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We study the Brownian motion of a field where there are boundaries in the inflationary field space. Both
the field and the boundary undergo Brownian motions with the amplitudes of the noises determined by the
Hubble expansion rate of the corresponding de Sitter spacetime. This setup mimics models of inflation in
which curvature perturbation is induced from inhomogeneities generated at the surface of the end of
inflation. The cases of the drift-dominated regime as well as the diffusion-dominated regime are studied in
detail. We calculate the first hitting probabilities as well as the mean number of e-folds for the field to hit
either of the boundaries in the field space. The implications for models of inflation are reviewed.
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I. INTRODUCTION

In the current paradigm of early Universe cosmology,
large-scale cosmological perturbations are believed to be
generated during inflation [1–4]. As a resolution for the
flatness and the horizon problems, the Universe undergoes
a period of accelerated expansion in which small patches
are stretched exponentially to encompass the current
observable Universe. In the simplest models, inflation is
driven by a scalar field, the inflaton field, with a nearly
flat potential. Classically, the inflaton field slowly rolls on
top of its potential, while at the same time it undergoes
quantum fluctuations. These quantum perturbations are
generated continuously deep inside the Hubble horizon
which are subsequently stretched to superhorizon scales as
the Universe expands exponentially. The simplest models
of inflation predict these perturbations on large scales to
be nearly scale invariant, nearly Gaussian, and nearly
adiabatic, which are well consistent with cosmological
observations [5,6].
Stochastic inflation is an elegant method to study

inflation and cosmological perturbations [7,8]. It is an
effective field theory approach for the dynamics of the long
superhorizon perturbations which are affected by small-
scale quantum perturbations. In this picture, one decom-
poses the perturbations into long and short perturbations.

As the short modes are stretched beyond the horizon, they
become classical and affect the long mode perturbations.
Using the stochastic formalism, the effects of short modes
on long modes are captured by random classical white
noises with the amplitude H

2π, in which H is the Hubble
expansion rate during inflation. Stochastic inflation has
been used to study cosmological perturbations in slow-roll
models [9–36], ultraslow-roll setups [37–40], and also
models involving gauge fields [41–47]. Since in stochastic
formalism one decomposes the perturbations into long and
short modes, it provides a natural setup to employ δN
formalism [48–55]. The standard δN formalism [56–62] is
based on the separate Universe approach, where the super-
horizon perturbations modify the background expansion of
the nearby patches (universes). The δN formalism is a
powerful tool to calculate the curvature perturbation cor-
relations nonperturbatively, i.e., to all orders in perturba-
tions. Using the stochastic δN formalism, the stochastic
corrections in the curvature perturbation power spectrum
and bispectrum and the consequences for primordial black
hole formation can be studied.
In the past studies involving the formalism of stochastic

inflation, the stochasticity was imprinted from the dynam-
ics of the rolling inflaton or vector fields during inflation. In
these works, the end of inflation is a fixed point in field
space, so there is no curvature perturbation generated from
the surface of the end inflation. In these scenarios, one
needs only to follow the stochastic dynamics of the fields
during inflation to read off the amplitude of curvature
perturbations generated during inflation on superhorizon
scales. However, there are interesting examples where
curvature perturbations can be induced from inhomogene-
ities generated at the surface of the end of inflation [63–68].
These are multiple-field scenarios in which inflation is
terminated on a surface in a field space. As the surface of
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the end of inflation is modulated by inhomogeneities
induced from multiple fields, then curvature perturbations
are also generated at the surface of the end of inflation. In
the language of stochastic inflation, we are dealing with a
setup where the boundary itself undergoes stochastic
motion. Our goal in this work is to extend the analysis
of stochastic inflation to the above-mentioned picture,
where we have an additional source of stochasticity from
the boundaries in the field space. With this motivation in
mind, we study various physical and mathematical ques-
tions related to de Sitter backgrounds with random fields
and stochastic boundaries.
The paper is organized as follows. In Sec. II, we briefly

review the setup of stochastic inflation and a simple
example of inflation where inhomogeneities are generated
at the surface of the end of inflation. In Sec. III, we study
the case in which the classical drift of the field is dominant
compared to the Brownian motions of the field and the
boundary. In Sec. IV, we extend these analyses to the case
where the system is diffusion dominated while the
Brownian boundary is confined to move within two fixed
barriers. In Sec. V, we study the setup where the stochastic
motion of the boundary has a uniform distribution followed
by the summary and discussions in Sec. VI. Some technical
analysis are relegated into Appendixes A and B.

II. REVIEW AND MOTIVATION

In this section, we briefly review the formalism of
stochastic inflation and present our motivation in studying
the models containing boundaries which undergo Brownian
motion.
Consider a single-field inflation model containing the

inflaton field ϕwhich slowly rolls under the potential VðϕÞ.
We split ϕ and its conjugate momentum v ¼ _ϕ into the
short and long wavelengths:

ϕðx; tÞ ¼ ϕlðx; tÞ þ
ffiffiffi
ℏ

p
ϕsðx; tÞ; ð2:1Þ

vðx; tÞ ¼ vlðx; tÞ þ
ffiffiffi
ℏ

p
vsðx; tÞ; ð2:2Þ

in which the subscripts l and s denote the long modes and
short modes, respectively. The factor

ffiffiffi
ℏ

p
has been inserted

explicitly for the short modes above to specify the quantum
nature of the short modes.
Going to the Fourier space, the short modes satisfy the

following decompositions:

ϕsðx; tÞ ¼
Z

d3k
ð2πÞ3 θðk − εaHÞϕkðtÞeik:x ð2:3Þ

and

vsðx; tÞ ¼
Z

d3k
ð2πÞ3 θðk − εaHÞ _ϕkðtÞeik:x: ð2:4Þ

Here, the dimensionless parameter ε is a small number
ε ≪ 1 which is introduced to separate the large and small
scales. Furthermore, aðtÞ is the scale factor, andH ¼ _a=a is
the Hubble expansion rate during inflation. The operator
ϕkðtÞ is given by ϕk ¼ akφk þ a†−kφ

�
−k, in which φk is

the positive frequency mode function satisfying the scalar
field equation of motion (the Klein-Gordon equation in
the presence of gravity) while ak and a†k are the usual
annihilation and creation operators.
By expanding the scalar field Klein-Gordon equation

around ϕl and vl up to first order in
ffiffiffi
ℏ

p
, one obtains the

following equations of motion for ϕl and vl [10,11]:

_φl ¼ vl þ
ffiffiffi
ℏ

p
σ; ð2:5Þ

_vl ¼ −3Hvl þ
1

a2
∇2φl − V 0ðφÞ þ

ffiffiffi
ℏ

p
τ; ð2:6Þ

in which the noises σ and τ, appearing as the source terms
in Eqs. (2.5) and (2.6), are given by, respectively,

σðx; tÞ ¼ εaH2

Z
d3k
ð2πÞ3 δðk − εaHÞϕkðtÞeik·x; ð2:7Þ

τðx; tÞ ¼ εaH2

Z
d3k
ð2πÞ3 δðk − εaHÞ _ϕkðtÞeik·x: ð2:8Þ

Starting with the Bunch-Davies initial condition j0i,
the commutation of the field and its momentum is given
by [10,11]

½σðx1; t1Þ; τðx2; t2Þ� ¼ iε3
H4

4π2
j0ðεaHjx1 − x2jÞδðt1 − t2Þ;

ð2:9Þ

in which j0 is the zeroth-order Bessel function. As can be
seen from the above commutation relation, the quantum
nature of σ and τ disappears if we choose ε small enough.
Furthermore, calculating the autocorrelation of the noises,
one can show that τ ¼ Oðε2Þ while

h0jσðx; t1Þσðx; t2Þj0i ≈
H3

4π2
δðt1 − t2Þ ¼

H4

4π2
δðN1 − N2Þ;

ð2:10Þ

where N is the number of e-folds related to cosmic time via
dN ¼ Hdt. In the slow-roll limit which we are interested
in, we can simply set N ¼ Ht.
On the superhorizon limit k ≪ aH, we can neglect the

second-order spatial derivative in Eq. (2.6). In addition,
setting τ → 0 [note that τ ¼ Oðε2Þ] and dropping the
subscript l for convenience, from the combination of
Eqs. (2.5) and (2.6), we obtain the following Langevin
equation for the coarse-grained long mode:
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dϕðNÞ
dN

¼ −
V;ϕ

3H2
þ H
2π

ξðNÞ; ð2:11Þ

where the new noise ξðNÞ is related to the original noise via
σ ≡ H

2π ξ, so ξ is a normalized classical white noise
satisfying

hξðNÞi ¼ 0; hξðNÞξðN0Þi ¼ δðN − N0Þ: ð2:12Þ
Associated to the normalized noise ξðNÞ, we can define a

