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We develop a method for implementing a proposal on utilizing knowledge of neutron star (NS) equation
of state (EoS) for inferring the Hubble constant from a population of binary neutron star (BNS) mergers.
This method is useful in exploiting BNSs as standard sirens when their redshifts are not available.
Gravitational wave (GW) signals from compact object binaries provide a direct measurement of
their luminosity distances, but not their redshifts. Unlike in the past, here we employ a realistic EoS
parametrization in a Bayesian framework to simultaneously measure the Hubble constant and refine the
constraints on the EoS parameters. The uncertainty in the redshift depends on the uncertainties in the EoS
and the mass parameters estimated from GW data. Combining the inferred BNS redshifts with the
corresponding luminosity distances, one constructs a redshift-distance relation and deduces the Hubble
constant from it. Here, we show that in the Cosmic Explorer era, one can measure the Hubble constant
to a precision of ≲5% (with a 90% credible interval) with a realistic distribution of a thousand BNSs,
while allowing for uncertainties in their EoS parameters. Such a measurement can potentially resolve the
current tension in the measurements of the Hubble constant from the early- and late-time universe. The
methodology implemented in this work demonstrates a comprehensive prescription for inferring the NS
EoS and the Hubble constant by simultaneously combining GW observations from merging NSs, while
employing a simple population model for NS masses and keeping the merger rate of NSs constant in
redshift. This method can be immediately extended to incorporate merger rate, population properties, and
additional cosmological parameters.
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I. INTRODUCTION

Gravitational wave (GW) observations of compact
binary coalescences (CBC) have opened a new era of
precision cosmology. One of the key goals is to measure the
Hubble constant (denoted by H0), the current expansion
rate of the Universe. GW allows the direct measurement
of luminosity distance. Additionally, if the redshifts of
GW sources are available from any other observations,
the Hubble constant can be estimated from the distance-
redshift relation. In the absence of an electromagnetic (EM)
counterpart, the Hubble constant can be measured using
statistical correlation [1–8] of distance with an ensemble of
potential host galaxies within the GW event localization
uncertainty region. The first ever multimessenger detection
of binary neutron star (BNS) merger GW170817 [9] by the
Advanced LIGO [10] and Advanced Virgo detectors [11],
with unique identification of host galaxy NGC 4993, is the

first standard siren used for the measurement of the Hubble
constant H0 ¼ 70þ12

−8 km s−1Mpc−1 [12]. However, it is
not clear what fraction of BNSs observed in GWs may have
EM counterparts that yield a precise redshift measurement,
especially at large distances. In this work, we make the
conservative assumption that this fraction is small [12,13].
Apart from bright sirens, like GW170817, H0 can also

be estimated from dark sirens, which lack confirmed
EM counterparts. The LIGO-Virgo-KAGRA collaboration
recently published the updated measurements of the
Hubble constant [14] using 47 GW events from GWTC-3
[15] to be 68þ12

−8 km s−1 Mpc−1 and 68þ8
−6 km s−1Mpc−1

following two different methods, as described in Refs. [16]
and [5], respectively. These recent measurements are
clearly an improvement compared to the previous estimate
of H0 ¼ 69þ16

−8 km s−1Mpc−1—from observations during
the O1-O2 runs [17]. Unsurprisingly, all of these GW
constraints on H0 have significant contribution from the
observations of GW170817 and its EM counterpart. More
instances of independent measurements of luminosity*tathag@iucaa.in
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distance and redshift from a wide distribution of sources
would be useful toward a resolution of the current tension
in H0 measurements from the early and late-time universe
[18]. To wit, there is a 4.4σ discrepancy between the
values of H0 as measured from the cosmic micro-
wave background (67.36� 0.54 km s−1 Mpc−1 [19]) and
observations based on the cosmic distance ladder compris-
ing Cepheid variable stars and supernovae type Ia
(73.04� 1.04 km s−1Mpc−1 [20]).
Messenger and Read [21] proposed an alternative idea of

determining the redshift of a binary neutron star (BNS)
merger in a GW observation by using prior knowledge of
the neutron star (NS) equation of state (EoS). The phase
ΨðfÞ of the frequency domain GW waveform, h̃ðfÞ ¼
AðfÞe−iΨðfÞ (where AðfÞ is the amplitude of GWwaveform
at frequency f), has two components: one of them is the
standard post-Newtonian point-particle frequency domain
phase ΨPPðfÞ and the other is the phase component
ΨtidalðfÞ due to the tidal deformability of the neutron star,
i.e., ΨðfÞ ¼ ΨPPðfÞ þ ΨtidalðfÞ. ΨPPðfÞ depends on the
redshifted chirp massMz

c ¼ ð1þ zÞMc and the redshifted
frequency f ¼ fsource=ð1þ zÞ in such a way that the
redshift factor (1þ z) cancels out of it, leaving it redshift
invariant [21]. Here, Mc and fsource are the source-frame
chirp mass and source-frame GW frequency, respectively.
However, Ψtidal contains NS tidal deformability terms [22],
which depend on the source-frame (i.e., unredshifted)
masses. The degeneracy between the mass parameters
and the redshift can be broken if one knows the EoS of
NSs [21] since its precise knowledge can be used to
determine the tidal deformability uniquely for a given
source-frame mass of NS. This technique is especially
useful when the BNS is not accompanied by an electro-
magnetic counterpart to infer redshift directly. This method
neither depends on the observation of EM counterpart nor
the identification of potential host galaxies for statistical
cross-correlation methods.
Recent progress was reported by Chatterjee et al. [23] by

