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We have studied the stability of wormhole geometries, under massless scalar, electromagnetic, and axial
gravitational perturbations, in the context of higher dimensional spacetimes. Intriguingly, the construction
of a wormhole spacetime in the presence of higher dimensions, known as braneworld wormholes, does not
require the existence of exotic matter fields, unlike the scenario in four spacetime dimensions. Being a
nonvacuum spacetime, the effective potential experienced by the axial gravitational perturbation differs
considerably from the scenarios involving black holes. In particular, the present work provides one of the
first attempts to study the gravitational perturbations of the wormhole spacetimes. Our analysis, involving
both analytical and numerical techniques, demonstrates that there are echoes in the time domain signal
of all the perturbations and the echo time delay is intimately related to the parameters originating from
higher dimensions. Thereby combining the attempt to search for wormholes and extra dimensions, with the
existence of gravitational wave echoes. Implications and future directions have also been discussed.
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I. INTRODUCTION

Detections of gravitational waves from the merger of
binary black holes [1–5], as well as of binary neutron stars
[6,7] and observation of the black hole shadow [8–10] have
become the two pillars to understand the nature of gravity
in the strong field regimes. Gravitational waves emerging
from the collision of binary black holes, depict three
phases—(a) the inspiral phase, this is when the binary black
holes approach each other from a large distance and is
more or less captured by the post-Newtonian or, the post-
Minkowski computations [11–14], (b) the merger phase,
when the two black holes merge with each other, leading to
an unstable remnant (this can only be worked out using
numerical relativity computations, see [15–20]), and finally
(c) the ringdown phase, where the unstable remnant settles
down to a stable black hole configuration, after emitting
quasinormal modes (generally, can be understood by the
black hole perturbation theory [21–27]). Instead of a black
hole, if we have some exotic compact objects (ECOs)
[28–35] whose radii are less than or equal to the photon
sphere [36], the inspiral phase will more or less remain the
same, except for some change at (2.5× log-velocity) PN
order, due to modifications in the tidal effects [37–41]. Due
to complications and limited use of numerical relativity, it is
yet not possible to simulate the merger state for these exotic

compact objects. However, the ringdown phase is of
significant interest, since the quasinormal modes (QNMs)
depend on the nature of the compact object, through the
boundary conditions imposed on the perturbation equa-
tions. For black holes, the boundary conditions near the
horizon is purely ingoing, while for these compact objects
they will have an outgoing part as well. This completely
modifies the structure of the QNMs, leading to echoes in
the time-domain signal for the black holes. This is one of
the most major smoking gun tests for the nonblack-hole
nature of compact objects [42–50].
The major drawback of these models being, they require

exotic matter fields [42] and are often unstable under super-
radiant instability [29]. It seems that the presence of extra
dimensions can actually cure these drawbacks, since through
the AdS=CFT correspondence [51–53], it follows that for
a four-dimensional brane embedded in a five-dimensional
AdS-like bulk, the brane will inherit quantum corrections
[54], which results into a tiny shift in the location of the
horizon. This provides a natural model for ECOs [34]. Also
for rotating braneworld black holes, the presence of the extra
dimension significantly reduces the superradiant instability
[33,55], therebymaking these black holesmore stable. On the
observational side as well, the ringdown phase of the loudest
gravitational wave measurement, namely, GW150914, is
consistent with the braneworld scenario, provided its param-
eters are within a specified range [56]. The observation of
black hole shadow, on the other hand, is also fully consistent
with the braneworld scenario [57]. Therefore, the presence of
higher dimensions seems consistent with these strong field
tests of gravity and possibly even better than the existing
models of ECOs with exotic matter.
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Among ECOs, the most useful and intriguing ones are
the wormholes [58–64]. Since wormholes connect two
distinct universes through a throat, the fact that the worm-
hole spacetime will have a reflectivity is obvious. This is
because waves from our universe can go into the other
universe and get reflected by the photon sphere [65,66]
of the other universe and reemerges in our universe as if
it has been reflected by the wormhole throat, leading to
echoes (see Fig. 1). However, in order to have traversable
wormholes—central to the emergence of echoes from
wormholes—one needs exotic matter [58]. Again, extra
dimensions come to the rescue, since extra dimensions
can sustain braneworld wormholes without exotic matter
[67–70], while the contribution of the extra dimension itself
on the brane will appear exotic. This appears to be an
interesting proposal, where we can construct a wormhole
with normal matters and such static and spherically
symmetric wormhole solution already exists in the liter-
ature [71]. In this work, we wish to study the stability of
the wormhole solution under scalar, electromagnetic and
gravitational perturbations (for an earlier attempt in this
direction, see [72]). In particular, we wish to explore the
late time echoes present in the time domain waveform of
the perturbed braneworld wormhole.
The paper is organized as follows: We start with a brief

review of the wormhole solution in the braneworld context
in Sec. II and subsequently we present various properties of
the wormhole solution in Sec. III. The perturbation of the
braneworld wormhole under scalar, electromagnetic, and
gravitational perturbation and the resulting master equa-
tions have been presented in Sec. IV, with the numerical
solutions depicting the quasinormal modes and the time-
domain waveform in Sec. V. Finally, we comment on the
possibility of obtaining a rotating braneworld wormhole,
starting from the static and spherically symmetric one,

in Sec. VI and then we conclude in Sec. VII with a
discussion of the results and on future prospects.
Throughout this paper, we will use the positive

signature convention, such that the flat metric in four
spacetime dimensions can be expressed as, ημν ¼ diagð−1;
þ1;þ1;þ1Þ. We will use the Greek indices μ; ν; ρ; � � �, in
order to describe four-dimensional spacetime coordinates.
We will also set the fundamental constants, G and c to
be unity.

II. A BRIEF REVIEW OF THE LOW ENERGY
EFFECTIVE ACTION ON THE BRANE AND THE

ASSOCIATED WORMHOLE SOLUTION

As mentioned in Sec. I, we wish to study the perturbation
of the wormhole solution on the brane and hence establish
the possible presence of echoes in the ringdown waveform.
Before going into the details of the perturbation equations
and the numerical techniques thereof, we would first like
to briefly review the origin of the wormhole solution itself
in order to set the perspective. We will closely follow the
analysis of [73] in order to expand the bulk (five-
dimensional) geometrical entities as a power series in
the ratio of (bulk/brane) curvature length scales. This
results into gravitational field equations on the brane
containing only local quantities, unlike [74].
In this scheme of obtaining local gravitational field

equations on the brane, one starts by considering an
AdS5 bulk spacetime with a compact spacelike extra
dimension (the extra coordinate is being denoted as y),
with the two 3-branes located at y ¼ 0 (denoted as A,
Planck brane) and y ¼ l (denoted as B, visible brane). The
bulk spacetime is described by the following metric ansatz:

ds2 ¼ e2ϕðxÞdy2 þ g̃μνðy; xÞdxμdxν; ð1Þ

FIG. 1. A typical representation of the effective perturbation potential as a function of the tortoise coordinate r� is presented for a black
hole (left panel) and a wormhole (right panel). For the black hole case, the single-bump potential approximately peaks around the photon
sphere of the black hole. However, the wormhole potential is a mirror-symmetric (about r� ¼ 0) double-bump potential. The black hole
QNMs satisfy the incoming boundary condition at the horizon and outgoing boundary condition at the infinity, whereas the wormhole
QNMs satisfy the outgoing boundary condition at both the infinities. Part of the wave is quasi-trapped inside the double-bump potential,
back and forth motion of which gives rise to the echo signal.
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where, x denotes the brane coordinates collectively and
ϕðxÞ is called the radion field, describing the inter-brane
separation dðxÞ, given by, dðxÞ≡ eϕðxÞl. Note that this
interbrane separation, being a function of the brane
coordinates, behaves as an extra field for the brane
observers with interesting phenomenology [75–77].
Afterwards one expands the bulk Einstein’s equations as

a power series in ðl=brane curvature scaleÞ, resulting in two
sets of Einstein’s equations, one on the Planck brane and
another on the visible brane. These two equations depend
on the first order term of the electric part of the projected
bulk Weyl tensor, whose elimination yields the following
effective gravitational field equations on the visible brane:

Gμν ¼
κ2

lΦ
TB
μν þ

κ2ð1þΦÞ
lΦ

TA
μν þ

1

Φ
TΦ
μν; ð2Þ

where,

TΦ
μν ¼ ð∇μ∇νΦ − gμν∇α∇αΦÞ

−
3

2ð1þΦÞ
�
∇μΦ∇νΦ −

1

2
gμν∇αΦ∇αΦ

�
with Φ ¼ exp½2eϕðxÞ� − 1; ð3Þ

along with TA
μν being the energy-momentum tensor on the

Planck brane and TB
μν is the energy-momentum tensor on

the visible brane. Note that here the covariant derivative∇α

is with respect to the visible brane metric gμν, κ2 is the five-
dimensional gravitational constant and hence the ratio
ðκ2=lÞ must play the role of four-dimensional gravitational
constant, and, finally, in the above equation Φ is the
nonlinear realization of the radion field ϕ on the visible
brane. Similarly, we obtain the field equation for ΦðxÞ, the
four-dimensional incarnation of the radion field as

