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Recent population studies have searched for a subpopulation of primordial black holes (PBHs) in the
gravitational-wave (GW) events so far detected by LIGO/Virgo/KAGRA (LVK), in most cases adopting
a phenomenological PBH mass distribution. When deriving such a population from first principles in
the standard scenario, however, the equation of state of the Universe at the time of PBH formation may
strongly affect the PBH abundance and mass distribution, which ultimately depend on the power
spectrum of cosmological perturbations. Here we improve on previous population studies on several
aspects: (i) we adopt state-of-the-art PBH formation models describing the collapse of cosmological
perturbations across the QCD epoch; (ii) we perform the first Bayesian multipopulation inference on
GW data including PBHs and directly using power spectrum parameters instead of phenomenological
distributions; (iii) we critically confront the PBH scenario with LVK phenomenological models
describing the GWTC-3 catalog both in the neutron-star and in the BH mass ranges, also considering
PBHs as a subpopulation of the total events. Our results confirm that LVK observations prevent the
majority of the dark matter to be in the form of stellar mass PBHs. We find that the best-fit PBH model
can comprise a small fraction of the total events, in particular it can naturally explain events in the mass
gaps. If the lower mass-gap event GW190814 is interpreted as a PBH binary, we predict that LVK
should detect up to a few subsolar mergers and one to ≈30 lower mass-gap events during the upcoming
O4 and O5 runs. Finally, mapping back the best-fit power spectrum into an ultra-slow-roll inflationary
scenario, we show that the latter predicts detectable PBH mergers in the LVK band, a stochastic GW
background detectable by current and future instruments, and may include the entirety of dark matter in
asteroid-mass PBHs.
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I. INTRODUCTION

Primordial black holes (PBHs) [1–4] might have formed
in the early Universe after inflation from the collapse of
large amplitude cosmological perturbations [5–8] or by
other mechanisms. In the standard formation scenario, their
characteristic mass depends mostly on the time these
inhomogeneities reenter the cosmological horizon, whereas
their abundance and mass distribution depend strongly on
the equation of state (EOS) of the Universe at that epoch
[4,9–16], and it is ultimately controlled by the power
spectrum of cosmological curvature perturbations. In par-
ticular, the mass of PBHs can span several orders of
magnitude and is not bounded from below (M ≳ 2M⊙)
as in the case of stellar-origin BHs, providing one of the key
distinctive features [17] of this scenario.
Besides being unique messengers of the early-time

cosmology and inflationary models, in certain mass ranges
PBHs could comprise the entirety of the dark matter, and
could seed supermassive BHs at high redshift [18–20].

These tantalizing possibilities have motivated the recent
growing interest in searching for PBHs (see [21] for a recent
review), especially using gravitational-wave (GW) data.
PBHs could contribute to at least a fraction of the BH

merger events detected by the LIGO-Virgo-KAGRA (LVK)
collaboration [22–24] so far [25–47], and to those that will
be detected by future GW instruments [17,42,48–53] (see
Refs. [54–56] for reviews on PBHs as GW sources). In
addition to outstanding events such as GW190425 [with a
total mass that exceeds that one of known galactic neutron
star (NS) binaries] and the mass-gap events (such as
GW190814 [57], GW190521 [58], and GW190426_
190642) which do not fit naturally in the standard astro-
physical scenarios and might have a different origin, a
subpopulation of PBHs may be competitive with certain
astrophysical population models for explaining a fraction of
events [45]. Population studies [59] will inevitably become
very relevant as the number of detections increases, both
during future LVK runs and especially in the era of next-
generation detectors [60,61].
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So far population studies aimed at identifying
a (sub)population of PBHs in LVK data (e.g.,
[38–40,42,45]) have adopted phenomenological PBH mass
distributions, such as a log-normal or a power-law function,
which should approximately capture different underlying
formation mechanisms. However, in a realistic setting
starting from first principles, the computation of the mass
distribution should take into account several aspects: a given
underlying early Universe model directly determines the
power spectrum of primordial curvature perturbations,
which in turn affects the collapse and eventually the PBH
mass function. The latter might show several features which
are not necessarily captured by simple parametrizations.
For example, the QCD phase transition of the early