building on the basic concept proposed in Ref. [21]. Their
key idea was to use binary Love relations [24] to capture
information about NS EoS in a single tidal parameter and
use it to constrain the Hubble constant. In this work, we too
follow Ref. [21] but use a hybrid nuclear plus piecewise-
polytrope (PP) parametrization to model the NS EoS
[25,26]. Specifically, at low densities in the star the nuclear
empirical parameters are used to construct the EoS model.
These nuclear empirical parameters (e.g., nuclear sym-
metry energy) can be constrained from laboratory experi-
ments and astrophysical observation of neutron stars. The
NS EoS, however, is less well understood at densities that
are about a couple of times the nuclear saturation density or
higher. In those regions, we use the three-piece PP model.
We will briefly discuss the EoS model in the next section.
The structure of the paper is as follows. Section II

introduces the construction of the EoS model. In Sec. III,

we describe the Bayesian framework to infer the Hubble
constant. In Secs. IV and V, we discuss the required
simulations and the results, respectively. For our simula-
tions, we take the ΛCDM cosmology with Ωm ¼ 0.3 and
H0 ¼ 70 km s−1Mpc−1 as the true cosmology throughout.

II. EOS MODEL: HYBRIDNUCLEAR+PP

In this section, we briefly introduce hybrid nuclear þ PP
EoS parametrization, which has been used in the past
[25,26] to put joint GW-electromagnetic constraints on the
properties of neutron stars. This hybrid EoS parametriza-
tion is also used to investigate the nature of the “mass-gap”
object in GW190814 [27]. Since the crust has minimal
impact [28,29] on the macroscopic properties of NSs such
mass, radius, tidal deformability, etc., standard BPS EoS
[30] is used to model the crust under this parametrization.
Then this fixed crust is joined with the core EoS in a
thermodynamically consistent fashion described in
Ref. [31]. The core EoS is divided into two parts:
(1) EoS around the nuclear saturation density (ρ0) is

well described via the parabolic expansion of energy
per nucleon

eðρ; δÞ ≈ e0ðρÞ þ esymðρÞδ2; ð1Þ
where e0ðρÞ is the energy of symmetric nuclear
matter for which the number of protons is equal to
the number of neutrons, esym is the energy of the
asymmetric nuclear matter (commonly referred as
“symmetry energy” in literature), and δ≡ ρp−ρn

ρpþρn

(where ρn, ρp being the number density of neutron
and proton respectively) is the measure of asymme-
try in the number density of neutrons and protons.
Around ρ0, these two energies can be further
expanded in a Taylor series:

e0ðρÞ ¼ e0ðρ0Þ þ
K0

2
χ2 þ…; ð2Þ

esymðρÞ ¼ esymðρ0Þ þ Lχ þ Ksym

2
χ2…; ð3Þ

where χ ≡ ðρ − ρ0Þ=3ρ0 ≪ 1. We truncate the Tay-
lor expansion up to the second order in χ as we use
this expansion only up to 1.25ρ0. The lowest order
parameters are experimentally well constrained and
therefore, we fix them at their median values such as
e0ðρ0Þ ¼ −15.9 MeV, and ρ0 ¼ 0.16 fm−3. There-
fore, the free parameters of this nuclear-physics
informed model are the curvature of symmetric
matter K0, nuclear symmetry energy esym, slope
L, and curvature of symmetric energy Ksym. A
survey based on 53 experimental results performed
in 2016 [32] found of values of esymðρ0Þ ¼ 31.7�
3.2 MeV and L ¼ 58.7� 28.1 MeV. Using these
values as a prior, a Bayesian analysis performed in
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Ref. [25] combining multiple astrophysical obser-
vations (GWs and x-rays) has already provided a
better constraint on these quantities: esymðρ0Þ ¼
32.0þ3.05

−3.01 MeV and L ¼ 61.0þ17.7
−16.0 MeV.

(2) At higher densities, i.e., above 1.25ρ0, the empirical
parametrization starts to break down. Therefore,
following Ref. [33], at such densities we use a
three-piece piecewise-polytrope parametrization
(Γ1, Γ2, and Γ3 being the polytropic indices), divided
by the fixed transition densities at 1014.7 gm=cm3

and 1015 gm=cm3 respectively.
Instead of using all the EoS parameters explicitly, we

will generally use E¼fK0;esym;L;Ksym;Γ1;Γ2;Γ3g. In our
work, we consider this particular EoS model to constrain
the cosmological parameters. In future, different choices of
EoS parametrization can be explored. One such example
is the newly developed EoS-insensitive approach [34] that
has considerably less systematic error compared to some
other EOS-insensitive approaches [24,35] available in the
literature.

