fðrÞþ of solution (5) does not have a
well-defined limit as the GB coupling constant goes to zero,
in fact, in this limit it reduces to

fðrÞþ ≈M −
r2

L2
−
r2

α
; ð7Þ

which goes to infinity as α → 0. In this sense, the positive
branch does not describe a physical system. Conversely, the
negative branch fðrÞ− reduces to BTZ black hole in the
same limit. Also, at large distances the negative branch is
described by an AdS-like metric, which yields a condition
on the allowed values of the GB coupling in order to have a
well-defined solution at spatial infinity, i.e., α > −L2=4.
Since the negative branch admits a bounded limit for

small α and is well behaved at large distances, we are going
to consider only fðrÞ− as black hole solution and, thus, we
will drop the subscript − in fðrÞ− from now on. As the
event horizon r ¼ rþ of this metric is the same as that of the
BTZ solution, rþ ¼ LM1=2, we see that the GB coupling
does not change the location of the event horizon.
Moreover, the near horizon limit of fðrÞ is given by

fðrÞ ≈ 2M1=2

L
ðr − rþÞ þOððr − rþÞ2Þ; ð8Þ

showing that α contributes only for large distances from rþ.
Furthermore, we can distinguish two cases in the internal

geometric structure of the negative branch. When α > 0,
the black hole has a branch singularity analogous to GB
higher-dimensional solutions. This singularity can be found
by using the condition that the argument of the square root
in the metric vanishes, thus we have

rb ¼ 2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα

L2 þ 4α

r
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

L2 þ 4α

r
rþ < rþ; ð9Þ

where the last inequality shows that the branch singu-
larity remains inside the event horizon. Around rb the
Kretschmann scalar behaves as

K ≡ RαβμνRαβμν ∼
r3bðL2 þ 4αÞ

32α2L2ðr − rbÞ3
þ � � � : ð10Þ

This type of divergence is the same found in higher-
dimensional GB solutions [28] and shows that rb is a true
curvature singularity.
On the other hand, when −L2=4 < α < 0, the metric

continues until r ¼ 0, where the Kretschmann scalar
behaves as

K ∼ −
2M
αr2

þ � � � ; ð11Þ

showing that at r ¼ 0 a curvature singularity is located.
The Kruskal-Szekeres extension of black solution (5)

and its Penrose-Carter diagram can be constructed by a
detailed examination of the metric near the event horizon
r ¼ rþ and at spatial infinity r → ∞.
Near the event horizon it is possible to approximate

the function fðrÞ as fðrÞ ≈ 2κþðr − rþÞ, where κþ ¼
f0ðrþÞ=2, and in this region the tortoise coordinate r� can
be written as

r� ≈
1

κþ
ln jκþðr − rþÞj: ð12Þ

Defining a double null system of coordinates, Uþ ¼ t − r�
and Vþ ¼ tþ r�, we obtain the Kruskal-Szekeres extension
near the event horizon,

UþVþ ¼ ∓κþjðr − rþÞj; ð13Þ

in which the minus sign refers to the region r > rþ and the
plus sign corresponds to the region r < rþ.
At spatial infinity r → ∞ the Kruskal-Szekeres exten-

sion reads

U∞V∞ ¼ −e
2

L2r2 : ð14Þ

Combining each extension (13)–(14) through the
Penrose coordinates T ¼ 1

2
ðŨ þ ṼÞ and R ¼ 1

2
ðŨ − ṼÞ

with Ũ ¼ arctanðUÞ and Ṽ ¼ arctanðVÞ, we accomplish
the Penrose-Carter diagrams for the entire spacetime as
shown in Fig. 1. Notice that the structure of these diagrams
is the same as that of the (2þ 1)-dimensional black hole in
the presence of anisotropic fluids [29]. The spatial infinity
is conformally AdS and the nature of the singularity located
at r ¼ rb (α > 0) or r ¼ 0 (−L2=4 < α < 0) is spacelike.
In both cases the singularity is always covered by an event
horizon at r ¼ rþ.
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After describing the main features of the black hole
spacetime, in the next sections we are going to consider two
different kinds of probe fields evolving in such geometry,
namely, the massless scalar and the massless spinor fields.
The analysis of the dynamics of the fields provides some
insight on the black hole stability through the computation
of quasinormal frequencies as we will see.

III. PROBE SCALAR FIELD

Let us consider a massless scalar field ΨðxμÞ, whose
dynamics is governed by the Klein-Gordon equation,

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ ¼ 0; ð15Þ

in the geometry of a GB-BTZ black hole (5) with
xμ ¼ ðt; r;φÞ. The tortoise coordinate defined through
dr� ¼ dr=f has its domain on the region I of the diagram
shown in Fig. 1, running from −∞ to a constant value
as r ∈ ½rþ;∞�. Performing the following separation of
variables

Ψðt; r;φÞ ¼
X
m

ψðr; tÞffiffiffi
r

p eimφ ¼
X
m

RðrÞffiffiffi
r

p e−iωtþimφ; ð16Þ

the field equation (15) can be cast to the form

d2R
dr2�

þ ðω2 − VðrÞÞR ¼ 0; ð17Þ

in which VðrÞ is the effective potential for the scalar field
dynamics in the black hole geometry. Explicitly, we have

