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We show that the quasinormal spectrum of gravitational perturbations of Schwarzschild–de Sitter black
holes contains a new branch of purely imaginary modes. These modes are not algebraically special and we
showed that the sum of them form the well-known in the literature exponential asymptotic tail. When the
ratio of the event horizon radius to the cosmological horizon vanishes, these quasinormal modes approach
modes of empty de Sitter spacetime. Thus, the spectrum consists of the two branches: Schwarzschild
branch deformed by the cosmological constant and de Sitter branch deformed by the black hole mass.
While the de Sitter branch contains purely imaginary modes only, the oscillatory modes (with nonzero real
part) of the Schwarzschild branch can also become purely imaginary for some values of the cosmological
constant, for which they approach the algebraically special mode.
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I. INTRODUCTION

Quasinormal modes [1] are an essential characteristic of
a black hole geometry, which is currently observed via
gravitational waves interferometers [2–4]. The quasinormal
spectrum of a number of classical solutions of the Einstein
equations, such as Schwarzschild, Reissner-Nordström,
and Kerr, have been exhaustively studied. An extensive
investigation of the quasinormal spectrum of such black
holes immersed in an asymptotically de Sitter world have
been done for gravitational and test fields [5–15] allowing
also for an electric charge and nonzero rotation of the black
hole. The literature on quasinormal modes of asymptoti-
cally de Sitter black holes in alternative and higher dimen-
sional gravity is immense by now (see, for example [16–23]
and references therein). Considerable interest to quasinor-
mal modes of asymptotically de Sitter black holes have
been recently paid due to the possible strong cosmic
censorship bound on quasinormal modes [24–28].
It is well known that the quasinormal modes do not form

a complete set [1], so that the signal can be represented as a
sum of quasinormal frequencies only at some intermediate
stage of the decay, while at asymptotically late times,
nonoscillatory tails dominate in a signal. Thus, quasinormal
modes are usually clearly distinguished from asymptotic
tails. Relaxation of perturbations of asymptotically de Sitter
spacetimes is also remarkable in the time domain in this

aspect: instead of the usual power-law tail, appropriate to an
asymptotically flat case [29], exponential tails dominate at
late times, as was shown in [30] for scalar field perturba-
tions and [31] for gravitational and other spin fields.
Actually, the accurate law for asymptotic tails cannot be
easily extracted from the numerical data because of the
complex dependence on all the parameters [32]. Although
the exponential dependence of the tails could make one
suspect that this is another form of the quasinormal stage,
no such guess was spoken in the literature, to the best of our
knowledge.
Looking at such extensive study of quasinormal spectra

of asymptotically de Sitter black holes, one could not
expect that there is an essential gap in our knowledge of
gravitational perturbations of a simple four-dimensional
Schwarzschild–de Sitter black hole. Here we will show that
there is a new branch of gravitational quasinormal modes
of the Schwarzschild–de Sitter spacetime with peculiar
properties: the modes are purely imaginary, that is, non-
oscillatory, and at asymptotically late times they form the
telling tail found for the first time in [30]. Unlike the
algebraically special mode, these purely imaginary modes
satisfy the purely ingoing boundary condition at the event
horizon and, therefore, can be considered as part of the
quasinormal spectrum. When the mass of the black hole
goes to zero, these modes approach modes of the empty de
Sitter spacetime [33]. When the cosmological constant
is vanishing, the purely imaginary quasinormal modes
approach zero, so that from the spectral point of view
these modes have the least damping rate and dominate in
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the spectrum when the cosmological constant is small, as it
is prescribed by the observational cosmology. Similar
purely imaginary quasinormal modes were found for a
test scalar field in [24,34], but, to the best of our knowl-
edge, no analysis was done for the gravitational sector.
The paper is organized as follows: In Sec. II we consider

the wavelike equation for the gravitational perturbations of
Schwarzschild–de Sitter black hole. Section III is devoted
to the main numerical method which we used in the
frequency domain: the Frobenius method used by Leaver
for finding quasinormal modes [35]. In Sec. IV algebrai-
cally special modes are deduced from a degenerate case
of the Frobenius method. Section V is devoted to another
method in frequency domain, the Bernstein spectral
method, which we used in order to check our results
obtained by the Frobenius method. The time-domain
integration method is briefly discussed in Sec. VI. In
Sec. VII we discuss the properties of the new branch of
quasinormal modes, while in Sec. VIII we study exponen-
tial asymptotic tail and show how they are related with the
new branch of quasinormal modes. Finally, in Sec. IX we
summarize the obtained results and discuss a number of
open questions.

