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We analyze the geometry of a spherically symmetric black hole with an inner and outer apparent horizon
that is perturbed by spherical null shells of matter. On a classical level we observe that the mass inflation
instability is triggered, resulting in a growth of curvature and an inward displacement of the inner horizon.
We study in detail the inner structure of the mass-inflated region and compare it with previous results
obtained for the case in which the perturbing matter content has a continuous distribution. We then perform
an approximate calculation of the renormalized stress-energy tensor of a quantum field in the vicinity of the
inner horizon, and analyze the semiclassical backreaction on this region of the geometry. We find that the
classical tendency for this horizon to move inward due to mass inflation is challenged and potentially
overcome by a semiclassical tendency for it to inflate outward.
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I. INTRODUCTION

A generic outcome of gravitational collapse is the
formation of a trapped region, and a generic characteristic
of trapped regions is the presence of both an outer and an
inner apparent horizon. In classical General Relativity,
strict spherical symmetry, and no charge, any inner
apparent horizon would rapidly disappear into a singu-
larity. However, the presence of the slightest amount of
angular momentum or electric charge, an effective regu-
larized central region, or even just a seemingly innocuous
transient phenomenon, can serve to breathe additional life
into this horizon [1–3].
A long-lived inner horizon leads to the well-known mass

inflation instability, whereby small perturbations in the
matter content of the geometry result in a highly nonlinear
response in the increase of curvature [4]. For the charged
black hole and many other models, this increase in
curvature can be related to a growth of the Misner-
Sharp mass [5], hence the name “mass inflation.” For
an initially static geometry with an inner horizon which is
then perturbed, the region where mass is “inflated” begins
close to the initial position of this horizon and extends
below it. Marking the beginning of this large-curvature
region is a shockwave [6] located on a null hypersurface
that remains in the vicinity of the initial inner horizon

position. Meanwhile, the inner horizon moves inside this
region along a timelike hypersurface, tending toward the
origin. If it reaches the origin before reaching the Cauchy
horizon, a spacelike singularity is formed, as observed in
the numerical analysis in [7], in addition to the null weak
singularity at the Cauchy horizon itself [8–11].
Classically, this entire process is hidden behind an event

horizon and has no effect on the outside universe. Only
observers who enter the black hole may worry about whether
they will survive their altogether turbulent journey and what,
if anything, may await them beyond the Cauchy horizon.
However, the picture is quite different when quantum effects
[12,13] start to be taken into account. To begin with, the
energy content of the vacuum state of quantum fields that
reside on these spacetimes tends to a divergence at the
Cauchy horizon, and does so with enough strength to rule
out the possibility of extensions of spacetime beyond this
horizon in a semiclassical regime [14–19]. Additionally, for
a dynamically formed black hole, if one takes into account
Hawking evaporation of the outer horizon [20,21], then the
trapped region should disappear long before a Cauchy
horizon or a null singularity forms (assuming no stable
extremal remnant is generated).
Furthermore, as shown in a previous work by the present

authors [22], the backreaction from the quantum vacuum
around the inner apparent horizon (i.e., the inner boundary
of a dynamically formed trapped region) should also be
taken into account long before any consideration of the
Cauchy horizon and its divergences. Particularly, we used
the renormalized vacuum expectation value of the stress-
energy tensor operator (which we will refer to as just the
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“renormalized stress-energy tensor,” or RSET), constructed
from a quantum massless scalar field and calculated in the
Polyakov approximation for spherical symmetry, to analyze
semiclassical backreaction perturbatively around the inner
horizon. What we found is a general tendency for the
perturbed inner horizon to move outward, reducing the size
of the trapped region. This movement is analogous to the
Hawking evaporation from the other side of the trapped
region, as both are sourced by negative energy fluxes with
magnitudes related to the surface gravities of their respective
horizons. The main difference between the two is the fact
that a quasistationary approximation cannot be used for the
inner horizon, as backreaction tends to have a quicker
accumulated effect there. In the same sense as the term
evaporation of the outer horizon conveys an idea of
slowness, an adequate term for its interior counterpart might
be inflation of the inner horizon, recalling its more explosive
tendency.
It is the goal of this work to derive a similar perturbative

semiclassical backreaction scheme on top of classical
backgrounds that capture more realistically the evolution
of the inner apparent horizon, i.e., backgrounds that
represent classical mass inflation. To this end, we con-
struct a simple geometric model with a spherically
symmetric black hole perturbed by an outgoing null shell
traveling between its outer and inner horizons (akin to
Ori’s model [8]), and by a series of ingoing null shells with
decreasing mass, which represent the power-law decay of
perturbations typically considered for mass inflation [4].
Then, by deciding what mass and charges each shell
carries and how these affect the position of the inner
horizon, we analyze the possibilities for the resulting
evolution of the trapped region and the global causal
structure of the spacetime.
On top of these spacetimes we construct a quantum in

vacuum state and calculate the RSET in the Polyakov
approximation in the form of a series expansion around the
inner horizon. We once again find a tendency for the
semiclassical source to move the inner horizon outward,
although in this case it competes with the classical tendency
for it to move inward due to mass inflation. As the inner
horizon moves inward, the classical term which drives it to
do so decreases, while the semiclassical term which pushes
it outward increases, eventually overcoming its Planck-
scale suppression and dominating over its classical counter-
part when the surface gravity of this horizon becomes
Planckian.
This analysis of initial tendencies may seem to suggest

that semiclassical effects can only dominate when the
spacetime curvature becomes Planckian (which in itself
is an important result), but a full semiclassically self-
consistent solution obtained from a family of particularly
simple mass inflation geometries reveals than this need
not be the case. Terms sourced by the RSET which drive
the slow-down and reversal of the inner horizon tendency

toward the origin can, in fact, grow exponentially quickly,
and lead to this reversal while curvature is still far from
being Planckian. This solidifies the conclusion that
horizon-related semiclassical effects play an important
role for the evolution of a generic black-hole trapped
region.
This work is structured as follows. In Sec. II we construct

our shell-based classical perturbation model which triggers
mass inflation on an initially static spherically symmetric
black hole. In Sec. III we analyze in detail the inner regions
of the resulting geometries, focusing in particular on the
evolution of the inner apparent horizon. We also show the
global causal structure which the purely classical evolution
leads to, with its corresponding weak and strong singular-
ities. Then, in Sec. IV, we calculate the RSET in the
Polyakov approximation for these spacetimes and tackle
the backreaction problem. In Sec. V we conclude with an
overview of our results and we discuss the changes they
may imply for the standard picture of black hole formation
and evaporation.

II. MASS INFLATION WITH THIN SHELLS

The model we will work with is a spherically symmetric
geometry with a line element

ds2 ¼ gttdt2 þ grrdr2 þ r2dΩ2; ð1Þ

where dΩ2 is the line element of the unit sphere. The
simplicity of our construction lies in considering that this
geometry is static, i.e., that the metric components gtt and
grr are functions of r only, in patches separated by spherical
null shells.
To begin with, consider that there are two null shells, one

outgoing and one ingoing, which intersect at a point
p1 ¼ ðt1; r1Þ. Continuity of the metric imposes the relation
(see [23–25])

���� f2f1
���� ¼

����F2

F1

���� at p1; ð2Þ

where the functions F and f are the grr component of the
metric in different patches, with upper (lower) case letters
referring to the interior (exterior) of the outgoing shell and
the subscript “1” (“2”) referring to the interior (exterior) of
the ingoing shell, as shown schematically in Fig. 1.
Now consider that this geometry has a trapped region