∇α∇αΦ ¼ κ2

l
TA þ TB

2ωþ 3
−

1

2ωþ 3

dω
dΦ

ð∇αΦÞð∇αΦÞ

with ω ¼ −
3Φ

2ð1þΦÞ ; ð4Þ

where TA and TB are the traces of the energy momentum
tensor on the Planck and on the visible brane, respectively.
Despite the striking similarity of the above equation with
the one in the Brans-Dicke theory [78], in the present
scenario we have extra contributions from the energy-
momentum tensors of the branes, as well as, in this case, ω
becomes a function of the radion field incarnation Φ. The
gravitational field equations on the visible brane in Eq. (2)
together with Eq. (3) and Eq. (4) complete the picture of a
low energy effective scalar-tensor theory on the brane,
provided the energy-momentum tensors on Planck and
visible branes are known.
The most simplest choice, under which a nontrivial

solution of the gravitational field equations in Eq. (2) can be

obtained, corresponds to that of vacuum Planck brane, with
TA
μν ¼ 0. While for the visible brane one considers, TB

μν to
be made out of anisotropic perfect fluid, such that

Tμν
B ¼ ðρþ pÞuμuν þ pgμν − ðp − τÞwμwν; ð5Þ

where uμ is the timelike fluid four-velocity and wμ

represents the spacelike vector transverse to uμ, satisfying
wνwν ¼ 1 and wνuν ¼ 0. In the above, ρ represents the
energy density, p represents the pressure transverse to wμ,
and τ represents the pressure along wμ. Given this energy
momentum tensor on the brane, one solves the Einstein’s
equations for the static and spherically symmetric metric
from Eq. (2). For this purpose, note that the trace of TΦ

μν

identically vanishes [79] and hence the Ricci scalar of the
visible brane gets related to the trace of the energy-
momentum tensor on the visible brane. Imposing the
condition that the Ricci scalar of the visible brane should
vanish further simplifies the scenario and results in the
following condition, −ρþ τ þ 2p ¼ 0, which also has
interesting astrophysical consequences, see [80]. As a
consequence of the vanishing Ricci scalar, in addition to
the Einstein’s equations, we get an additional relation
between the gtt and the grr components of the static and
spherically symmetric metric. Further, owing to the trace-
less-ness condition satisfied by the brane matter, the fieldΦ
is independent of the energy momentum components of the
brane matter, as evident from Eq. (4). Thus we have six
unknown variables, the matter energy momentum tensor
components ðρ; p; τÞ, the metric components, gtt, grr, and
the radion field Φ. However, we have five equations to
solve them—(a) two Einstein’s equations, (b) one con-
servation equation for the brane energy momentum tensor,
(c) the relation for vanishing Ricci scalar, and (d) the field
equation for the radion field. Since we need one supple-
mentary condition, following [71], we assume the follow-
ing line element,

ds2 ¼ −
�
αþ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �
2

dt2 þ dr2

1 − 2M
r

þ r2ðdθ2 þ sin2θdϕ2Þ; ð6Þ

which satisfies the vanishing Ricci scalar equation. Here α
and λ are two constants, taken to be real and positive [67],
in order to avoid any formation of a naked singularity. Note
that for α ¼ 0 and λ ¼ 1, this solution reduces to the
standard Schwarzschild solution. The field Φ can also be
solved from Eq. (4), as a function of the radial coordinate r,
however, the solution is easier to write down in the isotropic
coordinate r0, which is related to Schwarzschild coordinate
r by r≡ r0½1þ ðM=2r0Þ�2, such that,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΦðrÞ

p
¼ C1

Mλ
ln

�
2qr0 þM
2r0 þM

�
þ C4; ð7Þ
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where, q≡ ½ðαþ λÞ=ðα − λÞ� and C1, C4 are the cons-
tants of integration. Note that for α < λ, one defines
q ¼ ½ðαþ λÞ=ðλ − αÞ�, such that in the Schwarzschild
limit, q ¼ 1. Therefore, the field Φ is a constant in the
Schwarzschild background, which can as well be taken to
be zero. Finally, given the line element in Eq. (6) and the
radion field Φ in Eq. (7), the components of the brane
energy momentum tensor can be obtained from the
Einstein’s equations, whose expressions can be found
in [67].
Further, to sustain various wormhole solutions in general

relativity, a violation of the energy condition is bound to
appear. In particular, near the throat, we cannot avoid the
violation of the weak energy condition [64], such that to
some observers, the energy density will appear to be
negative. In contrast to the above, for the braneworld case,
the effective energy momentum tensor is a combination of
the brane energy momentum tensor, along with an energy-
momentum tensor for the radion field. Therefore, even if
the combined effective energy momentum tensor of the
brane matter and the radion field violate energy conditions,
it is always possible to avoid the violation of energy
conditions in the matter sector, such that all such violations
appear in the radion sector alone. This is how in the
braneworld scenario it is possible to have a wormhole
without any exotic matter field on the brane. Having
described the details of the wormhole solution on the
brane, in what follows we will discuss some other forms
of the above metric and its properties, which will be useful
for our purposes.

III. THE WORMHOLE SOLUTION AND ITS
VARIOUS CHARACTERISTICS

Having outlined the derivation of the solution corre-
sponding to the braneworld wormhole explicitly, let us
explore its various properties. In particular, we are inter-
ested in the parameter region, where α≳ 0 and λ ≃ 1, i.e., a
continuous limit to the Schwarzschild geometry can be
taken. From Eq. (6) it is easy to see that any r ¼ constant
hypersurface becomes null at r ¼ 2M. This is because grr

identically vanishes when r ¼ 2M. However, unlike the
Schwarzschild solution, r ¼ 2M does not represent an
event horizon in the present scenario. To justify this, we
can see that the timelike Killing vector field ξμt ¼ ð∂=∂tÞμ
does not coincide with the null vector at r ¼ 2M.
Moreover, ξ2t ¼ −α2 at r ¼ 2M. Therefore, ξμt remains
timelike even at r ¼ 2M. This explicitly demonstrates that
r ¼ 2M is not a causal barrier for the observers who reside
outside r ¼ 2M. This confirms that, for α ≠ 0 the space-
time described by the line element in Eq. (6) does not
exhibit any event horizon [81]. In particular, it depicts a
wormhole with its throat at r ¼ 2M. This can also be seen
using the embedding diagram [58]. Further, the metric is
regular at r ¼ 2M, since the evaluation of the Kretschmann
scalar RμναβRμναβ yields

RμνρσRμνρσ ¼ 24M2

r6

�
1þ

�
1−

2M
r

��
α

λ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2M
r

r �−2�
:

ð8Þ

As evident from the above expression, in the limit r → 2M,
the Kretschmann scalar becomes ð3=8M4Þ, exactly half
of the corresponding value for Schwarzschild. Also, there
is no coordinate singularity at r ¼ 2M, since on any r ¼
constant surface the dr2 term does not contribute and all the
other metric elements are finite at r ¼ 2M, as evident from
Eq. (6). To see more explicitly the properties associated
with the surface r ¼ 2M, we consider a coordinate trans-
formation of the form, r ¼ 2M þ x2 and compute the
surface stress tensor describing the jump at the surface
x ¼ 0, caused by the square root term in the gtt component
of the metric in Eq. (6). As evident, the surface stress tensor
satisfies the null energy condition and does not inhibit
any exotic matter field, see Appendix A for an explicit
computation.
At this outset, we would also like to emphasize that the

metric as written in Eq. (6) does not reduce to ημν in the
limit r → ∞, though all the Riemann tensor components
vanish in this limit. In order to transform the metric to a
manifestly asymptotic flat form (i.e., as r → ∞, we get
gμν → ημν), we redefine the time coordinate as,
t → ðαþ λÞ−1t, then we obtain

ds2 ¼ −ðpþ 1Þ−2
�
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �
2

dt2

þ
�
1 −

2M
r

�
−1
dr2 þ r2ðdθ2 þ sin2θdϕ2Þ

with p≡ α

λ
; ð9Þ

which indeed reduces to ημν at spatial infinity. From our
discussion above, it is clear that for the parameter regime
of our interest, namely, M > 0 and p≳ 0, the spacetime
remains regular, including the throat of the wormhole,
located at r ¼ 2M.
Having described some of the basic properties of the

wormhole metric in the context of a two-brane system,
let us briefly point out the existence of similar wormhole
solutions in the context of a single brane scenario. In the
single brane model, instead of the radion field Φ, the
gravitational field equations involve the projected bulk
Weyl tensor, which is also traceless. Thus in the single
brane model as well one can derive wormhole solutions
with R ¼ 0 [68,69], without exotic matter on the brane,
however, the interpretation is different and so are the
solutions. For example, in the present scenario, there is
a clear interpretation of the departure of the wormhole
solution from the Schwarzschild spacetime—nontrivial
dependence of the interbrane separation on the radial
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coordinate. While such a clear interpretation cannot be
arrived at from the solutions in [68,69]. On the other hand,
the results presented here hold true only in the perturbative
regime of the bulk to brane curvature scales, but the single
brane scenario, as presented in [68,69] holds in the non-
perturbative regimes as well. In what follows, we will
concentrate on the wormhole solution in the two brane
system and shall consider the single brane extension
elsewhere.
The above redefinition of the time coordinate have

reduced the braneworld wormhole solution into a two
parameter (p,M) family of wormhole spacetimes. For
p ¼ 0, it reduces to the standard Schwarzschild solution,

while for p ≠ 0, this depicts a wormhole solution, whose
stability will be studied in this work. From now on we will
use the metric in Eq. (9) for our subsequent analysis. For
the future, it is useful to define a tortoise coordinate r� for
the above wormhole metric as

dr� ¼
dr
yðrÞ with yðrÞ≡

�
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
ðpþ 1Þ ;