II. WAVE EQUATIONS FOR SDS BLACK HOLE

The Schwarzschild–de-Sitter black hole is described by
the metric

ds2 ¼ fðrÞdt2 − dr2

fðrÞ − r2ðdθ2 þ sin2θdϕ2Þ;

fðrÞ ¼ 1 −
2M
r

−
Λr2

3

¼ Λ
ðrc − rÞðr − reÞðrþ re þ rcÞ

3r
; ð1Þ

where

M ¼ rcreðrc þ reÞ
2ðr2c þ rcre þ r2eÞ

is the black hole mass, and

Λ ¼ 3

r2c þ rcre þ r2e

is the cosmological constant. The quantities re and rc
are the radii of the event and cosmological horizons
respectively.
It is well known that after some algebra the perturbation

equations of the Schwarzschild–de Sitter spacetime can be
reduced to the Schrödinger wavelike equation

�
d2

dr2�
þ ω2 − Vðr�Þ

�
Φðr�Þ ¼ 0; ð2Þ

with respect to the tortoise coordinate,

dr� ≡ dr
fðrÞ : ð3Þ

Under the choice of the positive sign of the real part of ω,
QNMs satisfy the following boundary conditions

Φðr�Þ ∝ e�iωr� ; r� → �∞; ð4Þ

corresponding to purely in-going waves at the event
horizon and purely out-going waves at the cosmological
horizon.
The effective potential for the axial gravitational pertur-

bations is given by the following expression (see, for
instance, [36]):

VðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
−
6M
r3

�
; ð5Þ

where l ¼ 2; 3; 4;… is the multipole number. It is ana-
lytically proved and well known that the polar perturbations
are isospectral with the axial ones, so that only one type of
perturbations is sufficient for our consideration.

III. FROBENIUS METHOD

The main numerical method which we will use in the
frequency domain for finding accurate values of quasinor-
mal modes is based on the Frobenius series expansion.
It was applied by Leaver [35] for a black hole spectral
problem for the first time. Having in mind that this method
is well-known we will only briefly discuss it here, referring
a reader to [1] for more details.
The wave-like equation (2) has three regular singular

points: r ¼ re, r ¼ rc, and r ¼ −re þ rc. The appropriate
Frobenius series are [13]

Φðr�Þ ¼
�
1

re
−
1

r

�
ρe
�
1

r
−

1

rc

�
−ρc
�
1

r
þ 1

re þ rc

�
ρcþρe

×
X∞
n¼0

an

 
1
r −

1
re

1
rc
− 1

re

!
n

; ð6Þ

where re is the event horizon, rc is the cosmological
horizon, and ρe and ρc are given by

eiωr� ¼
�
1

r
−

1

re

�
−ρe
�
1

rc
−
1

r

�
−ρc
�
1

r
þ 1

re þ rc

�
ρcþρe

:

Then, one can find that
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ρe ¼
iω

2M
�

1
rc
− 1

re

��
1

rcþre
þ 1

re

� ;

ρc ¼
iω

2M
�

1
re
− 1

rc

��
1

rcþre
þ 1

rc

� :

Substituting (6) into (2), we obtain the three-terms
recurrent relation for an

anþ1αnþanβnþan−1γn¼0; n≥0; γ0¼0; ð7Þ

where the coefficients αn, βn, γn have the form [13]

αn ¼
rcðrc þ 2reÞð1þ nÞð1þ nþ 2ρeÞ

r2c þ rcre þ r2e
;

βn ¼ −
ðnþ 2ρeÞðnþ 2ρe þ 1Þð2r2c þ 2rcre − r2eÞ

r2c þ rcre þ r2e

− lðlþ 1Þ þ 3
rcðrc þ reÞ

r2c þ rcre þ r2e
;