(i.e., a region where gtt becomes positive and grr negative,
which directly relates to the expansion of outgoing null
geodesics congruences becoming negative [26]). For sim-
plicity, consider also that −gtt ¼ grr in the static coordinates
of each patch in the vicinity of the shells (as would be the
case for, e.g., the charged black hole, and many regular
black hole models [2,3]). We will refer to this metric
component as the redshift function, this being the previously
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defined f (and F).1 We take the outgoing shell to be
traveling inside the trapped region, between the outer and
inner horizons. Once we specify some aspects of the initial
conditions in the patches of F1, f1, and f2, which amounts
to choosing the mass and charge carried by each shell,
Eq. (2) will tell us how the redshift function in the future of
the innermost region of the black hole, F2, behaves. We will
then repeat the process by adding more ingoing shells, as
shown in Fig. 1, representing an ingoing perturbation of
decreasing amplitude, and see when and how mass inflation
is triggered.
In advanced Eddington-Finkelstein coordinates we can

write the line element in the f1 patch as

ds21 ¼ −f1ðrÞdv2 þ 2dvdrþ r2dΩ2: ð3Þ

We note that the same coordinate v can be used for all static
representations of the patches external to the outgoing shell
(while for those on the inside of this shell we will use a
coordinate V). This outgoing shell is travelling along a null

geodesic for both the geometries in the f1 and F1 patches.
For now, we will describe its dynamics and its interactions
with the ingoing shell(s) in the coordinates of the external
f1 patch, while in the next section we will go into more
detail regarding its description from the point of view of the
interior patches. Being inside the trapped region of (3), its
movement is described by the equation

drshell
dv

¼ 1

2
f1: ð4Þ

Since f1 is negative inside the trapped region, the solution
for its radial position rshell decreases in v, eventually tending
toward the inner gravitational radius of the f1 patch, ri;1,
where the redshift function can be approximated by

f1ðrÞ ¼ −2κ1ðr − ri;1Þ þO½ðr − ri;1Þ2�; ð5Þ

with κ1 being the absolute value of the surface gravity of this
inner radius (i.e., − 1

2
∂rf1jr¼ri;1). To clarify, ri;1 is the

position the inner horizon would have if the f1 patch were
continued to below the outgoing shell [i.e., the zero of the
f1ðrÞ function when extended to below rshell]. We note that
since below rshell the geometry is described by the F1

function, the position of the actual inner apparent horizon of
the geometry is in fact the zero of F1. This position will be
denoted by Ri;1 later on.
The solution that describes the tendency of the shell

toward ri;1 at sufficiently large values of v can be obtained
from the linear order in the above expansion,

rshellðvÞ ¼ ri;1 þ ðr0 − ri;1Þe−κ1v þOðe−2κ1vÞ; ð6Þ

where r0 is a positive constant representing the position of
the shell at v ¼ 0. Substituting (6) into (5), the redshift
function on the shell is then approximated by

f1jshell ¼ −2κ1ðr0 − ri;1Þe−κ1v þOðe−2κ1vÞ: ð7Þ

Now consider that this outgoing shell is intersected by the
ingoing one. If the latter is assumed to have positive mass
(more generally, satisfies the null energy condition), the
inner horizon can only be displaced inward, i.e., ri;1 ≥ ri;2,
following a timelike trajectory, in the same way as the outer
horizon can only be displaced in an outward (spacelike)
direction.2 Let us also assume that this mass which the shell
carries to the black hole is small (compared to the total black
hole mass), as one may expect from perturbation tail
analyses in an astrophysical scenario. The redshift function
after this shell can then be approximated by

FIG. 1. Static black hole with outer and inner horizons
perturbed by an outgoing shell and a series of ingoing shells
with decreasing mass, represented in advanced Eddington-
Finkelstein coordinates. The trapped region is shaded in gray.
The ingoing shells are located at vn, with n ¼ 1; 2;…; mn refers
to the Bondi mass in the asymptotic region before the corre-
sponding ingoing shells (outside the outgoing one); fn is the grr

metric component in each of these regions down to the outgoing
shell, while Fn is the same metric component on the inside of the
outgoing shell. ri;n are the zeros of the fn functions extended to
the region below the outgoing shell (they are the radii which this
shell approaches exponentially in v in each patch).

1Throughout the text, it should be recalled that the properties
we require from this function are related to both gtt (which often
bears the name redshift function by itself) and grr; the former has
more to do with the trajectories of null geodesics, while the latter
has to do with the junction conditions that drive the dynamics of
the spacetime.

2This is simply an extension of Hayward’s theorem for
continuous matter [26] to the case of shells. Intuitively, it can
be seen from the fact that the inner horizon acts as a surface of
accumulation of geodesics, which restricts its movement to causal
directions.
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f2jshell ¼ −2κ2ðrshell − ri;2Þ þO½ðrshell − ri;2Þ2�: ð8Þ

Particularly, the smallness of the mass carried by the shell is
meant to ensure that the order ðrshell − ri;2Þ2 remains
negligible (in units of the characteristic length scale of
the black hole, i.e., the initial inner horizon radius), in the
same way as the higher order terms in (5) are, which
amounts to a requirement that the displacement ðri;1 − ri;2Þ
be small (which we will impose explicitly later on). At the
intersection point p1, we can insert (6) for rshell into Eq. (8)
which, together with Eq. (7), gives us the expression for one
of the two quotients from Eq. (2):

f2
f1

����
r¼r1

¼ κ2
κ1

þ κ2
κ1

ri;1 − ri;2
r0 − ri;1

eκ1v1 ½1þOðe−κ1v1Þ�; ð9Þ

where v ¼ v1 corresponds to the position of the ingoing
shell, and is thus also the intersection time. The exponen-
tial in this expression, along with Eq. (2), already indicates
that the value of redshift function F2 can become much
greater than F1, in a manner suggestive of mass inflation.
Particularly, one can easily see how this growth of F2

relates to an increase of mass in, e.g., the Reissner-
Nordström geometry (which we will use as an illustrative
example throughout this work), where Fn ¼ 1–2Mn=
rþQ2

n=r2. If the redshift function increases in absolute
value, and since it is negative (r1 begin inside the trapped
region), it translates into an increase in the only negative
term it contains: the mass of the black hole. Assuming this
term is already large from previous shell crossings and
dominates the behavior of the redshift function F1 close to
the shell, we have the relation

F1jr¼r1 ¼ −
2M1

r1
þOðM0

1Þ; ð10Þ

where M1 is the mass on the inside of the outgoing shell
before v1. With the same assumption for the region after
the ingoing shell, i.e., that the mass term dominates in the
redshift function, we get the inflated mass of the charged
black hole

M2 ¼ M1

f2
f1

����
r¼r1

þOðM0
1Þ: ð11Þ

However, as the reader may have already noticed, the
exponential in (9) has a prefactor which must also be
carefully analyzed. For example, if the ingoing shell is
considered to have a particular charge and mass which
make the displacement of the inner gravitational radius
ðri;1 − ri;2Þ sufficiently small, the exponential growth
could be canceled. We will discuss this in more detail
in the following.
Let us make the perturbation by ingoing shells an

iterative process: we represent an ingoing, polynomially

decreasing flux of radiation (which is usually the source of
mass inflation [4,8] stemming from the decay of perturba-
tions on the geometry [27]) with a sequence of ingoing
shells of progressively smaller mass,

δmn ¼
a
vqn

; ð12Þ

where δmn refers to the change of the exterior mass (i.e., the
Bondi mass [28] related to past null infinity) produced by a
particular ingoing shell located at v ¼ vn, the power q is
positive,3 and a is a positive constant with appropriate
dimensions. We also impose that there be infinitely many
shells and that limn→∞ vn ¼ ∞.
One of the key ingredients necessary for mass inflation is

that this increase in the mass (as seen from outside the
object) is itself related polynomially to the change in
position of the inner gravitational radius δri;n, i.e.,

δri;n ¼ −
β

vpn
; ð13Þ

where the power p is again positive (though it can be
different from q), and β is again a positive constant (at least
asymptotically in v). We stress that Eq. (13) is an
assumption about how the geometry responds to the ingoing
perturbation (12). For example, in the Reissner-Nordström
case, where one has

δri;n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 −Q2
p ð−ri;nδmn þQδQnÞ; ð14Þ

the assumption (13) restricts the amount of (same sign)
charge the ingoing shells can carry. One can easily imagine
a case in which the relation between δmn and δQn is such
that, e.g., δri;n ¼ 0, which would lead to an absence of mass
inflation. This is not limited to the Reissner-Nordström case:
(13) generally avoids the suppression of the exponential in
(9) by its prefactor, allowing mass inflation to take place.
This can be seen by looking at the evolution of the

redshift function in the interior of the outgoing shell after the
nth ingoing shell has crossed it, Fn. From Eqs. (2), (9), and
(13) we get the asymptotic relation at the nth intersection
point