VðrÞ ¼ fðrÞ
�
m2

r2
−
fðrÞ
4r2

þ 1

2r
dfðrÞ
dr

�
: ð18Þ

The effective potential VðrÞ depends on all the param-
eters that characterize the black hole geometry ðM;L; αÞ
and on the scalar field azimuthal number m.
In Fig. 2 we plot different potentials varying the GB

parameter α with fixed M, L, and m. For α ¼ 0 we recover
the effective potential for the BTZ black hole [30] and as α
increases, the value of the potential for a given radial
position r decreases, showing that the GB coupling
attenuates the interaction between the geometry and the
probe massless scalar field.
The quasinormal spectra due to the evolution of a

massless scalar field can be obtained with several known

FIG. 2. Main panel: Effective scalar potential VðrÞ with m ¼ 0,
M ¼ L ¼ 1 for different values of GB coupling α ¼ 0 (blue),
α ¼ 5 × 10−2 (dashed red), and α ¼ 3 × 10−1 (dotted green).
Upper left panel: Effective scalar potential VðrÞ with m ¼ 2,
M ¼ L ¼ 1 for different values of GB coupling α ¼ 0 (blue),
α ¼ 5 × 10−2 (dashed red), and α ¼ 3 × 10−1 (dotted green).

FIG. 1. Penrose-Carter diagrams for the (2þ 1)-dimensional GB-BTZ black hole with α > 0 (left) and −L2=4 < α < 0 (right).
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methods. We consider the characteristic integration in
double null coordinates given by du ¼ dt − dr� and
dv ¼ dtþ dr�, turning Eq. (17) to the form

�
4

∂
2

∂u∂v
þ VðrÞ

�
ψ ¼ 0: ð19Þ

Now, the usual discretization scheme (described in the
specific literature [31] and references therein) gives the
following equation,

ψN ¼
�
1þ h2

16
VS

�
−1
�
ψW þ ψE − ψS −

h2

16
ðVWψW

þ VEψE þ VSψSÞ
�
; ð20Þ

which we can integrate yielding the field evolution with the
quasinormal signal present. After getting the field profile,
acquired through the characteristic integration, we can
apply the Prony method described in [31] to pick up the
frequencies.
In order to cross-check the results of the obtained

quasinormal modes, we also developed a Frobenius
method, similar to that of Ref. [14]. The equations for
this numerical implementation are given in Appendix A.
We obtained a good agreement between the results col-
lected with both methods for α < 0.13. The maximum
deviation between the results of both methods appears in
the case of very small α. Actually, for α ¼ 10−4 we
obtained an outcome with a 2% maximal deviation in
the cases of higher rþ. Except for those occurrences, the
convergence of both methods is higher than 0.2%. The
Tables I and II display the quasinormal frequencies for
different geometry parameters.
In this work we restrict our study to values of α < 1 that

could be interpreted as a small deviation from (2þ 1)-
dimensional Einstein gravity, as represented in (1). In this
way the quasinormal modes listed in Tables I and II are
divided into two ranges for α, the very small limit and the
intermediate values. All quasinormal modes calculated in
current and next sections have L ¼ 1 as AdS radius, since a

redefinition of the constants ω and α as well as a rescaling
in the radial coordinate lead to the same motion equa-
tion [32].
The fundamental frequencies withm ¼ 0 for both ranges

of α show an interesting feature: there is a linear scaling
between the real and imaginary parts ofω and the black hole
event horizon, a characteristic first observed in [14]. In that
work the temperature and the quasinormal modes are fitted
by a straight line for large black holes (high rþ) in AdS
universes. However, for intermediate size black holes (with
size of the order of the AdS radius) this scaling disappears.
One of the reasons put forward by the authors is that when
the temperature is slowly lowered, one encounters the
Hawking-Page transition and the supergravity description
is no longer valid, i.e., the relaxation time is not related to
the imaginary part of the fundamental quasinormal fre-
quency anymore. In our case we still preserve the scaling
with the temperature even for intermediate size black holes
since the relation T ∝ rþ is always valid. Thus, using the
same argument given in Ref. [14] we can conclude that this
scaling is kept because there are no phase transitions in the
(2þ 1)-dimensional GB-BTZ black hole, a fact that we will
briefly discuss in Sec. VI.
In Figs. 3 and 4 we show the quasinormal modes for

different values of α parameter. The interesting feature here
is the increment of the value of RðωÞ with increasing α,
together with the attenuation of −IðωÞ. In the small-α
regime (m ¼ 0) our results for the real part of the frequency
suggest a scaling given by

RðωÞ ¼ ð0.843 − 0.738e−10.663αÞrþ; ð21Þ

and a linear scaling for the imaginary part expressed by

−IðωÞ ¼ ð1.9999 − 2.0435αÞrþ; ð22Þ

with linear correlation factor R2 ¼ 0.99976, shown in the
right panel of Fig. 4.
In Fig. 3, we observe that the real part of the quasinormal

frequencies increases with α, reaching a maximum at α ¼
αmax and then starts to decrease. The same behavior was

TABLE I. The fundamental quasinormal modes for a massless scalar field with L ¼ 1 in the very small α regime.

rþ ¼ 1 rþ ¼ 10 rþ ¼ 100

α m RðωÞ −IðωÞ RðωÞ −IðωÞ RðωÞ −IðωÞ
1 × 10−10 0 0.00000 1.99981 0.00000 19.99262 0.00000 199.92623

1 0.99986 1.99976 1.00275 19.99261 1.00186 199.99873
1 × 10−4 0 0.02010 1.99975 0.20405 19.99609 2.04054 199.96092

1 0.99965 1.99883 1.02051 19.99608 2.27236 199.96092
1 × 10−3 0 0.06333 1.99781 0.63329 19.97806 6.33286 199.78061

1 1.00185 1.99727 1.18394 19.97796 6.41138 199.78060
1 × 10−2 0 0.19881 1.97948 1.98807 19.79481 19.88068 197.94808

1 1.01893 1.97500 2.22700 19.79394 19.90599 197.94799

GAUSS-BONNET BLACK HOLES IN (2þ 1) DIMENSIONS: … PHYS. REV. D 106, 124007 (2022)

124007-5



obtained in the case of massless scalar perturbations of the
(3þ 1)-dimensional GB black hole [18], where the value
α ¼ αmax indicates the possibility of gravitational instabil-
ities since RðωÞ is nonmonotonic.