γn ¼
r2c − r2e

r2c þ rcre þ r2e
ððnþ 2ρeÞ2 − 4Þ: ð8Þ

Following Leaver [35], we are searching QNMs as the
most stable roots of the following algebraic equation:

βn −
αn−1γn

βn−1 −
αn−2γn−1

βn−2−
αn−3γn−2
βn−3−…

¼ αnγnþ1

βnþ1 −
αnþ1γnþ2

βnþ2−
αnþ2γnþ3
βnþ3−…

: ð9Þ

We employ the Nollert method [37] in order to improve
convergence of the right-hand side of Eq. (9) and, thereby,
to compute higher overtones in a quicker way.

IV. DEGENERATE CASE

A particular degenerate case of the Frobenius series
must be considered separately. It corresponds to a purely
imaginary frequency, for which N þ 2ρe ¼ 0 for some
integer N, implying that αN−1 ¼ γN−2 ¼ 0. In this case
Eq. (7) reads

aN−1βN−1 þ aN−2γN−1 ¼ 0;

aN−1αN−2 þ aN−2βN−2 ¼ 0; ð10Þ

and all other coefficients are zero,

a0 ¼ a1 ¼ … ¼ aN−3 ¼ aN ¼ aN−1 ¼ … ¼ 0:

The consistency condition is

−
aN−1

aN−2
¼ γN−1

βN−1
¼ βN−2

αN−2
; ð11Þ

which is equivalent to the relation

N ¼ ðl − 1Þlðlþ 1Þðlþ 2Þðr2c þ rcre þ r2eÞ2
3rcðrc − reÞðrc þ reÞðrc þ 2reÞ

: ð12Þ

This corresponds to the well-known algebraically special
frequency, which was first found for the asymptotically flat
Schwarzschild black hole [38]:

ωa ¼ −i
ðl − 1Þlðlþ 1Þðlþ 2Þ

12M
: ð13Þ

Although this frequency satisfies equation (9), which is
reduced to (11) in this case, it is clear that it does not satisfy
the quasinormal boundary condition (ingoing wave) at
the horizon. Indeed, since a0 ¼ a1 ¼ … ¼ an−3 ¼ 0, for
r → re (r� → −∞)

Φ ∝ ðr − reÞρeþN−2 ¼ ðr − reÞ−ρe−2 ∝ eiωar� ;

which corresponds to the outgoing wave.
It is possible to find a general solution to the wavelike

equation (2), for ω ¼ ωa. The reason is that the effective
potential (5) obeys the following relation:

Vðr�Þ ¼ Aðr�Þ2 þ 2iωaAðr�Þ −
dA
dr�

;

AðrÞ ¼ fðrÞ 6M
6Mrþ ðl − 1Þðlþ 2Þr2 ; ð14Þ

and consequently for ω ¼ ωa, Eq. (2) can be rewritten as

1

Φðr�Þ
d2Φ
dr2�

¼ ðAðr�Þ þ iωaÞ2 −
dA
dr�

; ð15Þ

The general solution to Eq. (15) is

Φ ¼ Ci

�
ðl − 1Þðlþ 2Þ þ 6M

r

�
e−iωar�

þ Co

�
ðl − 1Þðlþ 2Þ þ 2iωare

þ 6M − lðlþ 1Þre
r

�
eiωar� : ð16Þ

The degenerate case of the Frobenius series which we
consider corresponds to Ci ¼ 0.
For M > 0 this solution does not obey the quasinormal

boundary conditions (4), however, for M < 0, it corre-
sponds to the bound state with ImðωaÞ > 0, which governs
the instability [39].
From the above consideration it is possible to conclude

that the formal usage of the Frobenius method provides
also a nonquasinormal solution (algebraically special mode
which does not satisfy the quasinormal boundary condi-
tions) for such values of l, re, and rc, that the right-hand
side of (12) is integer. However, since the solution to the
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equation (9) are continuous functions of the parameters,
one can expect that there are modes in the Schwarzschild–
de Sitter black hole spectrum, which satisfy the quasinor-
mal boundary conditions and approach the algebraically
special mode when (12) becomes an integer. In order to
separate numerically these modes from the algebraically
special one, we solve Eq. (9) for such values of re=rc, that
N in (12) is not integer.
Figure 1 illustrates the behavior of the mode, which