3q has a lower bound which depends on the spacing of the
shells, needed to guarantee that the total mass thrown into the
black hole is finite. For example, for a linear distribution of shells
in v, q > 1. If the shells become more spread out, then q can be
smaller, while if they become more concentrated it must be larger.
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Fn ¼ Fn−1
fn
fn−1

¼ Fn−1
κn
κn−1

�
vn−1
vn

�
p
eκn−1Δvn ½1þOðe−κn−1ΔvnÞ�

¼ Fn−1eκΔvn
�
1þO

�
e−κΔvn ;

Δvn
vn−1

��
; ð15Þ

whereΔvn ¼ vn − vn−1 and in the last line we have directly
substituted the asymptotic value of the surface gravity of the
fn geometries, κn → κ. We have also used the fact that the
differences vn − vn−1 become negligible when compared to
the absolute value of vn asymptotically (for any distribution
of infinite shells which covers an infinite range in v), and
that eκΔvn > 1, leaving only the dominant contribution as
leading order. If we use this relation iteratively from an
initial time v ¼ 0 when the interior redshift function was
F0 < 0, we get the asymptotically exponential increase
(of the absolute value of) the redshift function at the shell

Fnjshell ∼ F0eκvn : ð16Þ

The result is independent of the spacing between the ingoing
shells: increased spacing only leads to a higher jump in Fn
when a shell eventually falls. This tendency continues for as
long as more shells are thrown in. Returning to the Reissner-
Nordström case, we can once again easily associate this with
a proportional increase of the mass term through Eq. (11). In
more general geometries, it can be related to an increase of
the Misner-Sharp mass given by [5,26]

MMS ¼
1

2
rð1 − FÞ ð17Þ

for this interior region. Let us recall that the Misner-Sharp
mass provides a quasilocal characterization of gravitational
energy in spherical symmetry [26].
Equation (16) captures the main result of mass inflation:

the exponential growth of the redshift function (more
generally, the grr metric component) below a certain radius,
associated with a corresponding growth of the Misner-
Sharp mass. In our model it can be physically interpreted in
terms of the exchange of mass between the outgoing and
ingoing shells. The outgoing shell, being inside the trapped
region, can be seen as having a negative asymptotic mass.
At the intersection points, the ingoing shells can therefore
take away positive mass by making the negative one of the
outgoing shell increasingly more so. This exchange is
mediated by the dynamics of the gravitational field, and in
particular its exponential nature is only triggered if the
outgoing shell is taken from an initial proximity to the inner
gravitational radius of the fn geometry patches, and
subsequently (after the interaction) ends up deeper inside
the trapped region due to the inward displacement of this
inner gravitational radius (13).

It is interesting to note that this process is independent of
the particularities of the infalling matter shells, only
requiring that the perturbations induce the polynomially
decreasing response of the inner gravitational radius (13). If
the shift in its position were instead to decrease, e.g.,
exponentially,

δri;n ¼ −β̃e−σv; ð18Þ

where β̃ and σ are positive constants, then one can observe
from (9) and the corresponding equivalent of (15) that the
outcome would depend on the difference between the
surface gravity κ and the coefficient σ. Particularly, mass
inflation would only take place if κ > σ, as has been shown
in the case where σ is the surface gravity of a cosmological
horizon in asymptotically de Sitter spacetimes, governing
the decaying tail of infalling radiation [29,30].
It is worth noting that this shell-based model has some

characteristics in common with the case in which a con-
tinuous power-law flux of radiation is present, but there are
also some differences. For example, the exponential that
appears in the mass inflation of this model is directly related
to the exponentially decreasing separation between the
outgoing shell and the inner gravitational radius ri (as seen
from the outside) in each step represented in Fig. 1.
Although the average of this distance taken over several
steps has the same inverse-polynomial decrease as is
expected from a continuous matter case [that is, if ri had
a position evolving as a continuous version of (13)], taking
the limit to a continuous ingoing distribution of matter is not
at all straightforward. Although the outgoing shell seems to
be a good model for the shockwave which generally appears
in this region even with continuous matter [6], the ingoing
shells offer qualitatively new features. This may also be
inferred by the fact that a generalization of Ori’s model [31],
in which the ingoing flux is continuous, leads to a larger
variety of asymptotic outcomes, unlike the single exponen-
tial behavior observed here. The question of whether the
continuous or the discrete model (or some combination of
the two) fits best the behavior of small (possibly quantized)
infalling perturbations may thus turn out to be an important
one for a better understanding of the singularity at the
Cauchy horizon, though we will not address it here.

III. GEOMETRY INSIDE THE MASS-INFLATED
REGION

This shell-based construction captures (albeit a simple
variant of) the mass inflation process and it can give us
some additional insights into the behavior of the geometry
inside the black hole at finite times. In particular, to set up
our subsequent semiclassical analysis, we want to see how
this model answers two questions about the depths of the
mass-inflated region. The first one is whether a stream of
outgoing radiation below the initial outgoing shockwave
may also give rise to an effect similar to mass inflation,
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which would further increase the rate of growth of mass in
the innermost region of the geometry, in the vicinity of the
origin. The second one is what particular path the inner
apparent horizon actually follows in this whole process,
and whether it collapses to the origin to give rise to a
spacelike singularity at a finite time v, as suggested in the
numerical analysis of [7].
To answer these questions, we must begin by getting a

better understanding of the global structure of the geometry
corresponding to the above construction with just a single
gravitating outgoing shell. The metrics on the outside and
inside of the outgoing shell, respectively, can be written as

ds2 ¼ −fðv; rÞdv2 þ 2dvdrþ r2dΩ2; ð19Þ

dS2 ¼ −Fðv; rÞdV2 þ 2dVdrþ r2dΩ2

¼ AðvÞ½−AðvÞFðv; rÞdv2 þ 2dvdr� þ r2dΩ2; ð20Þ

where lower and upper case letters are once again used for
quantities in the regions outside and inside the shell,
respectively, and AðvÞ ¼ dV=dv ¼ f=Fjshell is a positive
function that allows us to switch between the Eddington-
Finkelstein coordinates of these two regions, as expressed
on the right-hand side of the latter equation.
For simplicity, we will take a smoothed-out average of

the metric functions from the previous section (particularly,
their dominant behavior at late times). The redshift function
on the shell evaluated on the inside (16) is then

Fjshell ¼ −jF0jeκv; ð21Þ

and, from Eq. (13) and the shell trajectory in each patch, the
redshift function on the outside satisfies

fjshell ¼ −κ½rshell − riðvÞ� ¼ −
b
vp

; ð22Þ

with b a positive constant which depends on the average
spacing between ingoing shells (i.e., the average of the
quantity eκΔvn ), into which κ (the outside region’s inner
gravitational radius’s surface gravity) and the constant β
from Eq. (13) have also been absorbed. The function which
relates the outside and inside times, v and V, then becomes