ð10Þ

which upon integration yields [72]

r� ¼ ðpþ 1ÞM
�

2ðp − βÞð2p − βÞ
ðp2 − 1Þ½ðp − βÞ2 − 1� þ 4

ln β
p

ðp2 − 1Þ2 þ
ðp − 2Þ lnð1 − pþ βÞ

ðp − 1Þ2 −
ð2þ pÞ lnð1þ p − βÞ

ð1þ pÞ2
�
; ð11Þ

where β≡ pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2M=rÞp

. In arriving at Eq. (11) we
have chosen the integration constant such that the tortoise
coordinate r� vanishes at r ¼ 2M (equivalently, at β ¼ p),
such that in terms of the tortoise coordinate, the wormhole
throat is located at r� ¼ 0. Since any wormhole spacetime
can be viewed as if two black hole spacetimes have been
joined together at the throat [31,42], therefore by this
choice of the tortoise coordinate r�, we can describe the
entire spacetime by extending the range of the tortoise
coordinate to r� ∈ ð−∞;þ∞Þ. This makes ðt; r�; θ;ϕÞ as
the global coordinate patch for the above wormhole
spacetime. Moreover, the tortoise coordinate helps to

reduce the linear perturbation equations to that of the
one-dimensional Schrödinger equation, thereby leading to
simpler numerical routines to solve for the quasinormal
modes, as we will demonstrate in the subsequent sections.
At this outset, we wish to briefly talk about one of the

most important parameters in our model, namely, the throat
length of the braneworld wormhole. This is best understood
by expressing the tortoise coordinate defined in Eq. (11)
for the braneworld wormhole in terms of the tortoise
coordinate for the Schwarzschild black hole, and correc-
tions to it due to nonzero values of p (≳0), yielding (for a
derivation, see B)

r�≃rBH� þL
2
þp

2
64ðr−2MÞþ2M ln

�
r
2M

−1

�
−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2M
r

r
þ 4Mffiffiffiffiffiffiffiffiffiffiffiffi

1− 2M
r

q −3M ln

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

r

q
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

r

q
1
CA
3
75−4Mp lnp: ð12Þ

Here, rBH� corresponds to the tortoise coordinate of
the Schwarzschild black hole, which reads, rBH� ≡ r þ
2M ln jðr=2MÞ − 1j, the length L≡ −4Mð1þ 2 lnpÞ
(which is a positive quantity, as p < 1), and then we have
terms OðpÞ and of Oðp lnpÞ, respectively. We would like
to emphasize that the tortoise coordinate r� is regular
everywhere, since the radial coordinate r is also regular. In
particular, one can check that r�ð2MÞ ¼ 0, unlike the case
of Schwarzschild black hole. This is because, the r ¼ 2M is
not a coordinate singularity. If we now neglect all the terms
proportional to p in Eq. (12), we will get

r� ¼ rBH� þ L
2
: ð13Þ

It is generally argued [65] that L should represent the
distance between the maxima of the two photon spheres

located on both sides of the throat and is referred to
as the throat length. To see this explicitly one may take a
different route, first of all, the photon sphere in the present
scenario must be located at rph ¼ 3M þOðpÞ and hence
the distance between the photon spheres, on both sides of
the throat, should have the following expression,

L̄ ¼ 2r�ð3MÞ ¼ −4M

"
ln

ffiffiffi
4

e

r
þ 2 lnp

#
; ð14Þ

where, r� is given by Eq. (11) and terms ofOðpÞ have been
neglected. Note that L and L̄ are both identical except for
some small differences, and hence we can as well consider
L as the throat length.
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The existence of a nonzero throat length is crucial for the
existence of echoes in the late time signal from a perturbed
braneworld wormhole. This is because a part of the primary
signal generated near one of the photon spheres, due to
external perturbation, will traverse through the throat and
will be reflected by the photon sphere potential on the other
side of the throat, which will reappear in our universe
through the wormhole throat. Thus to the asymptotic
observer, these reflected signals will appear as echoes of
the primary signal. This discussion shows that nonvanish-
ing throat length L plays the key role in producing the
echoes of the primary signal. Therefore, the existence of a
nonzero throat length is essential for the braneworld
wormhole to behave like a black hole mimicker.

IV. LINEAR PERTURBATION OF THE
WORMHOLE SOLUTION

In this section, we will present the master equations
satisfied by linear perturbations, due to scalar, electromag-
netic and gravitational fields in the background of the
braneworld wormhole solution considered above. In par-
ticular, we will demonstrate how all of these perturbations
differ from that of the Schwarzschild black hole, for a
nonzero value of the parameter p. We start with the simplest
case of a massless scalar perturbation and then shall
discuss the electromagnetic perturbation, before finalizing
with the gravitational perturbations of the wormhole
geometry.

A. Massless scalar perturbation

Let us consider how massless scalar perturbations evolve
in the background geometry of the braneworld wormhole,
expressed in Eq. (9). We will content ourselves with linear
perturbations alone, that is the perturbing scalar field (let us
denote it asΨðxÞ) is much smaller of the background metric
components and the radion field (or its nonlinear realization
Φ). In this scenario, the perturbing field ΨðxÞ satisfies the
Klein-Gordon equation in the wormhole background,

gμν∇μ∇νΨðxÞ ¼ 0; ð15Þ

where the covariant derivative ∇μ is with respect to
wormhole metric gμν, described in Eq. (9). Since the
background spacetime is spherically symmetric and static
we can decompose the perturbing scalar field as

Ψðt; r; θ;ϕÞ ¼
X∞
l¼0

Xl
m¼−l

ψ ð0Þ
lm ðrÞ
r

e−iωtYlmðθ;ϕÞ: ð16Þ

Substitution of the above ansatz for the perturbing scalar
field Ψ in Eq. (15), describing its evolution, yields the

following equation for the radial part ψ ð0Þ
lm ðrÞ of the

perturbation,

d2ψ ð0Þ
lm

dr2�
þ
h
ω2 − Vð0Þ

l ðrÞ
i
ψ ð0Þ
lm ¼ 0; ð17Þ

where r� corresponds to the tortoise coordinate defined in
Eq. (10). For a generic static and spherically symmetric
background metric of the form diag:½−fðrÞ; f1=hðrÞg; r2;
r2 sin2 θ� (with fðrÞ ≠ hðrÞ), the potential Vð0Þ

l ðrÞ, appear-
ing in the radial perturbation equation of a massless scalar
field becomes

Vð0Þ
l ðrÞ ¼ fðrÞ lðlþ 1Þ

r2
þ

ffiffiffiffiffiffi
fh

p
r

∂rð
ffiffiffiffiffiffi
fh

p
Þ: ð18Þ

Comparing, fðrÞ with the gtt component and hðrÞ as the grr
component of the braneworld wormhole metric, presented
in Eq. (9), we obtain the following potential,

Vð0Þ
l ðrÞ ¼ 1

ðpþ 1Þ2
"
M
r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r  
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r !

þ 1

r2

 
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r !
2
 
M
r
þ lðlþ 1Þ

!#
;

ð19Þ

governing the master equation for the massless scalar
perturbation of the background wormhole spacetime.
As evident, using the ansatz of Eq. (16), motivated by the

static and spherically symmetric background spacetime,
the Klein-Gordon equation of the massless scalar pertur-
bation reduces into a one-dimensional time independent
Schrödinger-like equation with real potential. We wish to
solve this differential equation using appropriate numerical
techniques, akin to those in quantum mechanics, which we
will elaborate in the next section.

B. Electromagnetic perturbation

Alike the case of massless scalar perturbation, the
evolution of electromagnetic perturbation can be under-
stood by solving Maxwell’s equations in the background
of braneworld wormhole. Explicitly, the evolution of the
electromagnetic perturbation Aμ, is governed by

∇νFμν ¼ 0; ð20Þ

where, Fμν ¼ ∂μAν − ∂νAμ represents Maxwell’s field ten-
sor and the covariant derivative ∇μ is with respect to the
background braneworld wormhole metric. Given the static
and spherically symmetric background spacetime, we can
decompose the vector potential Aμ using four-dimensional
vector spherical harmonics [82], such that,
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Aμðt; r; θ;ϕÞ ¼
Z

dω
X
l;m

2
666664almðrÞe−iωt

0
BBBBB@

0

0

1
sin θ ∂ϕYlmðθ;ϕÞ
− sin θ∂θYlm

1
CCCCCA

odd

þ e−iωt

0
BBBBB@

flmðrÞYlm

ulmðrÞYlm

klmðrÞ∂θYlm

klmðrÞ∂ϕYlm

1
CCCCCA

even

3
777775: ð21Þ

In the above, the first term on the right-hand side with the
radial dependence as almðrÞ has parity ð−1Þlþ1 and hence is
referred to as the odd parity/axial term, while the second
term has parity ð−1Þl and hence is called as the even parity/
polar term. As usual, l represents the angular momentum
index andm represents the azimuthal index. Note that there
are four unknown radial functions in the above decom-
position, almðrÞ, flmðrÞ, ulmðrÞ, and klmðrÞ, respectively.
However, both the axial and polar decomposition of the
vector potential, as in Eq. (21), provides an identical master
equation, which reads

d2ψ ð1Þ
lm

dr2�
þ

2
6664ω2 −

lðlþ 1Þ
r2

�
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

r

q �
2

ðpþ 1Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Vð1Þ

l ðrÞ

3
7775ψ ð1Þ

lm ¼ 0; ð22Þ

where, the master radial function ψ ð1Þ
lm ðrÞ, can be expressed

in terms of the four unknown radial functions described
above, as

ψ ð1Þ
lm ¼

8<
:

r2
lðlþ1Þ

�
−iωulm − dflm

dr

	
for even parity

alm for odd parity:
ð23Þ

Note that the klmðrÞ term does not appear in the final
dynamical equation and there are only two degrees of
freedom, one for axial and the other for polar perturbations.
This is consistent with the result that a photon has only two
independent polarization states. Intriguingly, alike the case
of a massless scalar field, for the electromagnetic field as
well, the final master equation for radial perturbation
resembles the Schrödinger equation, but with a different
potential. We will see that the same trend will continue to
hold true for gravitational perturbations as well.