becomes algebraically special at re=rc ¼ ð ffiffiffi
3

p
− 1Þ=2,

corresponding to N ¼ 12. One can see that it becomes
purely imaginary in the parametric region near the point
where it approaches the algebraically special mode.
Otherwise the mode has a nonzero real part and, therefore,
it does not correspond to the purely imaginary quasinormal
modes of the empty de Sitter spacetime. It is located
between the two modes presented in (2).

V. BERNSTEIN SPECTRAL METHOD

While the Frobenius method is quickly converging, it is
possible simply to miss this or that mode while searching
the roots of the equation with the infinite continued
fraction. In order to check it, we can use the Bernstein
spectral method which is especially good for detecting
purely imaginary frequencies, though its computational
complexity grows fast for higher overtones. That is why
here we use it as a complementary method.
Following [40], we introduce the function ϕðuÞ, which is

regular for 0 ≤ u ≤ 1 when ω is a quasinormal mode,

Φðr�Þ ¼
�
1

re
−
1

r

�
ρe
�
1

r
−

1

rc

�
−ρc

ϕ

 
1
r −

1
re

1
rc
− 1

re

!
; ð17Þ

and the compact coordinate u is defined as follows:

u≡
1
r −

1
re

1
rc
− 1

re

:

We represent ϕðuÞ as a sum

ϕðuÞ ¼
XN
k¼0

CkBN
k ðuÞ; ð18Þ

where

BN
k ðuÞ≡ N!

k!ðN − kÞ!Þ u
kð1 − uÞN−k

are the Bernstein polynomials.
Substituting (17) into (2) and using a Chebyschev

collocation grid of N þ 1 points,

up ¼ 1 − cos p·πN
2

¼ sin2
p · π
2N

; p ¼ 0; N;

we obtain a set of linear equations with respect to Ck, which
has nontrivial solutions iff the corresponding coefficient
matrix is singular. Since the elements of the coefficient
matrix are polynomials (of degree 2) of ω, the problem is
reduced to the eigenvalue problem of a matrix pencil (of
order 2) with respect to ω, which can be solved numeri-
cally. Once the eigenvalue problem is solved, one can
calculate the corresponding coefficients Ck and explicitly
determine the polynomial (18), which approximates the
solution to the wave equation (2).
In order to exclude the spurious eigenvalues, which

appear due to finiteness of the polynomial basis in (18),
we compare both the eigenfrequencies and corresponding
approximating polynomials for different values of N.
Namely, for the coinciding eigenfrequencies, ωð1Þ and
ωð2Þ, obtained, respectively, for N ¼ Nð1Þ and N ¼ Nð2Þ,
we calculate

1 −
jhϕð1Þjϕð2Þij2
jjϕð1Þjj2jjϕð2Þjj2 ¼ sin2 α;

FIG. 1. Algebraically special mode for l ¼ 2 (black solid), and the numerical values (real and imaginary parts) for the quasinormal
mode, which approaches the degenerate case at re=rc ¼ ð ffiffiffi

3
p

− 1Þ=2 ≈ 0.366 (in (12) it corresponds to N ¼ 12).
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where α is the angle between the vectors ϕð1Þ and ϕð2Þ in the
L2-space.1 If α is sufficiently small, the difference between
ωð1Þ and ωð2Þ provides the error estimation.2The method
allows one to determine the dominant quasinormal frequen-
cies and the purely imaginary modes. The procedure
converges faster at the purely imaginary modes.
Typically, by using N ¼ 50, we obtained from 6 to 14
correct decimal places.