AðvÞ ¼ b
jF0j

e−κv

vp
: ð23Þ

The results we have obtained thus far are valid for any
redshift function, but if we want to analyze the deeper
regions of the geometry we have to be more specific. Let us
therefore first focus on the particular example we have used
previously, namely, the Reissner-Nordström geometry. If
we assume that the ingoing and outgoing shells carry no
electrical charge, we can take the variation in F to be solely
due to a variation of the mass term. Then, from Eqs. (21)

and (23), and with the Reissner-Nordström redshift func-
tion, we get the geometry for the mass-inflated interior
region (20) written in the v coordinate

dS2 ¼ b
jF0jvp

e−κv
�
−

b
jF0jvp

e−κv
�
1 −

2M0eκv

r
þ

þQ2

r2

�
dv2 þ 2dvdr

�
þ r2dΩ2; ð24Þ

whereM0 is a positive constant which represents the initial
mass of the black hole. Using this metric we see that the
equation for outgoing null geodesics (which we can later
relate to trajectories of additional gravitating outgoing
shells) then takes the form

dr
dv

¼ b
jF0jvp

½−h0ðrÞ þ h1ðrÞe−κv�; ð25Þ

where h0ðrÞ ¼ M0=r and h1ðrÞ ¼ ð1þQ2=r2Þ=2 are pos-
itive functions. Due to the exponential suppression of the h1
term, it is clear that the term with h0 is dominant on the
right-hand side of this equation, except in a progressively
smaller region around the origin, where the inner apparent
horizon is shrinking toward zero radius. In relation to this,
wewill be able to distinguish between two types of outgoing
geodesics in the trapped region: ones whose dynamics is
predominantly determined by the h0 term, and ones for
which the two terms are comparable. The former exist up to
v → ∞ only if p > 1, which, given Eq. (14), is directly
related to the mass thrown into the black hole from the
outside being finite (for our current example of Reissner-
Nordström).4 If this condition is met and the h0 term
continues to dominate, Eq. (25) generally integrates asymp-
totically to

r ¼ rc þ
h0ðrcÞ

jF0jðp − 1Þ
b

vp−1
þO

��
b

vp−1

�
2
�
: ð26Þ

The integration constant rc represents the final radial
position of each light ray when it reaches the Cauchy
horizon at v → ∞, which is different for each geodesic
depending on initial conditions. In other words, between the
outgoing shell and the inner apparent horizon (which is
rapidly shrinking toward r ¼ 0) there are null geodesics
which are trapped in a tendency toward a finite radial
position which is different from the asymptotic position of
this horizon. To see how this journey is perceived from the

4It is interesting to note that it is quite easy to imagine a
geometry in which, e.g., due to a relation δri ∝ −ðδmÞ1=2, p ends
up being 1 or smaller for a finite accretion of mass. The absence
of solutions of the type (26) would then imply a lack of a Cauchy
horizon below the outgoing shell, leaving just a trapped region
with a tendency toward the formation of a spacelike or null
singularity.
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point of view of an observer in the interior region itself, we
can look at the relation between the v and V coordinates, the
latter of which, for observers not tending toward the inner
apparent horizon, is proportional to the geodesic affine
parameter. As we have seen, this relation is given by

dv
dV

¼ F
f

����
shell

¼ 1

AðvÞ ; ð27Þ

which asymptotically integrates to

V ¼ Vc −
b

jF0jκ
e−κv

vp
þO

�
e−κv

vpþ1

�
: ð28Þ

These geodesics therefore reach the Cauchy horizon at a
finite time parameter V ¼ Vc, corresponding to the integra-
tion constant of the equation. This gives us an interpretation
for the behavior seen in (26): outgoing null geodesics are
trapped in a tendency toward these different finite radial
positions rc because the function A acts to quickly freeze the
proper time, and, consequently, the movement of observers
in this region. Because of this freezing function A, most of
the outgoing radiation in the trapped region would in fact
reach the Cauchy horizon before getting close to the inner
apparent horizon. This tells us that interactions between the
ingoing shells with additional outgoing shells traveling
along these geodesics would not have time to produce
any sort of amplification of the mass inflation effect, as this
would require proximity to the inner gravitational radius Ri
of this internal region (which in the absence of such shells is
in fact the inner apparent horizon position).
The region where Eqs. (26) and (28) are valid begins on

the inside of the outgoing shell and increases in size toward
the origin as the mass tends to infinity due to its unbounded
growth following Eqs. (17) and (21). The radii rc at which
null geodesics freeze can then vary continuously from ri (the
inner gravitational radius of the external geometry) to zero,
as is observed in the analytical study of the Cauchy horizon
in [10]. However, this does not imply that all outgoing null
geodesics are trapped in this way and are unaffected by the
shrinking inner apparent horizon. Due to the growing mass,
the radial position of this apparent horizon Ri can be
approximated by a series expansion of the lower of the
two roots of the Reissner-Nordström redshift function in
1=MðvÞ, revealing its tendency to zero

RiðvÞ ¼
Q2

2MðvÞ þO
�

1

MðvÞ
�

3

¼ Q2

2M0

e−κv þOðe−3κvÞ;

ð29Þ

with a surface gravity (in absolute value)

KiðvÞ ¼
b
vp

2M3
0

jF0jQ4
e2κv þO

�
1

vp

�
: ð30Þ

There are indeed many outgoing null geodesics which are
sufficiently close to this horizon to approach it asymptoti-
cally, i.e., to tend to zero from above it. These are the second-
type geodesics we mentioned before: the ones for which the
h0 and h1 terms of Eq. (25) are comparable, with the right-
hand side of this equation being close to zero, i.e., r being
close to Ri. Their movement can be described by expanding
the right-hand side of this equation around Ri,

dr
dv

≃ −KiðvÞ½r − RiðvÞ�: ð31Þ

With the rapidly growing value of Ki, it can be readily
checked that this equation has a family of solutions for
which r → Ri. These geodesics also reach v ¼ ∞ with a
finite affine parameter, where they converge to r ¼ 0 along
with Ri, falling into a (strong) curvature singularity.
If an additional mass inflation effect can take place,

pushing the position of the inner apparent horizon to below
the one given by (29), it would be triggered by placing an
outgoing shell precisely on one of the geodesics described
by (31) which tend toward Ri from above. To keep the label
Ri for the zero of the F function (29), i.e., the inner
gravitational radius of the F patch, we will now call the
actual inner apparent horizon R̃i. Also, instead of working
with the v coordinate, here it will be more convenient to
use V, with which we can directly apply the relation (9) for
the junction conditions on the intersection points with the
ingoing shells. The position of the inner gravitational
radius Ri and its surface gravity [taken as the absolute
value of ∂rgvv=ð2gvrÞ in each coordinate system]5 in the V
coordinate system KV

i evolve as

Ri ¼ ξ1ðVc − VÞ þO½ðVc − VÞ3�; ð32Þ

KV
i ¼ ξ2

ðVc − VÞ3 þO
�

1

Vc − V

�
; ð33Þ

where ξ1 and ξ2 are some positive constants that depend of
the asymptotic mass, the charge and the initial conditions.
In the shell model we once again consider that these
functions actually have discrete jumps at a set of points in
V, corresponding to the positions of the infalling shells. If
we take these shells to be either equispaced in v, or at most
distributed with a density polynomially dependent in v,
then in V their spacing decreases as

ΔVn ¼ Vn − Vn−1 ∼ Vc − Vn; ð34Þ
as Vn tends toward the Cauchy horizon Vc. The jumps in
the position of the inner horizon between shells also
decrease as

5In other words, KV
i is not just Ki with a coordinate change,

due to the AðvÞ factor that multiplies the redshift function after
the coordinate change, as can be seen in (24).
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ΔRi;n ∼ Vc − Vn: ð35Þ

Equation (9) can be applied directly here because the
outgoing shell has enough time between each iteration
to get exponentially closer to Ri;n, as can be seen by the
fact that

e−K
V
i;nΔVn ∼ e−1=ðVc−VnÞ2 → 0; as Vn → Vc:

The quotient of surface gravities in (9) once again tends to
a constant in the limit of interest, and so does the quotient
of the differences between radial positions in front of the
exponential.6 This leaves the redshift function below this
new outgoing shell with an increase given by a multipli-
cative factor

eK
V
i;nΔVn

after each iteration, which diverges as eξ2=ðVc−VÞ2 toward
the Cauchy horizon. In terms of v, this new mass inflation
increases the Misner-Sharp mass in the vicinity of the
origin as an exponential of an exponential. One can then
imagine that each time we repeat this whole process
considering the new displacement of the inner horizon
caused by this effect, we would get an additional expo-
nential in v to the chain.
We can now tackle answering the second question posed

at the beginning of this section: what is the actual path
followed by the inner horizon, and what causal structure
does this movement give rise to. It is hardly surprising that
in the case of continuous matter the chain effect just
described could produce a spacelike singularity at finite
v, as is observed numerically in [7] and commented on in
later works [6,10]. Even if the exact analytical solution were
to only result in a very quick tendency toward the formation
of this singularity (i.e., a quick, but still asymptotic in v,
approach of the inner apparent horizon toward the origin),
this approach would in fact be so quick that it would likely
be numerically indistinguishable from a singularity at a
finite time v; at any rate, the curvature would become
Planckian very fast, making a classical description of the
geometry-matter interactions inadequate. However, it is
interesting to note that within the classical description, this
seemingly small difference between a singularity forming at
strictly finite v and having just a tendency toward its
formation, however quick, and only forming it at v → ∞,
results in two different asymptotic structures, represented in
the two diagrams of Fig. 2. In fact, the former case results in
the formation of a Schwarzschild-type spacelike singularity,
while the latter ends in a (strong) null singularity, both of

which are at r ¼ 0 and are attached to the weak null
singularity which spans the Cauchy horizon, where r takes
values up to ri. To clarify, we use the same criterion for
distinguishing strong and weak singularities as the one
described in [8,32]: both have diverging curvature scalars,
but the distortion suffered by an observer of finite size
remains bounded when crossing a weak singularity, while it
diverges when crossing a strong one. One can readily check
that the curvature blow-up of the geometry we use close to
the Cauchy horizon [see Eq. (24)] is the same as in
Refs. [7,8], RμνρσRμνρσ ∼ 48M2