C. Axial gravitational perturbation

Just as the case of electromagnetic perturbation can be
decomposed into axial and polar parts, the gravitational
perturbation can also be decomposed into these two
branches. Since, in general, there are ten independent
components of the gravitational perturbation, they separate
into three axial and seven polar perturbations. Explicitly,

gμνðt; r; θ;ϕÞ ¼ g0μνðt; r; θ;ϕÞ þ hμνðt; r; θ;ϕÞ
¼ g0μνðt; r; θ;ϕÞ þ haxialμν ðt; r; θ;ϕÞ
þ hpolarμν ðt; r; θ;ϕÞ; ð24Þ

where g0μν represents the background braneworld wormhole
spacetime and hμν represents the gravitational perturbation,
which has been decomposed into axial and polar parts.
Further, using the gauge degrees of freedom associated
with the diffeomorphism invariance [83], we can reduce the
number of axial degrees of freedom to two and the number
of polar degrees of freedom to four. Therefore, the polar
gravitational perturbation not only has a larger number
of degrees of freedom, but the associated perturbation
equations are also complex and it is not very clear if one can
reduce the system of equations into a single master
equation. Given these complications, we will restrict
ourselves to the case of axial gravitational perturba-
tion alone.
Having described the nature of the perturbation, let us

move forward and determine the dynamical equation it
satisfies. This must be derivable from the computation of
δGμν, while keeping terms up to linear order in hμν.
However, unlike the case of vacuum Einstein’s equations,
where the perturbations would simply satisfy δGμν ¼ 0, in
the present scenario, there will be nontrivial source terms.
For example, both the radion energy momentum tensor TΦ

μν

and the brane energy momentum tensor TB
μν depend on the

brane metric gμν and hence will be perturbed as the brane
metric is also perturbed. In addition, there will be pertur-
bation in the radion like field Φ as well. However, being a
scalar, the perturbation of Φ will be exclusively of polar
type and hence will not affect our computations involving
axial perturbations alone. In addition, the perturbation of
the energy momentum tensor of the fluid on the brane can
be ignored, since that term is already multiplied by the four-
dimensional Newton’s constant and hence the contribution
from it will be of higher order. Thus it follows that we may
work in the regime where the energy-momentum tensor
of the brane fluid can be neglected in comparison to the
energy-momentum tensor of the radion like field, i.e.,
ðκ2=lÞδTB

μν ≪ δTϕ
μν. Thus the evolution equation for the

axial gravitational perturbation is given by

δGμν½haxialαβ � ¼ δTϕ
μν½haxialαβ �
Φ

: ð25Þ
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Further, in the present scenario involving static and spheri-
cally symmetric wormhole background, satisfying R ¼ 0,
the above propagation equation reduces to the following
form,

δRμν½haxialαβ � ¼ δTϕ
μν½haxialαβ �
Φ

: ð26Þ

Using the gauge freedom to choose the Regge-Wheeler
gauge, in which among the three axial metric perturbation
components, only hrϕ and htϕ survive, while hθϕ can be
chosen to be zero [83]. Further, since the background
geometry is static and spherically symmetric, one can
decompose these two nonzero axial metric perturbations
in the following manner:

htϕ ¼ e−iωth0ðrÞ sin θ∂θPlðcos θÞ; ð27Þ

hrϕ ¼ e−iωth1ðrÞ sin θ∂θPlðcos θÞ: ð28Þ

These two nonvanishing components of the metric pertur-
bation induces the following three nonvanishing compo-
nents of the perturbed Ricci tensor, namely, δRtϕ, δRrϕ, and
δRθϕ. The δRθϕ component of the perturbed Ricci tensor,
when substituted in Eq. (26), governing the evolution
equation for the axial perturbation, with a background
metric g0μν ¼ diag:ð−fðrÞ; ð1=gðrÞÞ; r2; r2 sin2 θÞ, yields
the following equation:

h0 ¼
i
ω
fðrÞgðrÞh1

d
dr

n
lnΦþ ln½h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞ

p
�
o
: ð29Þ

Note that this equation provides one of the perturbation
variables, h0 in terms of the other perturbation variable h1
and the background scalar field ΦðrÞ. Similarly, from the
ðr;ϕÞ component of Eq. (26) we obtain

iωr2
d
dr

�
h0
r2

�
¼ h1

�
ω2 þ fðrÞgðrÞ

r
d lnΔ
dr

−
lðlþ 1Þ

r2
fðrÞ

þ fðrÞgðrÞHðΦÞ
�
; ð30Þ

where we have defined Δ≡ r2fðrÞgðrÞ and HðΦÞ≡
ð1=ΦÞ½ð2=rÞðdΦ=drÞþf1=2ð1þΦÞgðdΦ=drÞ2�. Now we
can substitute for h0 from Eq. (29) in Eq. (30), to get a single
differential equation for the radial perturbation variable
h1ðrÞ. In order to bring the resulting equation into the form
of a time independent Schrödinger equation, we define the

following master variable: ψ ð2Þ
lm ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞgðrÞΦðrÞp
=rÞh1.

In terms of this master variable, we have our desired
Regge-Wheeler-like equation for the background wormhole
spacetime as

d2ψ ð2Þ
lm

dr2�
þ
h
ω2 − Vð2Þ

l ðrÞ
i
ψ ð2Þ
lm ¼ 0; ð31Þ

where Vð2Þ
l ðrÞ ¼ VgðrÞ þ VΦðrÞ, with VgðrÞ is purely con-

structed out of background metric components and VΦðrÞ
depends on the background radion like field Φ. Below we
provide the explicit formulas for these two potentials,

VgðrÞ ¼ fðrÞ

2
64lðlþ 1Þ

r2
− r

ffiffiffiffiffiffiffiffiffi
gðrÞ
fðrÞ

s
d
dr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞp
r2

�

−
gðrÞ
r

d
dr

ðlnΔÞ

3
75; ð32Þ

VΦðrÞ ¼
3

4

fðrÞgðrÞ
Φ2

�
dΦ
dr

	
2

1þΦ
: ð33Þ

One can observe that if we had considered gravitational
perturbations of any static and spherically symmetric four-
dimensional spacetime, with R ¼ 0, in the context of general
relativity and had ignored the perturbations arising from the
matter energy momentum tensor (as is the case here), then
only thepotentialVgðrÞwould be present. The contribution in
the form of VΦ solely arises from the existence of higher
spacetime dimensions and while deriving the same, we have
used the equation of motion forΦðrÞ fromEq. (4), which can
be expressed as

d2Φ
dr2

þ d ln½r2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞp �
dr

dΦ
dr

¼ 1

2ð1þΦÞ
�
dΦ
dr

�
2

: ð34Þ

The solution of the above equation yields the value of the
background radion like field which can bewritten as follows:

ΦðrÞ¼1

4
Φ2

1 log½fðrÞ�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0þ1

p
Φ1 logðfðrÞÞþΦ0; ð35Þ

where Φ0 and Φ1 are constant of integration. These
two parameter sets the interbrane separation d ¼
1
2
logðΦðrÞ þ 1Þ. Now thedistinction between the braneworld

scenario and general relativity can bemade clearer. In general
relativity, no hair theorems [84,85] simply rule out any
nontrivial scalar configuration outside the black hole, i.e.,
Φ becomes constant throughout the spacetime andwe can see
that it is consistentwithEq. (34). In this case,VΦ vanishes and
the only contribution comes from VgðrÞ alone. This also
demands p ¼ 0 in the original wormhole spacetime, which
yields, −gtt ¼ ½1 − ð2M=rÞ� ¼ grr and hence we will get
back theRegge-Wheeler equation for axial perturbationof the
Schwarzschild spacetime. It is also instructive to note that
among the above three kinds of perturbations—scalar,
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electromagnetic, and gravitational—only in the case of
gravitational perturbation, the radion field makes its distinct
contribution through thepotential term.This is consistentwith
the fact that only gravity can sense the presence of extra
dimensions, while other fields only sense the extra dimension
through the metric alone. We will now try to solve these
equations analytically using certain approximation methods
and then shall use numerical techniques to obtain the
quasinormal modes and the ringdown waveform of the
braneworld wormhole, under all the three perturbations.

V. THE SPECTRUM OF THE
QUASINORMAL MODES

Now we are in a place to study the quasinormal mode
(QNM) spectrum of the system. There are several approxi-
mate analytical methods as well as numerical techniques
available for this purpose [26,86,87]. However, most of the
analytical techniques do not work in the case of wormhole
geometry. The WKB approximation, e.g., applies to black
holes, since the potential involves one single maxima.
However, in the present context, the potential involves two
maxima and one minima, in which case it is not clear how
the WKB method can be applied. The method of continued
fractions also can not be applied, since this method only
works for spacetimes with polynomial metric elements,
while most of the wormhole spacetimes, including brane-
world wormhole, involve square roots. Finally, the match-
ing of asymptotic and near-the-throat solutions, yielding
QNMs, is also not applicable in the present context, as the
presence of the square root factor modifies the matching
procedure significantly. Thus we will use a completely
different method used for wormhole spacetimes, namely
the transfer matrix method [65]. This is what we elabo-
rate below.