The influence of different angular momenta on IðωÞ is
very mild, namely, a variation Δm ¼ 1 produces a maxi-
mum deviation onIðωÞ of 1% even for intermediate values
of α. This is not true for the real part that varies considerably

TABLE II. The fundamental quasinormal modes for a massless scalar field with L ¼ 1 for intermediate values
of α.

rþ ¼ 1 rþ ¼ 10 rþ ¼ 100

α m RðωÞ −IðωÞ RðωÞ −IðωÞ RðωÞ −IðωÞ
1 × 10−1 0 0.57232 1.79642 5.72319 17.96419 57.23187 179.64185

1 1.13028 1.77622 5.80817 17.96072 57.24044 179.64150
2 × 10−1 0 0.71872 1.62834 7.18720 16.28342 71.87195 162.83424

1 1.18365 1.60429 7.25065 16.27948 71.87833 162.83384
3 × 10−1 0 0.78889 1.49642 7.88886 14.96417 78.88860 149.64175

1 1.20435 1.47060 7.94319 14.96002 78.89406 149.64133
4 × 10−1 0 0.82555 1.39082 8.25547 13.90820 82.55466 139.08200

1 1.20937 1.36369 8.30458 13.90386 82.55958 139.08156
5 × 10−1 0 0.84478 1.30425 8.44776 13.04249 84.47757 130.42490

1 1.20626 1.27595 8.49345 13.03798 84.48215 130.42445

FIG. 3. Real part of the quasinormal modes of the GB-BTZ black hole for m ¼ 0 and different values of the coupling parameter (left
panel) and the corresponding zoom of the peak (right panel).

FIG. 4. Imaginary part of the quasinormal modes of the GB-BTZ black hole for m ¼ 0 and different values of the coupling parameter
(left panel) and the corresponding zoom of the small α regime (right panel), where a linear scale exists between α and IðωÞ.
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as we increase m. Such behavior can be understood when
treating GB-BTZ solution as a limit of the BTZ black hole
[29,33]. Thus, if we recall the exact solution for the
quasinormal frequencies in the BTZ case, ω ¼ m − 2rþi,
we see that the imaginary part is the same for every m and
the real part varies linearly. The peculiarity of the GB-BTZ
black hole is the narrowing of the interval ΔRðωÞ for
different values of m and the thickening of ΔIðωÞ with
increasing α. Two tables with comparative results for
different angular momenta are given in the Appendix B.
Since no negative potential was present in the region I of

the Penrose diagram for every tested parameter, we con-
sistently found no instabilities in the propagation of the
scalar field subject to well-behaved initial data. Thus, the
scalar perturbation can be decomposed after an initial burst
in the traditional towers of quasinormal modes labeled by
an overtone number. Whether more than one family of
quasinormal modes can exist in the (2þ 1)-dimensional
GB-BTZ black hole geometry remains an open issue to be
further investigated.
In the next section we consider a high-temperature

expansion for the scalar field equation in order to obtain
the so-called hydrodynamical modes.

IV. SCALAR QUASINORMAL MODES
IN THE HYDRODYNAMICAL APPROXIMATION

In this section we are going to consider the hydrody-
namical limit of probe scalar field. In general, an interacting
theory can be described by means of hydrodynamics in the
limit of large wavelength and small wave numbers com-
pared to the typical temperature of the system [34]. From
gauge/gravity correspondence it is well known that the
characteristic thermalization timescale for a dual thermal
state at the boundary is given by the inverse of the imaginary
part of the fundamental quasinormal frequency in the
hydrodynamical limit [14]. Such a result has been con-
firmed in ð2þ 1Þ—dimensional black holes with Lifshitz
scaling [35].
In order to establish this limit, we define the quantities

w ¼ ω=2πT and q ¼ m=2πT and consider the limit q → 0,
such that the radial equation for the massless scalar field
can be cast to

R00ðuÞ þ
�
h0

h
−
1

u

�
R0ðuÞ þ 4α2

h2L4
w2RðuÞ ¼ 0; ð23Þ

where we have performed the change of variable u ¼ rþ=r
and defined

h ¼ 1 −
�
1þ 4α

L2
ð1 − u2Þ

�
1=2

: ð24Þ

In the case in whichw ≪ 1we expand RðuÞ in powers ofw,

RðuÞ ≈ hðuÞσðF0ðuÞ þ iwF1ðuÞ þOðw2ÞÞ: ð25Þ

The exponent σ is determined by imposing the ingoing
boundary condition for the scalar field at the location of the
black hole event horizon rþ. We thus obtain σ ¼ −iw=2.
Substituting the expansion (25) in the scalar field radial

equation (23) we obtain two ordinary differential equations
for the functions F0ðuÞ and F1ðuÞ,

