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Previous studies demonstrate that the inflaton, when coupled to the hypercharge Chern-Simons density,
can source an explosive production of helical hypermagnetic fields. Then, in the absence of fermion
production, those fields have the capability of preheating the Universe after inflation and triggering a
successful baryogenesis mechanism at the electroweak phase transition. In the presence of fermion
production, however, we expect a strong damping of the gauge fields production from the fermion
backreaction, a phenomenon called Schwinger effect, thus jeopardizing their original capabilities. Using
numerical methods, we study the backreaction on the generated gauge fields and revisit the processes of
gauge preheating and baryogenesis in the presence of the Schwinger effect. We have found that gauge
preheating is very unlikely, while still having a sizable window in the parameter space to achieve the baryon
asymmetry of the Universe at the electroweak phase transition.
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I. INTRODUCTION

Cosmological inflation [1–3] is nowadays a well-
established paradigm to solve the classical (flatness, hori-
zon, …) problems of the standard cosmological model and
to generate the primordial density perturbations giving rise
to the present Universe structure. The achievements of
cosmological inflation usually require the presence of one
(or several) scalar field—the inflaton—giving rise to
physics beyond the Standard Model (SM) of particle
physics (BSM). In this way, along with the classical
problems of the SM (hierarchy problem, baryogenesis,
strong CP-problem, dark matter,...), cosmological inflation
provides yet another motivation for BSM physics.
Although the existence of a period of cosmological

inflation is pretty well stablished by observational cosmo-
logical data [4], there is no consensus on a detailed model.
An interesting candidate for the inflaton is a pseudoscalar
field ϕ, denoted in this paper as axionlike particle,1 which
can then couple to the Chern-Simons density FμνF̃μν of a
Uð1Þ gauge field. In this case, and depending on the size of
the coupling of the inflaton to the Chern-Simons term, there
can be an explosive production of helical gauge fields at the

end of inflation [7–9]. This exponential production can
dominate the energy density of the Universe during the
coherent oscillations of the inflaton around its minimum, a
phenomenon dubbed as gauge preheating [10–12], and lead
to a rapid production of inhomogeneities sourcing a
significant gravitational wave background, leading to
strong constraints on the inflaton Chern-Simons coupling
from the Planck (and future CMB-S4) limits on the net
energy density in gravitational waves [5,6].
When the gauge field is identified with the SM hyper-

charge, Yμ, with strength Yμν, the inflaton coupling to the
Chern-Simons density YμνỸμν gives rise to the production
of helical hypermagnetic fields, which can then survive
until the electroweak phase transition (crossover), and
trigger the baryon asymmetry of the Universe (BAU)
[13–18]. However, in the presence of strong gauge fields,
light fermions charged under the gauge group are produced
by the backreaction of gauge fields that source the fermion
equations of motion (EOM) [19,20]. The corresponding
currents can then, in turn, backreact on the produced gauge
fields, a phenomenon called Schwinger effect (see, e.g.,
Ref. [21]). The backreaction of fermion currents on the
produced gauge fields acts as a damping force in the
explosive production of helical gauge fields, and many of
the conclusions from the gauge field production should be
revised in the presence of the Schwinger effect,2 in
particular, those concerning the preheating capabilities
and the baryogenesis mechanism.
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1With an (obvious) abuse of language, we are identifying in
this paper axions with axionlike (or pseudoscalar) particles,
which allow a wider choice for inflationary potentials [5,6].

2One possible way out is if there are no light charged fields
when gauge fields are produced, a condition that is not fulfilled
here.
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In this paper, we will study the effect of the Schwinger
particle production on the helical hypermagnetic fields
produced at the end of inflation, and in particular, its
influence on the gauge preheating efficiency and baryo-
genesis capability. In order to consider the backreaction of
the produced gauge fields on the inflationary equations of
motion and that of the Schwinger effect on the gauge field
production, wewill use numerical methods, in particular, the
fourth order Runge-Kutta (RK4) algorithm. Our numerical
results are validated as they overlap with some recent
semianalytical methods and the gradient expansion formal-
ism of Refs. [22–25]. Our general finding is that the gauge
field production ismuch less explosive than in the absence of
the Schwinger effect, which will jeopardize the conclusions
concerning the possibility of gauge preheating, although they
leave an open window for baryogenesis.
The contents of this paper are as follows. In Sec. II, we

present the general lines of the model and the methods we
will consider, including the relevant equations of motion in
momentum space and the observable quantities we will
compute. In Sec. III, we will present numerical results for
the gauge sector assuming the slow roll conditions in the
inflaton equations of motion. In order to check the validity
of our approach, numerical results will be compared with
some estimates from the literature, namely the backreac-
tionless solution, the Schwinger equilibrium, and maximal
estimates, as well as the gradient expansion formalismwhere
dynamical results are obtained analytically and numerically
in configuration space. Some details about the numerical
methodswill be explained inAppendixA. In Sec. IV, wewill
perform the full numerical calculation for two kinds of
models that predict cosmological observables in agreement
with the observed values: the α-attractor models and the
quartic hilltop models. In all cases, the gauge preheating
efficiency does not seem good enough to ensure complete
reheating, which has to be completed by other perturbative or
nonperturbative mechanisms. Moreover, we have reanalyzed
the baryogenesis predictions in the presence of the Schwinger
effect and found a sizablewindowwhere the BAU is correctly
predicted. Again, some details about the numerical methods
we used are described in Appendix B. Finally, our conclu-
sions are presented in Sec. V.

II. THE MODEL

The model action is given by

S ¼
Z

d4x

� ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂

μϕ −
1

4
YμνYμν − VðϕÞ

�

−
ϕ

4fϕ
YμνỸμν

�
þ
Z

d4x
ffiffiffiffiffiffi
−g

p
iψ̄=Dψ ; ð2:1Þ

where ϕ is the pseudoscalar inflaton, V the inflaton
potential, and fϕ provides the inverse coupling of the
inflaton to the Chern-Simons term. Yμν is the field strength

of the hypercharge gauge field Yμ and Ỹμν ¼ 1
2
ϵμνρσYρσ its

dual tensor. We also have included the interaction of
fermionic currents, corresponding to hypercharge QY
fermions, with the hypercharge fields (encoded in the
covariant derivative Dμ ≡ ∂μ − g0QYAμ). All gauge field
quantities areUð1Þ hypercharge fields, i.e., AY , EY , BY , etc.
To make the notation lighter, we drop the index Y as there
will be no ordinary electromagnetic fields in this work.

A. Equations of motion

Variation of the action with respect to ϕ and the
hypercharge gauge field Aμ ¼ ðA0;AÞ leads to the gauge
equations of motion in the radiation gauge, A0 ¼ 0 and
∇ · A ¼ 0,

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ E · B
a4fϕ

; ð2:2aÞ

�
∂
2

∂τ2
−∇2 −

a _ϕ
fϕ

∇×
�
A ¼ J; ð2:2bÞ

where we have used YμνỸμν ¼ −4E · B and Jμ ¼ ðρc; JÞ ¼
ig0QY ψ̄γ

μψ . We assume that initially the Universe does not
contain any asymmetry of charged particles and that these
ones are produced only later in particle-antiparticle pairs.
Therefore, we set the charge density to zero, ρc ¼ 0.
Finally, the current J is given by the Ohm’s law

J ¼ σE ¼ −σ
∂A
∂τ

; ð2:3Þ

where σ is the generalized conductivity, which will be
defined later.
As it can be seen from the above system, we use cosmic

time t for the inflaton dependence and the conformal time τ,
defined by gμν ¼ a2ðτÞημν, for the gauge field dependence.
We denote the derivative with respect to conformal time τ
with a prime and the derivative with respect to the cosmic
time t with a dot; e.g., a0 ¼ da=dτ and _a ¼ da=dt. The
Hubble parameter is defined as H ¼ _aðtÞ=aðtÞ, where a is
the scale factor. We assume a homogeneous inflaton with
only zero mode, ϕðt; xÞ ¼ ϕðtÞ.
We now quantize the gauge field A in momentum space

Aðτ; xÞ ¼
X
λ¼�

Z
d3k
ð2πÞ3 ½ϵλðkÞaλðkÞAλðτ; kÞeik·x þ H:c:�;

ð2:4Þ

where λ is the photon polarization, and aλðkÞ (a†λðkÞ) are
annihilation (creation) operators that fulfill the canonical
commutation relations

½aλðkÞ; a†λ0 ðk0Þ� ¼ ð2πÞ3δλλ0δð3Þðk − k0Þ: ð2:5Þ
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The polarization vectors ϵλðkÞ satisfy the conditions3

k · ϵλðkÞ ¼ 0; k × ϵλðkÞ ¼ −iλkϵλðkÞ;
ϵ�λ0 ðkÞ · ϵλðkÞ ¼ δλλ0 ; ϵ�λðkÞ ¼ ϵλð−kÞ; ð2:6Þ

where k≡ jkj. Therefore, the equation of motion for the
gauge modes yields

A00
λ þ σA0

λ þ k

�
k − λ

a _ϕ
fϕ

�
Aλ ¼ 0: ð2:7Þ

In some special cases (σ ¼ 0 and slow-roll inflation), this
equation can be solved analytically, and we will do it in
Sec. III A. In the general case, we will solve it using
numerical methods.