VI. TIME-DOMAIN INTEGRATION

In order to understand the role of newly found purely
imaginary modes in the asymptotic late-time relaxation of
perturbations wewill use the time-domain integration of the
wave equation at a fixed value of the radial coordinate. We
integrate the wavelike equation in terms of the light-cone
variables u ¼ t − r� and v ¼ tþ r� via applying the
discretization scheme of Gundlach-Price-Pullin [41],

ΨðNÞ ¼ ΨðWÞ þ ΨðEÞ −ΨðSÞ

− Δ2VðSÞΨðWÞ þ ΨðEÞ
4

þOðΔ4Þ; ð19Þ

where the following notation for the points was used:
N ≡ ðuþ Δ; vþ ΔÞ, W ≡ ðuþ Δ; vÞ, E≡ ðu; vþ ΔÞ,
and S≡ ðu; vÞ. The Gaussian initial data are imposed on
the two null surfaces, u ¼ u0 and v ¼ v0. The dominant
quasinormal frequencies can be extracted from the time-
domain profiles with the help of the Prony method of fitting
of the profile data by superposition of damped exponents,

ΨðtÞ ≃
Xp
k¼1

Cke−iωkt; ð20Þ

see, e.g., [42].

VII. QUASINORMAL MODES

The gravitational quasinormal modes of the four dimen-
sional empty de Sitter spacetime is [33]

ωrc ¼ −iðlþ ñÞ; ð21Þ

where ñ ¼ 1; 2;…. From Fig. 2 we can see that the purely
imaginary quasinormal modes can be very well fit by the
following linear formula:

ω ¼ −i
lþ ñ
rc

�
1 −

re
2rc

þO
�
re
rc

�
2
�
: ð22Þ

Notice that ñ numbers the modes of the purely imaginary
branch and is, therefore, not the overtone number of the
whole spectrum. Thus, the purely imaginary modes evi-
dently go over into the quasinormalmodes of empty de Sitter
spacetimewhen the radius of the event horizon goes to zero.
From the above formula (22) and Table I we can see that

the damping rate of this branch of frequencies diminishes
when the cosmological horizon rc is increased, so that they
dominate at late times when rc is large. This way even tiny
value of the cosmological constant drastically changes the
properties of the quasinormal spectrum. A similar property,
sensitivity of overtones to tiny changes solely near the
event horizon, has been recently observed in [43,44]. Thus,
here we may have another manifestation of sensitivity of
the overtones to small changes of the geometry at the other
boundary: near the cosmological horizon.
Summarizing this observation with earlier data on

quasinormal modes of Schwarzschild–de Sitter black
holes [5,14] we conclude that the quasinormal spectrum
consists from the two qualitatively different parts:

(i) Schwarzschild-like quasinormal modes deformed by
a nonzero value of the cosmological constant Λ.
These modes go their Schwarzschild values when Λ
vanishes.

(ii) de Sitter-like quasinormal modes which are purely
imaginary modes representing the spectrum of the
empty de Sitter spacetime deformed by a black
hole mass.

Since all the quasinormal modes of Schwarzschild–
de Sitter black holes vanish in the extreme limit [6], it is
clear that, as ΛM2 (or, alternatively, re=rc) grows, all the
Schwarzschild–de Sitter quasinormal modes with the decay
rate larger than the algebraically special mode, cross this
mode at some point (becoming a purely imaginary mode
in its vicinity) what can be seen in Fig. 1. Thus, the
algebraically special mode which does not satisfy the

FIG. 2. The first four purely imaginary mode as a function of
re=rc for l ¼ 2. The accurate values of the modes are given in
Table II.

1Notice that the solution (eigenfunction) is defined up to an
arbitrary constant factor. It was proposed in [40] to compare the
normalized polynomials, e.g., such that ϕð0Þ ¼ 1. However,
fixing the value of polynomials in some point leads to additional
numerical errors. That is why we compare the obtained poly-
nomial approximations without a normalization.

2The Wolfram Mathematica package with the implementation
of the Bernstein spectral method is publicly available from
https://arxiv.org/src/2211.02997/anc.
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quasinormal boundary condition at the event horizon
and does not depend on Λ is surrounded by the purely
imaginary quasinormal modes. Apparently, the latter ones
go over into the algebraically special at particular values of
re=rc, for which N in (12) is integer.
In Tables II and III we can see the numerical data for

the purely imaginary quasinormal modes obtained with
the Frobenius method and checked for a few first over-
tones by the Bernstein spectral method. Unfortunately,
the latter approach converges too slowly at higher over-
tones and can be used mainly for detecting the correct
spacing between the modes, so that one can be sure at the
end of the day that no modes were missed by the
Frobenius method.