Wiener process WðN Þ which is defined via WðN Þ≡R
N
0 ξðNÞdN which satisfies the following conditions:

hWðN Þi ¼ 0; hWðN Þ2i ¼ N : ð2:13Þ

A. Motivation for inflation with stochastic boundary

Having obtained the Langevin equation in Eq. (2.11),
one can look at various of its applications. For example, one
can calculate the average number of e-folds for inflation
hN i and the curvature perturbation power spectrum and
their stochastic corrections [50–52]. In deriving Eq. (2.11),
we have assumed that only one field is responsible for
curvature perturbation, so stochasticity is generated purely
from δϕ perturbations during inflation. In particular, we
assume that inflation is terminated at a specific point in
field space where ϕ ¼ ϕe. As the point of the end of
inflation is fixed, δϕe ¼ 0, then curvature perturbations are
exclusively generated during inflation. For example, going
to flat slicing, the comoving curvature perturbation is given
by R ¼ − H

_ϕ
δϕ, where δϕ is calculated at the time of

horizon crossing when k ¼ aH.
As a simple extension to multiple-field setup, now

consider the model containing two fields: the inflaton ϕ
and the spectator field σ. The field σ is massless, and it does
not contribute to potential and the background expansion.
However, it affects the surface of the end of inflation. As the
field σ modulates the surface of the end of inflation, its
perturbations generate an additional contribution into
curvature perturbations, so the total curvature perturbation
now is given by

R ¼ −
H
_ϕ
δϕþRe; ð2:14Þ

in whichRe represents the curvature perturbations induced
from the surface of the end of inflation.
As a specific example, consider the model studied in

Ref. [63] (see also [64]), in which the surface of the end of
inflation is determined by the ellipse

λϕϕ
2 þ λσσ

2 ¼ M2; ð2:15Þ

in which M is a fixed mass scale and λϕ and λσ are two
coupling constants. In the absence of the spectator field σ,

i.e., when λσ ¼ 0, inflation ends at a fixed point
ϕe ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=λϕ

p
. However, in the presence of the spectator

field, there can be additional perturbations generated at the
surface of the end of inflation via

δϕe ¼ −
λσσe
λϕϕe

δσ: ð2:16Þ

So the total curvature perturbation from Eq. (2.14) is
obtained to be

R ¼ −
H
_ϕ

�
δϕ −

λσσe
λϕϕe

δσ

�
: ð2:17Þ

As the perturbations δϕ and δσ are uncorrelated, each with
the amplitude H=2π, the curvature perturbation power
spectrum PR is obtained to be

PR ¼ H2

8π2M2
Pϵe

�
1þ

�
λσσe
λϕϕe

�
2
�
; ð2:18Þ

in which ϵ ¼ M2
PðV;ϕ=VÞ2=2 is the slow-roll parameter

associated with the rolling of ϕ and MP is the reduced
Planck mass. The second term in the big bracket above
represents the corrections induced from the quantum
fluctuations generated at the surface of the end of inflation.
Motivated by the above example, our goal in this work is

to study the setups where boundaries undergo stochastic
motion. To be specific, we study a one-dimensional
stochastic process, denoted by the field ϕðNÞ, surrounded
by two boundaries. The boundary at the left is denoted by
ϕ−, while the right boundary is denoted by ϕþ. As a warm-
up exercise, first we consider the example described above
and study the system using the formalism of stochastic δN.
After that, we consider more complicated case where the
system is diffusion dominated so the field ϕ and the
boundary ϕþ move stochastically under their Brownian
motions.

III. STOCHASTIC BOUNDARY
IN DRIFT-DOMINATED REGIME

In this section, as a warm-up exercise, we study the
example presented in the previous section using the
formalism of stochastic inflation. It is a one-dimensional
drift-dominated setup where the dynamics of the field ϕðNÞ
is governed by the Langevin equation (2.11). In the limit of
slow-roll motion, where one can neglect the evolution of
the slow-roll parameter ϵ, the Langevin equation (2.11) can
be integrated, yielding

ϕðNÞ ¼ ϕ0 þ CN þ AWðNÞ; ð3:1Þ

in which for our case of interest C≡ ffiffiffiffiffi
2ϵ

p
MP and A≡ H

2π.
Also note that WðNÞ is a Wiener process defined in
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Eq. (2.13). Here, we work in the drift-dominated regime
where the dynamics of the field is governed by the classical
drift term, corresponding to A ≪ C. This is equivalent
to the condition PR ≪ 1, which is assumed to be the
case here.
In principle, there can be two boundaries: the left

boundary denoted by ϕ−ðNÞ and the right boundary
ϕþðNÞ. In the example presented in the previous section,
the left boundary is placed at infinity. Physically, this
corresponds to setting the UV scale to a very high value,
say, the scale of quantum gravity, so the field never explores
those regions. Correspondingly, here we also assume
that the left boundary is pushed to infinity, ϕ− → −∞,
so we have only the right boundary ϕþ which undergoes
Brownian motion.
The equation of motion for the right boundary in this

case is given by

ϕþðNÞ ¼ ϕð0Þ
þ þ BWþðNÞ; ð3:2Þ

where ϕð0Þ
þ represents the initial position of the right

boundary and B is a constant, determining the amplitude
of its Brownian motion. Also note that the stochastic
natures of the field and the boundary are different, so
the two Wiener processes WðNÞ and WþðNÞ are uncorre-
lated: hWðNÞWþðNÞi ¼ 0.
Our goal is to solve the system of equations (3.1) and

(3.2) jointly to obtain observable quantities like hN i and
PR using the stochastic δN formalism. A simple approach
is to change the frame and go to the reference frame of the
right boundary. In this case, the boundary is fixed, but its
stochastic motion is transferred to the field ϕðNÞ, so the
position of field in this frame is given by

ϕðNÞ ¼ ϕ0 þ CN þ AWðNÞ − BWþðNÞ: ð3:3Þ

As WðNÞ and WþðNÞ are two random Gaussian proc-
esses which evolve independently of each other, their
combination represents a new random Gaussian process
as follows:

AWðNÞ − BWþðNÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
WnðNÞ; ð3:4Þ

in which WnðNÞ is the new Wiener process. As before, to
preserve the drift-dominated regime, we assume that the
constraint C ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
holds as well.

Let us denote the time when the field hits the boundary
by N . Note that, while N is the clock which is determin-
istic, the quantity N is a stochastic variable. Our goal is to
calculate hN i and δN 2 ≡ hN 2i − hN i2. To calculate these
correlations, one can use the first boundary crossing
approach [50]. As we have two boundaries in field space,
the field hits either of boundaries with different probabil-
ities. We denote p− as the probability of the field hitting
ϕ− (ϕþ) first before hitting the other boundary at ϕþ (ϕ−).

Note that by construction p− þ pþ ¼ 1. In our current
setup, we have pushed the left boundary to infinity,
ϕ− → −∞. As demonstrated in Appendix C in Ref. [47],
in the limit that ϕ− → −∞ one obtains p−ϕ− ¼ 0, which
will be used in our analysis below.
Taking the stochastic average of both sides of Eq. (3.3),

we obtain

hϕðN Þ − ϕ0i ¼ ChN i; ð3:5Þ

where we have used the fact that hWnðN Þi ¼ 0. On the
other hand, from the definition of first hitting probability,
we have

hϕ − ϕ0i ¼ pþðϕð0Þ
þ − ϕ0Þ þ p−ðϕ− − ϕ0Þ ¼ ϕð0Þ

þ − ϕ0;

ð3:6Þ

where the condition p−ϕ− ¼ 0 has been used [47].
Combining Eqs. (3.5) and (3.6), we obtain

hN i ¼ ϕð0Þ
þ − ϕ0

C
; ð3:7Þ

which is consistent with what one may expect from the
classical evolution.
To calculate hN 2i, we take the average of the square of

Eq. (3.3) as follows [47]:

hðϕ − ϕ0Þ2i ¼ ðϕð0Þ
þ − ϕ0Þ2

¼ C2hN 2i þ 2C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
hWðN ÞN i

þ ðA2 þ B2ÞhWðN Þ2i: ð3:8Þ

To proceed, one should calculate hWðN ÞN i. For this
purpose, from Eq. (3.3), we note that

hWðN ÞN i ¼ 1

C
hWðN Þðϕ − ϕ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
WðN ÞÞi:

ð3:9Þ

The right-hand side of the above equation is decom-
posed into

pþ
C

ðϕð0Þ
þ − ϕ0ÞhWðN Þjϕ ¼ ϕð0Þ

þ i

þ p−

C
ðϕ− − ϕ0ÞhWðN Þjϕ ¼ ϕ−i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p

C
hN i:

ð3:10Þ

Setting p−ϕ− ¼ 0 and hWðN Þjϕ ¼ ϕð0Þ
þ i ¼ hWðN Þi ¼ 0,

the first two terms above vanish. Correspondingly, we
obtain
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hWðN ÞN i ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p

C
hN i: ð3:11Þ

Plugging Eq. (3.11) in Eq. (3.8) and noting that
hWðN Þ2i ¼ hN i, we obtain

ðϕð0Þ
þ − ϕ0Þ2 ¼ C2hN 2i − ðA2 þ B2ÞhN i: ð3:12Þ

Combining this result with the expression for hN i in
Eq. (3.7), we obtain

hN 2i ¼ hN i2 þ A2 þ B2

C2
hN i; ð3:13Þ

yielding

δN 2 ¼ A2 þ B2

C2
hN i: ð3:14Þ

The power spectrum of curvature perturbation is related to
the variance via [50]

PR ¼ dδN 2

dhN i ; ð3:15Þ

yielding

PR ¼ A2 þ B2

C2
: ð3:16Þ

In our setup of slow-roll inflation with A ¼ H
2π and

C ¼ ffiffiffiffiffi
2ϵ

p
MP, one obtains

PR ¼ H2

8π2M2
Pϵ

�
1þ B2

A2

�
: ð3:17Þ

Now we apply the above formula to our particular
example of inhomogeneities generated from the surface
of the end inflation with the boundary given in Eq. (2.15).
In this example, the quantity B measures the amplitude of
the fluctuations induced by the spectator field at the end
of inflation. In other words, the stochastic behavior of
the boundary is played by the quantum fluctuations of the
spectator field σ. Noting that the amplitude of both
fluctuations δϕ and δσ on the initial flat hypersurface is
equal to H=2π, the ratio B

A is determined from Eq. (2.16) to

be B
A ¼ − λσσe

λϕϕe
. Plugging this value in Eq. (3.17) yields the

result Eq. (2.18) for the total power spectrum.