B. Observable quantities

Once we obtain a solution to the modes Aλ, we can
compute the (hyper)electromagnetic energy densities as

ρE ≡ 1

a4

Z
kc

kmin

dk
k2

4π2
ðjA0þj2 þ jA0

−j2Þ; ð2:8aÞ

ρB ≡ 1

a4

Z
kc

kmin

dk
k4

4π2
ðjAþj2 þ jA−j2Þ: ð2:8bÞ

The upper integration limit comes because subhorizon
modes have an oscillatory behavior and should be regarded
as quantum fluctuations. Therefore, such modes do not
contribute to the above classical observables and are
excluded from the integration. More details and precise
value of kc will be given in Sec. II C. For the lower
integration limit kmin see Eq. (A5).
In this work, we will also make use of the (hyper)

magnetic helicity and its derivative, defined as

H≡ lim
V→∞

1

V

Z
V
d3x

hA ·Bi
a3

¼ 1

a3

Z
kc

kmin

dk
k3

2π2
ðjAþj2 − jA−j2Þ;

ð2:9aÞ

G≡ 1

2a
dH
dτ

¼ −
hE · Bi
a4

: ð2:9bÞ

In the case of one Dirac fermion with mass m and
hypercharge QY , the conductivity can be written as4 [19]

σ ¼ jg0QY j3
6π2

a
H

ffiffiffiffiffiffiffiffi
2ρB

p
coth

�
π

ffiffiffiffiffi
ρB
ρE

r �
exp

�
−

πm2ffiffiffiffiffiffiffiffi
2ρE

p jg0QY j
�
;

ð2:10Þ

where g0 ≃ 0.4 is computed at the characteristic scale μ ≃
ðhEi2 þ hBi2Þ1=4 where the Schwinger effect takes place
[24]. This estimation is valid in the case of collinear electric
and magnetic fields, an assumption that we have numeri-
cally checked by verifying that

cos θ≡ jGj
2
ffiffiffiffiffiffiffiffiffiffi
ρEρB

p ≃ 1; ð2:11Þ

where θ is the spatial angle between E and B.
Moreover, the massless hypercharged fermions that are

continuously produced during inflation have an energy
density given by

ρψ ¼ lim
V→∞

σ

V

Z
V
d3x

hA · Ei
a4

¼ σ

a4

Z
kc

kmin

dk
k2

2π2
d
dτ

ðjAþj2 þ jA−j2Þ: ð2:12Þ

Notice that the observable quantities ρE, ρB, ρψ , H, and G
are physical,5 while the fields A, E, and B as well as the
conductivity σ and current J are comoving.
Concerning the Higgs vacuum expectation value, there

are two possibilities during the inflationary period:
(i) The first possibility, which wewill consider through-

out this paper, is that hhi ¼ 0, and so the electro-
weak symmetry is unbroken during the inflationary
period. In order to ensure unbroken electroweak
symmetry and hence, massless SM fermions, which
all contribute to the conductivity (2.10), we assume
that the SM Higgs field h remains stabilized at the
origin in field space by a large mass term throughout
the inflationary period. Such a large mass can, e.g.,
be induced by a nonminimal coupling to the Ricci
curvature scalar as L ¼ 1

2
ξh2R with ξ > 3=16 (see,

e.g., Ref. [26]). Hence, we get

σ ≃
41g03

72π2
a
H

ffiffiffiffiffiffiffiffi
2ρB

p
coth

�
π

ffiffiffiffiffi
ρB
ρE

r �
: ð2:13Þ

(ii) The second possibility is that the electroweak sym-
metry is broken during the inflationary period. In this
case after ΔN e folds of inflation, there is a Gaussian
distribution of values of the Higgs field with zero
mean and variance hh2i ¼ H2ΔN=ð4π2Þ with prob-
ability Pðh;ΔNÞ ∝ expð− 1

2
h2

hh2iÞ dominated by the

3A simple realization can be given in terms of a real basis with
the orthonormal vectors ðk=jkj; eiÞ, (i ¼ 1, 2), such that k · ei ¼
e1 · e2 ¼ 0 and ei · ei ¼ 1, with ϵλ ≡ ðe1 þ iλe2Þ=

ffiffiffi
2

p
, from where

identities (2.6) follow.
4As the conductivity σ relates J and E in (2.3), it is a comoving

quantity; i.e., it scales with the Universe expansion. Our defi-
nition differs from the one in [23,24], where the authors used a
physical conductivity that we will denote σ̂ in this paper, their
relation being σ ¼ aσ̂.

5They relate to the comoving ones ρcE, ρ
c
B, H

c, and Gc by the
relations ρcB;E ¼ a4ρB;E, Hc ¼ a3H, Gc ¼ a4G.
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values h≲ ffiffiffiffiffiffiffiffiffi
hh2i

p
; see Ref. [26].6 In this case, the

electroweak symmetry is broken, and the hyper-
charge field strength Yμν in Eq. (2.1) is projected
onto the electromagnetic field strength Fμν with a
coupling to the inflaton given by fϕ= cos2 θW, where
θW is the electroweak angle. Now the conductivity
for the hypermagnetic field in Eq. (2.10) should be
replaced by a similar expression for the magnetic
field, with the replacement jg0QY j → jeQj, where
e ¼ gg0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
, and Q is the fermion electric

charge. The condition for a fermion f to contribute
to the magnetic conductivity πm2

f <
ffiffiffiffiffiffiffiffi
2ρE

p jeQfj
translates into the condition, for the fermionYukawa
coupling,

Yf ≲ 0.45

�
ρE
H4

�
1=4 ffiffiffiffiffiffiffiffiffi

jQfj
q

; ð2:14Þ

andwe have computed all couplings at the character-
istic scale μ≃ ðhEi2þhBi2Þ1=4where the Schwinger
effect takes place. If the three generations of fer-
mions satisfy the above condition, then the conduc-
tivity for the magnetic field is given by Eq. (2.13)

with the replacement 41g03

72π2
→ e3

π2
. We have checked

that, in this case, the results for fϕ ≲ 0.2 are
consistent with all three generation fermions con-
tributing to the magnetic conductivity. For fϕ ≳ 0.2,
only the top quark does not contribute. Given that
41g03=72 ≃ 0.37while e3 ≃ 0.36, at the scales where
the Schwinger effect takes place, we have found that
the results in this second case are qualitatively
similar to those for the previous case, which will
be worked out in detail in this paper.

Considering then the case (i) above, the conductivity
(2.13) yields a nontrivial integro-differential system as the
damping term grows with the magnetic energy and hence
backreacts on the amount of produced electric and mag-
netic fields. We aim to solve this setup of the Schwinger
effect numerically. In the next sections, we will consider
specific cases where this system can be further simplified.

C. The gauge vacuum

At very early times, when ja _ϕj ≪ kfϕ, the modes are in
their Bunch-Davies (BD) vacuum; hence,

Aλðτ; kÞ ¼
1ffiffiffiffiffi
2k

p e−ikτ ðτ → −∞Þ. ð2:15Þ

Initially, we can consider all the modes in the BD vacuum
(which would be possible by initializing the numerical
simulation such that a0 ≪ k0=H0). In that case, since
jAþj ¼ jA−j, the fields E and B are plane waves
perpendicular to each other, as G ¼ 0 in (2.11) yields
cos θ ¼ 0. Therefore, there is no Schwinger effect and
σ ¼ 0.
It has recently been shown that in the presence of the

conductivity σ, the BD vacuum amplitude of the modes that
are still in the vacuum get damped by the ones that left it
[23]. Indeed, consider we are at a time a� where modes
k > k� are still in the BD vacuum, while modes k < k�
were amplified by both tachyonic and parametric insta-
bilities from Eq. (2.7). Then, the equation of motion for
modes such that ja� _ϕðτ�Þj ≪ kfϕ does not reduce to a
plane wave in the presence of a nonzero σ, but instead to
A00
λ þ σA0

λ þ k2Aλ ¼ 0, and Eq. (2.15) is not a solution
anymore. To derive the generalized BD vacuum, we write
the gauge equation of motion (2.7) in cosmic time:

Äλ þ ðσ̂ þHÞ _Aλ þ
k
a

�
k
a
− λ

_ϕ

fϕ

�
Aλ ¼ 0; ð2:16Þ

where we used the identity a−2A00
λ ¼ Äλ þH _Aλ and per-

form the transformation Aλ ¼
ffiffiffiffi
Δ

p
Aλ with [23]

ΔðtÞ ¼ exp

�
−
Z

t

−∞
σ̂ðt0Þdt0

�
: ð2:17Þ

We recall that we have defined σ̂ ¼ σ=a as the physical
conductivity in footnote 4. The above equation hence
becomes