F00
0ðuÞ þ

�
h0

h
−
1

u

�
F0
0ðuÞ ¼ 0; ð26Þ

F00
1ðuÞþ

�
h0

h
−
1

u

�
F0
1ðuÞ−

h0

h
F0
0þ
�
h0

u
−h00

�
F0

2h
¼ 0: ð27Þ

In order to analyze the influence of GB coupling constant α
on the frequencies in the hydrodynamical limit, we will
consider the small-α limit. Expanding hðuÞ in such a limit
we obtain,

hðuÞ ≈ 2

L2
ðu2 − 1Þ

�
αþ α2

L2
ðu2 − 1Þ

�
: ð28Þ

In this scenario the solution for Eq. (26) is

F0ðuÞ ¼ A −
B
2L2

ln

� ðu2 − 1Þ
ðL2 þ αðu2 − 1ÞÞ

�
; ð29Þ

where A and B are constants. To satisfy the ingoing
boundary condition at the event horizon and avoid diver-
gences in F0ðuÞ, we need impose B ¼ 0 in (29). Thus, the
solution becomes F0ðuÞ ¼ A. With this result we solve
Eq. (27) for F1ðuÞ obtaining,

F1ðuÞ ¼ Cþ 2Aα −D
2L2

lnðu2 − 1Þ

þDþ 2AðL2 − αÞ
2L2

ln½L2 þ ðu2 − 1Þα�; ð30Þ

where C and D are constants. Again, the solution has to be
finite as u → 1, thus, we must have D ¼ 2Aα. Also, the
ingoing boundary condition at the event horizon implies
that F1ð1Þ ¼ 0, then,

C ¼ −A lnðL2Þ: ð31Þ

Finally, the solution for F1ðuÞ, finite and obeying the
physical boundary condition at the event horizon, turns
to be

F1ðuÞ ¼ A ln

�
1þ α

L2
ðu2 − 1Þ

�
: ð32Þ

Replacing the solutions for F0ðuÞ and F1ðuÞ back in
Eq. (25) we have
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RðuÞ ¼ AhðuÞ−iw=2
�
1þ iw ln

�
1þ α

L2
ðu2 − 1Þ

��
: ð33Þ

Imposing the Dirichlet boundary condition at spatial
infinity for the scalar field, Rð0Þ ¼ 0, we arrive to the
following allowed set of frequencies,

w ¼ i
ln ð1 − α

L2Þ ; ð34Þ

which in terms of black hole temperature T reads

ω ¼ 2πTi
ln ð1 − α

L2Þ : ð35Þ

The hydrodynamical frequencies are purely imaginary,
showing the same behavior as the three-dimensional black
holes with Lifshitz symmetry [35] and those surrounded by
anisotropic fluids [29]. Since IðωÞ has to be negative to
obtain decaying modes featuring stability, the allowed
values of α for the stability condition to be fulfilled
are 0 < α < L2.
In terms of gauge/gravity correspondence the perturba-

tion of a black hole in the gravity side is equivalent to
perturb a thermal state in the gauge theory side. In this
context, the inverse of the imaginary part of the fundamental
quasinormal frequency corresponds to the relaxation time-
scale τ which the perturbed thermal state needs in order to
return to thermal equilibrium. Thus, in our case this time-
scale is given by

τ ¼ 1

−IðωÞ ¼
lnð L2

L2−αÞ
2πT

: ð36Þ

At high temperatures the timescale τ approaches zero
suggesting that the perturbations of thermal states in the
ð1þ 1Þ—field theory are not long-lived. However, as α
increases (provided that 0 < α < L2) with fixed black hole
temperature, the timescale τ increases as well indicating the
possibility of having long-lived perturbations in the gauge
theory.
In addition, we should notice that the scalar hydrody-

namical quasinormal modes have purely imaginary
frequencies which are much higher (for very small values
of α) than the fundamental ones obtained in Sec. III through
our numerical approach. In that sense, in the usual field
profiles of the scalar field they decay much faster, not being
easily perceptible to the spectroscopic techniques (Prony
method). In the intermediate regime, nonetheless, they
approach those values listed in Table II, although they still
remain below them in each case.
In the next section we follow our stability study with the

massless spinorial field, whose perturbative analysis is also
performed with the same tools described in the previous
section.

V. PROBE MASSLESS SPINORIAL FIELD

In this section we are going to consider the problem of a
massless spinor field Φ evolving in the geometry of the
(2þ 1)-dimensional GB-BTZ black hole (5). The equation
that dictates the dynamics of Φ is the well-known Dirac
equation in its covariant form,

iγðaÞeμðaÞ∇μΦ ¼ 0; ð37Þ

where our index notation is the following, Latin indices
enclosed in parenthesis refer to the coordinates defined in
the flat tangent space and Greek indices indicate the
spacetime coordinates. In the tangent space we define
the triad basis as in Eq. (C1) and the spinor covariant
derivative ∇μ is given by the following expression,

∇μ ¼ ∂μ þ
1

8
ωðaÞðbÞ½γðaÞ; γðbÞ�; ð38Þ

in terms of spin connections ωðaÞðbÞ
μ and gamma matrices

γðaÞ, which can be written in terms of usual Pauli matrices
[36]. The components of the spin connection can be
computed using the expression in terms of the triad and
the spacetime metric connections Γν

μρ as

ωðaÞðbÞ
μ ¼ eðaÞν ∂μeðbÞν þ eðaÞν Γν

μρeρðbÞ: ð39Þ

The explicit expressions for the triad basis and the metric
connections are given in Appendix C. Here we list the two
nonvanishing components of ωðaÞðbÞ

μ , computed using the
expressions (C1) and (C2),

ωðtÞðrÞ
t ¼ 1

2

df
dr

; ωðrÞðφÞ
φ ¼ −

ffiffiffi
f

p
: ð40Þ

The spinor field Φ can be written in terms of its two-
components Φ1 and Φ2 as

Φ ¼
�Φ1ðt; r;φÞ
Φ2ðt; r;φÞ

�
: ð41Þ

Using the tortoise coordinate r� and redefining the spinor
components as

�Φ1ðt; r;φÞ
Φ2ðt; r;φÞ

�
¼
�
iðr2fÞ1=4e−iωtþimφYþðrÞ
ðr2fÞ1=4e−iωtþimφY−ðrÞ

�
; ð42Þ

the Dirac equation (37) can be cast to the following form
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�
d
dr�

� iω

�
Y� ¼ WY∓; ð43Þ

where the superpotential W is given by

W ¼ m

ffiffiffi
f

p
r

: ð44Þ

The final step to obtain the so-called superpartner
potentials V� is to introduce the pair of coordinates
Rþ and R− as R� ¼ Yþ � Y− into (43), so that�

d2

dr2�
þ ω2

�
R� ¼ V�R�; ð45Þ

where V� can be expressed in terms of the superpotential
W as

V� ¼ W2 � dW
dr�

: ð46Þ

Finally, the explicit form of the superpartner potentials for
the massless spinorial field evolving in the spacetime of the
(2þ 1)-dimensional GB-BTZ black hole is

V� ¼ m2
f
r2

�m

ffiffiffi
f

p
r

�
1

2

df
dr

−
f
r

�
: ð47Þ

Figure 5 shows these potentials for different values of the
GB parameter α. The propagation of a massless spinor field
in the black hole geometry dictated by Eq. (45) recovers the
quasinormal modes through the signal of field profiles. The
profiles are obtained as described in the previous section
with the double null integration technique. After an initial
perturbation (gauge), the quasinormal evolution takes place
and the frequencies are drawn with the Prony method,
mentioned in the previous section. We use the usual
Gaussian packages in null coordinates as initial surface
to evolve the field.
The quasinormal modes are listed in the Tables III

and IV. There we can verify an interesting behavior: for
increasing α the damping factor varies in opposite

directions, increasing for Vþ and decreasing for V−.
This effect is more pronounced for small rþ (except for
the first line of Table III, which we discuss below) such that
the spectra of larger black holes are mildly influenced by
the variation of α. A scaling between rþ and the quasi-
normal frequency emerges for large black holes,

ωV� ≃ −irþ
�
1

2
þ m
5rþ

½α� 5ð1þ αÞ� þOðr−2þ Þ
�

ð48Þ

for both Vþ and V−. This result is consistent with that
obtained for the BTZ black hole whenever α ¼ 0 [29].
Interestingly, α plays a second order role in the spectra for
large black holes in the spinorial field propagation con-
trarily to the scalar case.
A remarkable feature to be noticed in Table IV is the

case for small rþ where the dominance of oscillatory
modes for intermediate values of α and Vþ arises. Such
solutions also appear for very small values of α, although
as subdominant contributions to the spectra. The BTZ
frequency (α ¼ 10−10) for rþ ¼ 1, for example, is given

TABLE III. The fundamental quasinormal modes for a mass-
less spinorial field with L ¼ 1 and azimuthal number m ¼ 1 for
the potentials Vþ (top) and V− (bottom) with very small α. The
frequencies represent a stable field evolution with a purely
imaginary decay.

α

rþ 10−10 10−4 10−3 10−2

1 −1.00000i −1.00000i −1.00000i −1.00000i
5 −3.94990i −3.95028i −3.95377i −3.98988i
10 −6.12562i −6.12578i −6.12719i −6.14133i
50 −26.00244i −26.00255i −26.00350i −26.01305i
100 −50.99368i −50.99378i −50.99470i −51.00389i

1 −0.07299i −0.07298i −0.072915i −0.07225i
5 −1.72138i −1.72133i −1.72089i −1.71643i
10 −4.13611i −4.13604i −4.13543i −4.12937i
50 −24.04984i −24.04975i −24.04893i −24.04085i
100 −49.03274i −49.03265i −49.03180i −49.02334i

FIG. 5. Left panel: Potential Vþ for the massless spinor with α ¼ 0 (blue), α ¼ 0.1 (dashed red), and α ¼ 0.5 (dotted green). Right
panel: Potential V− for the massless spinor with the same values of α as in the left panel.
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approximately by ω ∼ 1.14 − 1.12i (in the small α regime
this value is almost constant for every α deviating barely
∼1%). This frequency only appears at early phases in the
evolution profile, which is dominated by pure imaginary
frequencies at late times.
The dynamical behavior of the massless spinorial field

was extensively investigated with our methods and found to
be stable. The field profile, after an initial burst, decomposes
into a tower of quasinormal modes fromwhich specific cases
are listed in Tables III and IV. This is an expected result for
the potential Vþ, however, it is not granted for the potential
V− since a small region with V < 0 exists for r > rþ in
this case.
As usual, in AdS-like black holes the spectra for both Vþ

and V− are not the same. Such behavior of isospectrality of
the potentials is found whenever a series expansion of the
transmission coefficients associated to W is the same for
Vþ and V− [33,37]. The fact that

Wjr→∞
r→rþ ¼ W∞ > 0: ð49Þ

is sufficient to break the isospectrality of the potentials.
In the next section we will discuss some aspects of the

thermodynamics of (2þ 1)-dimensional GB-BTZ black
holes.

VI. THERMODYNAMICAL ASPECTS

The thermodynamics of the black hole described by the
negative branch of Eq. (5) is very simple and independent
of α as quoted by [12], in which the main thermodynamical
variables are listed as follows,

T ¼ rþ
2πL2

; P ¼ 1

8πL2
; V ¼ πr2þ;

M ¼ r2þ
8L2

; S ¼ πrþ
2

; ψα ¼ 0; ð50Þ

being ψα the potential conjugated to the GB parameter. In
particular, we notice that its Hawking temperature grows
monotonically with rþ, so that there are no phase tran-
sitions. This fact can also be seen from the simple equation
of state obtained combining T, V, and P in the list of
Eq. (50),

P ¼ T
v
; ð51Þ

where we have defined the specific volume as v ¼ 4
ffiffiffiffiffiffiffiffiffi
V=π

p
.