0r
−6e2κv, leading to the same

type of weak singularity there.
Up to here, all we have said regarding these questions has

been based on the Reissner-Nordström background. For
other geometries besides Reissner-Nordström, the inner
structure of the mass-inflated region depends on how the
geometry reacts to the increase in mass provided by the
infalling null shells, particularly on the trajectory followed
by the inner gravitational radius. The relation from the
charged black hole δri ∝ ð−δmÞ is also satisfied in the case
of a rotating black hole, but in regular black hole spacetimes
this tendency may be modified, depending on how the
regularisation of the origin is achieved in the first place. One
may expect there to exist trapped geodesics of the type (26),
but the structure toward the origin may differ, possibly
avoiding the formation of a strong singularity altogether by
preventing the inner horizon from getting too close to r ¼ 0.
It is also interesting to note that in general, the explicit

divergence of the mass at v → ∞ depends on the ever-
smaller ingoing perturbations also continuing up to infinity.
Classically it is perfectly natural to consider this to be the
case, but one may imagine that a quantum description of the
interaction between the black hole and infalling matter may

FIG. 2. Future part of the causal diagram of the mass inflation
geometry. The shaded part is the trapped region and the dashed
line is the Cauchy horizon (and a weak singularity). The null
shell shown is the upper outgoing one which tends to ri and is
responsible for the first mass inflation effect. Left: the inner
apparent horizon reaches r ¼ 0 at finite v and forms a
Schwarzschild-type spacelike singularity. Right: the inner
horizon only tends to r ¼ 0 asymptotically in v, resulting in
a strong null singularity at v → ∞ and r ¼ 0, at a finite affine
distance for geodesics which fall into it.

6This can be seen explicitly by solving the outgoing null
geodesic equation between each infalling shell and matching the
solutions. The calculation is completely analogous to the one
performed in the vicinity of ri.
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have a lower bound on the energy which can actually affect
the black hole. For example, we can consider that this lower
bound is given by the energy of a single photon with a
wavelength of the order of the black hole external mass m
(in geometric units). Then, we can relate this energy to a
mass and to a cutoff time vcut through (12), and for
simplicity we can take the polynomial tail in (13) to be
the same as in (12), i.e., p ¼ q. The result is that by vcut the
mass in the interior region would have increased by a factor
eðM=lPÞ2=p from just the first exponential mass inflation effect
around ri, given by Eqs. (16) and (17). Needless to say, the
exponent in this number is generally very large. For a solar
mass black hole and a polynomial decay with p ¼ 12 (as
considered in [4]) the mass grows by a factor larger than
e10

6

, making the dynamics of the interior region enter a full
quantum gravity regime.
In conclusion, we can say that classically mass inflation

would occur under quite generic circumstances for charged
black holes, and by extension for rotating ones as well,
where an analogous shell-based construction can be made
[25]. While in principle it is possible for the perturbations
falling in to carry enough charge or angular momentum to
keep the inner horizon still enough for the instability to not
be triggered, this is unlikely to occur in an astrophysical
scenario over long periods of time. The only viable way to
avoid the instability seems to be to rely on a regularizing
mechanism which prevents the inner horizon from getting
too close to the origin. We will now explore whether the
quantum nature of matter can provide such a regularizing
tendency in the semiclassical gravity regime.

IV. SEMICLASSICAL BACKREACTION

The main goal of this work is to see whether and how
semiclassical physics can have an influence on the evolu-
tion of the inner horizon inside a black hole undergoing
mass inflation. A recent work by the present authors [22]
analyzes the backreaction around static and dynamical
inner horizons in simple geometries which do not incor-
porate mass inflation. The result was that the inner horizon
tends to be pushed outward due to semiclassical effects.
The initial tendency for its movement is exponential in
time, and an extrapolation of the process can thus be
dubbed an inflation of the inner horizon, which leads to a
quick extinguishing of the trapped region from the inside
out. In this section we will extend our semiclassical
backreaction analysis to geometries incorporating the mass
inflation effect, the main new component being the pres-
ence of the freezing function AðvÞ.
As in [22], wewill use the RSETof a massless scalar field

in the Polyakov approximation as the source of back-
reaction. Although this approximation is far from being
the exact RSET of a 3þ 1 dimensional geometry, it is
sufficient to describe Hawking evaporation at the outer
horizon, and is therefore a good candidate to give us a first

glimpse at horizon-related semiclassical effects around the
inner apparent horizon. We construct the in vacuum [33,34]
of the 1þ 1 dimensional radial-temporal sector of the
spacetime, used to calculate the RSET in this approxima-
tion, by following the movement of lightlike geodesics from
past null infinity up to the region of interest, which in this
case is the vicinity of the inner apparent horizon inside the
mass-inflated region of a dynamically formed black hole.
As discussed in [22], the accumulative effect that the inner
horizon has on null geodesics results in a sensitivity of the
RSET to the past of a large part of the collapse geometry,
unlike what occurs for the outer horizon. We therefore
employ the same tactic as in that work to simplify the initial
conditions of the quantummodes in this region: we consider
their propagation as being in a flat spacetime up to an
advanced time v ¼ v0, from where it continues inside a
black hole with an inner horizon, as shown in Fig. 3.
Effectively this is equivalent to the black hole being
generated by the collapse of a null shell located at the
formation time v ¼ v0, but our motivation for the con-
struction is purely geometrical, to “clean up” the depend-
ence on the details of the collapse and leave only the part
stemming from the quantum modes finding themselves in
the trapped region.
In this section, wewill perform two distinct calculations to

estimate semiclassical backreaction in the vicinity of the
inner horizon. The first involves a series expansion of the
RSET and the metric functions around the point fv0; Ri0g,
where the inner horizon Ri forms, which allows a simplified
term-by-term calculation of the semiclassical perturbations
of the metric caused by the RSET. The second is a full self-
consistent solution for a classical background with a
particular family of functions Fðv; rÞ, valid for a small
but finite time interval after v0. From the latter calculation we
find that the initial tendencies seen in the series expansion

FIG. 3. Formation of a black hole by a ingoing null shell at
v ¼ v0. The in vacuum state is constructed by tracing light rays
back to the flat region in the past. Classically, the black hole is
undergoing mass inflation and the inner horizon is headed toward
the origin.
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can lead to very quick accumulative effects which make
semiclassical corrections relevant before the spacetime
curvature reaches Planckian scales.