A. Approximate analytical methods

As mentioned earlier, it is useful to present the wormhole
spacetime as a black hole mimicker, which connects two
identical spacetimes at the throat. Thus the wormhole
spacetime can be described by a superposition of the
potentials associated with these two individual spacetimes.
Suppose, VðsÞ

l ðrÞ denotes the potential, a spin s perturbation
experiences in one universe, then the spin s perturbation in
the wormhole spacetime will experience the following
double potential [65],

VðsÞ
lðwormholeÞðr�Þ ¼ θðr�ÞVðsÞ

l

�
r� −

L
2

�

þ θð−r�ÞVðsÞ
l

�
−r� −

L
2

�
: ð36Þ

Note that VðsÞ
l ðr�Þ appears in the following differential

equation,

d2ψ ðsÞ
lm

dr2�
þ ½ω2 − VðsÞ

l ðr�Þ�ψ ðsÞ
lm ¼ 0; ð37Þ

where, ψ ðsÞ
lm represents the master radial perturbation

variable, if we had considered one of the spacetime alone.
Here, s ¼ 0, s ¼ 1, and s ¼ 2, corresponds to scalar,
electromagnetic, and axial gravitational perturbations,
respectively. Using the asymptotic behavior of the potential

VðsÞ
l ðr�Þ near infinity and in the near-the-throat region, for

various spins of the perturbation, we obtain the following
behavior for the master perturbation variable,1

ψ ðsÞ
lm ðr�Þ ¼


Ae−iωr� þ Beiωr� for r� → ∞

Ce−iðω−ω
ðsÞ
0
Þr� þDeiðω−ω

ðsÞ
0
Þr� for r� → 0;

ð38Þ

here ωðsÞ
0 is defined by the relationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − VðsÞ
l ðr� → 0Þ

q
≡ ðω − ωðsÞ

0 Þ. Now we introduce
the transfer matrix T associated with this scattering
problem. The job of this matrix is to relate the ingoing

and outgoing amplitudes through the potential VðsÞ
l , at one

side of the wormhole alone. In the present context, the
transfer matrix for the Universe with r� > 0, takes the
following form:

�
B

A

�
¼ T

�
D

C

�
: ð39Þ

Use of Eqs. (36) and (39) depicts that, the transfer matrix T
for the scattering problem through the full wormhole

potential VðsÞ
lwormhole requires transfer matrices, through

the individual potentials VðsÞ
l ðr�Þ and VðsÞ

l ð−r�Þ, along
with propagation through the throat. This is obtained by

matching the solution for VðsÞ
l ð−r�Þ with VðsÞ

l ðr�Þ in the
region between the two potentials, yielding [65],

T ¼ T

�
eiðω−ω0ÞL 0

0 e−iðω−ω0ÞL

�
σxT−1σx; ð40Þ

where, σx is the first one, among the three Pauli σ matrices.
The QNMs, associated with the wormhole spacetime is
characterized by the boundary condition that, there is no
ingoing wave from r� ¼ �∞. To manifest this condition on
the universe with r� > 0, we set A ¼ 0 in Eq. (38), which
gives

1In this context, one should keep in mind that for black holes,
the limit r� → −∞ corresponds to the near-horizon regime, but in
the case of wormholes, r� → 0 corresponds to the near-the-throat
region.
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D
C
≡ RðsÞðωÞ ¼ −

T21

T22

; ð41Þ

where, RðsÞðωÞ corresponds to the reflectivity of the
potential experienced by spin s perturbation in both
the universes, connected by the wormhole throat.
Similarly manifesting an identical condition in the uni-
verse with r� < 0, we obtain the condition T22 ¼ 0 for
the wormhole spacetime and it yields the spectrum of the
QNM frequencies, in terms of the reflectivity of the
photon sphere as

e−iðωn−ω0ÞL ¼ −e−inπRðsÞðωnÞ; ð42Þ

where, ωn corresponds to the QNM frequency corre-
sponding to the nth overtone. Finally, the master pertur-
bation variable for the wormhole spacetime, associated
with the nth order QNM, can be expressed as

ψ ðsÞ
lmðwormholeÞðr�;ωnÞ¼θðr�Þψ ðsÞ

lm

�
r�−

L
2

�
−e−inπðr�→−r�Þ;

ð43Þ

where ψ ðsÞ
lm is the solution of Eq. (37) with the boundary

condition that there are no ingoing waves at r� → ∞.
Therefore, the QNM frequencies depend crucially on the

reflectivity of the photon sphere in one of the universes
forming the wormhole spacetime. However, the presence of
the square root in the metric elements prohibits us in order
to solve for the above reflectivity in an exact manner.
Rather, we are forced to certain approximation methods in
order to derive the QNM frequencies analytically. This is

achieved by approximating the potentials VðsÞ
l by the

Pöschl-Teller potential,

VPTðr�Þ ¼ V0sech2½α0ðr� − rmax� Þ�; ð44Þ

where, V0 and α0 are parameters, and rmax� corresponds to
the maxima of the potential associated with the photon
sphere in both the universes, on either side of the throat.

The wormhole potential VðsÞ
lðwormholeÞ, on the other hand,

corresponds to a double Pöschl-Teller potential. It is known
[26] that the Pöschl-Teller potential gives correct black hole
QNMs for large angular momentum, that is for l ≫ 1 and
gives only 2% relative error for l ¼ 2. This information
may be taken as the motivation for using it as a model for

VðsÞ
l . To ensure that the double Pöschl-Teller Potential

constructed using the prescription in Eq. (36), mimic the

true effective potential VðsÞ
lðwormholeÞ for the wormhole space-

time, we need to fix the parameters V0 and α0 in such a
way that

V0 ¼ VðsÞ
l ðrmax� Þ; ð45Þ

α20 ¼ −
1

2V0

d2VðsÞ
l

dr2�

����
r�¼rmax�

: ð46Þ

In the present scenario, we can calculate the values of these
parameters for the most simplest case of scalar perturbation
(that is for Vð0Þ

l ðrðr�ÞÞ), along with that of rmax� , by using
the following approximate analytic expressions (with
l ≠ 0):

rmax ≃
3M

2ð1þ pÞ
�
1 −

1

η2

�0B@1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32η2

9ðη2 − 1Þ2

s 1
CA; ð47Þ

V0 ≃
ð1þ pÞ2η2

27M2
þ 2ð1þ pÞ2

81M2
; ð48Þ

α20≃
�ð1þpÞyðrmaxÞ

9M

�
2 ð2η2Þ5
ðη2−1Þ4

1
η2

27
þ 2

81

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32η2

9ðη2−1Þ2
q

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32η2

9ðη2−1Þ2
q i

5
;

ð49Þ

where, η2 ≡ lð1þ 1Þ and in deriving these formulas we have
assumed p ≪ 1. The next task is to compute the reflectivity
of the Pöschl-Teller potential, which can be performed using
the standardmatching procedure in quantummechanics [88]
and the reflectivity takes the following form,

RPTðωÞ ¼ −
Γð1þ i ω

α0
ÞΓðξ − i ω

α0
ÞΓð1 − ξ − i ω

α0
Þ

Γð1 − i ω
α0
ÞΓðξÞΓð1 − ξÞ ;

ξ≡
1� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V0

α2
0

− 1
q
2

: ð50Þ

One can hence derive the QNM frequencies, using the
reflectivity derived above and following Eq. (42). A more
compact expression of theQNM frequencies can be obtained
in the region, where ðV0=α2Þ → 0, i.e., the strength of the
potential is small, but its characteristic length scale is large.
In this limit, one obtains [65]

ωn ≈
nπ
L

��
1 −

2

Lν

�
− i

2nπ
L2ν2

þ � � �
�

with ν≡ 2V0

α0
:

ð51Þ

Using these results in the present context, we can obtain
analytic expressions for the QNM frequencies, some of
which have been listed in Table I.
Note that the above only provides the QNM frequencies

under various sets of approximations and thus it is worth-
while to consider the exact QNM frequencies by solving
the perturbation equations for the master variables of scalar,
electromagnetic, and gravitational perturbations. This will
also enable us to understand the ringdown waveform at late

BISWAS, RAHMAN, and CHAKRABORTY PHYS. REV. D 106, 124003 (2022)

124003-10



times and possible emergence of echoes. This is what we
perform next.

B. Numerical methods to obtain the quasinormal modes
and the time-domain signal

In this section, we briefly describe the numerical
methods used to obtain the QNMs and the time-domain
signal from the wormhole. As discussed earlier, the QNMs
are the solutions of Eq. (37) with VðsÞ

lðwormholeÞ as the
potential and outgoing boundary conditions at both the
infinities, i.e.,

ψ ðsÞ
lmðwormholeÞðr�Þ ∼ e�iωr� ; r� → �∞: ð52Þ

In this paper, we make use of Eq. (42) to find the
quasinormal frequencies following the method prescribed
in Ref. [65]. One crucial part of the calculation is to obtain
the expression of the reflection coefficient RðsÞðωnÞ. Note
that, ω0 is a solution of Eq. (42) for RðsÞðω0Þ ¼ −1.
This basically means that an incoming wavewith frequency

ω ¼ ω0 is fully reflected back to infinity by the potential
barrier at the photon sphere. In other words, there is no
wave inside the cavity formed by the double bump
potential. Although the solution is unphysical, we can
use it to obtain an approximate solution of Eq. (42) around
ω ¼ ω0. Furthermore, we make use of the assumption that
the width of the potential barrier is much smaller than the
length of the cavity [65]. The assumption dictates that the
real part of quasinormal frequency is of the order ReðωnÞ ∼
ω0 þ nπ=L [see Eq. (42)]. This is because the width of
potential governs the value of the reflection coefficient. We
can see this more clearly from the analytical expression of
the QNM frequencies presented in Eq. (51). The width
of the Pöschl-Teller potential is governed by the parameter
α0; the width of the potential decreases with the increase of
the parameter α0. Hence, the assumption L ≫ 1=α0 leads to
the conclusion ReðωnÞ ∼ nπ=L. Thus, in order to get an
approximate value of the quasinormal frequencies, we
expand ωn and RðsÞðωnÞ around ω0 in the following
manner:

ωn ¼ ω0 þ
X∞
k¼1

Ck

Lk ;

RðsÞðωnÞ ¼ −1þ
X∞
k¼1

1

k!
dkRðsÞ

dωk

����
ω¼ω0

ðωn − ω0Þk: ð53Þ

Replacing Eq. (53) in Eq. (42), we find the first three
nonzero coefficients to be

C1 ¼ nπ; C2 ¼ −inπRðsÞ0 ðω0Þ;

C3 ¼ −i
�
−inπðRðsÞ0 ðω0ÞÞ þ

ðnπÞ2
2

ðRðsÞ00 ðω0Þ

þ ðRðsÞ0 ðω0ÞÞ2Þ
�
: ð54Þ

Using Eqs. (42) and (54), we obtain the expression for the
real part of the QNM frequencies as

ReðωnÞ ¼ Re

��
nπ
L

− i
nπ
L2

RðsÞ0 ðω0Þ
�
− i

�ðnπÞ2
2L3

ðRðsÞ00 ðω0Þ þ ðRðsÞ0 ðω0ÞÞ2Þ
��

¼ nπ
L

�
1þ 1

L
Im½RðsÞ0 ðω0Þ� þ

nπ
2L2

ðIm½RðsÞ00 ðω0Þ� þ Im½RðsÞ0 ðω0Þ�2Þ
�
: ð55Þ

In a similar manner, we can obtain the imaginary part of the QNM frequencies by taking the absolute value of Eq. (42),
which leads to the following expression

TABLE I. Approximate analytical computation of the QNM
frequencies, using the Pöschl-Teller potential, for the massless
scalar perturbation of the braneworld wormhole, with the brane-
world parameter p ¼ 10−10. These values must be contrasted
with the corresponding ones obtained through numerical methods
in the next section.

Mode n Mωn ðl ¼ 1Þ Mωn ðl ¼ 2Þ
1 0.01723 − 3.520:10−6i 0.01735 − 5.307:10−7i
2 0.03447 − 1.408:10−5i 0.03471 − 2.123:10−6i
3 0.05171 − 3.168:10−5i 0.05207 − 4.777:10−6

4 0.06894 − 5.633:10−5i 0.06943 − 8.492:10−6i
5 0.08618 − 8.801:10−5i 0.08678 − 1.327:10−5i
6 0.1034 − 1.267:10−4i 0.1041 − 1.911:10−5

7 0.1206 − 1.725:10−4i 0.1215 − 2.601:10−5i
8 0.1378 − 2.253:10−4i 0.1388 − 3.397:10−5i
9 0.1551 − 2.852:10−4i 0.1562 − 4.299:10−5

10 0.1723 − 3.520:10−4i 0.1735 − 5.307:10−5i
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ImðωnÞ ¼
1

L
log½RðsÞðωnÞ� ≈

jRðsÞðReðωnÞÞj − 1

L
: ð56Þ

In the last step, we make use of the fact jRðsÞðωnÞj ¼
1þOð1=LÞ. We obtain the reflection coefficient RðsÞðωÞ
by numerically solving Eq. (37), with the boundary
condition presented in Eq. (38), and taking into consid-
eration that there is no incoming wave from asymptotic
infinity. Replacing the expression for RðsÞðωÞ in Eqs. (55)
and (56), by the one derived using numerical methods, we
find the QNM frequencies of the wormhole spacetime.
Following this analysis, in Fig. 2, we depict the QNM
frequencies associated with the scalar perturbation for
l ¼ 0 (left panel) and l ¼ 1 (right panel), and for different
values of the wormhole parameter p. The lowest lying
QNM frequencies for the electromagnetic (l ¼ 1 modes)
and gravitational (l ¼ 2 modes) perturbations are shown in
Fig. 3. Note that, the computation of the gravitational
QNMs requires the knowledge of the background radion
like field. Here, we choose the parameters as Φ0 ¼ 1 and

Φ1 ¼ 10−5. The parameters are so chosen that the inter-
brane distance d ¼ logðΦðrÞ þ 1Þ=2 remains non-negative.
It is clear from the figures, that the imaginary parts of the
QNM frequencies are very small (∼10−4 − 10−9) and this
implies that, unlike black holes, the perturbations decay
very slowly. Combining this fact with the reflectivity of the
wormhole throat inevitably suggests the existence of
echoes. In order to see these echoes explicitly, we perform
the time-domain analysis below.
In order to study the time-domain profile for the QNM

ψ ðsÞ
lm , associated with the spin s perturbation of the worm-

hole spacetime, we employ the inverse Fourier transforma-
tion in Eq. (17). One example of such an inverse Fourier

transform is the following, −iωψ ðsÞ
lmðwormholeÞ → ∂tψ̂

ðsÞ
lm .

Using such transformations, we obtain the following wave-
like equation,

∂
2ψ̂ ðsÞ

lm

∂t2
−
∂
2ψ̂ ðsÞ

lm

∂r2�
þ VðsÞ

lðwormholeÞðrÞψ̂ ðsÞ
lm ¼ 0; ð57Þ

FIG. 2. The real and imaginary parts of the QNM frequencies, associated with scalar perturbation of the wormhole geometry have been
presented for l ¼ 0 (left panel) and l ¼ 1 (right panel) and for different values of the wormhole parameter p.

FIG. 3. The lowest-lying QNM frequencies of the wormhole under electromagnetic, the l ¼ 1modes (left panel) and gravitational, the
l ¼ 2 modes (right panel), perturbations have been presented. For the computation of the gravitational QNM frequencies, we consider
the following choices for the radion like field, Φ0 ¼ 1 and Φ1 ¼ 10−5.
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with the outgoing boundary conditions being implemented

as ∂r� ψ̂
ðsÞ
lm ¼ ∓∂tψ̂

ðsÞ
lm , as r� → �∞. Here, we choose the

initial conditions as [89]

ψ̂ ðsÞ
lm ð0; r�Þ ¼ 0; ∂tψ̂

ðsÞ
lm ð0; r�Þ ¼ e−ðr�−7Þ2 ; ð58Þ

where 7 is simply a convenient choice and it does not
affect the results in any manner. With these boundary
conditions, we solve Eq. (57) using the finite difference

method. The results of such an analysis have been
presented in Figs. 4–6, respectively. In Fig. 4, we show
the time-domain profile of the scalar perturbation, with
l ¼ 2 and for different values of the wormhole parameter
p. In Figs. 5 and 6, we show the same for electromag-
netic and gravitational perturbations. As evident from the
plots, the primary signal is a black-hole-like ringdown
waveform, followed by a train of ever-modulated pulses
known as the gravitational wave echoes [90,91].
Moreover, the time separation between two successive

FIG. 4. The time-domain profiles of the scalar perturbation at r ¼ 10M for l ¼ 2 and p ¼ 10−6 (left panel), p ¼ 10−8 (middle panel),
and p ¼ 10−10 (right panel), have been presented. Here, we consider a Gaussian initial profile ψ̂ lmð0; r�Þ ¼ 0, ∂tψ̂ lmð0; r�Þ ¼ e−ðr�−7Þ2

to solve the wavelike equation, presented in Eq. (57). As evident, the time-separation between two consecutive echo signals increases
with the decrease of the value of p.

FIG. 5. The time-domain profiles of the electromagnetic perturbation at r ¼ 10M for p ¼ 10−6 (left panel), p ¼ 10−8 (middle panel),
and p ¼ 10−10 (right panel), have been presented. We consider a Gaussian initial profile ψ̂ lmð0; r�Þ ¼ 0, ∂tψ̂ lmð0; r�Þ ¼ e−ðr�−7Þ2 ,
identical to that of scalar perturbation, to solve the wavelike equation in Eq. (57). Here also, with a decrease in p, the time gap between
echoes increases.

FIG. 6. The time-domain signals of the gravitational perturbation at r ¼ 10M, for l ¼ 2 and p ¼ 10−6 (left panel), p ¼ 10−8 (middle
panel), and p ¼ 10−10 (right panel), have been depicted. Here, we consider, Φ0 ¼ 1 and Φ1 ¼ 10−5, appearing in the profile for the
radion like fieldΦ and use the Gaussian initial conditions given in Eq. (58) to obtain the ringdown signal. The behavior of the echo time,
with the wormhole parameter p, continues to hold for gravitational perturbations as well.
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pulses, the so-called the echo time increases with the
decrease of p. The phenomena can be understood in
terms of the scattering of a Gaussian pulse off the double
bump potential described in Eq. (36). The potential forms
a cavity of length L in the tortoise coordinate. Now,
consider a Gaussian pulse near the photon sphere of the
wormhole (which coincides with the first bump in the
geometric-optics limit). The fraction of pulse which
scattered away to an asymptotic observer at infinity gives
rise to the primary signal. The fraction of the pulse which
leaks inside the cavity travels towards the second bump;
part of which gets reflected back towards the photon
sphere and gives rise to gravitational waves echo. The
time taken by the pulse to complete this to-and-fro
motion is given by techo ¼ 2L ≈ −16M lnðpÞ. This also
explains why the echo time increases with the decrease
of p. The reflection coefficient of the potential bump
determines the modulation of the echo signal.
We must mention another interesting point arising out

of the time-domain signal. It is to be observed that
irrespective of the nature of the perturbation, there are
two consecutive echoes appearing in the time domain
signal. It is not clear if this signal is due to the fact that
the wormhole is taken to be symmetric around the throat,
and hence there is a signal directly appearing from the
potential on the other side of the throat as well, in
addition to the one appearing due to reflection. In
addition, note that as p becomes smaller and smaller,
i.e., the throat length becomes larger, this pairing gradu-
ally disappears. This suggests that possibly because for
larger p, the throat length is small enough, such that the
potentials on both sides of the wormhole have overlap
and hence it can no longer be expressed as simply as
Eq. (36). Nonetheless, the origin of this unique signature
needs to be understood better and whether this is unique
for wormholes requires further study, which we postpone
for a future work.