IV. DIFFUSION-DOMINATED REGIME

Here, we study our main case of interest where the
system is diffusion dominated; i.e., the field ϕ is under a
Brownian motion with the amplitude H

2π. We may allow
for a subleading drift term, but the leading effects in the

dynamics of the system are controlled by the diffusion
term in the corresponding Langevin equation. Physically,
this corresponds to the case where PR > 1. Obviously, this
cannot happen in the context of single-field slow-roll
inflation (at least on cosmic microwave background scales).
However, this can happen in the general landscape of
inflationary cosmology such as in the context of eternal
inflation. Also, we may consider some nontrivial setups
of inflation in which locally on a short period of inflation
PR is amplified to the order of unity such as in the
mechanism of primordial black hole formation in ultra
slow-roll setup [37,38]. Therefore, our current setup of the
diffusion-dominated regime may be relevant for those
setups as well.
We consider two absorbing boundaries in field space: the

left boundary ϕ− and the right boundary ϕþ. In principle,
both boundaries can undergo Brownian motion. However,
to simplify the situation, we assume that only the right
boundary undergoes Brownian motion while the left
boundary is held fixed. As we shall see below, the analysis
even in this simplified case is complicated and rich that it is
worth this approximation. This approximation may be well
motivated physically. As we argued before, one can view
the left boundary to be located in the UV region, which may
not be explored in our perturbative approach. On the other
hand, the right boundary may be viewed as the surface
of reheating, where many fields can contribute to its
modulation as, for example, in the case of the boundary
given in Eq. (2.15). Having said this, after developing the
formalism here for the case where only the right boundary
is stochastic, one can extend the current formalism to a
more complicated setup where both boundaries move
stochastically.
With the above discussions in mind, the mathematical

description of the evolution of the field and the right
boundary is given as follows1:

ϕþðNÞ ¼ ϕð0Þ
þ þDW̃þðNÞ; ð4:1Þ

ϕðNÞ ¼ ϕ0 þWðNÞ; ð4:2Þ

where, as before, ϕþðNÞ and ϕðNÞ describe the evolution

of the right boundary and the field, respectively, while ϕð0Þ
þ

and ϕ0 represent their initial values. Here, we have scaled
the fields in the unit of H

2π, so if our primary field is ΦðNÞ,
then the new rescaled field is defined via ϕðNÞ≡ ΦðNÞ

H=2π.
Finally, D represents the amplitude of the diffusion
associated to ϕþ, while the diffusion amplitude associated
to the field is set to unity (in the unit of H

2π). The two
Wiener processes W̃þðNÞ and WðNÞ are independent,
so hWðNÞW̃þðNÞi ¼ 0.

1We have denoted the Wiener process of ϕþ by W̃þðNÞ to
emphasize that it is confined between two reflective barriers.
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A schematic view of the setup is presented in Fig. 1. For
a pictorial understanding, the stochastic nature of the field
ϕðNÞ is shown with the orange noise, while the Brownian
motion of the boundary is represented by a blue noise. It is
worth mentioning that, for a better understanding of the
setup, this diagram is two dimensional in which the vertical
axis denotes the arrow of time, so each slice of the diagram
along the ϕ axis indicates the values of the field and the
boundary.
As we mentioned before, the left boundary is fixed at a

finite distance in one-dimensional field space at the
position ϕ−. The field ϕ moves stochastically in the range
½ϕ−;ϕþ�, while the right boundary ϕþ undergoes stochastic
motions as well. While the field ϕ moves stochastically in
the range ½ϕ−;ϕþ�, the boundary ϕþðNÞ may hit the left
boundary in a jump. This brings additional complexity in
our analysis, where we are primarily interested in the first
hitting probability of the field to the boundaries before the
boundaries themselves collide with each other. To bypass
this difficulty, we impose one more constraint that the
stochastic movement of the right boundary is limited
between two barriers separated by a distance b such that
the left boundary is always outside this range (see Fig. 1).
We choose our coordinate system (without loss of general-
ity) such that the two barriers are located at 0 and b, so the
stochastic motion of the right boundary is in the interval
½0; b�. Within this description, ϕ− < 0, so the right boun-
dary never hit the left boundary. Moreover, since we do not
want the boundary ϕþ to be absorbed by the two barriers,
we choose both of the barriers to be reflective. To prevent
confusion, we adopt the terminology “boundary” for the
two end points ϕ− and ϕþ where the field can move, while
the two fixed points at 0 and b where ϕþ is confined to are
referred to as the “barriers.”

With the above discussions in mind, the time-dependent
probability density function (PDF) associated to the
Brownian movement of the right boundary, fþ, is described
by the Fokker-Planck equation as follows:

∂fþðϕþ; NÞ
∂N

¼ D2

2

∂
2fþðϕþ; NÞ

∂ϕ2þ
: ð4:3Þ

As ϕþ is limited in the interval ½0; b� with reflective
barriers, fþðϕþ; NÞ satisfies the following Neumann boun-
dary conditions:

∂fþðϕþ; NÞ
∂ϕþ

����
ϕþ¼0

¼ ∂fþðϕþ; NÞ
∂ϕþ

����
ϕþ¼b

¼ 0; ð4:4Þ

with the following initial condition:

fþðϕþ; N ¼ N0Þ ¼ δðϕþ − ϕð0Þ
þ Þ; ð4:5Þ

in which N0 is the initial time when the boundary starts to
evolve. Without loss of generality, we may set N0 ¼ 0.
Using the method of the separation of variables, the

general solution to Eq. (4.3) is given as

fkðx; tÞ ¼ Ak sinðkxÞ þ Bk cosðkxÞ: ð4:6Þ

With the boundary conditions Eqs. (4.4), one can easily
deduce that k ¼ mπ

b , where m is a non-negative integer
number and Ak ¼ 0. Then the solution satisfying Eq. (4.5)
is given by

FIG. 1. A schematic view of the setup in the case of the diffusion-dominated regime. The stochastic behavior of the field ϕðNÞ is
shown by an orange noise, while that of the right boundary is denoted by a blue noise. The field ϕ is restricted to move in the interval
½ϕ−;ϕþ�, while the right boundary is restricted to move between two reflective barriers which are fixed at 0 and b. For a better
understanding, the plot is presented as two dimensional in which the vertical axis represents the direction of time. Therefore, each slice
of the diagram along the ϕ axis indicates the positions of ϕ and ϕþ.
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fþðϕþ; NÞ ¼ 1

b
þ 2

b

X∞
m¼1

cos

�
mπ

b
ϕð0Þ
þ

�

× cos

�
mπ

b
ϕþ

�
e−

m2π2D2

2b2
N: ð4:7Þ

It can be easily checked that the above PDF is normalized
in ½0; b�. Results similar to Eq. (4.7) are obtained in
Ref. [69]. As we see, if D → 0, the PDF of the Brownian

boundary reduces to δðϕþ − ϕð0Þ
þ Þ, while in the limit

D → ∞ the PDF tends to forget its initial condition and

fþðϕþ; NÞ → 1
b. Moreover, we note that, as the width

separating the two barriers b goes to zero, the above
distribution function reduces to δðϕþÞ, as there is no room
for the boundary to fluctuate.
Moreover, one can check that the above PDF enjoys

the following symmetry. If the boundary starts at ϕð0Þ
þ ,

the probability of finding the boundary in the interval
0 < ϕþ < α at time t is equal to finding the boundary in the

interval b − α < ϕþ < b if it starts at b − ϕð0Þ
þ . One can

verify this as follows:

Z
b

b−α

�
1

b
þ 2

b

X∞
m¼1

cos

�
mπ

b
ðb − ϕð0Þ

þ Þ
�
cos

�
mπ

b
ϕþ

�
e−

m2π2D2

2b2
N
�
dϕþ

¼
Z

α

0

�
1

b
þ 2

b

X∞
m¼1

ð−1Þm cos

�
mπ

b
ϕð0Þ
þ

�
cos

�
mπ

b
ðb − ϕþÞ

�
e−

m2π2D2

2b2
N
�
dϕþ

¼
Z

α

0

�
1

b
þ 2

b

X∞
m¼1

cos

�
mπ

b
ϕð0Þ
þ

�
cos

�
mπ

b
ϕþ

�
e−

m2π2D2

2b2
N
�
dϕþ: ð4:8Þ

It is also instructive to study the behavior of fþðϕþ; NÞ
when b → ∞ so the right boundary can move an arbitrarily
large distance along the positive axis direction. To this
end, we can replace the summation in Eq. (4.7) with an
integration using the following relation:

lim
b→∞

X∞
i¼1

1

b
G

�
i
b

�
¼

Z
1

0

GðxÞdx; ð4:9Þ

obtaining

bþðϕþ;NÞ ¼ 2

Z
∞

0

cos ðyπðϕð0Þ
þ −ϕ−ÞÞ cos ðyπðϕþ −ϕ−ÞÞ

× e
−π2y2D2

2
Ndyðb→∞Þ; ð4:10Þ

in which we have approximated the upper bound of the
integral by infinity as the exponential function decays
rapidly for jyj > 1. Taking the integral on the right-hand
side of Eq. (4.10), we then obtain

bþðϕþ; NÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πD2N

p
"
e−

ðϕð0Þþ þϕþ−2ϕ−Þ2

2D2N þ e−
ðϕð0Þþ −ϕþÞ2

2D2N

#

ðb → ∞Þ: ð4:11Þ

The behavior of the above PDF as a function of ϕþ is
presented in Fig. 2. This figure is plotted for ϕ− ¼ 0 and

ϕð0Þ
þ ¼ 1. It can be seen that, at very early time N ≪ 1, the

field has a Gaussian distribution with a maximum around

ϕð0Þ
þ . This is what one expects, since enough time has not

passed and, therefore, the boundary ϕð0Þ
þ is still near its

initial value. However, as time goes by, the maximum of

distribution is not located around ϕð0Þ
þ anymore, and it is

shifted toward ϕ−, which is a consequence of ϕ− being a
reflective boundary. This also confirms that the stochastic
boundary forgets its initial value after a while and its
distribution is almost uniformly spread along the whole
range of b. Also, one can easily check that the above PDF is
normalized in the range ðϕ−;∞Þ for N > 0.
Now we obtain the PDF of the field ϕ. Suppose that

at the initial time N0 the field is located at ϕ0. Denoting
the corresponding PDF of the Brownian motion by
fðϕ; Njϕ0; N0Þ, the Fokker-Planck equation governing
the stochastic dynamics of the field is given by

∂fðϕ; Njϕ0; N0Þ
∂N

¼ 1

2

∂
2fðϕ; Njϕ0; N0Þ

∂ϕ2
; ð4:12Þ

whose solution (subject to the initial condition) is given by

fðϕ; Njϕ0; N0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðN − N0Þ
p exp

�
−

ðϕ − ϕ0Þ2
2ðN − N0Þ

�
:

ð4:13Þ

Having at hand the PDF of the boundary, we can obtain
an equation for the conditional probabilities to hit each
of the boundaries at a fixed time N. Let γþðNjϕ0; N0Þ
[γ−ðNjϕ0; N0Þ] denote the first time distribution to hit
ϕþðNÞ [ϕ−ðNÞ] by the condition that ϕþðNÞ [ϕ−ðNÞ] is
crossed earlier than ϕ−ðNÞ [ϕþðNÞ]. Note that these two
functions are not normalized to unity and they satisfy
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Z
dNγ�ðNjϕ0; t0Þ ¼ p�; ð4:14Þ

in which pþ (p−) is the first hitting probability to the right
(left) boundary.
Using the method of Volterra integral equations as in

Ref. [70], one can show that γ�ðNjϕ0; N0Þ satisfy the
following integral relations (see Appendix A for further
details):

γ−ðNjϕ0; N0Þ ¼ 2ψðϕ−; Njϕ0; N0Þ

− 2

Z
N

N0

dtðγ−ðtjϕ0; N0Þψðϕ−; Njϕ−; tÞ

þ γþðtjϕ0; N0Þψðϕ−; Njϕþ; tÞÞ; ð4:15Þ

γþðNjϕ0; N0Þ ¼ −2ψðϕþ; Njϕ0; N0Þ

þ 2

Z
N

N0

dtðγ−ðtjϕ0; N0Þψðϕþ; Njϕ−; tÞ

þ γþðtjϕ0; N0Þψðϕþ; Njϕþ; tÞÞ; ð4:16Þ

where ψðx; Njy; tÞ is defined as

ψðx; Njy; tÞ≡ d
dN

Fðx; Njy; tÞ ð4:17Þ

and Fðx; Njy; tÞ is the transition function of ϕ defined by

Fðx; Njy; tÞ≡ Pðϕ ≤ x; Njy; tÞ ¼
Z

x

−∞
fðϕ; Njy; tÞdϕ:

ð4:18Þ

The proofs of Eqs. (4.16) and (4.15) are presented in more
details in Appendix A.

A. Boundary crossing probabilities

In this subsection, we find a solution for p�, i.e., the
probabilities to cross a boundary earlier than the other one.
Now recall from the above discussions that p� are given by

p� ¼
Z

∞

0

γ�ðtÞdt: ð4:19Þ

As can be seen from Eqs (4.15) and (4.16), the full analytic
solution of γ�ðtÞ is not possible, so we look for approxi-
mate ones. For this purpose, we take the Laplace trans-
formations of Eqs. (4.15) and (4.16). If Γ�ðsÞ denote the
Laplace transformation of γ�ðtÞ, then

Γ�ðsÞ ¼
Z

∞

0

e−stγ�ðtÞdt: ð4:20Þ

It is easy to see that p� ¼ lims→0 Γ�ðsÞ.
In Appendix B, we have presented the equations to solve

the Laplace transformation of γ�ðtÞ. Using Eqs. (B6) and
(B7) for Γ�ðsÞ and taking the limit s → 0, we obtain

N 1

N 1

N 10

1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

2.5
1 2 3 4 5 6 7 8 9 10

PD
F

FIG. 2. The probability density function for a Brownian boundary without a right barrier (b → ∞). This figure is plotted for ϕ− ¼ 0,

ϕð0Þ
þ ¼ 1, and D ¼ 1. It can be seen that, at very early time N ≪ 1, the field has a Gaussian distribution with a maximum around ϕð0Þ

þ .
However, as time passes, the maximum of distribution is shifted toward ϕ−, which is a consequence of ϕ− being a reflective boundary.
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pþ ¼ 1 − p−

¼ 2ðϕ0 − ϕ−Þ
b − 2ϕ−

− 4b
X∞
m¼1

� ð−1Þm − 1

m2π2ðb − 2ϕ−Þ
�

× Γþ
�
m2π2D2

2b2

�
cos

�
mπ

b
ϕð0Þ
þ

�
: ð4:21Þ

This provides a “formal” solution for p�. However, to find
their actual values, we still need to calculate the unknown
function Γþðm2π2D2

2b2 Þ. As we shall see below, this can be
done only iteratively by setting m ¼ 1; 2;… and then
finding the values of p� at the corresponding order of
m. The first term in Eq. (4.21) represents the contribution
from the leading-order term of the PDF (m ¼ 0). In this
case, one can imagine that the right boundary on average is
fixed in the midpoint ϕþ ¼ b

2
, as it has equal chances to be

either to the right or to the left of the point ϕþ ¼ b
2
.

Before solving for p� iteratively, we note that, due
to the exponential suppression of PDF in Eq. (4.7), one
expects that the solutions for p� converge rapidly for
large enough m or small values of b

D. We can estimate the

rate of convergence by noting that if m2π2D2

2b2 ≫ 1, then
the exponential terms are negligible. This condition is
equivalent to

m ≫
b
πD

: ð4:22Þ

So we see that if b
D ≪ 1, then after a few terms the series is

near its final value, while for larger values of b
D we should

take into account more terms in the series expansion.
To set our convention, we denote the leading-order

expansion corresponding to case m ¼ 0 by LO. The
next-leading expansion, corresponding to m ¼ 1, is
denoted by NLO, while the cases of higher orders in m
are denoted by NmLO. For example, the next-to-NLO with
m ¼ 2 is represented by N2LO.
At LO, the solution for pþ from (4.21) is given by

pLOþ ¼ 2ðϕ0 − ϕ−Þ
b − 2ϕ−

: ð4:23Þ

This expression is consistent with the result in the case of
two fixed boundaries located at ϕ− and ϕþ ¼ b

2
[40]. As

discussed above, this makes sense, since for the LO the
right boundary on average is fixed in the midpoint ϕþ ¼ b

2
.