A. Series expansion around horizon formation

Let us begin by considering the line element

ds2 ¼ AðvÞ½−Bðv; rÞdv2 þ 2dvdr� þ r2dΩ2: ð36Þ

We will use this type of geometry to represent the inner
region of a black hole undergoing mass inflation, particu-
larly around its inner apparent horizon. In relation to the
previous section, we are using the geometry obtained with a
single outgoing shell, resulting in a single exponential
growth of mass, which we expect to be the dominant effect
in a transient period between early and very late times,
where we place our v0. For the freezing function A we can
use the dominant behavior in v of (23) and set AðvÞ ¼ e−κv,
with κ a positive constant.7 For the function B, which
represents the product of F and A from (20), we only need
to impose that it has a zero at a radius RiðvÞ, corresponding
to the inner apparent horizon, with a negative slope in the ∂r
direction.
To calculate the RSET for this spacetime, we first need to

construct a quantization with a vacuum state which is
physically adequate for the problem at hand. We will use
the in vacuum state, which is defined as the Minkowski
vacuum at the asymptotically flat region of past infinity and
its extension to the dynamical region through the propaga-
tion of the particle-related modes. In the Polyakov approxi-
mation, we only need to do this in the 1þ 1 dimensional
radial-temporal sector of our geometry, which simplifies the
problem greatly, given that 1þ 1 dimensional spacetimes
are conformally flat. Working with a pair of radial null
coordinates fu; vg, the line element (36) can generally be
written as

ds2 ¼ −Cðu; vÞdudvþ r2dΩ2: ð37Þ

At past null infinity, C ∼ 1 and Poincaré invariance of the
vacuum state in flat spacetime amounts to supertranslation
invariance of the in state [20]. The v coordinate used in (36)
is in fact one of these in coordinates, while u must be
obtained through its relation to r.
The conformal factor of the radial-temporal sector is

given by

Cðu; vÞ ¼ −2AðvÞ ∂rðu; vÞ
∂u

: ð38Þ

The components of the RSET in the Polyakov approxima-
tion for the vacuum state selected by the coordinate system
fu; vg are [33,35]

hTuui ¼
l2P

96π2r2

�
∂
2
uC
C

−
3

2

�
∂uC
C

�
2
�
; ð39aÞ

hTvvi ¼
l2P

96π2r2

�
∂
2
vC
C

−
3

2

�
∂vC
C

�
2
�
; ð39bÞ

hTuvi ¼
l2P

96π2r2

�
∂uC∂vC

C2
−
∂u∂vC
C

�
; ð39cÞ

where lP is the Planck length. This tensor has a nonphysical
divergence at the origin due to the process of dimensional
reduction, making it inadequate to use as such for the
backreaction problem in the whole spacetime. However, as
discussed earlier, it is an adequate probe of quantum effects
in the vicinity of horizons, where it captures the nonlocal
behavior which, e.g., leads to the Hawking effect [36]. In
this case, we will only use it in a small vicinity around the
inner horizon, and only while this horizon is considerably
farther away from the origin than a Planck length (i.e., early
enough in the evolution of the mass inflation background).
To calculate the conformal factor (38), we need to obtain

the function rðu; vÞ from the solutions of radial null
geodesics. The ingoing geodesics are just v ¼ const, while
the outgoing ones are solutions to

dr
dv

¼ 1

2
Bðv; rÞ: ð40Þ

At this point we must either specify the function B, or try
to see what general conclusions could be obtained from just
the mere fact that there is an inner horizon in this structure,
i.e., that B has a zero at some RiðvÞwith a negative slope. In
the next subsection we will specify some functions B,
which can simplify our analysis while still reproducing the
causal properties of mass inflation, but for now we will
maintain generality and perform a perturbative analysis.
Particularly, we will consider a generic expansion of the
function B around the point at which this horizon forms
fv0; Ri0g,
1

2
Bðv; rÞ ¼ k1ðvÞðr − RiðvÞÞ þ k2ðvÞðr − RiðvÞÞ2

þ k3ðvÞðr − RiðvÞÞ3 þ � � � ; ð41Þ

RiðvÞ ¼ Ri0 þ Ri1vþ Ri2v2 þ Ri3v3 þ � � � ; ð42Þ

knðvÞ ¼ kn0 þ kn1vþ kn2v2 þ kn3v3 þ � � � ; ð43Þ

with n ¼ 1; 2;…, and where for simplicity we have set
v0 ¼ 0. The only conditions we impose on these series is
that Ri0 > 0 and k10 < 0 (this being the inner horizon). The

7Neglecting the 1=vp part of (23) amounts to discarding
corrections suppressed by an additional 1=v factor in the back-
reaction calculations of this section, which do not have a
qualitative influence on our conclusions.
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smallness of the terms in the expansions of quantities with
(inverse) length dimensions, here and throughout this
section, can be measured in terms of their respective initial
values at v ¼ 0, or in units of the characteristic initial
scale Ri0.
For the solution of (40) we consider the series expansion

rðvÞ ¼ r0 þ r1vþ r2v2 þ r3v3 þ � � � ð44Þ

Substituting this expression into (40), we obtain the
coefficients of the null trajectories (44) in terms of
derivatives of B [i.e., the coefficients of its expansion
(41)–(43)] and a free parameter fixed by an initial con-
dition. We will use d0 ¼ r0 − Ri0 as this parameter. Tracing
back the null trajectories through the Minkowski region
v < 0 (see Fig. 3) we find that our missing in coordinate is
u ¼ −2d0 (up to a constant which fixes the origin of u,
taken as zero).
Constructing rðu; vÞ in this manner, we calculate the

conformal factor (38) and then the RSET components (39)
in the in coordinate system. Switching them back to the
Eddington-Finkelstein system, at zeroth order in the series
expansion, they are

hTvvi ¼
l2P

96π2R2
i0

�
−
1

2
k210 þ k11 − 2k20Ri1

− −
1

2
κ2 þ k10κ

�
þOðv; dÞ; ð45aÞ

hTrri ¼ Oðv; dÞ; ð45bÞ

hTvri ¼ −
2l2Pk20
96π2R2

i0

þOðv; dÞ; ð45cÞ

where d ¼ r − Ri0 [hereOðdÞ can be though of asOðd0Þ or
OðuÞ, as the difference between them is OðvÞ].
We now consider the semiclassical Einstein equations

Gμν þ δGμν ¼ Tclass
μν þ hTμνi; ð46Þ

where δGμν is a perturbation to the background Einstein
tensor and Tclass

μν is the classical matter content sourcing the
zeroth order background. In general, the perturbation
caused by the RSET would also affect Tclass

μν through its
dependence on the metric. However, since we want to
remain as agnostic as possible about this classical matter,
we consider that δTclass

μν ¼ 0 at zeroth order in the series
expansion (in its functional form in Eddington-Finkelstein
coordinates), i.e., that

δGμν ¼ hTμνi þOðv; dÞ: ð47Þ

This simplifying assumption serves two purposes: on the
one hand, it allows us to continue to work in purely

geometric terms, with as few ingredients in the dynamics as
possible. On the other hand, it exemplifies well what
backreaction from the RSET can look like in its purest
form, where the potentially negative-energy terms in this
tensor directly source δGμν. Technically, considering
δTclass

μν ¼ 0 would overdetermine the system of equations,
but it turns out to work consistently up to second order in
our series expansion, allowing us this first geometric
glimpse into backreaction.
Using the expansion of the function B and its coef-

ficients, the Einstein tensor of our generic background is

Gvv ¼
2k10Ri1

Ri0
þOðv; dÞ; ð48aÞ

Grr ¼ Oðv; dÞ; ð48bÞ

Gvr ¼
2k10Ri0 − 1

R2
i0

þOðv; dÞ; ð48cÞ

Gθθ ¼ 2Ri0ðk10 þ k20Ri 0Þ: ð48dÞ

To construct δGμν we can consider perturbations to these
coefficients, e.g., k10 → k10 þ δk10. Equation (47) allows
us to fix one of the three coefficients present in the tensor
components (48) to its classical value as an initial con-
dition, and we choose the initial position of the inner
horizon Ri0. Then, perturbing the surface gravity k10 and
the initial time derivative of the inner horizon trajectory Ri1,
and using (47) we obtain two key relations,