VI. POSSIBLE GENERALIZATION TO ROTATING
WORMHOLE METRIC

In the previous sections, we have observed that the
imaginary parts of the QNM frequencies of the static
and spherically symmetric braneworld wormhole, are very
small. This is a signal of a potential instability, more so in

the rotating context, which involves an ergoregion. The
existence of negative energy states in the ergoregion can
amplify these signals considerably, as these signals decay
very slowly with time, owing to a very small imaginary
part. To observe, if that is indeed the scenario, we consider
generalizing the above static and spherically symmetric
solution to the context of rotating spacetime as well. This
can either be achieved by a Newman-Janis algorithm, as in
[92,93], or, by simple guesswork [65]. We will first present
the more conventional Newman-Janis approach.
For this purpose, we write the braneworld wormhole

metric in terms of advanced Eddington-Finkelstein coor-
dinates ðv; r; θ;ϕÞ, such that the metric in Eq. (9) reduces to

ds2 ¼ −
1

ðpþ 1Þ2
�
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �2

dv2

þ
�
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q 	
2dvdr

ðpþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q þ r2dΩ2: ð59Þ

The inverse metric components, resulting from the above
line element can be written using the null-tetrad decom-
position, gμν ¼ −lμnν − nμlν þmμm̄ν þmνm̄μ, where

lμ ¼ −
ðpþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q δμr ; ð60Þ

nμ ¼ δμv þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q �
ðpþ 1Þ δμr ; ð61Þ

mμ ¼ 1ffiffiffi
2

p
r

�
δμθ −

i
sin θ

δμϕ

�
: ð62Þ

Subsequently, we allow r to take complex values and
replace the term 2

r with ½ð1=rÞ þ ð1=r̄Þ�. This is the
conventional way to complexify the null-tetrads in the
Newman-Janis algorithm. Then we perform the complex
transformation r → rþ ia cos θ and v → vþ ia cos θ to
get the desired rotating metric written in the null coor-
dinates ðv; r; θ;ϕÞ, as

gadvμν ¼ 1

K2

0
BBBBBB@

−
�
1 − 2Mr

ρ2

	
K 0 −asin2θ

�
K − 1þ 2Mr

ρ2

	
K 0 0 −aKsin2θ
0 0 −ðKρÞ2 0

−asin2θ
�
K − 1þ 2Mr

ρ2

	
−aKsin2θ 0 ρ2ϒsin2θ

1
CCCCCCA; ð63Þ
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where, we have defined the quantities, K, ρ2, and ϒ for
notational convenience, having the following expressions,

K ¼
ðpþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mr

ρ2

q
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mr

ρ2

q ; ρ2 ¼ r2 þ a2 cos θ;

ϒ≡
�
a2sin2θ

ρ2

�
1 −

2Mr
ρ2

�
−
2Ka2sin2θ

ρ2
− K2

�
: ð64Þ

Note that for p ¼ 0 we obtain the standard Kerr metric
written in the advanced null coordinates. In order to
bring the above metric in the standard Boyer-Lindquist
coordinates, we must perform the following coordinate
transformation,

dv ¼ dtþ σðrÞdr; ð65Þ

dϕ ¼ dχ þ γðrÞdr; ð66Þ

where, the integrability demands both σ and γ to be functions
of the radial coordinate alone.We fix the form of functions σ
and γ, by requiring that the metric in the Boyer-Lindquist
coordinate system ðt; r; χ;ϕÞ must be symmetric under the
transformation χ → −χ and t → −t, which corresponds to
grt ¼ 0 and grχ ¼ 0. Using which, we obtain,

γ ¼ a
r2 þ a2 − 2Mr

≡ a
Δ
; ð67Þ

σ ¼ Kρ2

Δ
þ a2 sin2 θ

Δ
: ð68Þ

From Eq. (68) we see that σ explicitly depends on θ,
therefore Eq. (65) is not integrable to get a time-like
coordinate t. On the other hand, for p ¼ 0, K ¼ 1 and σ
becomes a function of the radial coordinate alone. This is
akin to the Kerr spacetime. Therefore, the conventional
Newman-Janis algorithm fails to produce any rotating
wormhole metric, starting from the static and spherically
symmetric braneworld metric in the Boyer-Lindquist-like
coordinate system.
This suggests looking for a rotating braneworld worm-

hole metric, from simple correspondence, as in [65].
Since for p ¼ 0 the metric in Eq. (9) reduces to that of
Schwarzschild form, this inspires us to propose the follow-
ing metric:

ds2 ¼ −
1

ðpþ 1Þ2
 
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Mr
ρ2

s !
2

dt2

þ Σ
ρ2

sin2 θðdϕ − ωdtÞ2 þ ρ2

Δ
dr2 þ ρ2dθ2; ð69Þ

where, Σ≡ ðr2 þ a2Þ2 − a2Δ sin2 θ and ω ¼ ð2Mar=ΣÞ.
One can easily check that for p ¼ 0 this metric reduces to

the Kerr metric and for a ¼ 0 it goes to Eq. (9). As a future
work, we may try to compute the energy-momentum
tensor supporting this wormhole solution and we may
investigate whether the above solution also allows for
nonexotic matter fields.
The above proposed rotating braneworld wormhole

metric has another shortcoming, the metric is not separable,
since both radial and θ coordinates appear under the square
root. Thus the geodesic equation or even the Klein-Gordon
equation cannot be expressed in a separable form. This may
lead to the interesting phenomenon of resonance islands
and would be something we wish to pursue in the future.

VII. DISCUSSION AND CONCLUDING REMARKS

Wormholes are fascinating objects, connecting two
distinct universes through a throat. The only problematic
feature being, exotic matter fields are necessary in order for
matter fields to travel through the throat between the two
universes. Presence of extra dimensions cures this problem,
since the higher spatial dimensions themselves mimic the
role of exotic matter, while the “actual” matter fields on the
four-dimensional spacetime satisfy all the energy condi-
tions. We have considered such a wormhole spacetime,
known as the braneworld wormhole, where the length
between the two branes acts as a real scalar field from the
viewpoint of a four-dimensional observer in the visible
brane and the existence of a wormhole is intimately tied
with the nontrivial behavior of this interbrane separation.
It will be interesting to also study the wormhole solutions
in the single brane scenario [68,69], and compare them
with the two-brane wormhole considered here. This will
provide the necessary connection between perturbative and
nonperturbative approaches in the context of the brane-
world scenario.
Motivated by the unique perspectives offered by this

static and spherically symmetric wormhole solution,
namely, it can mimic the ringdown signal of a black hole
and at the same time can behave as an exotic compact
object without exotic matter, we have studied scalar,
electromagnetic, and axial gravitational perturbations on
this wormhole geometry. In particular, we believe this is
one of the first attempts (for earlier attempts see [94,95]),
where the gravitational perturbation of a wormhole space-
time has been discussed in detail. The resulting effective
potential, governing the evolution of the gravitational
perturbation, differs considerably from the potentials asso-
ciated with the axial gravitational perturbation of black
holes. This is because, the wormhole solution is a non-
vacuum solution and one must take into account the
perturbations in the matter sector as well. Using these
effective potentials we provide the QNM frequencies for
some of the lowest lying modes of scalar, electromagnetic,
and gravitational perturbations, using both analytical and
numerical prescriptions. It turns out that the real parts of the
QNM frequencies derived using analytical methods match
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quite well with the numerical computation, but not so for
the imaginary parts. Moreover, the imaginary parts of the
QNM frequencies are very small, irrespective of the nature
of the perturbations and these become even smaller, as the
parameter p becomes smaller. Thus we may argue that a
larger value of p≳ 10−6 is necessary for the stability of the
wormhole spacetime. This result, on the other hand, can
possibly be verified in the future gravitational wave
detectors, since a larger p denotes a smaller length between
the potentials present on the two sides of the throat and
hence a smaller time delay. Thus the echoes will appear
much closer to the primary ringdown signal, which has a
much better chance of getting detected, if they exist, in the
near future. In addition, if p is too large ≳10−1, then the
echoes will almost coincide with the primary black-hole-
like ringdown spectrum, which can be ruled out given the
gravitational waves measurements so far. Thus it seems that
we have a conservative estimate of 10−1 ≳ p≳ 10−6 for the
extra dimensional effect on the four-dimensional brane,
through p (this is also supported by the recent black hole
shadow measurement [96]). In turn, this provides a bound
on the separation between the branes and hence the length
of the extra dimensions as, L ¼ lð1þ ln ½ln q�Þ, where,
0.2≳ q − 1≳ 0.2 × 10−6 and l is the characteristic length
scale associated with the bulk cosmological constant. Thus
our analysis can achieve two goals at the same time, first of
all, it predicts what to expect from the gravitational wave
signal, namely, very slowly decaying QNMs, leading to
echoes and the associated echo time delay directly tells us
about the nature of the extra dimensions. Moreover, we
have observed that all the echoes, at least for the range of p
values considered above, comes in pairs, this is possibly
another tell-tale signature of the existence of wormholes, if
such echoes are indeed detected in the future gravitational
wave detectors.
This work also has several future prospects to explore,

e.g., such small values of the imaginary parts of the QNM
frequencies can possibly signal instabilities, if some ampli-
fication mechanism is in place and this is precisely what
happens for almost every rotating wormhole solution. To
see if this is also the case here, it will be great to have a
rotating braneworld wormhole solution and to study its
stability under scalar, vector and tensor perturbations.
Moreover, in the present case of static and spherically
symmetric spacetime, we have not studied the case of polar
gravitational perturbation, which can be done in a future
project. Besides, the wormhole solution considered here
corresponds to the two-brane scenario, which is perturba-
tive in the bulk to brane curvature length scales. Thus,

following [97], it would be interesting to explore the
gravitational wave signals in the nonperturbative regime,
i.e., in the single brane scenario. In addition, one can work
out possible effects if a wormhole inspirals a black hole.
In particular, it will be interesting to ask about possible
nonzero values of the tidal love number, multipole
moments, and also effects due to tidal heating on the
wormhole spacetime. We hope to return to these issues in
the near future.
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APPENDIX A: NATURE OF THE
WORMHOLE THROAT