III. METHODOLOGY

Gravitational-wave observations of the leading binary
phase terms, in ΨPP, provide mass estimation in the

detector-frame; i.e., the source-frame mass m is observed
as redshifted mass, defined as mz ¼ mð1þ zÞ, where z is
the redshift of the source. Contrastingly, tidal deformability
measurements of a BNS merger in GW observations
depend on the source-frame mass pair. Since the detec-
tor-frame masses are well estimated from post-Newtonian
(PN) terms at lower orders, tidal deformability can provide
the redshift information if we know the NS EoS [21]. The
redshift of the BNS, so obtained, can be combined with its
luminosity distance to infer the Hubble constant. However,
it has proved quite challenging to measure the NS EoS very
precisely. While it is fair to expect that it will be better
constrained by the time of the third generation GW
detectors, e.g., Cosmic Explorer (CE) [36] and Einstein
Telescope (ET) [37], nevertheless, there will always be
some uncertainty present in the values of the EoS param-
eters even in that era [36,37]. We outline a Bayesian
framework for inferring the cosmological parameters from
GW observations of BNSs with (imprecise) knowledge of
NS EoS. We allow for realistic uncertainties in the values
of the EoS parameters and assign corresponding priors to
them. These priors are then utilized to infer H0 and
simultaneously refine the constraints on the NS EoS
parameters. Indeed, the joint posterior of the Hubble
constant and the NS EoS parameters is given by

pðH0;E j fxGWi
gÞ ∝

YNdet

i¼1

πðH0Þ
βðH0Þ

πðEÞ
ZZZ

pðxGWi
j mz

1;iðm1;i; ziÞ; mz
2;iðm2;i; ziÞ;Λ1;iðm1;i;EÞ;Λ2;iðm2;i;EÞ; dL;iðzi; H0ÞÞ

× πðm1;i; m2;i j EÞπðziÞdzidm1;idm2;i; ð4Þ

where, the subscript i denotes the ith GW event. In Eq. (4),
xGW is the GW data, mz

1;2 are the detector-frame (redshifted)
masses of a BNS corresponding to the source-frame masses
m1;2 at redshift z, Λ1;2 are the tidal deformabilities, and dL is
the luminosity of the source (which is related to its z, via the
Hubble constant H0). Here, πðH0Þ, πðEÞ, and πðzÞ are the
prior distributions over the Hubble constant, EoS parameters
and redshift, respectively. πðm1; m2jEÞ is the prior distribu-
tion over the source-frame component masses determined
from the NS population model and the choice of EoS
parameters E. βðH0Þ is a normalization factor, which ensures
that the GW likelihood factor pðxGWjmz

1; m
z
2;Λ1;Λ2; dLÞ

integrated over all observable sources is unity.
In our work, the mass distribution of NS is chosen to be

uniform as follows:

ppopðmjEÞ ¼
� 1

mmaxðEÞ−mmin
; iff mmin ≤ m ≤ mmax

0; otherwise;
ð5Þ

wheremmin is the minimummass andmmax is the maximum
mass for the particular EoS parameters E. In this work, we

fix mmin ¼ 1M⊙, which is consistent with the predicted
lower bound of NS mass from plausible supernova
formation channels [38,39] and standard search of BNS
merger greater than 1M⊙ by LIGO-Virgo [40]. Specifically,
in our population model the BNS mass distribution is
taken as:

πðm1; m2jEÞ ∝ ppopðm1jEÞppopðm2jEÞ; ð6Þ

subject to the constraint m1 ≥ m2.
In Eq. (4), the prior over the redshift of the source is

represented by πðzÞ, taken to be of the form

πðzÞ ∝ dVc

dz
RðzÞ
1þ z

: ð7Þ

Here, VcðzÞ is the comoving volume as a function of
redshift, and RðzÞ is the merger-rate density in the detector-
frame. The factor ð1þ zÞ−1 above converts the merger rate
from the source-frame time to the detector-frame time. In
general, the merger rate density may be a function of
redshift. In our work, we take RðzÞ ¼ constant, i.e., the
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BNS distribution is considered to be uniform in comoving
volume and source-frame time throughout this work. The
prior over the Hubble constant πðH0Þ is chosen to be
uniform. The prior ranges of all the relevant parameters are
mentioned in Sec. IV.
In our approach, we simultaneously estimate the EoS

parameters and H0 using a two-step Bayesian analysis.
In the first step, we directly measure, in the detector frame,
source parameters likemz

1;2, dL, Λ1;2 and inclination angle ι
from the GW signals of individual BNSs using some prior
πðmz

1; m
z
2;Λ1;Λ2; dL; ιÞ over them. This step results in

the construction of posteriors on those parameters. A
detailed discussion on this aspect is presented in Sec. IV.
In the second step, these posterior distributions
pðmz

1; m
z
2;Λ1;Λ2; dLjxGWÞ of a single GW event, margin-

alized over the complementary set of signal parameters (ι in
our work), are utilized to construct the GW likelihood
factor pðxGWjmz

1; m
z
2;Λ1;Λ2; dLÞ by dividing out the prior

πðmz
1; m

z
2;Λ1;Λ2; dLÞ using the Bayes theorem:

pðmz
1;m

z
2;Λ1;Λ2;dLjxGWÞ∝ pðxGWjmz

1;m
z
2;Λ1;Λ2;dLÞ

×πðmz
1;m

z
2;Λ1;Λ2;dLÞ; ð8Þ

The semimarginalized GW likelihood term is now used to
produce the joint posterior of the EoS parameters andH0 by
employing Eq. (4). Finally, we combine the posteriors of
EoS parameters andH0 of individual BNS events hierarchi-
cally, as elaborated in Appendix A.
In Eq. (4), the normalization term βðH0Þ encodes the

selection effect [2,41]; it is defined as:

βðH0Þ ¼
Z

pdetðz;H0ÞπðzÞdz; ð9Þ

where pdet denotes the detection probability of any GW
event. In Appendix B, we describe how pdet is computed in
our simulations.
When quantifying the selection effect, we should ideally

consider the effect of the uncertainty in the NS EoS
parameters and the population of BNSs since pdet depends
on the properties of the GW source population. The
uncertainty in EoS parameters also affects the mass dis-
tribution, as maximum mass depends on the values of
EoS parameters. The effect of tidal deformability on the
amplitude of the gravitational wave signal is small [42,43].
So, we have fixed the EoS parameters at the injection values
and, hence, have also fixed the maximummass (≊2.27M⊙)
to correspond to the injected EoS parameters. For simplic-
ity, we assume that the population properties are known
exactly. However, it will be a good exercise to include the
uncertainties in the properties of the GW source population
in future work [44]. We prepare the mock GW catalog
assuming that the masses of BNSs follow a uniform
distribution in the source frame such that m1 ≥ m2 [see,
Eq. (6)]. It is clear from Eq. (5) that the population of BNS

depends on the minimum and maximum mass of BNS. The
minimum and maximum mass are fixed in the simulation.
However, the maximum mass is determined by the EoS of
NS. Since we do not account for the uncertainty of EoS
parameters for estimating the selection effect, the maxi-
mum mass is also fixed (to the value mentioned above). So,
the population of BNS does not affect the selection effect.
We assumed flat ΛCDM cosmology with H0 as a free

parameter keeping Ωm fixed at 0.3, while performing our
Bayesian formulation, Eq. (4). In flat ΛCDM universe, the
luminosity distance dL is related to redshift z as

dLðzÞ ¼
cð1þ zÞ

H0

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þ ð1 −ΩmÞ

p : ð10Þ

In the 3rd generation detector era, it is expected to estimate
Ωm along with H0, as the 3rd generation detectors will
probe the high redshift universe, resulting in the detection
of a much large number of GW sources [36,37]. It is also
straightforward to incorporate Ωm as an unknown param-
eter in the Bayesian framework [Eq. (4)]. Since here we
consider 50 GW sources, between 100 Mpc and 8 Gpc,
allowing Ωm to vary would have a negligible impact on H0

estimation with these few events [16].
We have used PyMultinest

1 [45], python based package
based on the nested sampling algorithm Multinest to
perform the parameter estimation within the Bayesian
framework as mentioned in Eq. (4). During this
Bayesian analysis, we use the multivariate Gaussian kernel
density estimator from STATSMODELS

2 [46] to calculate the
GW likelihood term.

IV. SIMULATION

We test the method described in Sec. III on several
simulated GW events. We first created a mock GW catalog
by injecting the sources uniformly over the sky. The
redshift distribution of the sources follows Eq. (7), with
RðzÞ ¼ constant and dL between 100 Mpc and 8 Gpc. The
masses of the BNS mergers follow uniform distribution in
the source frame, as mentioned in Eq. (6), where mmin ¼
1M⊙ and mmax ¼ 2.27M⊙. However, the uniform prior in
source-frame mass is not a realistic mass distribution [47].
We consider a uniform distribution over the source-frame
mass for simplicity. However, it will be worth applying this
methodology in the future to different population models of
BNS to understand the effect of the population on the
simultaneous measurement of the Hubble constant and the
EoS parameters. (We briefly discuss the importance of
employing realistic population models and merger rates in
Sec. VI.) We consider flat ΛCDM cosmology with Ωm ¼
0.3 andH0 ¼ 70 km s−1Mpc−1 to determine the redshift of

1https://johannesbuchner.github.io/PyMultinest/.
2https://www.statsmodels.org/.
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the GW sources from their luminosity distances. We ignore
the spins of neutron stars (set to 0) in the present work.
Tidal deformability of a neutron star depends on its mass,

given a particular EoS. The injected values of the EoS
parameters are K0 ¼ 240 MeV, esym ¼ 31.7 MeV, L ¼
58.7 MeV and Ksym ¼ −100 MeV, Γ1 ¼ 2.5, Γ2 ¼ 3.5,
and Γ3 ¼ 3.0. In Fig. 1, we show the injected EoS, which is
consistent with the constraints on the mass-radius meas-
urement from PSR J0030þ 0451 [48,49] and PSR
J0740þ 6620 [50,51] by the NICER collaboration; and
GW170817 by LIGO-Virgo observations [52]. We consider
CE as the detector in our simulation. We inject a synthetic
BNS signal of 128 sec duration in stationary Gaussian
noise with CE sensitivity3 [53]. Though CE will observe a
much longer signal, the tidal effect, which begins at 5PN, is
more pronounced closer to the merger [21,23]. We consider
the same waveform model IMRPhenomPv2_NRTidal [54] for
both signal injection and recovery. We used BILBY_PIPE,4 a
package for automating the process of running BILBY