Now, we proceed to calculate pþ at NLO. To this end
one has to calculate Γþðπ2D2

2b2 Þ. We should also note that

Eq. (B6) holds for any s ≥ 0. By evaluating Γþðπ2D2

2b2 Þ from
this equation, one can calculate pþ up to NLO as follows:

pNLOþ ¼ pLOþ þ 8b
π2ðb − 2ϕ−Þ

cos

�
πϕð0Þ

þ
b

�
Y; ð4:24Þ

in which

Y ≡
�

πD

π2D2 − 4eπDð2ϕ−b −1Þsinh2ðπD
2
Þ

��
ðeπD − 1Þe−πD

b ðb−2ϕ−þϕ0Þðe2πD
b ðϕ0−ϕ−Þ − 1Þ

− 2D2
X∞
j¼0

� ð−1Þj − eπD
ffiffiffiffiffiffiffiffi
j2þ1

p

ðð1þD2Þj2 þD2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 1

p �
cos

�
jπ
b
ϕð0Þ
þ

�
e
πD
b

ffiffiffiffiffiffiffiffi
j2þ1

p
ðϕ0−bÞ

�
: ð4:25Þ

We can go one step further and calculate pþ at N2LO,
corresponding tom ¼ 2. However, the results for N2LO are
very complicated, and we avoid presenting them here.
As the condition (4.22) indicates, the above result for

pNLOþ is a good approximation to the value of pþ as far as
b
D ≲ 1, while for large values of b

D there can be significant
deviations. As b

D gets larger and larger, the higher-order
terms in the series with m ≥ 2 become non-negligible. In
Figs. 3 and 4, we have compared the LO, NLO, and N2LO
terms for p− for different variables. Figure 3(a) shows the
behavior of p− with respect to b, which is plotted at various
orders for ϕ− ¼ −1 and ϕ0 ¼ −1

3
. In addition, we have

set the initial value of the stochastic boundary to be

ϕð0Þ
þ ¼ 0.7b, so it is a function of b as b varies. As one

expects and can be seen from this figure, increasing b (with
a fixed value of D) results in a higher value for p−, i.e.,

higher probability of hitting the left boundary correspond-
ing to a lower probability of hitting the right boundary. In
addition, the convergence in the series expansion is fast, as
the curves representing the plots of p− for NLO and N2LO
are nearly identical.
In Fig. 4, the behaviors of p− with respect to ϕ− and ϕ0

are plotted at various orders. One can see from the left panel
in this figure that with b and D kept fixed, as ϕ− moves
away from ϕ0, the probability of hitting the left boundary
(p−) decreases, which is expected. Also, the right panel
shows the behavior of p− versus the initial values of the

field ϕ0 for fixed values of b, D, ϕð0Þ
þ , and ϕ−. As can

be seen from this panel, for ϕ0 ¼ ϕ− ¼ −1, i.e., when the
field is initially located on the location of boundary, the
probability of hitting ϕ− is equal to unity, and, as the initial
position of the field moves away from ϕ−, this probability
decreases.
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We comment that the result (4.21) can be obtained via
another independent method as we elaborate below. Taking
the average of Eq. (4.2) yields

hϕ−ϕ0i¼pþEðϕ−ϕ0jþÞþp−Eðϕ−ϕ0j−Þ¼0; ð4:26Þ

where EðϕjþÞ [Eðϕj−Þ] represents the conditional average
value of the field by the condition that ϕþðNÞ [ϕ−ðNÞ] is
crossed earlier than ϕ−ðNÞ [ϕþðNÞ]. The following expres-
sions hold:

pþEðϕ−ϕ0jþÞ¼
Z

∞

0

Z
b

0

dτdxγþðτjϕ0;t0Þðx−ϕ0Þfþðx;τÞ;

ð4:27Þ

p−Eðϕ − ϕ0j−Þ ¼ p−ðϕ− − ϕ0Þ: ð4:28Þ

Now note that Eq. (4.27) can be written as

pþEðϕ − ϕ0jþÞ ¼
Z

∞

0

dτγþðτjϕ0; t0Þ
Z

b

0

dxðx − ϕ0Þ
�
1

b
þ 2

b

X∞
m¼1

cos

�
mπ

b
ϕð0Þ
þ

�
cos

�
mπ

b
x

�
e−ð

m2π2D2

2b2
Þτ
�

¼ pþ

�
b − 2ϕ0

2

�
þ 2b

X∞
m¼1

�ð−1Þm − 1

m2π2

�
cos

�
mπ

b2
ϕð0Þ
þ

�
Γþ

�
m2π2D2

2b2

�
: ð4:29Þ
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NLO
NNLO
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0.5
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0.7

0.8

0.9

1.0

(a)

LO
NLO
NNLO

1.0 0.8 0.6 0.4 0.2 0.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P

(b)

P

FIG. 4. A comparison of p− versus ϕ− (left) and ϕ0 (right) for LO, NLO, and N2LO. Here, we have set b ¼ 1.5, ϕð0Þ
þ ¼ 0.7b, and

D ¼ 1. In the left panel, we have considered ϕ0 ¼ − 1
2
, and as one expects, when ϕ− ¼ ϕ0 ¼ − 1

2
, i.e., when the field is located on the

position of the left boundary, the probability equals unity. However, as ϕ− moves away from ϕ0, then p− is reduced. In the right panel,
however, we have set ϕ− ¼ −1, in which for ϕ0 ¼ −1 one obtains p− ¼ 1 as expected. As ϕ0 moves away from this value, the hitting
probability p− is decreased.
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NNLO
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NNLO
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0.6

0.7

0.8

b
(b)

FIG. 3. The behavior of p− (left) and hN i (right) versus b for LO, NLO, and N2LO terms. Here, we have set ϕ− ¼ −1, ϕ0 ¼ −1
3
,

ϕð0Þ
þ ¼ 0.7b, and D ¼ 1. As one expects, as b increases, pþ is decreased, and correspondingly p− is increased. Furthermore, as b

increases, the average time hN i for the field to hit either of the boundaries increases as well.
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Substituting Eqs. (4.28) and (4.29) into Eq. (4.26), one
obtains the same expression for pþ as Eq. (4.21).

B. Mean number of e-folds

Using the same approach, we can calculate the mean
number of e-folds hN i for the field to cross either of the
boundaries. As mentioned in the previous section, while
the clock N is a deterministic variable, N , the number of
e-folds hitting either of the boundaries, is a stochastic

variable. By taking the average of the square of the
Langevin equation, one obtains

hðϕ − ϕ0Þ2i ¼ pþEððϕ − ϕ0Þ2jþÞ þ p−Eððϕ − ϕ0Þ2j−Þ
¼ hWðN Þ2i ¼ hN i: ð4:30Þ

Now, similar to Eq. (4.27) and using the results obtained in
Appendix B, one can write

pþEððϕ − ϕ0Þ2jþÞ ¼
Z

∞

0

Z
b

0

dτdxγþðτjϕ0; t0Þðx − ϕ0Þ2fþðx; τÞ

¼ pþ

�
1

3
b2 þ ϕ0ðϕ0 − bÞ

�
þ
X∞
m¼1

4b
m2π2

½ðb − ϕ0Þ cosðπmÞ þ ϕ0� cos
�
mϕð0Þ

þ
b

�
Γþ

�
m2π2D2

2b2

�
ð4:31Þ

and

p−Eððϕ − ϕ0Þ2j−Þ ¼ p−ðϕ− − ϕ0Þ2: ð4:32Þ
Having the solutions of p� from the previous analysis,

we can calculate hN i from Eqs. (4.31) and (4.32).
However, as in the case of p�, the result for hN i can be
obtained only iteratively in series expansion. More spe-
cifically, using the LO expressions for pþ in Eq. (4.23),
hN i at LO is obtained to be

hN iLO¼ ðϕ0−ϕ−Þ
3ðb−2ϕ−Þ

½2b2−3bðϕ−þϕ0Þþ6ϕ−ϕ0�: ð4:33Þ

Similarly, proceeding to hN iNLO at NLO, we obtain

hN iNLO ¼ hN iLO −
4bY

3π2ðb − 2ϕ−Þ
½b2 − 6bϕ− þ 6ϕ2

−�

× cos

�
πϕð0Þ

þ
b

�
; ð4:34Þ

in which Y is defined as in Eq. (4.25). One can also obtain
hN i at next orders. However, since it takes a very
complicated form, we avoid presenting it here.
The behavior of hN i with respect to b for LO, NLO,

and N2LO are plotted in Fig. 3(b). As can be seen, by
increasing b, the average time the field needs to hit either
of the boundaries increases, which is what one expects as
well. Moreover, the figure shows that, for smaller values
of b, the results for LO, NLO, and N2LO converge very
well, while for larger values of b the deviations between
the previous orders become more enhanced. This is in
line with our conclusion, such as in Eq. (4.22), that for
large values of b higher orders (i.e., higher orders of m)
should be included in the series expansion for better
convergence.
In Figs. 5(a) and 5(b), the plots of p− and hN i for higher

orders of the series expansion, m < 9, m < 14, and
m < 16, are presented. As we see from these plots, the
curves for these orders are almost identical to each other.
This indicates that the series expansion converges rapidly to

m 9

m 14

m 16

0 1 2 3 4

0.50

0.55

0.60

0.65

b
(a)

m 9

m 14

m 16

0 1 2 3 48

10

12

14

16

b
(b)