Universe, when free quarks are confined within hadrons,
strongly affects the EOS of the cosmological fluid at energy
scales corresponding to the formation of solar-mass PBHs
[15,62–65]. As a rule of thumb, any drop of the EOS
parameter w ¼ p=ρ (being p and ρ the pressure and energy
density of the cosmological fluid, respectively) relative to the
radiation-dominated case (w ¼ 1=3) is associated with an
enhancement of PBH production, since the pressure con-
tribution to balance gravity is weaker. Thus, as a conse-
quence of the QCD phase transition at few hundred MeV,
one would generically expect a peak of the PBH mass
function in the solar mass range, provided the power
spectrum is sufficiently large at those specific scales.
However, since the gravitational collapse is a nonlinear
process, several details of the initial power spectrum might
affect the final PBH mass function, also providing character-
istic tails and subtle correlations between different mass
scales that, as we shall discuss, should be taken into account.
In this paper we go beyond phenomenological models

and build a framework to link the formation of PBH
binaries and their GW signatures from first principles.
Our final goal is to use GW data to constrain ab initio
models and inform inflationary dynamics. This allows us to
build a self-consistent scenario which, on the one hand, is
compatible with current constraints and, on the other hand,
makes concrete predictions across a wide range of PBH
masses. Indeed, owning to the specific shape of the mass
distribution arising from an ab initio model, constraints on
a given mass range can percolate on different mass scales,
making ab initio models much more predictive (and hence
falsifiable) than generic parametrizations.
One of the key novel ingredients of our framework is

the inclusion of state-of-the-art PBH formation models
describing the collapse of radiation across the QCD epoch,
incorporating the effect of critical collapse in shaping the
QCD enhancement [16]. A scenario in which the QCD
era was deemed responsible for shaping the mass distri-
bution of PBHs in the solar mass range was devised in
Refs. [64,65] (see also [57,66–68]), where the power
spectrum of curvature perturbations was specifically tuned
to be nearly, but not exactly, scale invariant, which

enhances the relevance of the QCD peak around the solar
mass scale. However, the physics of the collapse across the
QCD epoch alone does not determine the entire PBH mass
function, which chiefly depends also on the shape of the
curvature perturbation spectrum. It follows that the ratio
between the abundance of PBHs at OðM⊙Þ and Oð30M⊙Þ
(relevant for LVK detections) cannot be predicted by
the QCD effect alone, unless strong assumptions on the
spectral amplitudes at those two scales are made.
Reference [69] specifically analyzed such a scenario,
and concluded that the GW bound in the subsolar mass
range (from the absence of subsolar events during O1/O2/
O3 LVK runs) sets the most important constraint. However,
bounds on subsolar PBHs rely on assuming a specific PBH
mass distribution [70], which is not necessarily the one
assumed to come from the QCD phase transition in
previous works and by the ab initio model considered
here. Furthermore, Ref. [69] concluded that PBH mergers
shaped by the QCD EOS may not contribute to current
LVK observations, unless an ad hoc mass evolution for the
PBH mass function and a cutoff in the power spectrum very
close to the QCD scale are artificially introduced by hand.
We will extend the scope of these analyses, by exploring

the role of the spectral tilt, which was previously fixed to a
specific value (and is not a priori related to the one
constrained by cosmic microwave background (CMB)
observations at much larger scales). As we shall later
discuss in detail, we will leave the tilt as a free parameter of
the model, which is eventually inferred from the data. Due
to the exponential dependence of the PBH abundance on
the density variance, small modifications to the tilt (around
10%) greatly reduce the QCD solar mass peak and render
the scenario insensitive to the high-scale (i.e., low-mass)
spectrum cutoff.
We revisit previous constraints by performing the first

Bayesian population inference on GW data including a
subpopulation of PBHs and directly using ab initio power
spectrum parameters (including the tilt and the effect of the
QCD phase) instead of phenomenological distributions,
and confronting the PBH scenario with the most recent
GWTC-3 dataset [24,59]. We allow the PBH model to
produce subsolar merger events, and the constraint deriving
from the absence of such binaries in LVK data is con-
sistently included in our analysis by construction. This
constraint was not included in Ref. [71], where the fit was
arbitrarily cut at ≈M⊙ and no constraining power from the
absence of subsolar mergers is included in the inference.
Another important addition of our analysis relative to [71]
is the inclusion of a phenomenological fit describing the
population [59], which is crucial to assess the nature of
events in the solar-mass range.
Finally, employing the reverse engineering approach

devised in Ref. [72], we show how the GW data-driven
power spectrum can be naturally accommodated into an
ultra-slow-roll (USR) inflationary scenario [73–83].
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Remarkably, a single USR model informed by current
observational constraints may explain the entirety of the
dark matter in asteroid-mass PBHs while also allowing [72]
for detectable PBH mergers in the LVK band due to
the enhancement of the PBH distribution around the
solar-mass range induced by both the QCD phase transition
and spectral features, and for detectable stochastic GW
background (SGWB) signals from the nano-Hertz to the
kilo-Hertz band.
Throughout all this paper we assume geometrical units

with c ¼ G ¼ 1.