5 [55]
for gravitational wave parameter estimation in computing
clusters, to estimate the posterior of the parameters of
BNS signals. We performed parameter estimation over the
mass pair, tidal deformabilities, luminosity distance and
inclination angle. For mass estimation, we consider uni-
form prior over observed chirp-mass (in the rangeMz

c;inj �
0.1M⊙) and mass-ratio q ¼ m2=m1 ∈ ½0.2; 1�. We use a
uniform prior in tidal deformabilities Λ1;2 ∈ ½0; 5000�.
For estimating the luminosity distance, we choose the
prior in the comoving distance to be uniform and between
10Mpc and 2dL;inj. We consider isotropic prior over to infer
the inclination angle. We fixed the remaining parameters
(namely, sky-position, dimensionless spin magnitudes, tilt
angle between their spins, orbital angular momentum, spin
vectors describing the azimuthal angle separating the spin
vectors, precession angle, polarization angle, coalescence

time and its orbital phase at coalescence) at the injected
values, although one should ideally use broad enough
priors for all the source parameters.
In particular, fixing GWamplitude parameters affects the

distance estimation and, hence, H0. Computational con-
straints restricted us in carrying out our analysis using only
one detector (CE). Since it is not possible to measure the
GW source’s sky-position in such a scenario, we took it as
known when estimating its other parameters. This is a
limitation of this work that should be improved in the
future. In a realistic scenario, employing multiple detectors
can help in mitigating the luminosity distance-inclination
angle degeneracy significantly. So, it would be an interest-
ing follow-up to this work to consider a more realistic
situation with multiple detectors (for example, CE and ET,
in the 3G era), allowing GW source parameters (especially
GW amplitude parameters) for future investigation of the
effects on the measurability of the EoS parameters and H0.
Now, the parameters of the synthetic GW catalog have

been used to determine H0 and the EoS parameters, as
discussed in Sec. III. We consider sufficiently large uniform
prior over redshift to cover the entire luminosity distance
posterior obtained from GW observation for any value of
H0 within our prior range between 10 km s−1Mpc−1 and
300 km s−1 Mpc−1. We have already mentioned that we
need to assume some uncertainty in the EoS parameters.
The projected uncertainty in R1.4 measurement is ∼1 km
after the fifth observing (O5) run of LIGO-Virgo-KAGRA
network [56]. The constraint on the NS radius is expected
to be better than 0.1 km from BNS observations by the time
of CE [36]. So, we consider three sets of uncertainties in
the EoS parameters, mentioned in Table I along with the
injected values of the EoS parameters. The mass-radius plot
for all the prior EoSs, shown in Fig. 1 gives a similar
qualitative measurement about the uncertainties in the EoS
parameters we are considering in our work. Now, the
posterior of Hubble constant along with the EoS parameters
have been measured using the redshift information and
luminosity distance of GW sources using the Bayesian
framework as described above.

FIG. 1. 90% credible interval of mass-radius priors are shown corresponding to three different choices of EoS prior distributions, as
described in Table I. The solid black line corresponds to the injected EoS.

3https://dcc.ligo.org/LIGO-T1500293/public.
4https://pypi.org/project/bilby-pipe/.
5https://lscsoft.docs.ligo.org/bilby/.
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TABLE I. Different choices of uncertainties in EoS parameters that we use to establish the effectiveness of
our method, as described in Sec. II. Here N ðμ; σÞ refers to the Gaussian distribution with mean μ and standard
deviation σ.

EoS parameters Injected Prior 1 Prior 2 Prior 3

K0 (MeV) 240 N ð240; 2.5Þ N ð240; 20Þ N ð240; 30Þ
esym (MeV) 31.7 N ð31.7; 0.5Þ N ð31.7; 2.5Þ N ð31.7; 3.2Þ
L (MeV) 58.7 N ð58.7; 1.5Þ N ð58.7; 5Þ N ð58.7; 28.1Þ
Ksym (MeV) −100 N ð−100; 2.5Þ N ð−100; 50Þ N ð−100; 100Þ
Γ1 2.5 N ð2.5; 0.05Þ N ð2.5; 0.2Þ N ð2.5; 0.5Þ
Γ2 3.5 N ð3.5; 0.05Þ N ð3.5; 0.2Þ N ð3.5; 0.5Þ
Γ3 3.0 N ð3.0; 0.5Þ N ð3.0; 2.0Þ N ð3.0; 2.5Þ

FIG. 2. Constraint on the EoS parameters and H0 by combining 50 GW events as detected by CE using EoS Prior 1. The black lines
show the injected values. The median and 1σ credible intervals are also shown in the respective marginalized one-dimensional posterior.
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V. RESULTS

We apply the method described in Sec. III to 50 GW
events to test its efficacy in simultaneously estimating the
EoS parameters and the Hubble constant. We consider a
simulated GW signal as detected if its network SNR turns
out to be equal to or greater than 8. The individual
posteriors of the EoS parameters and the Hubble constant
may not always be peaked at the true values; some
posteriors may be multimodal as well. In particular, there
exists a degeneracy in the measurability of the luminosity
distance and the inclination angle of binaries in GWs
[57,58]; e.g., a source will appear fainter not just when it is
farther but also when its orbital plane is more tilted relative
to the line of sight (see Ref. [2]). Since the orbit orientations

in a population are random, the expectation is that with an
increasing number of observations, this method of combin-
ing individual source parameter posteriors will still succeed
in constraining H0 and the EoS parameters with increasing
precision since every BNS signal is characterized by the
same H0 and the EoS parameters.
The combined posteriors of the inferred EoS parameters

and H0, together with their correlation, are shown in
Figs. 2, 3, and 4 corresponding to Priors 1, 2 and 3,
respectively. The different choices of priors in the EoS
parameters (also discussed in Sec. IV) are mentioned in
Table I. We summarize the 90% credible interval of
the inferred EoS parameters and Hubble constant in
Table II. We also mention some other inferred parameters
from the NS EoS posteriors like R1.4M⊙