δk10 ¼ −
l2P
12π

k20
Ri0

; ð49Þ

δRi1 ¼
l2P
48π

�
−
k10
Ri0

−
κ2

Ri0k10
þ 1

2

κ

Ri0
þ 2k11
Ri0k10

�
: ð50Þ

On the one hand, we can see that the semiclassical
contribution to the modification of the surface gravity
can be either positive or negative, depending on the sign of
the background coefficient k20. This initial semiclassical
contribution very much depends on the details of the initial
background geometry. On the other hand, the modification
of the derivative of the inner horizon trajectory is almost
always positive, implying a decrease in the rate at which it
moves inward. This is a first indication of the regularizing
tendency which semiclassical corrections can add to the
inner horizon dynamics in these spacetimes. Particularly, it
can be seen from the fact that k10 < 0, κ > 0, Ri0 > 0, and
the assumption that k11 < 0, i.e., that the background
surface gravity tends to become increasingly more neg-
ative, which is certainly the case in mass inflation, as can
be seen from, e.g., Eq. (30). Interestingly, the further along
an evolution of the type (29) we set our initial conditions
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for semiclassical backreaction, the smaller the background
value of Ri1 would be (approaching zero as v → ∞) and
the larger δRi1 would be in comparison. If the background
surface gravity k10 has a divergent behaviour akin to (30),
then the growth of δRi1 as we take our initial radial
position Ri0 to 0 cannot be said to be a consequence of the
unphysical divergent 1=r2 factor present in the RSET
approximation. More generally, if k10 diverges at least as
strongly as 1=Ri0, then a regularized version of this
perturbation R2

i0δRi1 remains at least finite, as opposed
to the background Ri1 which is expected to approach zero
unless a spacelike singularity forms at finite v.
Using these initial tendencies as an estimate of the

magnitude of this effect later on in the evolution, one is
led to the hypothesis that semiclassical backreaction will
always become dominant at some point before a singularity
is formed, perhaps leading instead to a nonsingular future.
The only caveat might appear when interpreting the semi-
classical effects as only the first set of corrections towards a
quantum gravity theory. Then, if the corrections occurred
only when curvature becomes Planckian, i.e., when the
background values in (50) overcome the suppression by the
l2P factor, one could argue that these semiclassical effects
would have been already superseded by other effects of
unknown character. However, as we will see in the follow-
ing example, a full time evolution can lead to a very
different result, in which semiclassical corrections have a
much quicker accumulative effect.

B. Time-integrable example

In order to see what the semiclassical evolution of the
inner horizon could look like beyond the initial tendencies
calculated above, we can use a particular family of
geometries for the classical background which simplify
our semiclassical analysis greatly. Particularly, we will use
geometries which, in a vicinity around the inner horizon,
take the form (36) with

Bðv; rÞ ¼ e−κv −
1

2
λðvÞr; ð51Þ

where λðvÞ is a positive, but otherwise arbitrary function.
The inner horizon described by this geometry,

RiðvÞ ¼ 2
e−κv

λðvÞ ; ð52Þ

moves toward the origin as long as λ does not decrease faster
than e−κv. The relation between this position and its surface
gravity is not quite the same as in, e.g., the Reissner-
Nordström case seen above (where forRi ∼ e−κv, the surface
gravity has an increase with a rate e2κv), but a growing
surface gravity can still be replicated by choosing a λ which
increases in time.

The RSET in the Polyakov approximation corresponding
to this classical background geometry has a single nonzero
component: the ingoing flux

hTvvi ¼
l2P

96π2r2

�
−
1

4
λ0 −

1

32
λ2 −

κ

4
λ −

κ2

2

�
; ð53Þ

which is negative as long as λ0 ≥ 0 (this being a reasonable
requirement for a mass inflation background, i.e., that the
surface gravity of the inner horizon does not decrease).
The main motivation for using these geometries is that,

as we will see, backreaction from the RSET around the
inner horizon has the effect of changing the B function to

Bðv; rÞ ¼ e−κv −
1

2
λðvÞrþ δBðv; rÞ; ð54Þ

where the first two terms are just its background form, and
the perturbation δB, obtained from the semiclassical
Einstein equations, will have a particularly simple form
in terms of its dependence in r,

δBðv; rÞ ¼ −
αðvÞ
r

ð55Þ

(the minus sign serves to make an analogy with a mass
term, as discussed below). This can be readily checked by
calculating the Einstein tensor with (54), which has the
nonzero components

Gvv ¼
λ0

2
−
λ2

2
þ e−κvλ

r
þ κλ

2
þ 1

r2
½α0 − ðλ − κÞα�; ð56aÞ

Gvr ¼ −
λ

r
; ð56bÞ

Gθθ ¼
Gϕϕ

sin2 θ
¼ −

rλeκv

2
; ð56cÞ

where primes denote derivatives with respect to v. We see
that α appears only inGvv, and that the terms which contain
it can be directly equated to the RSET flux (53), given that
they have the same dependence in r [the form of δB in (55)
was obtained by requiring this]. Here we are once again
assuming that the classical part of the equations, i.e., the
rest of the terms of Gμν and their source Tclass

μν , remain
unchanged. Analogously to the series expansion calcula-
tion above, our motivation for doing this is to introduce as
little information about the classical matter content as
possible, while also getting a cleaner backreaction problem
for the Einstein tensor sourced solely by the RSET (in this
case it is the particular form of the background which
allows us to do this without overdetermining the system of
equations). For as long as this perturbation of nonzero α is
negligible for the calculation of the RSET itself, and while
(53) is accurate (which is the case for a finite time interval
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after v0, which is smaller for faster dynamics of the
background), this gives an approximate self-consistent
solution to the semiclassical Einstein equations.
Note that the function α in B is analogous to theM0 term

in (24), which is constant in the product of A and F used to
construct B (up to the decaying inverse polynomial 1=vp

terms, which we have neglected in our construction here),
and represents the classically exponentially growing mass.
Thus, if α grows, toward either positive of negative values,
it could be taken as an indication of the semiclassical
backreaction tending to become the dominant source of
dynamics. Indeed, we will see that α becomes negative and
in many cases its absolute value tends to grow exponen-
tially quickly.
Equating (53) to the terms containing α in (56a), leaving

the remaining terms as fixed by the background, the
evolution of this semiclassically sourced α is given by
the equation

α0ðvÞ − η1ðvÞαðvÞ ¼
l2P
48π

η2ðvÞ þOðl4PÞ; ð57Þ

where

η1 ¼ λ − κ; η2 ¼ −λ0 −
1

8
λ2 − κλ − 2κ2 ð58Þ

are two functions determined by the choice of background.
The general solution of this equation is

αðvÞ¼ l2P
48π

e
R

v
η1ðṽÞdṽ

�
c1þ

Z
v
e−

R
ṽ
η1ðv̄Þdv̄η2ðṽÞdṽ

�
; ð59Þ

where c1 is the integration constant which can be fixed by
initial conditions.
Let us first look at the simple case in which λ is constant,

which represents an inner horizon shrinking in radius
proportionally to e−κv while maintaining a constant surface
gravity. Here we already see the main difference from the
situations studied in [22]. Depending on whether κ or λ is
larger, η1 can be either a positive or negative constant, while
η2 is always a negative constant. With the condition of the
semiclassical perturbation being initially zero, αð0Þ ¼ 0,
we get the solution

αðvÞ ¼ l2P
48π

η2
η1

½eη1v − 1�: ð60Þ

Whether η1 is positive or negative, α evolves toward
negative values. In the former case its absolute value grows
exponentially quickly, while in the latter it tends to a
constant. There is also the particular case in which λ ¼ κ,
for which, since η1 ¼ 0, the solution is

αðvÞ ¼ l2P
48π

η2v; ð61Þ

with η2 being once again negative. In all these cases, the
(increasingly) negative values of α tend to push the inner
horizon outward. Expanding the radial position of this
horizon around α ¼ 0,