From Table IV we see that the purely imaginary modes
have the same spacing for higher l.

VIII. EXPONENTIAL LATE TIME TAILS

In 1996 P. Brady, C M. Chambers, W. Krivan, and P.
Laguna [30] have shown that the decay of the massless
scalar field in the Schwarzschild–de Sitter and Reissner-
Nordström-de Sitter background are exponential at asymp-
totically late times. This behavior is different from the
power-law tails of asymptotically flat black holes. In
particular they showed that the scalar field falls off as

Ψ ∼ e−lkct; ð23Þ

where kc is the surface gravity at the cosmological horizon.
This work was further extended in [31] and, finally
generalized by C. Molina and coworkers in [32], where
it was shown that, strictly speaking, the above law (23) is
only approximate and the general exponential decay law

TABLE II. Imaginary quasinormal modes found by the Bern-
tein polynomial method and Frobenius method for l ¼ 2,
re ¼ 0.05rc ¼ 1.

ñ Bernstein Frobenius

1 −0.1462883714034i −0.1462883258500359i
2 −0.1952227339725i −0.1952173306184124i
3 −0.2442623723715i −0.2442582762738253i
4 −0.2934098923986i −0.2934072896458776i
5 −0.3427i −0.3426598512634874i
6 −0.3920109676819801i
7 −0.4414553386603660i
8 −0.4909875272073938i
9 −0.5406021350570267i
10 −0.5902939662635239i
11 −0.6400581387244684i
12 −0.6898900965406483i
13 −0.7397855009394569i
14 −0.7897400341227782i
15 −0.8397492168019296i

TABLE I. First four purely imaginary quasinormal modes found by the Bernstein polynomial method for l ¼ 2, re ¼ 1 and various
values of re=rc.

re=rc ω (ñ ¼ 1) ω (ñ ¼ 2) ω (ñ ¼ 3) ω (ñ ¼ 4)

0.05 −0.14628837140338i −0.19522273397247i −0.2442623723715119i −0.2934098923986i
0.07 −0.20275478960143i −0.27077350507009i −0.3390767925979484i −0.4076472923256i
0.08 −0.23055584739888i −0.30803805454118i −0.3859275326664819i −0.4641934521945i
0.1 −0.28530126566124i −0.38156411560595i −0.4785536394272280i −0.5761938451731i
0.12 −0.33891366229288i −0.45377468788892i −0.5697763064973273i −0.6867708701612i
0.15 −0.41722954207182i −0.55965706830091i −0.7040074373138981i −0.8499582256716i
0.17 −0.46805136531524i −0.62863285222395i −0.7917483098715319i −0.9568774748040i
0.2 −0.54222246032764i −0.72968015874795i −0.9206496444050022i −1.1143355632697i
0.25 −0.66042067251270i −0.89156948641743i −1.1280908778179555i −1.3684205445489i
0.30 −0.77196917103691i −1.04528324956367i −1.3257123954840378i −1.6115337897905i
0.35 −0.87703503386909i −1.19069916619331i −1.5135744221049816i −1.8427892217186i
0.40 −0.97588626301967i −1.32811425963975i −1.6912980603515071i −2.0617237836981i
0.50 −1.15577483691395i −1.57868577827844i −2.0160503960899165i −2.4612386253633i
0.60 −1.31399827401026i −1.79969050137711i −2.3014203318274638i −2.8127817053707i
0.70 −1.45287575152641i −1.99316218920237i −2.5517982132368326i −3.1256949854711i
0.80 −1.57482840046419i −2.16235944515726i −2.7728491352788873i −3.39607i
0.90 −1.68197827112948i

TABLE III. Imaginary quasinormal modes found by the
Bernstein polynomial method and Frobenius method for
l ¼ 2, re ¼ 0.8rc ¼ 1.