This equation clearly has no critical points.
Another analysis that supports this conclusion is the

study of null geodesics in this geometry. It is known that the
photon sphere radius and the impact parameter related to it
play an interesting role during a black hole phase transition
and can serve as order parameters to describe such a
phenomenon [38]. Thus, by considering the Lagrangian

2L ¼ −fðrÞ_t2 þ _r2

fðrÞ þ r2 _φ2; ð52Þ

and the constants of motion defined by the generalized
momenta corresponding to t and φ,

pt ¼ −fðrÞ_t ¼ −E; pφ ¼ r2 _φ ¼ L; ð53Þ

we can obtain the radial equation for a photon moving in
this spacetime,

_r2 þ Veff ¼ 0; with Veff ¼
fL2

r2
− E2: ð54Þ

Applying the usual conditions in order to obtain the photon
sphere [39] radius rps

Veff ¼ 0;
dVeff

dr
¼ 0;

d2Veff

dr2
< 0 at rps; ð55Þ

TABLE IV. The fundamental quasinormal modes for a massless spinorial field with L ¼ 1 and azimuthal number
m ¼ 1 for the potentials Vþ (top) and V− (bottom) with intermediate values of α. The frequencies represent a stable
field evolution transitioning between a purely imaginary and oscillatory decays.

α

rþ 0.1 0.2 0.3 0.4 0.5

1 1.14874-0.99905i 1.13886-0.90746i 1.12468-0.83455i 1.10849-0.77539i 1.09179-0.72619i
5 0.33621-4.82979i 1.06403-4.60148i 1.41626-4.37916i 1.63961-4.17711i 1.79394-3.99525i
10 −6.29102i −6.48252i −6.71745i −7.03314i −7.56514i
50 −26.10827i −26.21498i −26.32406i −26.43657i −26.55336i
100 −51.09513i −51.19639i −51.29880i −51.40319i −51.51019i

1 −0.06643i −0.06121i −0.05689i −0.05324i −0.05009i
5 −1.67461i −1.63275i −1.59463i −1.55951i −1.52689i
10 −4.07135i −4.01123i −3.95464i −3.90093i −3.84967i
50 −23.96158i −23.87573i −23.79119i −23.70734i −23.62385i
100 −48.94016i −48.84938i −48.75928i −48.66920i −48.57876i
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we notice that the second equation of set (55) cannot be
solved for any finite rps. In fact, as happens in BTZ
solution, this (2þ 1)-dimensional GB-BTZ black hole has
no photon circumference. Then, the absence of phase
transitions becomes evident.
In what follows we discuss some entropy aspects for this

geometry, namely, we calculate the Bekenstein entropy
bound and the leading correction to the black hole entropy
using the brickwall method.

A. Entropy bound

We consider the motion of a particle near a black hole
described by the metric (5). The constants of motion
correspond to the energy and angular momentum of the
particle, respectively,

E ¼ πt ¼ gtt_t;

J ¼ −πφ ¼ −gφφ _φ: ð56Þ

In addition, the energy conservation for a particle of massm
implies,

−m2 ¼ gμνπμπν; ð57Þ

so that

r2E2 − J2fðrÞ −m2r2fðrÞ ¼ 0; ð58Þ

whose solution gives an expression for the particle’s
energy,

E ¼
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þm2r2

p
: ð59Þ

As the particle is gradually approaching the black hole, it
finally reaches the event horizon when the proper distance
from its center of mass to this horizon equals R, the
characteristic dimension of the particle,Z

rþþδðRÞ

rþ

ffiffiffiffiffiffi
grr

p
dr ¼ R; ð60Þ

where the upper limit of the integral represents the point of
capture of the particle by the black hole. Expanding to first
order we obtain for δ,

δðRÞ ≈ rþR2

2L2
: ð61Þ

And we can minimize the energy (59) at the point of capture
with respect to the particle’s angular momentum, i.e.,

dE
dJ

				
rþþδ

¼ 0 ⇒ J ¼ 0; ð62Þ

thus obtaining,

Emin ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrþ þ δÞ

p
¼ mrþR

L2
: ð63Þ

Now, according to the first law of thermodynamics we
have that

dM ¼ Emin ¼ TdS ¼ κ

2π
dS; ð64Þ

being κ the surface gravity at the event horizon,

κ ¼ f0

2

				
r¼rþ

¼ rþ
L2

: ð65Þ

At the same time, the generalized second law of thermo-
dynamics says that after the capture of the particle the
entropy of the black hole cannot decrease,

SBHðM þ dMÞ ≥ SBHðMÞ þ S: ð66Þ

Thus, combining both laws we can obtain an upper bound
on the entropy of the particle

S≤ dS¼ SBHðMþdMÞ−SBHðMÞ¼ 2πmR≡2πER: ð67Þ

This bound shows to be independent of the black hole
parameters and agrees with the universal result obtained by
Bekenstein [24], valid for any dimensionality.