(radius of neutron

FIG. 3. Same as in Fig. 2 but now using EoS Prior 2.
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star at 1.4M⊙), R2M⊙
, Λ1.4M⊙

(tidal deformability of
neutron star at 1.4M⊙) and Λ2M⊙

in Table II.
From the joint posterior of H0 and the EoS parameters

(see Fig. 2, 3 and 4 and Table II), it is evident that the
uncertainty in the measurement of the Hubble constants
using EoS Priors 1 and 2 are not significantly different (see
Fig. 6). In comparison, the posterior of the Hubble constant
estimated using EoS Prior 3 is slightly broad. However, the
uncertainties in the posterior of the EoS parameters are quite
different: To wit, a tighter prior of the EoS parameters leads
to narrower EoS parameter posteriors. The mass-radius plots
(see Fig. 5 and Table II for the median values with the 90%
credible intervals of EoS parameters) corresponding to three
EoS posteriors also reveal that the constraints of the EoS
parameters are significantly different.

We have also studied the (fractional) uncertainty in
inferring the redshift and the Hubble constant with
BNSs (with source-frame masses ð1.4þ 1.26ÞM⊙) as
functions of the luminosity distances. The results are shown
in Fig. 7. How precisely one is able to measure the redshift
depends on the choice of EoS prior (see the top panel
of Fig. 7). The errors in the measured distances of GW
events are also expected to increase with the distances of
the sources, as shown in the bottom panel of Fig. 7. In
comparison, the large errors in the inferred distances of far
away sources, as opposed to the nearer sources, dominate
the errors in their redshift estimates. Consequently, the
uncertainty in the Hubble constant for GW events from
large distances is not highly reliant on the uncertainties in
EoS parameters (see the bottom panel of Fig. 7). So, the

FIG. 4. Same as in Fig. 2 but now using EoS Prior 3.
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combined estimation of the Hubble constant in our study,
considering all the events, is weakly dependent on the EoS
parameters’ uncertainty, as the BNS distribution (uniform
in comoving volume and source-frame time) in this work is
dominated by distant sources. We can also expect some
improvement in the mitigation of the well-known distance-
inclination degeneracy with the development of the higher-
mode waveform models for BNSs [59], thereby aiding a
more precise estimation of the Hubble constant.
Chatterjee et al. [23] mentioned that ΔH0=H0 ∼ 2% for

Ndet ¼ 103 detected GW events observed by CE. They
assumed ∼ 1=

ffiffiffiffiffiffiffiffi
Ndet

p
scaling for estimating the projected

uncertainty measurement in the Hubble constant during CE
era. We find the 90% credible interval error ΔH0=H0 ≲
15–22% (see Fig. 6), depending on the prior EoS, while

inferring the Hubble constant from 50 BNS observations.
We also estimate the uncertainty with a similar scaling
∼ 1=

ffiffiffiffiffiffiffiffi
Ndet

p
in the measurement of the Hubble constant

ΔH0=H0 ≲ 3–5% with Ndet ¼ 103 events, depending on
the uncertainties in the EoS parameters. The projected
uncertainty in H0 measurement is slightly greater than the
uncertainty estimation of H0, mentioned by Chatterjee
et al. [23]. It is expected because we consider uncertainties
in the EoS parameters, unlike Chatterjee et al. [23].
However, improvement in the uncertainty due to luminosity
distance-inclination angle degeneracy should have a more
significant effect in constraining H0 as discussed above.
Recently, PREX-II collaboration has reported [60]

the value of neutron skin thickness of 208Pb to be,
R208
skin ¼ 0.29� 0.07 fm (mean and 1σ standard deviation).

TABLE II. Median and 90% credible interval of the EoS Parameters, R1.4, R2, Λ1.4, Λ2, Mmax, skin thickness and Hubble constant as
obtained using our methodology to 50 GW events with EoS Prior 1, Prior 2, and Prior 3, mentioned in Table I. The parameters, such as
R1.4, R2, Mmax and skin thickness have been inferred from the injected EoS parameters (K0; esym; L; Ksym;Γ1;Γ2;Γ1).