A00
λ þ

�
k
a

�
k
a
− λ

_ϕ

fϕ

�
−

_̂σ

2
−
σ̂2

4
−
Hσ̂

2

�
a2A ¼ 0; ð2:18Þ

where we used the fact that _ΔðtÞ ¼ −σ̂ðtÞΔðtÞ. A mode
crosses the horizon when the expression in the square
brackets vanishes for the first time at least for one
polarization at k ¼ kc. The modes in the vacuum are then
characterized by k ≫ kc. This yields the momentum of the
mode that crosses the horizon at time t, namely the cutoff of
the integrals:

kc ¼
				 a _ϕ2fϕ

				þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a _ϕ
2fϕ

�2

þ a2

2

�
_̂σ þ σ̂

�
σ̂

2
þH

��s
: ð2:19Þ

Deep inside the horizon, when the first term in square
brackets of (2.18) dominates, the solution must satisfy the
BD condition (2.15). As we have seen, in the presence of

6The SMHiggs potential is still unstable at a value of the Higgs
field h ¼ hI ≃ 1011 GeV, and the condition for PðhI;ΔNÞ <
e−3ΔN (so that it is unlikely to find the Higgs away from its EW
vacuum in any of the e3ΔN causally disconnected regions formed
during inflation) impliesHE <

ffiffiffiffiffiffiffiffi
2=3

p
πhI=ΔN, a condition that is

not fulfilled by any of the models of inflation we have considered.
Therefore, this possibility would require stabilization of the
Higgs potential by some new physics.
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finite conductivity, this equation does not fully describe the
gauge-field mode function inside the horizon, as the
damped BD condition includes an exponential damping
factor

Aλðτ; kÞ ¼
ffiffiffiffiffiffiffiffiffi
ΔðtÞ
2k

r
e−ikτ ðτ → −∞Þ: ð2:20Þ

The bottom line of this section is that the modes still in
their BD vacuum see their amplitudes damped because of
the effect of the modes that left their vacuum earlier and
participate in the equations of motion (2.2a) and (2.7). The
parameter Δ was first introduced in the context of the
gradient expansion formalism in Ref. [23], where it was
dynamically solved, while in Ref. [24], it was also
considered as a free parameter and validated the corre-
sponding procedure by numerical calculations. In order to
compare with results from the gradient expansion formal-
ism in configuration space, we will also both compute Δ
numerically and consider it as a free parameter, although
our final results will be based upon the dynamical calcu-
lation of Δ.

III. SLOW ROLL ANALYSIS

The slow-roll inflation paradigm has been used by many
authors to compute the amount of electromagnetic energy
density [7,27,28] or baryogenesis through helicity
[8,9,16,18] at the end of inflation, with or without taking
into account the Schwinger effect. Here, we aim to validate
our numerical results by comparison with the known
analytical results at the end of inflation.
In this section, we will take ϕ as a slowly rolling inflaton

field such that ϕ̈ ≃ 0, 3H _ϕ ≃ −V 0ðϕÞ, and so we can
consider _ϕ and H ¼ HE as constant. Doing so, we are
neglecting the gauge field backreaction in the right-hand
side of Eq. (2.2a), a hypothesis that we have consistently
checked a posteriori. The results of this section will be
model independent, within the hypothesis of the slow roll
approximation.

A. Absence of Schwinger effect

Here, we are assuming there is no Schwinger effect,7 i.e.,
σ ¼ 0; hence, we can rewrite (2.7) as

A00
λ þ k

�
kþ λ

2ξ

τ

�
Aλ ¼ 0; ð3:1Þ

where, following the slow roll equations,

ξ ¼ −
_ϕ

2HEfϕ
ð3:2Þ

is a constant. Since we are in de Sitter space, we can use the
scale factor definition a ¼ −ðHτÞ−1 and solve (3.1) asymp-
totically. At early time, when jkτj ≫ 2ξ, the modes are in
their BD vacuum given by (2.15), as here Δ ¼ 1. When
jkτj ∼ 2ξ, one of the modes develops both parametric and
tachyonic instabilities leading to exponential growth while
the other stays in the vacuum. During the last e folds of
inflation, i.e., jkτj ≪ 2ξ, the growing mode has the solution
[8,27]

Aλ ≃
1ffiffiffiffiffi
2k

p
�

k
2ξaEHE

�1
4

exp

�
πξ − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2ξk
aEHE

s �
; ð3:3Þ

where aE and HE are, respectively, the scale factor and the
Hubble parameter at the end of inflation. Here, as we
assume a slow roll regime, we consider HE constant, and
we take the convention aE ¼ 1.
Using (2.8) and (2.9), we can compute all electromag-

netic quantities:

ρE ≃
63

216
H4

E

π2ξ3
e2πξ; ρB ≃

315

218
H4

E

π2ξ5
e2πξ;

H ≃
45

215
H3

E

π2ξ4
e2πξ; G ≃

135

216
H4

E

π2ξ4
e2πξ: ð3:4Þ

These results are only valid when the absence of back-
reaction on the inflaton equation of motion (2.2a) is
guaranteed, hence, when jG=V 0ðϕÞj ≪ fϕ. This model-
dependent condition puts a lower bound on the parameter
fϕ or, equivalently, a higher bound on ξ. Using the slow roll
equations and the definition of the slow roll parameters, this
parameter can be written as

ξ ¼ Mpl

fϕ

ffiffiffi
ϵ

2

r
; ð3:5Þ

where ϵ ¼ ðM2
pl=2ÞðV 0=VÞ2. Therefore, at the end of infla-

tion, where by definition ϵ ¼ 1, one has ξ ¼ Mpl=
ffiffiffi
2

p
fϕ, and

the no backreaction condition inEq. (2.2) provides the bound
ξ < 5.73 (or equivalentlyfϕ > 0.12Mpl). In Fig. 1, we show,
with orange lines, the quantities ρE, ρB,H, andG evaluated at
the end of inflation obtained from the analytical back-
reactionless solutions from Eq. (3.4), while the blue dots
are the numerical solutions, which correspond to the case
σ ¼ 0 (no Schwinger effect) and correspondingly, Δ ¼ 1.
We have used a Runge-Kutta method, which is explained in
Appendix A.

7This condition should be considered as being fulfilled by
some physical systems, as, e.g., systems with no massless
fermions, more than as an approximation to the full (more
realistic) case.
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B. Presence of Schwinger effect

The Schwinger effect is taken into account by means of
the conductivity σ in Eq. (2.7), as given by Eq. (2.10) [19].
The growth of σ with time then backreacts on the gauge
field, as the damping term grows in its differential equation.
We will compare our numerical calculations with three
analytical (or semianalytical) results: the Schwinger maxi-
mal and equilibrium estimates [19,24], as well as the
gradient expansion formalism [22–24]. From the numerical
point of view however, we aim to solve Eq. (2.7) with σ
computed at each time step using (2.13). The details about
the numerics will be displayed in Sec. III C.

1. Schwinger equilibrium estimate

In this case, the backreaction of the chiral fermions on
the gauge fields is taken into account by just replacing the
parameter ξ with the effective one [19]

ξeff ¼ ξ −
41g03

72π2
coth

�
π

ffiffiffiffiffi
ρB
ρE

r � ffiffiffiffiffiffiffiffi
2ρE

p
H2

E
; ð3:6Þ

in the backreactionless solutions (3.4). This amounts to
solving

63

215π2
e2πξeq

ξ3eq
¼
�
72π2

41g03

�
2

ðξ − ξeqÞ2 tanh2
� ffiffiffi

5

4

r
π

ξeq

�
; ð3:7Þ

which provides the function ξeq ¼ ξeqðξÞ that we plug in
(3.4) instead of the bare ξ to obtain the quantities ρEeq, ρBeq,
Heq, and Geq. These equilibrium estimates are shown with a
purple line in the plots of Fig. 1.

2. Schwinger maximal estimate

In this case, we assume the exponential behaviors of the
backreactionless solutions to be valid until they saturate the
maximal value that we will display hereafter. We numeri-
cally determine the value of crossing, which happens for
ξ ≃ 4.4–4.7 depending on each quantity.
The maximum helicity density can be estimated as the

solution of [19]

jEj2 þ jBj2 ¼ ξeff jEjjBj: ð3:8Þ

This replacement yields an equation relating the jEj and jBj
fields that can be solved analytically. We then choose, as
definition of our maximal estimate, the solution ðjEj; jBjÞ

FIG. 1. Electric ρE and magnetic ρB energy densities and the helicityH and its derivative G, at the end of inflation [i.e., for ϵðaEÞ ¼ 1],
in units ofHE, as functions of the coupling fϕ assumingΔ constant. We see the plots confirm the result from Fig. 1 of [24]. Here, we also
assumed ξ constant.
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of (3.8) that maximizes the product jEj · jBj.8 This yields
for ξ ≫ 1

ρEmax ≃
2

9

�
72π2

41g03

�
2

ξH2
E; ð3:9aÞ

ρBmax ≃
2

81

�
72π2

41g03

�
2

ξ2H2
E; ð3:9bÞ

Hmax ¼
2

3
Gmax ≃

8

81

�
72π2

41g03

�
2

ξ3H3
E: ð3:9cÞ

The maximal estimates for the quantities ρEmax, ρBmax,
Hmax, and Gmax are shown with a pink line in the plots
of Fig. 1.