B. Entropy semiclassical correction

In order to find semiclassical corrections to the black
hole entropy, we use ’t Hooft’s brickwall method [25]. This
method considers a thermal bath of scalar fields quantized
using the partition function of statistical mechanics, whose
leading contribution yields the Bekenstein-Hawking for-
mula. The method introduces certain conditions on the
scalar field Φ aiming to avoid divergences, namely, an
ultraviolet cutoff near the event horizon (Φ ¼ 0 for
r ≤ rþ þ ϵ) and an infrared cutoff far from the black hole
(Φ ¼ 0 for r ≥ L ≫ rþ).
The scalar field of mass μ obeys the massive version of

the Klein-Gordon equation given by Eq. (15),

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ − μ2Φ ¼ 0: ð68Þ

Using the ansatz Φðt; r;φÞ ¼ e−iEtþimφRðrÞ the radial part
of Eq. (68) turns out to be

d2R
dr2

þ
�
f0

f
þ 1

r

�
dR
dr

þ 1

f

�
E2

f
−
m2

r2
− μ2

�
R ¼ 0: ð69Þ
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In order to obtain the radial wave numberK, we use aWKB
approximation for RðrÞ ∼ eiSðrÞ, with SðrÞ being a rapidly
varying phase. To leading order the only significative
contribution to the radial wave number comes from the
first derivative of S obtained from the real part of Eq. (69),

K ≡ S0 ¼ 1ffiffiffi
f

p
�
E2

f
−
�
m2

r2
þ μ2

��
1=2

: ð70Þ

Then, we use K to quantize the number of radial modes nr
of the field as follows,

πnr ¼
Z

L

rþþϵ
Kðr;m; EÞdr: ð71Þ

Moreover, in order to find the black hole entropy of
the system, we calculate the Helmholtz free energy F of
the scalar thermal bath with temperature β−1 ¼ κ=2π as
follows,

F ¼ 1

β

Z
2dm

Z
lnð1 − e−βEÞdnr

¼ −
Z

2dm
Z

nr
eβE − 1

dE: ð72Þ

Performing the integral in m and using Eq. (71) we obtain

F ¼ −
1

2

Z
∞

0

dE
eβE − 1

Z
L̄

1þϵ

r2þyffiffiffiffiffiffiffiffiffi
fðyÞp �

E2

fðyÞ − μ2
�
dy; ð73Þ

where we rescaled the quantities, y ¼ r=rþ, L̄ ¼ L=rþ, and
ϵ̄ ¼ ϵ=rþ. Thus, the metric coefficient can be written as

fðyÞ ¼ −
r2þ
2α

y2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

y2L2
ðy2 − 1Þ

s �
: ð74Þ

Expanding near the event horizon where y → 1 and
performing the Bose-Einstein integral we get

F ≈ −
ζð3Þ
β3

ð2αÞ3=2
rþ

Z
L̄

1þϵ̄

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

L2
ðy2 − 1Þ

r �−3=2
dy;

ð75Þ

with ζðxÞ being the Riemann zeta function. The semi-
classical correction we are searching comes from the
divergent contribution of Eq. (75), i.e., from the lower
limit of the integral, whose leading order term reads,

Fϵ ¼ −
ζð3ÞL3

β3
ffiffiffiffiffiffiffiffiffiffi
2rþϵ

p : ð76Þ

The corresponding entropy Sϵ follows directly,

Sϵ ¼ β2
∂Fϵ

∂β
¼ 3ζð3ÞL3

β2
ffiffiffiffiffiffiffiffiffiffi
2rþϵ

p : ð77Þ

In order to write this correction in a more familiar way, we
use the proper thickness ξ defined as

ξ ¼
Z

rþþϵ

rþ

ffiffiffiffiffiffi
grr

p
dr ≈

L
ffiffiffiffiffi
2ϵ

p
ffiffiffiffiffi
rþ

p ; ð78Þ

as well as the event horizon “area” A ¼ 2πrþ and the
Hawking temperature T ¼ 1

β ¼ rþ
2πL2, obtained from the

surface gravity (65), to finally achieve,

Sϵ ¼
3ζð3ÞA
8π3ξ

; ð79Þ

which is a universal expression in three-dimensional
gravity [40,41].

VII. FINAL REMARKS

In this paper we have studied the perturbative and
thermodynamical aspects of the (2þ 1)-dimensional GB-
BTZ black hole found by Hennigar et al. [12,13]. This
solution describes a family of lower-dimensional black
holes parametrized by the mass term M, the AdS3 radius
L, and the GB coupling constant α. Also, the BTZ limit of
the solutions exists as α → 0 and the event horizon is
located at rþ ¼ LM1=2. In order to understand the role of
the GB coupling constant α in the context of the black hole
stability problem, we performed the computations and
analysis of the GB-BTZ black hole quasinormal spectrum.
In addition, the Bekenstein entropy bound and the semi-
classical correction to the Bekenstein-Hawking entropy
were also computed.
We analyzed two different types of perturbations repre-

sented by a scalar field and a massless spinorial field. For
intermediate black holes, both scalar and spinorial pertur-
bations are affected reasonably by the variation of the GB
coupling constant, although the influence in the scalar case
is much more pronounced. This is also true for large black
holes perturbed by the scalar field. Interestingly enough,
such a picture changes for large black holes in the massless
spinorial case, where the influence of the coupling constant
is almost insignificant. To first order in the angular momen-
tum we can understand the perturbation in a common
ground as the same reported for a BTZ black hole when
α ¼ 0 (see, e.g., [29]), establishing no role played by α on
the perturbation. In both cases analyzed here the extensive
search for profiles with different geometry parameters
results in a stable spacetime against the field perturbations.
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The quasinormal modes obtained for the scalar and
spinorial perturbations in the background of the GB-BTZ
black hole are assembled in Tables I–IV and display
interesting features of the geometry, already described in
the previous sections. In the scalar case, for instance, we

remark the presence of a peak in the graphic of RðωÞ
rþ

vs. α

and the linear scaling of α and − IðωÞ
rþ

in the small-α regime.