ñ Bernstein Frobenius

1 −1.57482840046419i −1.5748284004641904i
2 −2.16235944515726i −2.1623594451572610i
3 −2.77284913527889i −2.7728491352354840i
4 −3.39607i −3.3959708601254315i
5 −4.0200485275451892i
6 −4.6262009532229878i
7 −5.2441265168687816i
8 −5.9596491777120556i
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depends on the spin of perturbations and the surface gravity
at the cosmological horizon in a complex way

Ψ ∼ e−αðl;s;kcÞt; ð24Þ
so that only some approximate values for constants
αðl;s;kcÞ were provided in [32]. Thus, the accurate
analytical formula for the asymptotic late time tails were
unknown.
In Fig. 3 we can see the time-domain profile for l ¼ 2

gravitational perturbations at re ¼ 0.05rc ¼ 1. At late time,
when the exponential tails dominate, the Prony method
allows one to extract the following three dominant modes:

ω0 ¼ −0.14628832i;

ω1 ¼ �0.743134 − 0.177149i;

ω2 ¼ −0.19520i: ð25Þ
Here we notice that ω1 is Schwarzschild-like mode
deformed by the nonzero cosmological constant, while
ω0 and ω2 are purely imaginary modes representing
deformation of the de Sitter spacetime by a black hole
mass. Thus, apparently, the exponential tail consists from
contributions of all the purely imaginary quasinormal
modes. That is the reason why it would be difficult to

find a fit representing a general accurate analytical formula
for the exponential tails.

IX. CONCLUSION

In the present paper we have found a new branch of
quasinormal modes for gravitational perturbations of
Schwarzschild–de Sitter spacetime. This modes possess
a number of interesting and qualitatively different (from the
asymptotically flat case) properties:

(i) Purely imaginary quasinormal modes approach
quasinormal modes of the empty de Sitter spacetime,
when the mass of the black hole goes to zero.

(ii) These modes vanish when the cosmological constant
Λ goes to zero, so that they become dominant at late
times, once Λ is small.

(iii) These modes form the well-known exponential “tell-
ing tail” at late times, which means that the asymp-
totic tail is simply a continuation of quasinormal
decay at purely imaginary (nonoscillatory) modes.

(iv) The Schwarzschild-like branch of modes also con-
tains purely imaginary quasinormal modes in a
narrow range of values of the cosmological constant,
so that they go over into the algebraically special
mode. The latter does not satisfy the purely incom-
ing wave boundary condition at the event horizon
and is not quasinormal therefore.

Our paper could be extended to the case of non-zero
electric charge and angular momentum (Reissner-
Nordström-de Sitter and Kerr-Newman-de Sitter space-
time). A similar connection between the charged scalar
field asymptotic tail and the known purely imaginary
quasinormal modes for this field is expected, but, seems,
has not be studied so far. An extension to asymptotically de
Sitter black holes in higher dimensional and alternative
theories of gravity could also be interesting in this context
and we hope that future publications will shed light on all
these questions.
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TABLE IV. First four purely imaginary quasinormal modes found by the Bernstein polynomial method for re ¼ 0.1rc ¼ 1, and
various values of l.

l ω (ñ ¼ 1) ω (ñ ¼ 2) ω (ñ ¼ 3) ω (ñ ¼ 4)

2 −0.28530126566124i −0.38156411560595i −0.4785536394272280i −0.5761938451731i
3 −0.37992030383120i −0.47558202160404i −0.5717267881951159i −0.6683323952569i
4 −0.47473614477645i −0.57016307245355i −0.6659543089866820i −0.7621195207195i
5 −0.56960489303954i −0.66490868869968i −0.76051274255394i −0.8565i
6 −0.66449417925028i −0.75972384841616i −0.8552445897488i −0.951i
7 −0.75939340576028i −0.854581i −0.9502i

FIG. 3. The time-domain profile for l ¼ 2, re ¼ 0.05rc ¼ 1.
At late time the Prony method gives the following dominant
modes: ω0 ¼ −0.14628832i, ω1 ¼ �0.743134 − 0.177149i,
and ω2 ¼ −0.19520i.
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