3. Gradient expansion formalism

This method was introduced in Refs. [22–24] and trans-
forms the EOM for the vector field A into EOM for
observable quantities, in particular, the electric E and
magnetic B fields. As the spatial gradients in the EOM do
always appear as rotE and rotB, theEOMcan bewritten as an
infinite series in terms of the bilinears EðnÞ ¼ hE · rotnEi=an,
GðnÞ ¼ hE · rotnBi=an, and BðnÞ ¼ hB · rotnBi=an, with
n ¼ 0; 1;…. In this way, the coupled system of EOM for
the fields E and B transforms into a system of coupled
differential equations for the quantities EðnÞ, BðnÞ, and GðnÞ.
This system is not block diagonal in the space of the n index
so that the system has to be truncated to find solutions.
Moreover, the parameter ΔðtÞ in Eq. (2.17), which

suppresses the gauge-field amplitude on small scales
depends on the conductivity at all times t0 < t. So, a precise
determination of ΔðtÞ would require a complete analytical
solution of the infinite-dimensional system of equations.
While Δ was dynamically computed in Ref. [23], for the
sake of simplicity and generality, it was considered as
a free parameter in Ref. [24] and fixed to the values
Δ ¼ 1; 10−2; 10−4; 10−6. In our numerical approach, wewill
consider Δ as a function of the conductivity σ, as the initial
condition for E and B are plane waves, such that E · B ¼ 0
and therefore, initially σ ¼ 0 and soΔ ¼ 1. However, as time
is evolving, E and B will become collinear, and a non-
vanishing conductivity will appear, as well as the function
ΔðtÞ < 1. In order to compare our numerical results with
those fromRef. [24],we alsowill eventually enforceΔ to be a
constant in our code.Upon considering a constant value ofΔ,
our results will agree pretty well with those obtained in the
gradient expansion formalism; see Fig. 1. In the more
realistic cases where we just compute the value of ΔðtÞ,

wewill see that at the beginning, t ¼ t0, just very deep inside
the inflationary period, Δðt0Þ ¼ 1, while the value of Δ will
decrease very fast and at the end of inflation t ¼ tE,
ΔðtEÞ ≪ 1.

C. Numerical results at the end of inflation

We will find it more convenient to change the variable
from the time t to the scale factor a. The gauge field
equation of motion (2.7) then becomes

∂
2Aλ

∂a2
þ 1

a

�
2þ σ

aHE

�
∂Aλ

∂a
þ k
a3HE

�
k

aHE
− 2λξ

�
Aλ ¼ 0:

ð3:10Þ

We recall that, as we are considering the slow roll regime in
this section, we do not need to solve the equation of motion
for ϕ.
The Bunch-Davis solutions can now be written as

Aλða; kÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ΔðaÞ
2k

r
eik=aHE

∂Aλ

∂a
ða; kÞ ¼

ffiffiffiffiffiffiffiffiffiffi
ΔðaÞp

a2HE

�
−i

ffiffiffi
k
2

r
−
σ

2

1ffiffiffiffiffi
2k

p
�
eik=aHE ða → 0Þ;

ð3:11Þ

with

ΔðaÞ ¼ exp

�
−
Z

a

a0

σða0Þ
a02HE

da0
�
: ð3:12Þ

The technical details of the numerical simulations for
solving Eq. (3.10), subject to the boundary conditions
(3.11), can be found in Appendix A. We display in Fig. 2
the spectra of all the observable quantities in order to see
how the BD vacuum is dominating the spectra for large k
and how the cutoff kcðaÞ, given by (2.19), efficiently
removes that part of the integration. The difference between
the BD vacuum and the damped BD vacuum is also clear,
as the first goes like k3, whereas the second goes like
ΔðaÞk3 withΔ decreasing with time. Hence, the asymptotic
behaviors are not superimposed since Δ changes. Finally,
we also see explicitly how the growth of ρE and ρB with the
scale factor a is due to the increase in amplitude of the
spectrum hump and its shift to larger values of k. For this
illustrative purpose, we used a constant value of ξ. Here, we
have fixed fϕ ¼ 0.1Mpl, while for other values of this
parameter, the plots are similar.
Before moving to the full numerical results, we will

compare our slow roll based inflaton numerical results with
the recent literature on the subject.

8Notice that our definition ofmaximal solution departs from that
given in Refs. [19,24], where the fields jEj and jBj are separately
maximized, while we are maximizing the product jEj · jBj, the
relevant quantity for the baryon asymmetry generation.
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1. Constant Δ and ξ approximation

We will first assume that the parameters Δ and ξ are
constants. As we already mentioned, the parameter Δ was
fixed to constant values in Ref. [24], while ξ, as defined in
Eq. (3.2), is often considered as a constant in the slow roll
approximation. In Fig. 1, we displayed several results
already present in the literature that we successfully
reproduced with our numerical method: first the back-
reactionless case, where there is no conductivity, by simply
enforcing σ ¼ 0 (therefore,Δ ¼ 1) in the code. The data set
are displayed in blue and match the corresponding ana-
lytical value given by Eq. (3.4). Then, in order to reproduce
results from [24], we considered a nonzero conductivity
given by (2.13) while assumingΔ constant during inflation,
thus making it a free parameter. In Fig. 1, we plot the
quantities ρB, ρE,H, and G at the end of inflation for chosen
values of Δ. We can see that the results agree well with
those using the gradient expansion formalism in Ref. [24].

2. Variable Δ and ξ

The benefit of the slow roll approximation is that the
results look “model independent.” However, the tradeoff
comes with the need of having a constant parameter ξ as the
slow roll regime implies an approximately constant _ϕ.
Besides, we know that this parameter can also be expressed
in terms of the slow roll parameter ϵ [see Eq. (3.5)], which
is indeed small and constant during inflation but then
quickly becomes unity during the last e folds. We also
know that the modes produced during the last e folds are
the ones that contribute the most to the integrals (2.8) and

(2.9), as all the modes previously generated get washed out
by the Universe expansion.
All these observations lead us to conclude that the most

important contribution to the quantities ρE, ρB, H, and G is
taking place during an epoch when the constant ξ approxi-
mation loses its relevance. Hence, in this section, we will
instead specify an inflation model, namely the Starobinsky
potential, and make its study in the slow roll regime with a
function ξðaÞ that can be obtained from the model. We have
chosen in this section the Starobinsky potential as it
provides a realistic model of inflation and will be a
particular case of a more general class of models we will
consider to make predictions using the full solution of the
system. The purpose of this section will thus be to assess
the goodness of the slow roll approximation when comput-
ing the full solution to the system (II A).
The Starobinsky potential is given by

V ¼ Λ4

�
1 − exp

�
−

ffiffiffi
2

3

r
jϕj
Mpl

��2
: ð3:13Þ

Using the slow roll regime, the inflaton field ϕ is given by

ffiffiffi
2

3

r
ϕðaÞ
Mpl

¼ − log

�
aE
a

�4
3

−W−1

�
−βe−β

�
aE
a

�
−4
3

�

− β þ log β; β ¼ 1þ 2ffiffiffi
3

p ; ð3:14Þ

where Wn is the nth branch of the Lambert function. The
value of the function ξ is then given by

FIG. 2. Spectra of the magnetic energy (top left), electric energy (bottom left), helicity (top right), and its derivative (bottom right), i.e.,
the integrands of (2.8) and (2.9), for different values of a during inflation simulation. Here, we used variable σðaÞ and ΔðaÞ with
constant ξ. The color matching dashed vertical lines show the cutoff values kcðaÞ computed from (2.19).
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ξðaÞ ¼
ffiffiffi
2

3

r
Mpl

fϕ

1

exp

� ffiffi
2
3

q
ϕðaÞ
Mpl

�
− 1

: ð3:15Þ

In Fig. 3, we display in blue results for the Starobinsky
model, for various values of ϵ, when σ and Δ vary
dynamically. Although the slow roll approximation loses
its relevance for values of ϵ closer to 1 (an issue we address
in the next section), we already see a difference with the
plots in Fig. 1. This is because, no matter the value of the
initial time, the function ΔðaÞ rapidly goes to extremely
small values, thus killing the BD modes that would have
been amplified at the very end of inflation and that would
have contributed the most to the integrals (2.8) and (2.9).
With a constant Δ, this suppression is less effective and the
tachyonic amplification yields higher energy densities and
helicity.