Moreover, for the fundamental mode we see a linear scaling
between the quasinormal frequencies and the temperature of
the black hole, which can be interpreted as an absence of
phase transitions in the model, also confirmed by the
thermodynamical analysis.
Subsequently, still regarding the quasinormal spectrum

due to scalar perturbations, we found that the hydrodynam-
ical or high-temperature approximation leads to an exact
result for the quasinormal spectrum w ¼ ið2πTÞ= ln
ð1 − α=L2Þ in the small-α limit provided that 0 < α < L2.
As the hydrodynamical frequencies are purely imaginary,
there is not oscillatory phase in this limit either. In the context
of gauge/gravity correspondence this result suggests that
perturbations of thermal states in the ð1þ 1Þ—field theory
are not long-lived.
As for the massless spinorial perturbation, only damped

nonoscillatory modes were obtained for the field with
V− potential, different from what is found in the pure
BTZ case [30] and the (2þ 1)-dimensional Lifshitz black
hole [42]. For intermediate size black holes as α increases,
the damping also increases for Vþ, but decreases for V−. In
the case ofVþ potential for small rþ and intermediate values
of α an oscillatory mode dominates. In fact, in the BTZ limit
(very small α) for rþ ¼ 1 the quasinormal frequency can be
approximated byω ∼ 1.14 − 1.12i and only appears at early
phases, being overwhelmed by the imaginary frequency at
late times. Thus, we see that a critical rþ exists such that it
points out the transition from oscillatory to nonoscillatory
modes, a behavior also found in (2þ 1)-dimensional black
holes with anisotropic fluids [29]. Moreover, in the limit of
large black holes the imaginary part of the frequency scales
with rþ so that α has no effect on the spectra.
Afterwards, we briefly discussed the thermodynamics of

the (2þ 1)-dimensional GB-BTZ black hole, which turns
to be independent of α. We stressed that there are no phase
transitions since its temperature is a monotonic growing
function of rþ, a result that is also reinforced by the absence
of a photon circumference in the geometry. Furthermore,
we calculated the Bekenstein entropy bound for an object
captured by this black hole obeying the first and second
laws of thermodynamics. Our result complies with the
universality of the bound, i.e., again the GB parameter
introduces no change. In addition, we computed the leading
semiclassical correction to the Bekenstein-Hawking
entropy by means of the brickwall method. This correction
shows a perfect agreement with other (2þ 1)-dimensional
black holes.

Finally, according to our results we can conclude that the
(2þ 1)-dimensional GB-BTZ black holes are dynamically
stable under scalar and spinorial linear perturbations. We
should also stress that as in this dimensionality the metric or
gravitational perturbations reduce to a scalar mode only
because there are no propagating degrees of freedom [43],
what also happens even in higher-dimensional braneworld
models [44], our stability analysis is a good candidate for a
definitive answer on this matter. Moreover, this dynamical
stability is also accompanied by a thermodynamical sta-
bility and a full agreement of our results with the univer-
sality of entropy aspects discussed here. The stability
analysis of more general solutions, including charge or
angular momentum as shown in Ref. [13], is left for
future works.
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APPENDIX A: FROBENIUS METHOD
FOR THE KLEIN-GORDON EQUATION

The Frobenius method we developed for the scalar field
propagation starts by taking Eq. (17) and defining a new
variable x ¼ r−1. In such coordinates the field equation
reads

sψ 00 þ τψ 0 þ uψ ¼ 0; ðA1Þ

in which prime denotes a derivative with respect to x and
the functions s, τ, and u are given by

s ¼ f2x4 ≡X∞
n¼0

snðx − xþÞnþδ;

τ ¼ fx2ð2xf þ x2f0Þ≡X∞
n¼0

τnðx − xþÞnþδ;

u ¼ ω2 − V ≡X∞
n¼0

unðx − xþÞnþδ: ðA2Þ

Now, using the Ansatz ψ ¼P anðx − xþÞnþδ the solution
to leading order (indicial relation) is given by the
expression,

δ ¼ �i
ωrþ
2M

; ðA3Þ

being the negative sign the correct one according to the
right boundary condition. Substituting the ansatz in the
field equation we still retain the recurrence relation,

GAUSS-BONNET BLACK HOLES IN (2þ 1) DIMENSIONS: … PHYS. REV. D 106, 124007 (2022)

124007-13



an ¼ −
1

Dn

Xn−1
k¼0

fsn−kþ2½kðk − 1Þ þ δð2k − 1Þ þ δ2�

þ τn−kþ1½kþ δ� þ un−kgak ðA4Þ

with Dn ¼ nðnþ 2δÞs2. Such a expression allows us to
solve the quasinormal problem in a similar way as that
described in [14].

APPENDIX B: COMPARISON
TABLES OF QUASINORMAL MODES

WITH DIFFERENT ANGULAR MOMENTA

Table V displays the scalar quasinormal modes for
different values of m and complements the results and
conclusions discussed in Sec. III.

APPENDIX C: METRIC CONNECTIONS
AND TRIAD BASIS

The components of triad basis for the metric (5) are
given by

eðaÞt ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
δðaÞt ; eðaÞr ¼ 1ffiffiffi

f
p δðaÞr ; eðaÞφ ¼ rδðaÞφ ; ðC1Þ

and the metric connections read

Γt
tr ¼

d
dr

½lnð
ffiffiffi
f

p
Þ�; Γr

rr ¼
d
dr

�
ln
�

1ffiffiffi
f

p
��

; Γr
tt ¼

f
2

df
dr

;

Γr
φφ ¼−rf; Γφ

rφ ¼ 1

r
: ðC2Þ
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