FIG. 5. The behavior ofp− (left) and hN i (right) including higher orders ofm, form < 9,m < 14, andm < 16. The initial conditions are
ϕ0 ¼ −3, ϕ− ¼ −6, and p0 ¼ 0.7bwithD ¼ 1. As one expects, by increasing b the probability pþ of hitting the stochastic boundary (i.e.,
right boundary) decreases, and, consequently,p− increases. Furthermore, the average time it takes for the field to hit the boundaries increases.
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its final value after a few orders in expansion. Furthermore,
as we observed previously, the probability of hitting the
left boundary p− grows as b increases, confirming the
conclusion that the probability of hitting the right boundary
pþ is reduced. Furthermore, Fig. 5(b) shows that, as b
increases, hN i increases as well, in agreement with the
conclusion from Fig. 3(b).
In the previous plots, we have set D ¼ 1; i.e., the field

and the stochastic boundary had equal diffusion amplitudes
(in the unit of H

2π). However, as we discussed below
Eq. (4.22), D like b has important effects on the physical
results, while the series convergence depends on the
combination b

D. Intuitively speaking, a larger value of D
works parallel to small values of b and vice versa.
Specifically, for D ≪ 1 one needs to add more series terms
for the convergence to occur, while for D ≫ 1 the con-
vergence occurs rapidly. These conclusions can be seen in
Figs. 6 and 7. Figure 6 is a repetition of Fig. 3 but with D

decreased by one order of magnitude to D ¼ 0.1. The
deviation between the LO and NLO in Fig. 6 is intensified
compared to Fig. 3. On the other hand, Fig. 7 is a repetition
of Fig. 5. As we see, the cases with small values of D show
deviations in series convergence even for large values of m
(here, the case m < 9), while there is no such effect for
D ≫ 1. In addition, we note that as D decreases (increase),
both p− and hN i increase (decrease). This is because a
small D represents a small Brownian jump for the boun-
dary, so it takes many steps from the field to hit the
boundary. Also note that this conclusion is consistent with
our intuition that the effects ofD work opposite to the roles
of b. Consequently, a setup with a small value of D is like
a setup with a large value of b, yielding larger values of
p− and hN i.
Finally, it would be instructive to look at the behavior of

p− and hN i as functions of ϕð0Þ
þ , the initial position of the

right boundary. While keeping all other parameters fixed,
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FIG. 6. The behavior of p− and hN i versus b forD ¼ 0.1, ϕð0Þ
þ ¼ 0.7b, ϕ− ¼ −1, and ϕ0 ¼ − 1

3
. This plot is parallel to Fig. 3, but now

D is reduced by one order of magnitude. AsD decreases, both p− and hN i increase. In addition, the convergence is less efficient, as the
deviation between LO and NLO is intensified compared to the plots in Fig. 3.
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FIG. 7. The behavior of p− and hN i versus b for D ¼ 0.1 and D ¼ 10. Other initial conditions are the same as in Fig. 5. The
conclusion is that, as D decreases (increases), both p− and hN i increase (decrease). Furthermore, convergence happens efficiently for
larger values of D.
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by increasing ϕð0Þ
þ we expect physically that both p− and

hN i increase. This is because the right boundary is moved
away further from the field, so it takes more time for the
field to hit the right boundary and also with less probability.
These conclusions can be seen in Figs. 8(a) and 8(b). As a
relevant question, it would be interesting to compare the
results in the current case where the right boundary itself
undergoes stochastic motion to the case where the right
boundary is fixed, as in the simple example studied in
Ref. [39]. One can show that, depending on the initial value

of the boundary ϕð0Þ
þ , the results for p− and hN i can be

larger or smaller than the scenario with the fixed boundary.

To be more precise, first assume ϕð0Þ
þ < b

2
. In this case,

while the right boundary moves stochastically, it can probe
the region ϕþ > b

2
as well. So compared to the case of

Ref. [39], where the boundary is located at a fixed position
ϕþ < b

2
, the boundary in the current case has more room to

go beyond the region ϕþ > b
2
. Correspondingly, both p−

and hN i increase compared to the case of the fixed
boundary. As an example, like in Figs. 8(a) and 8(b),
consider the configuration where the stochastic boundary is

initially located at ϕð0Þ
þ ¼ 0.3b and compare it with the case

where the boundary is held fixed at ϕþ ¼ 0.3b.
Considering both cases, we obtain hN istoc ¼ 3.02 and
hN ifixed ¼ 2.2, which is consistent with what we con-
cluded, that is, hN istoc > hN ifixed. On the other hand, for

the case ϕð0Þ
þ > b

2
, the situation is reversed, and both p− and

hN i decrease compared to the fixed boundary case. As an

example, suppose ϕð0Þ
þ ¼ 0.7b with other initial conditions

as in previous example. We obtain hN istoc ¼ 3.53 while
hN ifixed ¼ 3.8, which is again consistent with our con-
clusion. All these interesting properties can be seen in
Figs. 8(a) and 8(b). Another interesting point is that,

according to Eq. (4.8), considering ϕð0Þ
þ ¼ b

2
implies that

the average time that the field hits the boundary in the
interval 0 < ϕþ < b

2
is equal to the case in which

b
2
< ϕþ < b. This may seem opposite to one’s expectation

that the closer ϕþ is, the sooner the crossing time would be.
However, we should note that during the crossing time the
boundary is not fixed, and it can come from different points
to the crossing region.
Up to this point, we have assumed that the right

boundary undergoes Brownian motion. As we saw from
Eq. (4.7), the LO term in fþðϕ; NÞ is a constant which is
very similar to a uniform density. However, one should note
that its nature is completely different than a boundary with
a uniform density. To be more precise, a boundary with a
uniform density evolves discontinuously in time, while a
boundary with a Brownian motion has a continuous
evolution. To see the differences, in the next section,
we study the case where the right boundary undergoes
stochastic motion with a uniform distribution.

V. BOUNDARY WITH UNIFORM DISTRIBUTION

In the previous section, we have studied a scalar field
with Brownian motion which was restricted between two
boundaries, one held fixed while the other one experiences a
pure Brownian motion. However, it would also be interest-
ing to study the case in which the stochastic boundary (i.e.,
the right boundary) has a uniform distribution. This dis-
tribution is represented by the first term of fþðϕþ; NÞ in
Eq. (4.7). However, due to non-Markovian evolution of the
boundary with the uniform distribution, the results for p�
and hN i are totally different from the “LO” obtained in
previous section. As the boundary with uniform distribution
has a discontinuous evolution with time, we cannot use
Eqs. (4.15) and (4.16) to obtain p� and hN i.
As the boundary in this case does not have a well-defined

evolution with time, we present only the PDF of the
boundary:
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FIG. 8. Behavior of p− (left) and hN i (right) versus the initial location of the stochastic boundary ϕð0Þ
þ . We have considered ϕ0 ¼ −1,

ϕ− ¼ −2, b ¼ 4, andD ¼ 1; therefore, ϕð0Þ
þ can take any value between 0 and 4. As we discussed and can be seen from the left panel, for

ϕð0Þ
þ < b

2
, p− for a fixed boundary is less than the stochastic boundary, while for ϕð0Þ

þ > b
2
it is reversed.
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fþðx; tÞ ¼
1

b
; 0 < x < b: ð5:1Þ

As it does not have a Markovian evolution, the boundary
can take any value in the interval 0 < x < b at time tþ dt
regardless of its initial condition at time t. Moreover, the
time evolution of the field is the same as Eq. (4.2) with
the initial condition ϕ0, while the left boundary is kept
fixed at ϕ−. To obtain p�, first we consider ϕþ to be at a
position, say, y. Then the hitting probability of the field
with the initial value ϕ0, which is restricted between
two fixed boundaries located at ϕ− and y, is obtained to
be ðϕ0−ϕ−

y−ϕ−
Þ [39]. This, in turn, gives the following result

for pþ:

pþ ¼
Z

b

0

pðϕ hitsϕþfirstjϕþ ¼ yÞ dy
b

¼
Z

b

0

�
ϕ0 − ϕ−

y − ϕ−

�
dy
b

¼
�
ϕ0 − ϕ−

b

�
ln

�
ϕ− − b
ϕ−

�
: ð5:2Þ

Then, using pþ þ p− ¼ 1, p− can also be obtained. It is
worth mentioning that the above result reduces to the
corresponding result of fixed boundaries [39] in the
limit b → 0.
Next, we study the time average in this case. Again,

considering ϕþ ¼ y when the field hits the right boundary,
we have

hN i ¼
Z

b

0

ðϕ0 − ϕ−Þðy − ϕ0Þ
dy
b

¼ ðϕ0 − ϕ−Þ
�
b
2
− ϕ0

�
: ð5:3Þ

Figure 9 shows the behavior of p− and hN i with respect
to b in the case of uniform distribution. As one expects,

both p− and hN i increase as b increases. As seen from our
results, hN i depends linearly on b, while p− depends
nonlinearly on b. Also in Fig. 9, we present the data for p−
and hN i obtained from simulations which are in very good
agreement with our analytical results.