EoS parameters Injected Posterior 1 Posterior 2 Posterior 3

K0 (MeV) 240 240.00þ0.69
−0.69 240.16þ5.30

−5.51 239.17þ7.52
−7.45

esym (MeV) 31.70 31.67þ0.13
−0.13 31.74þ0.68

−0.69 31.68þ0.82
−0.82

L (MeV) 58.70 58.63þ0.40
−0.39 58.56þ1.33

−1.39 56.47þ6.77
−6.76

Ksym (MeV) −100 −100.02þ0.67
−0.69 −100.99þ13.65

−13.65 −109.15þ23.79
−24.19

Γ1 2.5 2.50þ0.01
−0.01 2.49þ0.06

−0.06 2.47þ0.12
−0.13

Γ2 3.5 3.50þ0.01
−0.01 3.51þ0.06

−0.06 3.51þ0.14
−0.14

Γ3 3.0 3.00þ0.13
−0.13 3.19þ0.34

−0.36 3.11þ0.36
−0.47

R1.4M⊙
(km) 12.153 12.151þ0.019

−0.019 12.145þ0.077
−0.077 12.029þ0.297

−0.321

R2M⊙
(km) 11.851 11.847þ0.026

−0.027 11.851þ0.107
−0.114 11.713þ0.372

−0.439

Λ1.4M⊙
375.813 379.829þ6.469

−6.266 378.997þ17.064
−16.702 357.726þ55.797

−51.555

Λ2M⊙
29.33 29.243þ0.570

0.585 29.419þ2.392
−2.404 26.901þ7.506

−7.335

Mmax (M⊙) 2.271 2.267þ0.008
−0.011 2.247þ0.041

−0.069 2.221þ0.092
−0.092

R208
skin (fm) 0.1873 0.1872þ0.0006

−0.0006 0.1871þ0.0019
−0.0020 0.1840þ0.0099

−0.0099

R48
skin (fm) 0.1571 0.1571þ0.0004

−0.0003 0.1571þ0.0012
−0.0012 0.1551þ0.0061

−0.0061

H0 (km=s=Mpc) 70 70.21þ5.37
−4.95 69.30þ5.42

−5.35 72.96þ8.10
−7.84

FIG. 5. 90% credible interval of mass-radius posteriors are shown using three different choices of the EoS prior distributions as
mentioned in Table I. The solid black curve in each plot is the mass-radius plot corresponding to the injected EoS parameters.
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Reference [61] have argued, this result implies the value of
L to be 106� 37 MeV. They also deduce a larger value of
NS radius as there exists a correlation between R1.4 and L
based on relativistic mean field calculation. However,
Ref. [26] argued that the measurement uncertainty in
R208
skin by PREX-II is quite broad; Moreover, the measure-

ment uncertainty deduced after the addition of astro-
physical observations is dominated by the latter.
Combined astrophysical observations and PREX-II data
yield the value of empirical parameter L¼ 69þ21

−19 MeV,
R208
skin ¼ 0.20þ0.05

−0.05 fm, and radius of a 1.4M⊙ ðR1.4Þ ¼
12.70þ0.42

−0.54 km at 1σ credible interval. Nevertheless, a better
measurement of R208

skin might have a small effect on the
radius of low mass NSs, but for the high masses, there will
be almost no effect. The state-of-the-art chiral effective
field theory calculations predict [62] the value of Rskin to be
0.17–0.18 fm based on Bayesian analyses using mocked
data. Therefore, if the high R208

skin values continue to persist
with lesser uncertainty, it would pose a challenge to the
current theoretical understanding about the nuclear matter
near the saturation densities. More recently, the CREX
collaboration [63] has reported the value of neutron skin
thickness of 48Ca to beR48

skin ¼ 0.121� 0.026 (exp)�0.024
(model) fm. They find several models, including the
microscopic coupled cluster calculations [64] are
consistent with the combined CREX and PREX-II results
at 90% credible interval, but in tension at 68% credible
interval. Following Ref. [26] we estimate the skin
thickness Rskin using the universal relation from Viñas

FIG. 7. Comparison of uncertainty in the measurement of z, dL,
and H0 using a single BNS observation with source-frame mass
pair ð1.4þ 1.26ÞM⊙ at different representative distances. Top
panel: fractional uncertainty (left vertical axis) and uncertainty
(right vertical axis) in the redshift measurement for three choices
of EoS prior. Middle panel: fractional uncertainty (left vertical
axis) and uncertainty (right vertical axis) in estimating luminosity
distance from GW data. Bottom panel: fractional uncertainty of
the Hubble constant for different EoS priors considering uniform
prior between 10 km s−1 Mpc−1 and 400 km s−1 Mpc−1.

FIG. 6. Comparison of joint estimate of the Hubble constant
over 50 GW events for the different choices of EoS. The black
vertical line denotes the injected value of H0¼70 kms−1Mpc−1.
The dashed vertical lines of the same color indicates 90% highest
density credible interval corresponding to the histogram of
that color.
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et al. [65] connecting Rskin and the empirical parameter L:
R208
skin½fm� ¼ 0.101þ 0.00147 × L½MeV�. Then we also

use another empirical relation from Ref. [66], R48
skin ¼

0.0416þ 0.6169R208
skin, to obtain the neutron skin thickness

of 48Ca. The estimation of both skin thicknesses for the
different EoS priors are shown in Fig. 8 and Table II. We
find irrespective of the choice in the EoS priors, future
observations from CE will constrain Rskin with subpercent-
age precision. So if indeed there is a tension between
nuclear theory and astrophysical observations, it will be
revealed.

VI. DISCUSSION

In this paper, we demonstrate how a population of BNS
can constrain the EoS parameters and the Hubble constant
simultaneously during 3rd generation detector era when
unique transient electromagnetic counterparts cannot be
identified. For dark GW signal from CBC, the current state
of the art is to perform a statistical approach by considering
the redshifts of all potential host galaxies within the three-
dimensional localization region of GW event to get a
constraint on the distance-redshift relationship [1–3,5].
However, our method can infer the redshift information
of the GW event from the knowledge of the prior EoS
parameters. We combine the redshift information with the
luminosity distance measured from GW observation to
estimate the Hubble constant.
We have tested our formalism using three different

priors of the EoS parameters. We only infer the Hubble
constant as the cosmological parameter in our Bayesian
analysis. Since the 3rd generation detectors will have
better sensitivity and observe many more sources, it is
conceivable that they will be able to constrain additional