II. PBH FORMATION ACROSS THE QCD EPOCH

Within the standard PBH formation scenario, which
assumes PBHs form out of the collapse of large amplitude
cosmological perturbations in the radiation dominated early
Universe, a crucial role is played by the power spectrum of
primordial curvature perturbations, PζðkÞ, and the corre-
sponding value of the threshold δc for PBH formation. In
this section, we summarize the results of [16], where a
state-of-the-art derivation of the threshold for the formation
of PBHs during the QCD epoch is given. This is obtained
using detailed general relativistic numerical simulations,
assuming spherical symmetry.
We start with a brief introduction of the QCD phase

transition, followed by a quick review of the mathematical
formalism one needs to describe consistently the initial
condition for PBH formation, clarifying the key ingredients
used in the computation of the threshold. This allows us to
discuss the impact on the formation of PBHs characterized
by a solar-mass range of scale, and how we can include the
effects of this phase within the computation of the PBH
mass distribution.

A. The QCD phase transition

During the confinement of quarks into hadrons the
particle degrees of freedom are varying with the temper-
ature T. This results in a ratio between the pressure p
and the total energy density ρ of the medium being not
constant—as in the case of a gas of ultrarelativistic
particles—but varying with time according to

wðTÞ≡ p
ρ
¼ 4g�;sðTÞ

3g�ðTÞ
− 1: ð1Þ

The functions g�ðTÞ and g�;sðTÞ denote the two relevant
measures of the effective number of relativistic degrees of
freedom, defined as

g�ðTÞ ¼
30ρ

π2T4
and g�;sðTÞ ¼

45s
2π2T3

; ð2Þ

where s is the entropy density of the medium and the
pressure p is given by

p ¼ sT − ρ ¼ wðTÞρ: ð3Þ

In the top panel of Fig. 1 we show the behavior of w and
the sound speed squared c2s ≡ ∂p=∂ρ during the QCD
phase transition, obtained from lattice QCD simulations
[84,85], using the cosmological horizon mass MH as a
measure of the fluid temperature.1 As we will discuss
later, the non-negligible change of these two quantities
during the QCD epoch, with respect the constant value
(w ¼ c2s ¼ 1=3) they have when the Universe is radiation
dominated, plays a crucial role during the collapse of
cosmological perturbations, and gives rise to a reduction of
the threshold for the formation of PBHs (see the bottom
panel of Fig. 1).

FIG. 1. Top panel: the EOS parameter w ¼ p=ρ (red) and
squared speed of sound (blue) as functions of the cosmological
horizon massMH . Central panel: evolution of the EOS dependent
parameter Φ, relating the density contrast to the curvature
perturbation as functions of the cosmological horizon mass
MH. Bottom panel: same as above but showing the threshold
for PBH formation. The dashed horizontal lines refer to the values
obtained in the perfect radiation-fluid case.

1The cosmological horizon RH is a marginally trapped surface
[86], as the apparent horizon of a black hole, with RH ¼ 2MH .
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B. Gradient expansion

The threshold δc for PBH formation is defined as the
critical value of the cosmological perturbation amplitude δ,
such that for δ > δc an apparent horizon appears during the
collapse and a PBH is formed, while for δ < δc the collapse
bounces and the cosmological perturbation is dispersed into
the surrounding medium.
To compute the value of the threshold one needs to

specify initial conditions of the numerical simulations on
the superhorizon scale, when the asymptotic form of the
space-time metric is given by

ds2 ¼ −dt2 þ a2ðtÞe2ζðrÞ½dr2 þ r2dΩ2�; ð4Þ

where aðtÞ is the scale factor, while ζðrÞ is the conserved
comoving curvature perturbations defined on a super-
Hubble scale, converging to zero at infinity where the
Universe is taken to be unperturbed and spatially flat.
In this regime, using the so-called gradient expansion or

long wavelength approximation [87–89], the energy den-
sity contrast δρ=ρb for adiabatic perturbations [the ones
generated by a curvature profile ζðrÞ] can be written as [90]