In this appendix, we will explicitly show that the
discontinuity in the metric elements due to the presence
of the square root term in the gtt component of the
wormhole metric in Eq. (6) or, in Eq. (9) does not require
an exotic surface stress tensor. For that purpose, we
introduce a new coordinate x, such that r − 2M ¼ x2.
Under this transformation, the wormhole metric reduces to

ds2 ¼ −
1

ðpþ 1Þ2
�
pþ jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mþ x2
p

�
2

dt2 þ 4ð2Mþ x2Þdx2

þ ð2Mþ x2Þ2ðdθ2 þ sin2 θdϕ2Þ: ðA1Þ

Let us now consider x ¼ ϵ hypersurface, where ϵ
is a constant, such that the limit ϵ → 0 yields the desired
surface. First of all, note that the normalized normal to the
x ¼ ϵ hypersurface corresponds to, nα ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ x2

p ∇αx,
which is spacelike and hence the x ¼ ϵ is the timelike
hypersurface. As evident, ∂xgtt involves derivative of jxj,
yielding θ-function, whose derivative would yield delta
function at x ¼ 0 and hence we need surface stress tensor
on that surface to account for such a behavior. Determining
the induced metric is straightforward and can be obtained
by first evaluating

hαβ ¼ gαβ − nαnβ ¼ diag:

�
−

1

ðpþ 1Þ2
�
pþ jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ x2
p

�
2

; 0; ð2M þ x2Þ2; ð2M þ x2Þ2sin2θ
�
; ðA2Þ
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whose projection on the x ¼ ϵ hypersurface gives the
induced metric. Given the induced metric, determination
of the components of the extrinsic curvature are straight-
forward and can be derived using the relation,
Kαβ ¼ hμα▽μnβ. Since nαKαβ ¼ 0, and Kαβ is symmetric,
the extrinsic curvature has only three nonzero components,
yielding,

Ktt ¼ −Γx
ttnx;

Γx
tt ¼

1

4ð2M þ x2Þðpþ 1Þ2
�
pþ jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ x2
p

�

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ x2
p x

jxj −
xjxj

ð2M þ x2Þ3=2 ; ðA3Þ

Kθθ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ x2

p
¼ Kϕϕ

sin2 θ
: ðA4Þ

Here, we have used the result, ðdjxj=dxÞ ¼ ðx=jxjÞ ¼
θðxÞ − θð−xÞ, where the θ-function is defined as, θðxÞ ¼ 1
for positive arguments and θðxÞ ¼ 0 for negative argu-
ments. The trace of the extrinsic curvature can also be
derived, either using the above components of the extrinsic
curvature, or, directly from the normal to the x ¼ ϵ
hypersurface,

K ¼ ∇αnα ¼
1ffiffiffiffiffiffi−gp ∂αð

ffiffiffiffiffiffi
−g

p
nαÞ: ðA5Þ

The components of the normal vector have already been
determined, while for the metric, its determinant becomes,

ffiffiffiffiffiffi
−g

p ¼ 2

ðpþ 1Þ ð2M þ x2Þ3=2
�
pþ jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ x2
p

�
sin θ;

ðA6Þ

and hence the extrinsic curvature turns out to be,

K ¼ x

ð2M þ x2Þ3=2 þ
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ x2

p 1�
pþ jxjffiffiffiffiffiffiffiffiffiffiffi

2Mþx2
p

�

×

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ x2
p x

jxj −
xjxj

ð2M þ x2Þ3=2
�
: ðA7Þ

Given the components of the extrinsic curvature and its
trace on the x ¼ ϵ hypersurface, one can compute the
following combinations,

K̃t
t ¼ Kt

t − httK ¼ x

ð2M þ x2Þ3=2 ; ðA8Þ

K̃θ
θ ¼ Kθ

θ − hθθK ¼ −
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ x2

p 1�
pþ jxjffiffiffiffiffiffiffiffiffiffiffi

2Mþx2
p

�

×

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ x2
p x

jxj −
xjxj

ð2M þ x2Þ3=2
�
¼ K̃ϕ

ϕ: ðA9Þ

From the above expressions it is easy to see that the jump of
the above quantities across the x ¼ 0 hypersurface, defin-
ing the components of the surface stress-energy tensor,
are given by,

8πS̃tt ≡ lim
x→0−

K̃t
t − lim

x→0þ
K̃t

t ¼ 0; ðA10Þ

8πS̃θθ ≡ lim
x→0−

K̃θ
θ − lim

x→0þ
K̃θ

θ ¼
1

2Mp
¼ 8πS̃ϕϕ: ðA11Þ

Therefore, it follows that the surface energy density σ ≡
−S̃tt ¼ 0 and the isotropic surface pressure, P≡ S̃θθ ¼
ð1=16πMpÞ. Therefore σ þ P > 0 at r ¼ 2M, and hence
all the energy conditions are identically satisfied at the
throat of the wormhole.

APPENDIX B: CONNECTING THE TORTOISE
COORDINATE OF THE WORMHOLE

SPACETIME WITH THAT OF SCHWARZSCHILD
BLACK HOLE

In this appendix, we will provide the connection between
the tortoise coordinate defined for the Schwarzschild black
hole with that for the braneworld wormhole. For this
purpose, we start with Eq. (9), for which the tortoise
coordinate r� will be defined through the following differ-
ential equation, ðdr=dr�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttgrr

p
, whose integration

yields,

r� ¼
Z ðpþ 1Þdr�

pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q ��
1 − 2M

r

	þ constant: ðB1Þ

Here, p ¼ ðα=λÞ is the parameter inherited from
extra spatial dimension. Imposing the boundary condition
r�ðr ¼ 2MÞ ¼ 0 at the wormhole throat, located at 2M,
we obtain [72],

r�
1þ p

¼ M
λ

�
2ðp − βÞð2p − βÞ

ðp2 − 1Þ½ðp − βÞ2 − 1� þ 4
ln β

p

ðp2 − 1Þ2 þ
ðp − 2Þ lnð1 − pþ βÞ

ðp − 1Þ2 −
ð2þ pÞ lnð1þ p − βÞ

ð1þ pÞ2
�

ðB2Þ
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¼ r − 2M
λð1 − p2Þ −

pr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
λð1 − p2Þ þ 2M

λ

ln
�

r
2M − 1

	
ð1 − p2Þ2 þ 4M

λ

2
64ln

�
1þ pffiffiffiffiffiffiffiffi

1−2M
r

p
	
− lnp

ð1 − p2Þ2

3
75þM

λ

p3 − 3p
ð1 − p2Þ2 ln

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
1
CA: ðB3Þ

Since, the braneworld wormhole spacetime reduces to that of a Schwarzschild black hole in the limit α → 0 and λ → 1, we
are interested in the parameter space α ≳ 0 and λ≲ 1, i.e., for nearly Schwarzschild scenario. In this case, it is possible to
approximate the above expression for the tortoise coordinate as,

r�
1þ p

≈
r − 2M

1 − ð1 − λÞ −
pr

1 − ð1 − λÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
þ 2M
1 − ð1 − λÞ ln

�
r
2M

− 1

�

þ 4M
1 − ð1 − λÞ

2
64ln

0
B@1þ pffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r

q
1
CA − lnp

3
75þ M

1 − ð1 − λÞ ð−3pÞ ln

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
1
CA: ðB4Þ

Note that we have expressed the term involving λ in the denominator, as λ ¼ 1 − ð1 − λÞ, so that we can use the
approximated result, ½1 − ð1 − λÞ�−1 ≈ 1þ ð1 − λÞ, since (1 − λ) is a small quantity. Using this approximation and
neglecting all the second order infinitesimals like, pð1 − λÞ, ð1 − λÞ2, and p2, we finally obtain,

r� ¼ ð1þ pÞ
�
rþ 2M ln

�
r
2M

− 1

��
þ 2Mð1þ pÞ½−1 − 2 lnp� þ ð1 − λÞ

�
ðr − 2MÞ þ 2M ln

�
r
2M

− 1

��

þ p

2
64−r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2M
r

r
þ 4Mffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r

q − 3M ln

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q
1
CA
3
75 − 4Mð1 − λÞ lnp: ðB5Þ

Introducing the tortoise coordinate for the Schwarzschild black hole spacetime as, rBH� ≡ rþ 2M ln ½ðr=2MÞ − 1�, we will
arrive at Eq. (12), used in the main text.
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