IV. FULL ANALYSIS

In this section, we are not using the slow roll hypothesis
for the inflaton equation of motion and consider the full
solution to the system (2.2) in specific models of inflation.
We will choose a set of inflationary models that are
well known to be in agreement with all cosmological

constraints. Also, we do not assume any peculiar geometry
of the Universe.
The equations to be solved during inflation are the

system (2.2) written in terms of the variable a. Unlike in the
previous section, the current change of variables must take
into account that the Hubble parameter is not constant, but
moreover, we have da

dt ¼ _a ¼ aH, and we will define the
auxiliary quantity F as

F ¼ −
a
H
dH
da

¼ −
a

2H2

dH2

da
: ð4:1Þ

We will relate it to the Friedmann equations

H2 ¼ ρ

3M2
pl

; ð4:2aÞ

ä
a
¼ −

3pþ ρ

6M2
p

; ð4:2bÞ

which combine themselves into

a
2

dH2

da
¼ dH

dt
¼ ä

a
−H2 ¼ −

pþ ρ

2M2
p
; ð4:3Þ

where the total energy density and pressure are

FIG. 3. Comparison between the slow roll approximation and the full solution for the Starobinsky model. The analytical estimates are
given for ϵ ¼ 1. As expected, the slow roll computation diverges from the full solution as inflation is nearing the end, since the slow roll
approximation is only valid in the regime ϵ ≪ 1. Hence, the slow roll computation overshoots the value of all quantities, closer to the
value given by the Schwinger equilibrium estimate for fϕ ≲ 0.05Mpl. As expected, we also have compared both analysis, slow roll and
full solution, for values of a such that ϵðaÞ ≪ 1 (in particular, ϵ ¼ 10−1; 10−2; 10−3) and found good agreement.
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ρ ¼ 1

2
_ϕ2 þ V þ ρEM þ ρψ ; ð4:4aÞ

p ¼ 1

2
_ϕ2 − V þ ρEM

3
þ ρψ

3
: ð4:4bÞ

Hence, we have

H2F ¼ −
a
2

dH2

da
¼ 1

M2
pl

�
1

2
_ϕ2 þ 2

3
ρEM þ 2

3
ρψ

�
; ð4:5Þ

and the system (2.2) becomes

d2ϕ
da2

þ 4 − F
a

dϕ
da

þ V 0ðϕÞ
a2H2

þ G
a2H2fϕ

¼ 0 ð4:6aÞ

d2Aλ

da2
þ 1

a

�
2 − F þ σ

aH

�
dAλ

da

þ k
a2H

�
k

a2H
−

λ

fϕ

dϕ
da

�
Aλ ¼ 0: ð4:6bÞ

The Hubble parameter can be computed from the
Friedmann equation (4.2a), where ρ is given by (4.4a).
This way, we can compute the value of H and F at each
time step recursively to feed the equations of motion, like
we already do for σ and G. The BD vacuum modes are
identical to the previous case; see Eq. (3.11). Finally, for
comparison purposes, we can define a generalized time
dependent instability parameter ξðaÞ as

ξðaÞ ¼ −
a
2fϕ

dϕ
da

; ð4:7Þ

such that it corresponds to the definition (3.2). The
simulations show that this parameter, obtained from full
solution computation, significantly differs from the slow
roll one at the very end of inflation.

A. Full numerical results at the end of inflation

In this subsection, we will compare our results at the end
of inflation, where we are making a full numerical analysis
of the EOM, with those obtained using the slow roll
approximation for the inflationary potential. For the sake
of comparison, we will concentrate on the Starobinsky
model given by (3.13). In this current framework, we see in
Fig. 3 that the four studied quantities, namely ρB, ρE, H,
and G, are much closer to the Schwinger equilibrium
estimate at the end of inflation.
We present in Fig. 3 the values of the physical observ-

ables evaluated at various stages of inflation, i.e., various
values of the scale factor a, from ϵðaÞ ¼ 10−3 to ϵðaÞ ¼ 1,
as a function of the coupling fϕ for the Starobinsky model.
We superimpose the analytical results from Secs. III A and
III B and hence, the backreactionless solution as well as the

Schwinger maximal and equilibrium estimates. From the
plots, we see that for fϕ ≲ 0.05Mpl, the equilibrium
estimate is a good approximation, especially for ρE, where
the predictions of maximal and equilibrium estimates
merge. We also verify that cos θ ≃ 1, hence satisfying
the assumption on parallel electric and magnetic fields
leading to the conductivity definition (2.10).
In this setup, our numerical code is computing a value of

the conductivity σ andΔ for each time step; hence, we got the
functions σðaÞ andΔðaÞ. The variation and presence ofΔðaÞ
is not without effect on the final results. Indeed, the smallest
(k ≫ HE) modes are the ones that most contribute to the
integrals (2.8) and (2.9). Without the Schwinger effect, these
modes are produced last, just at the end of inflation, and only
briefly leave the horizon. They therefore should have a
significant impact on preheating.When the Schwinger effect
prevents their generation, by reducing them by a≪ 1 factor,
while they are still in the BD vacuum, we can ask ourselves
about the effectiveness of gauge preheating. It was shown in
previous studies of gauge preheating [12] that its efficiency
mainly depends on the electromagnetic energy fraction
available at the end of inflation ρEM=ρtot. To shed light on
the last point, we will extend, in the next section, our
numerical results beyond the end of inflation when the
inflaton is coherently oscillationg around its potential mini-
mum. We will do that in a set of particularly interesting
phenomenological models that we describe in the next
section.

B. Inflationary models

We will here introduce two classes of models that all
satisfy the cosmological constraints. They should be
considered as a sample of possible models, and they are
just chosen for illustrative purposes, as they do not exhaust
by any means the allowed inflationary models.

1. α-attractor models

The α-attractor potential is given by [29]

VαðϕÞ ¼ Λ4
α

�
1 − exp

�
−

ffiffiffiffiffiffi
2

3α

r
jϕj
Mpl

��2
: ð4:8Þ

Setting α ¼ 1 yields the R2 model or Starobinsky potential
(3.13). To make the comparison interesting, we choose to
have 1 ≤ α ≤ 100, where cosmological observables are
correctly reproduced. In the slow roll approximation, the
field value at the end of inflation is

ϕE ¼
ffiffiffiffiffiffi
3α

2

r
Mpl log

�
1þ 2ffiffiffiffiffiffi

3α
p

�
: ð4:9Þ

We can readily compute ϕ� and evaluate the slow roll
parameters N� ¼ 60 e folds before the end of inflation.
The slow roll parameters and the cosmic observables are in
agreement with the cosmological contraints for the range
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1 ≤ α≲ 100: ð4:10Þ

In particular, for α ¼ 1ð100Þ, we get

ϵ� ≃ 0.00019ð0.00387Þ; η� ≃ −0.0159ð−0.00331Þ
ns ≃ 0.967ð0.97Þ; r� ≃ 0.003ð0.062Þ;
HE ≃ 0.82ð1.13Þ · 1013 GeV; ð4:11Þ

in agreement with the observed values [4]

nobss ≃ 0.9649� 0.0042; robs� ≲ 0.06;

Hobs� ≲ 6 × 1013 GeV ð95%CLÞ: ð4:12Þ

Using the observed value of As from Ref. [4],
Aobs
s ¼ 2.2 × 10−9, we fix the vacuum energy. The result

depends on α and is approximately given by
Λα ≃ 3.4 × 10−3α1=5Mpl. We then obtain the values Λ1 ¼
3.152 × 10−3Mpl and Λ100 ¼ 8.313 × 10−3Mpl.

2. Hilltop quartic models

The hilltop model potential is given by [30]

VhðϕÞ ¼ Λ4
h

�
1 −

�
ϕ

μ

�
p
�
2

: ð4:13Þ

The case p ¼ 4 can be compatible with the Planck
measurements. There are two ways for the field to relax
to the minimum at ϕ ¼ μ, with different initial conditions:
(1) ϕ� > ϕE: In this case, the field ϕ > μ is relaxing in a

potential region that can be approximated by
Vh ∼ ϕ8, and thus, the slow roll conditions are not
met, as chaotic inflation is ruled out.

(2) ϕ� < ϕE: In this case, the field ϕ < μ is relaxing in a
flat potential region, and the model predicts correct
inflationary observables for a large range of the
parameter. In this work, we will study this option.

The slow roll parameters and the cosmic observables are
in agreement with the contraints for the range

10Mpl ≲ μ ≲ 50Mpl: ð4:14Þ

We fix the vacuum energy from the constraint on the
amplitude of scalar fluctuations. The result depends on μ

and is approximately Λh ≃ 6 × 10−4μ2=3M1=3
pl . We then

have the values Λh ¼ 3.243 × 10−3Mpl for μ ¼ 10Mpl

and Λh ¼ 8.081 × 10−3Mpl for μ ¼ 50Mpl.
In particular, for μ ¼ 10ð50ÞMpl we get

ϵ� ≃ 0.00021ð0.0041Þ η� ≃ −0.0207ð−0.00328Þ
ns ≃ 0.957ð0.97Þ r� ≃ 0.00335ð0.0654Þ;
HE ≃ 0.64ð1.1Þ · 1013 GeV: ð4:15Þ

C. Numerical results beyond the end of inflation

Now that we have established a method to numerically
compute the quantities ρE, ρB, ρψ , H, and G, we aim to
study the system evolution past ϵ ¼ 1 and the onset of
reheating. Indeed, the system (4.6) describes the most
general interaction of the zero mode of both hypercharge
gauge and inflaton fields. In particular, no assumption was
made on the Universe geometry; hence, there is no specific
reason to stop its numerical computation at the end of
inflation. We will also find it convenient to present some
numerical results using as the variable the number of e folds
before the end of inflation N, instead of the scale factor a,
and related to it by