δρ

ρb
ðr; tÞ ¼ −

4

3
Φ
�

1

aH

�
2

e−5ζðrÞ=2∇2eζðrÞ=2; ð5Þ

whereH ≡ _a=a is the Hubble parameter, while the function
ΦðtÞ depends on the equation of state of the Universe and is
obtained by solving the following equation [88]:

1

H
dΦðtÞ
dt

þ 5þ 3wðtÞ
2

ΦðtÞ − 3

2
ð1þ wðtÞÞ ¼ 0 ð6Þ

integrated from past infinity to the time when the amplitude
of the perturbation is computed. In standard models of the
very early Universe (i.e., just after inflation) this is assumed
to be dominated by a radiation dominated medium, with
EOS p ¼ wρ and w ¼ 1=3.
When a constant wðtÞ ¼ w̄ characterizes the fluid

dominating the energy budget of the Universe, we have
dΦðtÞ=dt ¼ 0 and one obtains

Φ̄ ¼ 3ð1þ w̄Þ
ð5þ 3w̄Þ ; ð7Þ

yielding Φ̄ ¼ 2=3 for a radiation fluid with w̄ ¼ 1=3.
Equation (7) is an attractor solution of Eq. (6), i.e., if
wðtÞ slowly varies in time, dΦðtÞ=dt ≃ 0 and the evolution
ofΦ approaches the value given by Eq. (7). The behavior of
Φ across the QCD phase transition, obtained by solving
Eq. (6), differs from the average Φ̄, particularly in the
region where w and c2s are quickly varying with respect to
MH. This is shown in the middle panel of Fig. 1.
It was shown that a consistent way to define the threshold

for PBH formation is in terms of the smoothed density

contrast δm computed at horizon crossing time, i.e.,
aH ¼ 1=rm. Using a top-hat window function with areal
radius R ¼ aðtÞ exp½ζðrmÞ�rm, where rm indicates the
location of the maximum of the mass excess, also called
compaction function, the amplitude of spherically sym-
metric peaks in the smoothed density field is related to the
curvature perturbation as [91]

δm ¼ −Φrmζ0ðrmÞ½2þ rmζ0ðrmÞ�: ð8Þ

Although strictly speaking the gradient expansion
approach is valid only on superhorizon scales, to compute
the perturbation amplitude δm it is useful to extend this
approach up to the cosmological horizon crossing time.
Since then the region involved in the formation of a PBH
becomes causally connected, and the collapse starts shortly
afterwards. This gives a well defined criterion to quantify
the amplitude of cosmological perturbations, comparing
different initial configuration collapsing at different epochs.

C. The threshold for PBHs

The spherically symmetric numerical simulations used
to compute the threshold δc, and the mass distribution
discussed in the next section, have been performed with a
numerical code developed in [12] that has been widely used
and tested [13,14], including also an adaptive mesh refine-
ment scheme, which makes the code very flexible. This
allows to compute the threshold with very high accuracy, a
crucial point for calculating the mass spectrum discussed
in Sec. II D.
The behavior of the threshold δc during the QCD phase

transition, computed when a nearly scale invariant power
spectrum (see Sec. II E) is assumed, is shown in the bottom
panel of Fig. 1. Looking at the top panel we can appreciate
the varying EOS during this epoch: the value of threshold
δc is affected by the change of both w and c2s , with a
minimum value δc ≃ 0.5 reached at MH ¼ 3M⊙ (between
the minimum of these two quantities), about 10% less than
the value δc ≃ 0.55 one has during the standard radiation
scenario (dashed line). The effect of Φ shown in the central
panel is to give an additional lowering, accounting up to
25% of the total decrement of the threshold, smoothing
the whole behavior of δc, monotonically decreasing for
MH ≤ 3M ⊙, and monotonically increasing afterwards,
for MH ≥ 3M ⊙.
This is quite different from the behavior of δc obtained in

[15] where the variation of the threshold during the QCD
epoch was obtained simply from a fit of the numerical
results given in [14] where only w is varying.2 This neglects