Ri ¼ 2
e−κv

λ
− αeκv þ � � � ; ð62Þ

we see that once α acquires a nonvanishing value, even in
the case where it tends to a constant, this radius quickly
acquires nonperturbative corrections. The inner horizon
thus begins to move outward, which, although in apparent
violation of causality, is hardly surprising considering that
the source given by the RSET (53) is an ingoing flux of
negative energy.
For more general backgrounds given by different func-

tions λðvÞ, we can see from Eqs. (57) and (58) that starting
from αð0Þ ¼ 0, αðvÞ will tend to decrease and the inner
horizon will tend to move outward unless λðvÞ decreases
sufficiently quickly for η2 to become positive. For example,
if λ tends to zero asymptotically in v and its tendency is
quicker than 1=v (but slower than e−κv, so the inner horizon
does not move outward classically), and if κ is initially
negligible in (58), there can be a period of time in which α
increases toward positive values. However, except in these
specific scenarios, η2 will generally be negative and α will
acquire negative values, making the semiclassical move-
ment of the inner horizon an outward one.
Therefore, the results obtained in [22] appear to still hold

in most of these mass inflation geometries. In other words,
while the flux (53) dominates the RSET, backreaction tends
to push the inner horizon outward. However, it is worth
reminding the reader that the conditions for which we have
been able to show that this flux is dominant only hold true
for a short period of time after the formation of the black
hole, given by the time it takes for outgoing null geodesics
which come from outside the region where (54) is accurate
to intersect the inner horizon. The result for the movement
of the inner horizon is therefore only accurate as an initial
tendency. Still, the fact that the RSET is likely to keep
violating energy positivity conditions even in the later parts
of the evolution makes the possibility that the trapped region
continues to evaporate from the inside a likely one.
Assuming that a term like (53) continues to dominate the

RSET even after backreaction has become significant, we
can extrapolate the movement of the inner horizon further
along the evaporation process. For example, for a classical
background in which the surface gravity increases expo-
nentially as in the Reissner-Nordström case, the extrapo-
lated self-consistent solution can be observed in Fig. 4. The
inner horizon initially moves inward while the classical
background still dominates, but when the semiclassical
perturbation has enough time to accumulate it produces an
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outward bounce and a rapid inflationary extinction of the
trapped region from the inside.

V. CONCLUSIONS AND DISCUSSION

The inner horizon and the process of mass inflation are
components of black hole physics which are indispensable
when constructing a global picture of the spacetimes of these
objects, from their formation to their ultimate fate. However,
semiclassical analyses of this full picture have thus far been
incomplete. Past works have mostly focused on calculating
the RSET in background geometries with a Cauchy horizon
in order to see how generic its divergent behavior is on this
horizon. This observation is then typically used to suggest
that strong cosmic censorship could be saved (from its
classical problem of extensions past the weak null singu-
larity) through semiclassical backreaction, as generic initial
conditions would seemingly change the Cauchy horizon into
a strong singularity. Less often, it has been indeed appre-
ciated [15,16,19] that semiclassical backreaction might lead
to “defocusing” or “expansion” of the Cauchy horizon to
large radii due to the addition of negative mass (essentially
coinciding with our result). However, the effect this could
have on a dynamically formed trapped region at finite times
has not been addressed. Crucially, the idea that the trapped
region might have a finite lifetime has not been incorporated
into these analyses.
In this work, we have provided a first glimpse into what a

complete picture of black hole formation and evolution
may look like in semiclassical physics. To this end, we have
first used a simple shell-based construction to understand

better the classical dynamics of the trapped region in a
realistic black hole formation scenario. That has lead to
interesting results in its own right: on the one had, the mass
inflation instability being triggered depends strongly on the
mass to charge (and, by extension, angular momentum)
ratio of the infalling matter. In more general black hole
constructions with an inner horizon (e.g., singularity-free
black holes) the necessary condition for this instability
appears to be even more strongly model dependent, as it
comes down to how the infalling perturbations affect the
inner horizon position in time.
In the semiclassical picture, for a static (or nearly static)

inner horizon not undergoing classical mass inflation, our
previous work [22] has shown that backreaction from the
RSET has a tendency to induce an inflationary instability,
wherein this horizon is displaced in an outward direction
in an exponential manner, reminiscent of (a negative
version of) the mass inflation effect itself. Extrapolating
from this tendency, the trapped region can be assumed to
have a very short lifetime, acting rather as a transient
between collapse and the formation of a final horizonless
or extremal configuration.
Herewe have extended this analysis to black holes which,

in the absence of other regularizing mechanisms, are
undergoing classical mass inflation. We first performed a
perturbative analysis, which by itself already suggested that
semiclassical effects always become dominant at some point
in the evolution, as they depend on the surface gravity of the
inner horizon which grows exponentially during mass
inflation. We then obtained a simple set of self-consistent
solutions which, in the absence of the RSET source, can
reproduce the structure of a mass inflation geometry, but in a
complete semiclassical treatment reveal a very different
behavior. They present a tendency for the semiclassically
induced outward push on the inner horizon to accumulate
exponentially quickly, leading to an evolution similar to the
case of a classically static inner horizon.
Within the framework established here, the semiclassical

evolution of black holes could have one of three outcomes.
First, we must admit that the standard picture remains a
possibility. Classical mass inflation may continue to domi-
nate the dynamics around the inner horizon in later parts of
the evolution, where the approximations we have used to
estimate semiclassical backreaction cease to be accurate. In
this case Hawking evaporation of the outer horizon would
dominate the first part of the semiclassical evolution, up to
the point at which the mass-inflated region (the upper part
of which need not be close to the origin) is revealed to the
external universe, where a more detailed analysis would be
necessary. The physics of the inner horizon plays a
secondary role in this picture until very late times.
However, our present results point to two alternative

possibilities which could be realized in a fully self-
consistent semiclassical evolution. The first one is that
of the inner horizon moving outward due to backreaction
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FIG. 4. Trajectory of the inner apparent horizon in an extrapo-
lated semiclassical solution, with a classical background which
simulates the behavior of the interior of a mass-inflated charged
black hole. Length units are taken in terms of the exterior mass
M0, the charge is taken to be Q ¼ M0=2 and the Planck length is
set as 10−5M0 (as a large difference in orders of magnitude is
necessary, but a smaller value only increases the computational
difficulty while giving no qualitative difference). Note that the
bounce occurs at r ≃ 10−3M0, which illustrates that semiclassical
effects can become dominant without the radius of the inner
horizon becoming Planckian.
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from the RSET, but only up to the point at which it meets
the outer one, leaving an extremal black hole remnant. The
second alternative, represented in Fig. 5, is one in which
the trapped region disappears completely. The matter
which then escapes the black hole would likely recollapse,
but the dissipation this mechanism (or several iterations
thereof) would produce could bring matter to the initial
conditions necessary for the formation of semiclassically
self-sustained horizonless black hole mimickers [37–40].
Any trapped regions which may be subsequently formed in
perturbations of such objects [41] would then be just as
short-lived, due to the same mechanism.
The possibility of trapped regions being transient has

also been suggested in the context of physics beyond
general relativity [42,43]. For instance, a recent work has
analyzed the evolution of a trapped region in an effective
geometric description which incorporates corrections from
loop quantum gravity [44,45], finding an overall picture
that is qualitatively similar to the extrapolation presented in
Fig. 5. As in some previous works which involve approxi-
mate quantum gravity analyses [46], the main focus is
placed on corrections from regions of Planckian curvature,
and the timescale for the disappearance of the trapped
region is proportional to the square of the mass (which, for
a solar mass object, is still much longer than the current age
of the Universe). However, other works have found

timescales that are shorter, in particular linear in the mass
[47–49], or much larger with an exponential behavior in the
mass [50,51]. The effect that possible quantization ambi-
guities or different approximation schemes have on this
time scale is still to be studied.
In contrast to these works, the semiclassical inner

horizon inflation we analyze here and in [22] can occur
not due to the spacetime curvature becoming Planckian,
but rather due to the unstable nature of the horizon itself,
combined with the RSET perturbation (which can be non-
local in curvature). If the trapped region does disappear
due to this process, the time it would take to do so would
scale linearly with the mass [22], making it much shorter
for macroscopic black holes (less than a millisecond for a
solar mass object). The curvature could also remain well
below the Planck scale throughout the evolution, which
can be taken as a consistency check for the validity of the
semiclassical description.
Overall, this work shows the importance that horizon-

related (rather than curvature-related) effects can have in
the deviations from the classical black hole formation and
evolution picture on short timescales. To fully investigate
the viability of the semiclassical scenarios presented above,
more work is obviously required, such as a full numerical
evolution including the RSET in the Polyakov or other
approximations. However, our analyses already show that
these not much contemplated possibilities deserve full
attention.
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