VI. SUMMARY AND DISCUSSIONS

Within the context of stochastic inflation, we have
studied the Brownian motion of a field which is restricted
to move between two boundaries; one of them is fixed at a
constant value, while the other one undergoes a Brownian
motion. There are a number of physical interests to consider
this setup. For example, in the models of multiple-field
inflation, there are scenarios where the surface of the end of
inflation is modulated by the quantum fluctuations of a
light spectator field. There are additional contributions to
curvature perturbations from the quantum fluctuations of
the spectator field(s). Furthermore, in the landscape of
inflation in the UV region of the field space, the system
may experience a period of eternal inflation in which
both the inflaton field and the boundaries may experience
Brownian motion.
We have presented the Langevin equation in various

related examples and have calculated the mean number of
e-folds hN i and the first hitting probabilities p� for the
field to hit either of the boundaries. First, we studied the
case in which the classical drift force of the field is
dominant compared to the Brownian motion of both the
field and the boundary. This setup mimics models of slow-
roll inflation in which the surface of the end of inflation is
modulated by a light spectator field. Using the boundary
crossing approach, the average of e-folding number as well
as the power spectrum in the drift-dominated regime were
obtained. It was shown, as expected, that the correction in
the power spectrum is proportional to the square of the
amplitude of the noise associated with the boundary.
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FIG. 9. The behavior of p− (left) and hN i (right) versus b for the stochastic boundary with the uniform distribution. Here, we have set
ϕ− ¼ −1 and ϕ0 ¼ − 1

3
. As one expects, as b increases, both p− and hN i increase. The red points show the data obtained from

simulation. The linear (nonlinear) dependence of hN i (p−) on b can be seen in these plots.
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Our main interest in this work was for the case where the
system was diffusion dominated, in which the classical drift
force of the field is subdominant compared to the diffusion
forces. We considered two boundaries in which one of them
(here, the right boundary) undergoes a Brownian motion in
the region ½0; b�. Solving the corresponding Fokker-Planck
equation, we have obtained the time-dependent PDFs of the
field, fðϕ; NÞ, and the Brownian boundary, fþðϕþ; NÞ.
While fðϕ; NÞ has a Gaussian distribution, the solution for
fþðϕþ; NÞ is given in a series expansion. Equipped with
these PDFs and using the Volterra integral equations, we
have calculated the first hitting probabilities p� and the
mean number of e-folds hN i to a few orders of m in the
series expansion. The result for leading order pLOþ with
m ¼ 0 matches with the case with two fixed boundaries,
one at ϕ− and the other at ϕþ ¼ b

2
. Next, we considered

higher-order terms in the series expansion with m ¼ 1

(NLO) and m ¼ 2 (N2LO) and have looked at the corre-
sponding corrections in p�. The series converges to its final
result rapidly, especially for smaller value of b as the
higher-order corrections become exponentially suppressed.
As a general conclusion, we have shown that increasing b
resulted in higher probability p−. This is understood easily
by noting that by increasing b the right boundary on
average moves further away from the field, so it is more
likely that the field hits the left boundary first. In addition,
the behavior of p− versus the position of the fixed boundary
ϕ− as well as the initial condition of the field ϕ0 are studied.
The figures confirm that, with all other initial conditions
held fixed, when ϕ0 approaches ϕ− the probability p−
increases, while the result is reversed when ϕ0 moves away
from ϕ−.
We have calculated hN i to leading and next-to-leading

order as well. As an interesting conclusion of this study, we
have compared the result for hN i to the result in the setup
where both boundaries are held fixed. For the initial

condition ϕð0Þ
þ < b

2
, the value of hN i in our setup is larger

than compared to the case of fixed boundaries. This is
because, in our setup, the Brownian boundary can explore

the classically forbidden region ðϕð0Þ
þ ; bÞ as well, so,

effectively, the length of its journey in field space is larger
than the case of the fixed boundaries. On the other hand, for

the case with the initial condition ϕð0Þ
þ > b

2
, the Brownian

boundary explores lesser distances in field space compared
to the case of fixed boundary, and, as a result, hN i reduces
compared to the model with the fixed boundaries. Finally,
we also studied the effects of D, the diffusion amplitude of
the jumps of the stochastic boundary, on p� and hN i. Our
conclusion is that the roles of D are opposite to the effects
of b. Specifically, increasing (decreasing) the magnitude of
D yields smaller (larger) values of p− and hN i.
There are a number of directions in which the current

work can be extended. One interesting case to study is the
setup where both boundaries undergo Brownian motion. In
addition, we can assume the boundaries to have different
boundary conditions, corresponding to whether the boun-
dary is absorbing or reflecting. Another interesting example
to study is when we have more than one stochastic field in
the presence of stochastic boundaries. In the context of
inflation, this corresponds to the setup with N ≥ 3 fields, in
which N − 1 fields collectively drive inflation while the
remaining field is a spectator field which modulates
the surface of the end of inflation generating stochasticity
at the surface of the end of inflation.
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APPENDIX A: THE PROOF TO VOLTERRA
INTEGRAL EQUATIONS WITH THE

BROWNIAN BOUNDARY

In this section, we follow the same process used by
Ref. [70] to obtain a similar set of equations for γ�ðτÞ in the
case where one of the boundaries has Brownian motion. We
denote the two boundaries by S1 and S2, respectively. Let
gðS; tjϕ0; t0Þ denote the first passage time PDF to cross a
boundary S with ϕ0 and t0 given as the initial values for
position and time, respectively. We then can write

gðS1; tjϕ0; t0Þ ¼ γ−ðtjϕ0; t0Þ þ
Z
y
dy

Z
t

t0

dτγþðτjϕ0; t0ÞgðS1ðtÞ; tjS2ðτÞ ¼ y; τÞfþðS2 ¼ y; τÞ ðA1Þ

and

gðS2; tjϕ0; t0Þ ¼ γþðtjϕ0; t0Þ þ
Z

t

t0

dτγ−ðτjϕ0; t0ÞgðS2; tjS1; τÞ: ðA2Þ

Now we have the following lemma.
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Lemma 1.—If Pðx ≥ S2ðtÞjϕ0; t0Þ denotes the transition function of S2, then we can write

Pðx ≥ S2ðtÞjϕ0; t0Þ ¼
Z
y
Pðx ≥ S2ðtÞ ¼ yjϕ0; t0; S2ðtÞ ¼ yÞfþðy; tÞdy: ðA3Þ

Proof.—We write

Pðx ≥ S2ðtÞjϕ0; t0Þ ¼
Pðx ≥ S2;ϕ0; y0Þ

Piðϕ0; t0Þ
¼

X
y

Pðx ≥ S2ðtÞ;ϕ0; y0 ∩ S2ðtÞ ¼ yÞ
Piðϕ0; t0Þ

¼
X
y

Pðx ≥ S2ðtÞjϕ0; y0 ∩ S2ðtÞ ¼ yÞ
Piðϕ0; t0Þ

Pðϕ0; t0; S2ðtÞ ¼ yÞ

¼
X
y

Pðx ≥ S2ðtÞjϕ0; y0 ∩ S2ðtÞ ¼ yÞ
Piðϕ0; t0Þ

Piðϕ0; t0Þfþðy; tÞ

¼
Z
y
Pðx ≥ S2 ¼ yjϕ0; t0; S2 ¼ yÞfþðyÞdy: ðA4Þ

▪
Here, Pi denotes the PDF that the initial condition is fixed at ϕ0 and t0, and in the last line we have used the fact that the

PDF of initial condition is independent of fþ. Another similar lemma may be expressed as follows.
Lemma 2.—For any x ∉ ðS1; S2Þ, one has

fðx; tjϕ0; t0Þ ¼
Z

t

t0

dτ

�
γ−ðτjϕ0; t0Þfðx; tjS1; τÞ þ

Z
y
dyγþðτjϕ0; t0Þfðx; tjS2 ¼ y; τÞfþðS2 ¼ y; τÞ

�
: ðA5Þ

Proof.—If x ≥ S2, then we have

fðx; tjϕ0; t0Þ ¼
Z

t

t0

gðS2ðτÞ; τjϕ0; t0Þfðx; tjS2ðτÞ; τÞdτ: ðA6Þ

The same as what we had in Lemma 1, one can show that

gðS2ðτÞ; τjϕ0; t0Þ ¼
Z
y
gðS2ðτÞ; τjϕ0; t0; S2ðτÞ ¼ yÞfþðy; τÞdy; ðA7Þ

and so we write

fðx; tjϕ0; t0Þ ¼
Z

t

t0

Z
y
gðS2ðτÞ; τjϕ0; t0; S2ðτÞ ¼ yÞfðx; tjS2ðτÞ ¼ y; τÞfþðy; τÞdydτ: ðA8Þ

Then, using Eqs. (A1) and (A2), we obtain

fðx; tjϕ0; t0Þ ¼
Z Z

dydτγþðτjϕ0; t0Þfðx; tjS2ðτÞ ¼ y; τÞfþðy; τÞ

þ
Z

dργ−ðρjϕ0; t0Þ
Z

dτ
Z
y
dygðS2ðτÞ ¼ y; τjS1ðρÞ; ρ; S2ðτÞ ¼ yÞfðx; tjS2ðτÞ ¼ y; τÞfþðy; τÞ: ðA9Þ

Using Eq. (A6) and replacing ϕ0 ¼ S1ðτÞ and t0 ¼ ρ, we obtain the result. The proof for x ≤ S1 is similar. ▪
Now we are ready for the following lemma which gives a proof to Eqs. (4.16) and (4.15).
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Lemma 3.—Let us define