N ¼ − log
aE
a
; ð4:16Þ

such that N ¼ 0 corresponds to the time aE when
ϵðaEÞ ¼ 1.
We show the postinflationary energy breakdown for

selected value of fϕ, for the α-attractor models in Fig. 4,
α ¼ 1 (upper panels) and α ¼ 100 (lower panels), and the
hilltop models of inflation in Fig. 5, with μ ¼ 10Mpl (upper
panels) and μ ¼ 50Mpl (lower panels). From the inflaton
behavior, we see that the Universe enters a matter domi-
nation era as ρϕ ∼ a−3. For high enough values of fϕ, i.e.,
fϕ ≳ 0.1Mpl, we reproduce the results shown in Ref. [12],
whereas for fϕ ≲ 0.1Mpl, the electric and magnetic fields
exhibit a different behavior: The former decays faster than
the latter while oscillating. This is due to the fact, already
mentioned in Ref. [23], that the energy density for the
electric component E ¼ −A0 is much more sensitive to the
Schwinger effect than the magnetic component B, because
it directly couples to the conductivity in the gauge field
equation of motion (2.7). On the other hand, the magnetic
component reflects spatial effects, as it is defined by
B ¼ ∇ ∧ A. In this work, we do not consider the inflaton
spatial effects, ∇ϕ, because this would require one to
implement real fermion interactions in a lattice simulation.
Hence, for low values of fϕ, when the Schwinger effect is
strongly affecting the system, the behavior of ρB is
expected to be subject to changes when the spatial effects
are enabled; namely, we expect to see a faster decay, like
that of ρE. As also observed in Ref. [23], the electric field,
which is dominant during inflation, becomes subdominant
afterwards. Finally, we can see that for low values of fϕ the
fermion energy density dominates the radiation energy
density at the end of inflation, as already highlighted
in Ref. [23].
The authors of Ref. [12] quote a sufficient criterion for

gauge preheating to happen, namely that at least an 80%
fraction of the total energy density of the Universe is
electromagnetic energy. In the absence of the Schwinger
effect, they found that this criterion is satisfied for values
fϕ ≲ 0.1Mpl. However, as expected, the Schwinger effect
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FIG. 5. Inflaton kinetic and potential energy density, as well as electric, magnetic and fermion energy density ratios to the initial total
energy density of the Universe for the hilltop models with μ ¼ 10Mpl (upper panels) and μ ¼ 50Mpl (lower panels). The vertical gray
lines display the value a for which ϵðaÞ ¼ 1, and the dashed line shows the expected scaling of the dominant sector.

FIG. 4. Inflaton kinetic and potential energy density, as well as electric, magnetic and fermion energy density ratios to the initial total
energy density of the Universe for the α-attractor models with α ¼ 1 (upper panels) and α ¼ 100 (lower panels). The vertical gray lines
display the value a for which ϵðaÞ ¼ 1 and the dashed line shows the expected scaling of the dominant sector.
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significantly reduces the share of electromagnetic energy,
as shown on Fig. 6 for the considered models, which
displays the ratio ρEM=ρtotal for the four previous consid-
ered cases. We can see that the maximum is attained with a
value ∼10−3, which precludes any gauge preheating, at
least for fϕ ≳ 0.01Mpl. Another conclusion from Ref. [12]
is that the spatial effects of the inflaton become relevant for
sufficiently low values of fϕ and contribute to preheating.
Since we are neglecting them in our simplified calculation,
any negative statement concerning the possibility of gauge
preheating due to the lack of enough electromagnetic
energy should be a conservative one.
The final results from our analysis can be summarized in

Fig. 7, where we plot the maximum value of the electro-
magnetic to total energy fraction as a function of fϕ
(preheating efficiency) for the Starobinsky model, the α-
attractor model with α ¼ 100 and the hilltop models with
μ=Mpl ¼ 10, 50. For fϕ ≳ 0.01Mpl, we obtain

ρEM
ρtot

≲ 0.01; ð4:17Þ

which seems to prevent gauge preheating as its efficiency is
far from the value of ∼0.8 established in the numerical
analysis of Ref. [12].

D. End of reheating

If gauge preheating does not occur, the inflaton will
eventually decay by perturbative processes, which depend
on the inflaton total decay width Γϕ. Therefore, at the time
trh ∼ 1=Γϕ, the inflaton has completely decayed, and the
radiation domination era starts.
Results from last sections have shown that shortly after

inflation ends, the Universe is dominated by matter; hence,
we can approximate the Hubble parameter by

FIG. 6. Time evolution of the electromagnetic to total energy density fraction, during and after inflation for various values of the
coupling fϕ. The upper panels correspond to the α-attractor model with α ¼ 1 (top left) and α ¼ 100 (top right) and the lower panels to
the hilltop model with μ ¼ 10Mpl (bottom left) and μ ¼ 50Mpl (bottom right).

FIG. 7. Maximum value of the electromagnetic to total energy
fraction as a function of fϕ for the four considered models:
α-attractor models, with α ¼ 1, 100, and hilltop models,
μ ¼ 10; 50Mpl. Preheating seems unlikely to occur.
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H ≃
�
aE
a

�3
2

HE; H ≃
2

3t
; ð4:18Þ

where HE ≡HðaEÞ, such that

arh ≃ aE

�
3HE

2Γϕ

�2
3 ð4:19Þ

is the end value after reheating by inflaton perturbative
decays. Of course, arh is a model-dependent quantity,
which depends on the value of Γϕ, which, in turn, depends
on the couplings of the inflaton to the matter.
In particular, the coupling 1=fϕ of the inflaton to the

hypercharge Chern-Simons density provides a channel for
the perturbative decay of the inflaton into a pair of hyper-
photons A, as ϕ → AA. This decay has a width given by [10]

Γðϕ → AAÞ ≃ m3
ϕ

64πf2ϕ
; ð4:20Þ

where mϕ is the inflaton mass given by

m2
ϕ ¼ ∂

2V
∂ϕ2

				
ϕ¼ϕmin

: ð4:21Þ

For the α-attractor (hilltop quartic) model, we have
ϕmin;α ¼ 0 (ϕmin;h ¼ μ) and

m2
ϕ;α ¼

4Λ4
α

3αM2
pl

; m2
ϕ;h ¼

32Λ4
h

μ2
: ð4:22Þ

In the simplest case, where the inflaton is only coupled to the
hypercharge gauge bosons through the Chern-Simons den-
sity, the total width is Γϕ ¼ Γðϕ → AAÞ. Using the masses
found above, we have that

Γϕ ≃ 12ð3.0Þ × 10−18 ·
M3

pl

f2ϕ
; ð4:23Þ

for α ¼ 1ð100Þ in the α-attractor models, and

Γϕ ≃ 4.2ð21Þ × 10−19 ·
M3

pl

f2ϕ
; ð4:24Þ

for μ ¼ 10ð50ÞMpl in the hilltop models. The value of the
scale factor and the temperature at reheating, arh and Trh, are
given by

arh
aE

≃ 0.4

�
Trh

T ins
rh

�
−4=3

;
Trh

T ins
rh

≃

ffiffiffiffiffiffiffi
Γϕ

HE

s
: ð4:25Þ

Consequently, we can express arh and Trh as functions of all
the involved parameters, namely fϕ, and α (μ) for α-attractor

(hilltop quartic) model. In particular, the relevant parameter
for baryogenesis is the ratio Trh=T ins

rh , given by

Trh

T ins
rh

≃ 1.9ð0.8Þ × 10−4
�

0.01
fϕ=Mpl

�
; ð4:26Þ

for α ¼ 1ð100Þ in the α-attractor models, and

Trh

T ins
rh

≃ 0.4ð0.7Þ × 10−4
�

0.01
fϕ=Mpl

�
; ð4:27Þ

for μ ¼ 10ð50ÞMpl in the hilltop models. As we will see in
the next section, the obtained values of the ratio Trh=T ins

rh are
fully consistent with the general baryogenesis results, see
Fig. 8, provided that fϕ ≲ 0.03Mpl. In the presence of extra
couplings of the inflaton to matter, the predictions for the
inflaton decaywidth, Eq. (4.23) and (4.24), and the reheating
temperature, Eq. (4.26) and (4.27), will change in a model-
dependent way, as well as the model predictions concerning
the generation of the baryon asymmetry. Of course, in the
hypothetical case, where the explosive production of gauge
fields should have prevailed over the perturbative inflaton
decays, gauge preheating would have taken place over a few
e folds after the end of inflation. As we see from the previous
results, this is never the case, and gauge preheating is never
strong enough to reheat the Universe after the period of
cosmological inflation. This result does not preclude that, in
the presence of a strong coupling λ of the inflaton with some
other field, e.g., a scalar (or a fermion), there could exist an
explosive production of that scalar (or fermion), triggering
preheating of the Universe after inflation [31].