cosmological parameters apart from H0. However, one
drawback of this work is that we took the merger rate to be
constant and employed a simple mass population model of
BNS distribution. Ideally, one should use a more realistic
merger rate (that evolves with redshift) as well as a
mass population model of BNS distribution [67,68].
The merger rate, along with horizon redshift, determines
the total number of BNS mergers, which subsequently
gives an estimate of the uncertainty in EoS parameters and
the Hubble constant. Since the projected horizon redshift
z ∼ 11 for CE [36] is quite large, the total number of
mergers is sensitive to the choice of merger rate. In
addition to the merger rate, the mass-population model
also determines the SNR distribution of GW events.
Consequently, the number of detected BNS events also
depends on the mass population. So, it is important to
consider a realistic merger rate and mass population
model of BNS to predict the measurement uncertainty
of EoS parameters and H0 that can be achieved during the
3rd generation detector era.
Our methodology can easily be extended to incorporate

simultaneous inference of cosmological parameters, popu-
lation model parameters and merger rate parameters
of NSs. It is also important to note that in our formalism,
the ability to constrain H0 and NS EoS using BNS signals
reduces with increasing GW source distance. This is because
the errors in certain source parameters, especially luminosity
distance and tidal deformability, worsen for distant sources.
As one observes farther sources with 3G instruments, their
numbers in a spherical shell of constant comoving thickness
will increase, at least up to some redshift [47]. Thus, even if
the error in H0 from individual sources worsens with
increasing distance, as shown in Fig. 7, nevertheless, the
error in the combined estimate ofH0 from all sources within
the shell would worsen less. The role of population models
and the merger rate on H0 measurements will be studied in
more detail in a separate work [44].
In the case of the EoS parameters, other observations can

also put stringent measurements of the mass and radii of
NSs. In particular, the observation of PSR J0030þ 0451
[48,49] PSR J0740þ 6620 [50,51] by NICER collaboration
has been utilized to measure mass-radius relation of the NS.
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APPENDIX A: BAYESIAN FRAMEWORK

From Bayes’ theorem, the joint posterior of cosmologi-
cal parameters and the EoS parameters for a detected GW
event pðH0;EjxGWÞ is given by

pðH0;EjxGWÞ ∝ pðxGWjH0;EÞπðH0ÞπðEÞ: ðA1Þ

The likelihood for a single GW event in Eq. (A1) can be
written as

pðxGWjH0;EÞ ∝
1

βðH0Þ
ZZZ

pðxGWjmz
1ðm1; zÞ; mz

2ðm2; zÞ;

× Λ1ðm1;EÞ;Λ2ðm2;EÞ; dLðz;H0ÞÞ
× πðm1; m2jEÞπðzÞdzdm1dm2: ðA2Þ

In terms of explicit parameters, Eq. (A2) can conveniently
be written as

pðxGWjH0;EÞ ∝
1

βðH0Þ
ZZZ

pðxGWjz;m1; m2;E; H0Þ

× πðm1; m2jEÞπðzÞdzdm1dm2; ðA3Þ

where a normalization term βðH0Þ has been included in the
denominator to account for selection effects [2,41].

βðH0Þ ¼
Z

pdetðz;H0ÞπðzÞdz: ðA4Þ

The term pdetðz;H0Þ in Eq. (A4) denotes detection
probability for a particular choice of redshift and H0.
We elaborate the calculation of pdetðz;H0Þ (similar to
pðdGWjz;H0Þ in Ref. [5]) following Gray et al. [5]
(implemented in GWCOSMO

6).

The final joint posterior of the Hubble constant and the
EoS parameters can be obtained by combining sources,
as follows:

pðH0;EjfxGWi
gÞ ¼

YNdet

i¼1

pðH0;EjxGWi
Þ: ðA5Þ

APPENDIX B: ESTIMATION
OF DETECTION PROBABILITY

The selection effect as defined in Eq. (9) [also in Eq. (A4)]
completely depends on GW detection efficiency. GW detec-
tor can identify those signals that generate sufficiently high
amplitude response. We consider a GW event as detected if
the network SNR is some threshold SNR ρth or higher. In our
work, we set ρth ¼ 8. We calculate pdet using the injection
of BNS signal. We populate 103 BNSs uniformly over the
entire sky for each of the redshift bin and a given choice of
Hubble constant. These BNSs follow the same population
model as we assumed for this work. We have injected the
total number of BNS mergers ∼107 for the entire range of
the Hubble constant and redshift for computing detection
probability; among all the sources, ∼8 × 106 sources qualify
the detection criterion. We then calculate the matched
filtering SNR [69] of the injected GW signal of 128s at
each of the detector and hence the network SNR. For this
purpose, we have used BILBY [55] to inject GW signal and
calculate the SNR. Since, ρ2 follows noncentral chi-squared
distribution with two degrees of freedom [70], in the
presence of stationary and Gaussian noise with a known
power spectrum, we thus estimate the detection probability
pdet for a certain redshift bin and a particular choice ofH0 by
probability density function of noncentral chi-squared dis-
tribution with degrees of freedom is twice of the number of
detectors and noncentrality parameter is ρth. The detection
probability is estimated in the similar way as implemented
in GWCOSMO. Now, it is straight forward to calculate
the selection function βðH0Þ [Eq. (9)] by marginalizing
the detection probability over the redshift prior used in the
Bayesian framework.6

GWCOSMO code: https://git.ligo.org/lscsoft/gwcosmo.
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