ψðx ≥ S1ðtÞ; tjy; τÞ≡ d
dt

FðS1ðtÞ; tjy; τÞ;

ψðx ≥ S2ðtÞ; tjy; τÞ≡ d
dt

�Z
x
FðS2ðtÞ ¼ x; tjy; τ; S2ðτÞ ¼ y; S2ðtÞ ¼ xÞfþðy; tÞfþðx; tjy; τÞ

�
; ðA10Þ

and then we have

γ−ðtjϕ0;t0Þ¼2ψðS1;tjϕ0;t0Þ−2

Z
t

t0

dτ

�
γ−ðτjϕ0;t0ÞψðS1;tjS1;τÞþ

Z
y
dyγþðτjϕ0;t0ÞψðS1;tjS2¼y;τÞfþðy;τÞ

�
ðA11Þ

and

γþðtjϕ0; t0Þ ¼ −2ψðS2; tjϕ0; t0Þ þ 2

Z
t

t0

dτ

�Z
x

Z
y
γþðτjϕ0; t0ÞψðS2ðtÞ; tjS2ðτÞ ¼ y; τÞfþðy; τÞdxdy

þ
Z
y
dyγþðτjϕ0; t0ÞψðS2ðtÞ ¼ y; tjS1; τÞfþðy; τÞ

�
: ðA12Þ

Proof.—We prove the second equation, and the first one can be proved similarly. To this end, we first note that

FðS2ðtÞ; tjS2ðτÞ ¼ y; τÞ ¼
Z
x
FðS2ðtÞ ¼ x; tjS2ðτÞ ¼ y; τÞfþðx; tjy; τÞdx: ðA13Þ

To prove this relation, we write

FðS2ðtÞ; tjS2ðτÞ ¼ y; τÞ ¼ Pðϕ ≤ S2ðtÞ; tjS2ðτÞ ¼ y; τÞ

¼ Pðϕ ≤ S2ðtÞ ∩ S2ðτÞ ¼ y ∩ the field starts at S2ðτÞÞ
PðS2ðτÞ ¼ y ∩ the field starts at S2ðτÞ ¼ yÞ

¼
X
x

Pðϕ ≤ S2ðtÞ ∩ α ∩ S2ðtÞ ¼ xÞ
PðαÞ ¼

X
x

Pðϕ ≤ S2ðtÞjα; S2ðtÞ ¼ xÞ
PðαÞ Pðα; S2ðtÞ ¼ xÞ; ðA14Þ

where in the second equality we have defined the event in the denominator by α.

Now, using the Bayes theorem, we can write

Pðα; S2ðtÞ ¼ xÞ
PðαÞ ¼ PðS2ðtÞ ¼ xjαÞ: ðA15Þ

As the field evolves independently of S2, then one can write
Eq. (A15) as

PðS2ðtÞ ¼ xjαÞ ¼ PðS2ðtÞ ¼ xjS2ðτÞ ¼ yÞ≡ fþðx; tjy; τÞ:
ðA16Þ

By writing the last summation as an integral, then we can
write

FðS2ðtÞ; tjS2ðτÞ ¼ y; τÞ

¼
Z
x
FðS2ðtÞ ¼ xjS2ðτÞ ¼ yÞfþðx; tjy; τÞdx: ðA17Þ

Now we are at a stage to prove the second equation. Let
x ≥ S2ðtÞ. Then, by integrating Eq. (A5) between a

constant boundary r2 > S2ðtÞ and S2ðtÞ and defining
FcðS2; tjϕ0; t0Þ ¼ 1 − FðS2; tjϕ0; t0Þ, we obtain

FcðS2; tjϕ0; t0Þ

¼
Z

dτ

�
γ−ðτjϕ0; t0ÞFcðS2; tjS1; τÞ þ γþðτjϕ0; t0Þ

×
Z
y
FcðS2ðtÞjS2ðτÞ ¼ y; τÞfþðy; τÞdy

�
: ðA18Þ

By taking the derivative of Eq. (A18) with respect to time
and using the following relations:

lim
τ→t

FðS1ðtÞjS2ðtÞÞ ¼ 0;

lim
τ→t

FðS1ðtÞjS2ðτÞÞ ¼
1

2
;

lim
τ→t

FðS2ðtÞjS1ðτÞÞ ¼ 1;

lim
τ→t

FðS2ðtÞjS2ðτÞÞ ¼
1

2
; ðA19Þ
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as well as Eq. (A17), one obtains Eq. (A12). Equa-
tion (A11) can be obtained in a similar manner.
At last, it can be useful to prove the distribution of the

stochastic boundary at the crossing time the same as the
distribution of the boundary itself without considering any
stopping time. In other words, the distribution of the
boundary is independent of the first crossing time dis-
tribution. To this end, we define the nth moment of the
field at time t with the event A, while the event that the
field crosses the stochastic boundary at time t is described
with event B (Bc represents the complement of B). Thus,
one can write

EðAÞ ¼ EðAjBÞPðBÞ þ EðAjBcÞPðBcÞ: ðA20Þ

As A is obviously independent of Bc and using the
fact that PðBÞ þ PðBcÞ ¼ 1, one can easily show that
EðAÞ ¼ EðAjBÞ. Therefore, all moments of A are equal to
all moments of conditional A, so one can deduce that their
distributions are the same as well.

APPENDIX B: FIRST CROSSING
PROBABILITIES

In this appendix, we find a solution for γ�ðtÞ. To this end,
we suppose that the Brownian boundary has a small drift
changing linearly with time. In other words, we suppose
that

ϕþðNÞ ¼ vN þDWþðNÞ: ðB1Þ

Assuming the boundary has a small drift, we should modify
fþðx; NÞ, where we assume that v is so small that for a
significant time interval we have

jvNj ≪ D: ðB2Þ

If Fþdðx; NÞ denotes the transition PDF of the boundary
with drift, then one can write

Fþdðx; NÞ ¼ Pðϕþ þ vN ≤ x; NÞ ¼ Pðϕþ ≤ x − vN;NÞ:
ðB3Þ

Then the probability density of the Brownian boundary,
fþdðϕþ; NÞ, is simply given by

fþdðx; NÞ ¼ ∂Fþdðx; NÞ
∂x

¼ ∂Pðϕþ ≤ x − vN;NÞ
∂x

¼ fþðx − vN;NÞ: ðB4Þ
One can easily check that the above result satisfies the
following Fokker-Planck equation in the presence of the drift:

∂fþdðx; NÞ
∂N

¼ −v
∂fþdðx; NÞ

∂x
þD2

2

∂
2fþdðx; NÞ

∂x2
ðB5Þ

with the boundary conditions the same as Eqs. (4.4) and (4.5).
From now on, using Eq. (4.7), we can obtain fþðx − vN;NÞ,
and we will set v ¼ 0 for a boundary with pure Brownian
motion.
Using Eqs. (B4), (A11), and (A12), we obtain
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i
e
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2sþ π2m2D2

p

3
75Γ−

�
m2π2D2

2b2
þ s

�

× e
ðϕ−−bÞ

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2sþπ2m2D2

p
cos

�
mπ

b
ϕð0Þ
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�1CAþ 4
X∞
n¼1

0
B@
2
64 b2s

�
ð−1Þn − e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2sþπ2n2D2

p 	
ð2b2sþ π2n2ðD2 þ 1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2sþ π2n2D2

p

3
75
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b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2sþπ2n2D2

p
cos

�
nπ
b
ϕð0Þ
þ

�1CAþ vQþ ¼ 0 ðB6Þ

and

Γ−ðsÞ − e
ffiffiffiffi
2s

p ðϕ−−ϕ0Þ þ ðe
ffiffiffiffi
2s

p
b − 1Þffiffiffiffiffi
2s

p
b

e
ffiffiffiffi
2s

p ðϕ−−bÞΓþðsÞ − 2
ffiffiffiffiffi
2s

p X∞
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2
64b

�
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b
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3
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ffiffiffiffi
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�
m2π2D2

2b2
þ s

�
cos

�
mπ

b
ϕð0Þ
þ

�
þ vQ− ¼ 0: ðB7Þ

In the above equations, we have expanded the equations up to first order of v, while Q� are some functions depending on
our initial values and the Laplace parameter that we have not presented their explicit forms here as they involve large
expressions. The above equations are used to obtain Eqs. (4.21) and (4.34).
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