E. Baryon asymmetry

Before concluding this paper, we wish to make a small
comment on the baryogenesis issue at the electroweak
phase transition. In Ref. [18], we presented a model of
inflation that leads to a successful BAU. The effective
potential for the inflaton, labeled therein as χ, was the

FIG. 8. The baryogenesis window in the parameter space
ðfϕ; Trh=T ins

rh Þ for the Starobinsky potential (α-attractor model
with α ¼ 1). The dashed line corresponds to Eq. (4.26).
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Starobinsky potential,9 and we did consider the Schwinger
equilibrium and maximal estimates. Hence, it is straight-
forward, using our numerical analysis in this paper, to make
an update of the final results for the BAU for inflation
driven by the α-attractor models with α ¼ 1.
As all details are explained in Secs. 6 and 7 of Ref. [18],

we skip them here and go straight to the final result. First of
all, we show in Fig. 8 the analogous plot to Fig. 9 of
Ref. [18], namely the parameter space that provides a
successful BAU. In particular, we display in blue the region
where the asymmetry parameter meets its observational
value given by

ηB ≃ 4 × 10−12fθW
H
H3

E

�
HE

1013 GeV

�3
2

�
Trh

T ins
rh

�
≃ 9 × 10−11;

ð4:28Þ

where we have imposed the observed value [32] in the
right-hand side. Following Refs. [16,17], we define the
parameter fθW , which encodes all the details of the EW
phase transition and its uncertainties, as

fθW ¼ − sinð2θWÞ
dθW
d lnT

				
T¼135 GeV

;

5.6 × 10−4 ≲ fθW ≲ 0.32: ð4:29Þ

In addition to their dependence on the gauge sector
observables, the quantities used in this section vary
according to the ratio of the reheating over the instant
reheating temperature. This parameter hence adds to fϕ in
the parameter space. The reheating temperature is com-
puted as

Trh ¼
�

90

π2g�

�1
4 ffiffiffiffiffiffiffiffiffiffiffiffiffi

ΓϕMpl

p
; ð4:30Þ

where g� ¼ 106.75 is the SM number of relativistic degrees
of freedom, and we define T ins

rh as a reference temperature
given by the above equation with Γϕ ≃HE, which is
obtained from the simulation. It would correspond to the
reheating temperature for instant reheating and takes the
value T ins

rh ≃ 2.87 × 1015 GeV. Using Eq. (4.26), it is
possible to link the reheat temperature to the parameter

fϕ. The corresponding plot is shown in Fig. 8, which shows
that it provides a wide window for baryogenesis.
Second, we display in orange the region where the

magnetic Reynold’s number at reheatingRrh
m is bigger than

one, hence ensuring that the required magnetohydrody-
namical conditions are fulfilled for the (hyper)magnetic
fields to survive until the electroweak crossover. As we are
in the viscous regime, it can be computed as [18]

Rrh
m ≈ 5.9 × 10−6

ρBl2
B

H2
E

�
HE

1013 GeV

��
Trh

T ins
rh

�2
3

; ð4:31Þ

where lB is the physical correlation length of the magnetic
field given by

lB ¼ 2π

ρBa3

Z
kc

kmin

dk
k3

4π2
ðjAþj2 þ jA−j2Þ; ð4:32Þ

which can be numerically computed during the simulation
in the same way as the other observables.
Third, and last,10 we show in green the condition on the

chiral plasma instability (CPI) temperature, ensuring that
the CPI time scale is long enough to allow all right-handed
fermionic states to come into chemical equilibrium with the
left-handed ones via Yukawa coupling interactions (so that
sphalerons can erase their corresponding asymmetries in
particle number densities) before CPI can happen. The
estimated temperature at which CPI takes place is

TCPI=GeV ≈ 4 × 10−7
H2

H6
E

�
HE

1013 GeV

�
3
�
Trh

T ins
rh

�
2

: ð4:33Þ

The constraint TCPI ≲ 105 GeV (the temperature at which
eR comes into chemical equilibrium) guarantees that the
CPI cannot occur before the smallest Yukawa coupling
reaches equilibrium, and all particle number density asym-
metries are erased, preventing thus the cancellation of the
helicity generated at the reheating temperature.
Therefore, as we can see from Fig. 8, the resulting

baryogenesis window for the Starobinsky potential is close
to the Schwinger equilibrium estimate for fϕ ≲ 0.06Mpl,
just as the corresponding results on helicity and magnetic
energy density suggest (see the green dots of Fig. 3).
However, for fϕ ≳ 0.06Mpl, there is no space for the BAU,
as the production of gauge fields is too weak, unlike in the
previous results from Ref. [18]. In addition to this, we have
seen that the reheating temperature is constrained by the
model, see Eq. (4.26), as we can see from Fig. 8, and
compatibility of the model reheating temperature with the
baryogenesis results translates into the baryogenesis region
on the parameter fϕ

9In fact, we used in Ref. [18] an scalar field ϕ nonminimally
coupled with gravity as L ¼ − 1

2
gϕ2Rþ…, which yields for the

canonically normalized field χ in the Einstein frame an α-attractor
potential with α ¼ 1þ 1

6g ∈ ½4.3; 17.6�, where the lower bound
was coming from imposing the naive unitarity bound gϕ2 < M2

pl.
As the dependence in α (hence, in g) is tiny, we choose to show in
the present paper the result for α ¼ 1, hence, for the Starobinsky
potential (which would correspond in Ref. [18] to the limit
g ≫ 1).

10Besides, we checked that the generation of baryon isocur-
vature perturbation provides no constraint.
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fϕ ≲ 0.03Mpl: ð4:34Þ

Finally, one of the results of this paper is then that baryo-
genesis at the electroweak phase transition is favored by low
reheating temperatures, in the range 10−6T ins

rh ≲ Trh≲
10−3T ins

rh .

V. CONCLUSIONS

In this paper, we have studied by means of numerical
computations the effect of the Schwinger particle produc-
tion on the helical hypermagnetic fields produced at the end
of inflation. The inflaton field ϕ can decay, through its
coupling to the Chern-Simons density ϕ

4fϕ
YμνỸμν, into

helical hypermagnetic fields in a nonperturbative process.
When exiting the vacuum, the gauge modes are strong
enough to create particle and antiparticle pairs of light
fermions, which contribute to the electrical conductivity of
the plasma. The backreaction of fermion currents on the
produced gauge fields acts as a damping force in the
explosive production of helical gauge fields. This effect,
called Schwinger effect, was already considered in numer-
ous studies of inflation and/or baryogenesis, where some
analytical and numerical estimates were computed, mainly
in configuration space while our calculation is done in
momentum space.
The equations of motion are in fact a nontrivial integro-

differential system. It was solved numerically by using a
fourth order Runge-Kutta method, with details being
displayed in the appendices. The computed observables
of interest are the electric and magnetic energy density, the
helicity, and the helicity time derivative. We assumed a
homogeneous inflaton with only zero mode; hence, we did
not treat any spatial effects. Besides, we also ensured the
convergence of the algorithm and its invariance to the initial
conditions.
First of all, we have checked that we recover previous

results in the slow roll inflation regime by making the same
approximations required by an analytical resolution. In this
way, we validate our code; i.e., we verify that our code
produces the right results in known cases such as the
backreactionless case, where the Schwinger effect is turned
off, and the gradient expansion formalism, where the
Bunch-Davies parameter Δ was first introduced.
In a second step, still in the slow roll regime, we

considered a specific model of inflation, namely the
Starobinsky potential, in order to account for the instability
parameter as a function, ξðaÞ, instead of the constant
imposed by the analytical approximations. That way, we
could also implement the effects of a function ΔðaÞ
obtained from the plasma evolution on the gauge produc-
tion itself.
We then simulated, in a third step, the full system, where

neither the slow roll conditions nor the Universe geometry
(e.g., de Sitter) are imposed. In order words, the inflaton

equation of motion was computed alongside with the gauge
one, taking the backreaction of the latter to the former into
account along with the Schwinger effect. We compare our
result to the previous setup and found perfect agreement as
long as the slow roll conditions are met. When inflation is
near its end, the full solution diverges from the slow roll
results and produces, as expected, less energy density and
helicity.
Finally, we will comment on the implication about two

related topics: gauge preheating and baryogenesis. As our
code is free from any geometrical issues and only requires a
model of inflation, we let the simulations run until the onset
of reheating to compute the electromagnetic to total energy
density ratio. We choose two well-known classes of models
that satisfy the cosmological constraints as illustrative
examples. Previous studies have quoted a sufficient cri-
terion for gauge preheating to happen, namely that this
fraction should be at least ≳80% [12]. However, our
numerical estimates suggest that the Schwinger effect
significantly reduces the share of electromagnetic energy
for the considered models, and preheating is unlikely to
occur. Moreover, since we are neglecting all spatial effects,
any negative statement concerning the possibility of gauge
preheating due to the lack of electromagnetic energy should
be a conservative one. On the other hand, our results do
apply to the considered class of inflationary models. They
show a certain degree of model dependence, so we cannot
exclude a qualitatively different result for models of
inflation other than the considered ones.
On the other hand, as a successful baryogenesis does

depend on a delicate equilibrium between the amount of
helicity, magnetic energy density, and magnetic correlation
length, damped fields do not necessarily mean no baryon
asymmetry in the late Universe. Actually, as a result of our
numerical calculation, we have found there is still a window
in the parameter space for baryogenesis to happen as long
as fϕ ≲ 0.05Mpl, while consistency from the perturbative
decay channel of the inflaton into hypergauge bosons
implies the bound fϕ ≲ 0.03Mpl. Moreover, baryogenesis
is favored for low enough values of the reheating temper-
ature Trh ≲ 10−3T ins

rh . Of course, the baryogenesis predic-
tions should, to some extent, depend on the model of
inflation. In this way, our result here is restricted to the
Starobinsky model and should be considered just as a
“proof of existence” for baryogenesis in the presence of the
Schwinger effect.
These two comments should be viewed as hints for

future studies that address the production of gauge fields at
the end of inflation. Of course, a full lattice simulation of
the Schwinger effect involving fermions remains to
be done.
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APPENDIX A: THE SLOW ROLL CASE

We provide here the technical details for the solution of
Eq. (3.10) subject to the initial condition (3.11). For
convenience, we implement the numerical computation
in units of HE. Writing

xðaÞ ¼ AλðaÞ; yðaÞ ¼ ∂Aλ

∂a
ðaÞ; ðA1Þ

Eq. (3.10) becomes the following system:

d
da

�
x

y

�
¼
 

0 1

k
a3



2λξ − k

a

�
− 1

a



σ
a þ 2

�!� x

y

�

⇔
dx
da

¼ f ða; xÞ: ðA2Þ

To perform each time step Δa, we use the fourth order
Runge-Kutta (RK4) algorithm:

λ1 ¼ f ðai; xiÞ ðA3aÞ

λ2 ¼ f

�
ai þ

1

2
Δa; xi þ

1

2
Δaλ1

�
ðA3bÞ

λ3 ¼ f

�
ai þ

1

2
Δa; xi þ

1

2
Δaλ2

�
ðA3cÞ

λ4 ¼ f ðai þ Δa; xi þ Δaλ3Þ ðA3dÞ

aiþ1 ¼ ai þ Δa ðA3eÞ

xiþ1 ¼ xi þ
1

6
Δaðλ1 þ 2λ2 þ 2λ3 þ λ4Þ: ðA3fÞ

Note that x is complex; hence, we solve the above system
for both real and imaginary parts but with their specific
initial conditions. These are mode dependent as it takes
longer for modes with bigger wave number to leave the BD
vacuum. Therefore, we choose as initial condition for each
mode

ak;0 ¼
k

xBD
; ðA4Þ

where we choose the factor xBD in order to make sure that
we initialize the gauge field sufficiently deep inside the
Hubble radius. Its exact value is subject to analysis and is
discussed later. As we can see from (2.8) and (2.9), high
values of k are dominating the integral; hence, large modes
are negligible compared to small ones. This makes us to
choose a lower bound on the k range such that the initial
time of the simulation is

a0 ¼
kmin

xBD
: ðA5Þ

In that way, at a0 wemake sure that all the modes are in their
respective vacua, which implies σ ¼ 0 as explained above.
In practice, this means that the modes with k > xBDa are

given by the following relations:

ReðxBDi Þ ¼
ffiffiffiffiffi
Δi

2k

r
cos

k
ai
; ðA6aÞ

ImðxBDi Þ ¼
ffiffiffiffiffi
Δi

2k

r
sin

k
ai
; ðA6bÞ

ReðyBDi Þ ¼ 1

a2i

ffiffiffiffiffi
Δi

2

r � ffiffiffi
k

p
sin

k
ai

−
σi

2
ffiffiffi
k

p cos
k
ai

�
; ðA6cÞ

ImðyBDi Þ ¼ 1

a2i

ffiffiffiffiffi
Δi

2

r �
−
ffiffiffi
k

p
cos

k
ai

−
σi

2
ffiffiffi
k

p sin
k
ai

�
; ðA6dÞ

while the others are evolving with the RK4 algorithm.
The time steps are distributed on a logarithmic scale

log ai − log ai−1 ¼ log aiþ1 − log ai; ðA7Þ

so that the discretization is the same for each order of
magnitude. This means Δa grows exponentially with a.
The advantage of this method is that there is a refinement of
the grid for small values of a at the beginning of inflation.
The same is done for the discretization in k.
We explored the numerical convergence of the solution,

both in the number of ai ’s, labeled asNa, and in the number
of kj ’s, labeled as Nk. Provided that Na > 2000 and
Nk > 200, the simulations are very stable, and the output
does not depend on the discretization. For big values of fϕ,
fϕ ≳ 0.1, we can even lower the number of time steps
needed.
Besides, we must choose the BD penetration factor xBD

such that it produces trustable results. We have done a
numerical analysis and conclude that depending on the
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value ofNa, a range 20 < xBD < 50 yields trustable results.
We hence choose throughout this work the following
values:

xBD ¼ 20; Na ¼ 500;1000;2000; Nk ¼ 300: ðA8Þ

At each time step, we compute the electric and magnetic
energy density as

ρiE ¼
Z

kic

kmin

dk
k2

4π2
ðjyþi ðkÞj2 þ jy−i ðkÞj2Þ; ðA9aÞ

ρiB ¼ 1

a4i

Z
kic

kmin

dk
k4

4π2
ðjxþi ðkÞj2 þ jx−i ðkÞj2Þ; ðA9bÞ

where we choose

kic ¼ aiξþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaiξÞ2 þ

a2i
2

�
σi − σi−1
ai − ai−1

þ σi
ai

�
σi
2ai

þ 1

��s
;

ðA10Þ

such that we cut off the spectra to retain only modes outside
the horizon. The helicity (2.9a) and its derivative (2.9b)
become

Hi ¼
1

a3i

Z
kic

kmin

dk
k3

2π2
ðjxþi ðkÞj2 − jx−i ðkÞj2Þ; ðA11aÞ

Gi ¼
1

a2i

Z
kic

kmin

dk
k3

2π2
ðjxþi ðkÞyþi ðkÞj − jx−i ðkÞy−i ðkÞjÞ:

ðA11bÞ

In the numerics, these integrals are performed numerically
over the range of k that takes Nk discrete values. If the
Schwinger effect is taken into account, we turn on the
possibility of having σ computed at each time step ai of
the numerical computation with

σiþ1 ¼
41g03

72π2
ai

ffiffiffiffiffiffiffiffi
2ρiB

q
coth

�
π

ffiffiffiffiffi
ρiB
ρiE

s �
; ðA12Þ

and injected into the calculation of the next step. Otherwise,
we keep it zero. Last, the fermion energy density is
computed as

ρiψ ¼ σi
a2i

Z
kic

kmin

dk
k2

π2
X
λ¼�

½Reðxλi ÞReðyλi Þ þ Imðxλi ÞImðyλi Þ�:

ðA13Þ

Finally, we stop the simulation at a ¼ aE. Quantities at that
time are compared to the known analytical results. The
color matching dashed vertical lines in Fig. 2 show the
cutoff values kic computed from (A10). They agree per-
fectly with the point where the BD vacuum modes become
dominant for large k.

APPENDIX B: FULL ANALYSIS

The numerical implementation follows from the previous
case. Defining the variables

w ¼ ϕ; x ¼ ∂ϕ

∂a
; yλ ¼ Aλ; zλ ¼

∂Aλ

∂a
; ðB1Þ

we transform the above coupled system of differential
equations (4.6) into the system

dw
da

¼ x ðB2aÞ

dx
da

¼ −
G

a2H2fϕ
−
4 − F
a

x −
V 0ðwÞ
a2H2

ðB2bÞ

dyλ
da

¼ zλ ðB2cÞ

dzλ
da

¼ k
a2H

�
λ

fϕ
x−

k
a2H

�
yλ −

1

a

�
2−F þ σ

aH

�
zλ; ðB2dÞ

which is equivalent to writing

dx
da

¼ f ða; xÞ: ðB3Þ

We recall that w; x ∈ R and yλ; zλ ∈ C. Similarly to the
previous calculation with the slow roll approximation, we
use the RK4 algorithm (A3) with the values of H, σ, F and
G computed at each time step.
Inflaton initial condition could be set to

w0 ¼ ϕ�; x0 ¼ 0: ðB4Þ

However, the number of e folds sets the initial time as
a0 ¼ e−jN�j ∼ 10−26, which is too small a number for the
numerical implementation. We then proceed as follows. For
a≲ kmin=xBD, and sufficiently low kmin, the gauge field
modes stay in their vacuum, and the total contribution to
ΔðaÞ is negligible. Hence, we do not need to perform the
numerical simulation before that time, as the inflaton is the
main player, so we can solve its equation of motion
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analytically. Instead, we fix the start of the simulation like
before, at a0 ¼ kmin=xBD, and we compute the correspond-
ing number of e folds N, which leads us to the correspond-
ing value of ϕðNÞ. Therefore, the initial condition must be
set to w0 such that

Z
w0

ϕE

VðϕÞ
V 0ðϕÞ dϕ ¼ −M2

pl log a0; ðB5Þ

and, using _ϕ ≃ − V 0ðϕÞ
3H , which is valid at the early stages of

inflation,

x0 ¼ −
V 0ðw0Þ
3a0H2

0

: ðB6Þ

As for the gauge field, initial conditions are set in the same
way as in the slow roll approximation; see Appendix A.
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