2In [14] the threshold was not defined at the maximum of the
compaction function but at the edge of the overdensity, as it was
used to be done in past works [11–13]. This does not allow to
make a direct comparison with the new numerical results without
a proper rescaling (see [16] for more details).
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completely the effects of c2s during the dynamics of the
collapse, and a correct computation of Φ entering in the
definition of δm given in (8).
More recently an attempt to improve the calculation,

including also the effects of the sound speed, has been
investigated in [92], computing an analytic estimation of
the threshold based on the three zone model used in [93].
This however has the well known drawback of not being
able to include the effects of the pressure gradients during
the collapse, corresponding to an underestimation of the
threshold which is strongly shape dependent [91], varying
with the initial curvature power spectrum of cosmological
perturbation [94].
Even looking at the qualitative behavior of [92], one can

see a nonmonotonic behavior in δc in the two key regions
(MH smaller/larger than 3MH) which do not appear in the
full numerical results shown in the bottom panel of Fig. 1.
This is a clear evidence of the intrinsic limit of making an
analytic approximation of a nonlinear collapse process, as
in [92] it was also pointed out, which is not able to include
properly all the combined nonlinear effects related to the
behavior of w and c2s when a cosmological perturbation is
collapsing during the QCD phase. In general a proper
computation of the threshold δc, to be used in precise
estimation of the abundance of PBHs, requires necessarily
fully relativistic numerical simulations as the ones used
here (see [16] for more details).

D. The mass spectrum for PBHs

In Fig. 2 we show the resulting mass spectrum of PBHs
obtained from the numerical simulations of [16] obtained
after the computation of the threshold, plotting mPBH=MH
against ðδ − δcÞ during the QCD phase transition. As it
is well known, in the standard scenario of a radiation
dominated medium a critical collapse arises [95,96] and
the mass spectrum of PBHs is characterized by a scaling
law [10–14,97] given by

mPBHðδÞ ¼ KMHðδ − δcÞγ; ð9Þ

where for δ − δc ≲ 10−2 the critical exponent γ depends
only on the parameter of the equation of state, i.e the value
of w, completely independent on the initial configuration of
the initial conditions, given by the initial profile of ζðrÞ,
which affect instead the value of K. This is shown on both
plots of Fig. 2 with a dashed line when w ¼ 1=3, which
gives γ ≃ 0.36 and K ≃ 4 for a nearly scale invariant
curvature power spectrum, as the one considered here.
The QCD phase transition introduces an additional

degree of freedom into the problem, which is the character-
istic scale of the horizon crossing of the cosmological
perturbation. This makes δc, γ andK to depend also onMH,
i.e., when the perturbation is crossing the cosmological
horizon. The different lines shown in Fig. 2 with a color
varying between red, for smaller values ofMH, and blue for
larger values, shows how the scaling law is modified by the
characteristic scale of the problem.
For the calculation of the mass distribution (see Sec. II F)

it is important to include these effects due to the variation
of γ and K in terms of MH: an exact power-law critical
behavior is only obtained close enough to the density
threshold ðδ − δc ≲ 10−5Þ, where the PBH masses are
significantly smaller than the cosmological horizon mass,
not able to affect significantly the collapse, while for larger
values the EOS during the QCD epoch induces further
modifications. We fit the relation between the PBH and
horizon mass using the power-law template (9) in the
range of δ which most contributes to the abundance, i.e.,
ðδ − δcÞ ∈ ½10−5; 2 × 10−2�, and find that deviations from
the functional form used in Eq. (9) would only induce a
small correction which we can neglect.
The resulting values of KðMHÞ and γðMHÞ used here are

shown in the right plot of Fig. 2: one could appreciate
the significant variation of these quantities when δc is also
significantly varying with respect MH, compared to the

FIG. 2. Left panel: PBH mass mPBH plotted as a function of δ − δc computed at the cosmological horizon crossing (see Ref. [16] for
more details). The behavior for a radiation dominated medium is plotted with a black dashed line. Right panel: the values of the power-
law coefficients in Eq. (9) found by fitting the results of numerical simulations shown in the left panel.
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constant values of the critical collapse during the radiation
dominated epoch of the early Universe, indicated here
with a black dashed line. A general trend is observed: for
MH ≲ 3M⊙, there is a tendency to generate heavier PBHs,
while the opposite is found when MH ≳ 3M⊙. This can be
seen in the left panel of Fig. 2, where orange (light blue)
lines fall above (below) the dashed black line indicating the
result for a radiation perfect fluid. The fitted values of
KðMHÞ and γðMHÞ shown in the right panel of Fig. 2 aim to
describe with enough accuracy this trend.

E. Curvature power spectrum

Our model is based on a parametrization of the curvature
power spectrum, which we assume to have a nearly scale
invariant shape of the form

PζðkÞ ¼ A

�
k

kmin

�
ns−1

Θðk − kminÞΘðkmax − kÞ; ð10Þ

whereA defines the characteristic amplitude,ns is the spectral
tilt,3 and kmin and kmax are the cutoff scales in momentum (k)
space. This functional form generally describes broad spectra
[98,99], whose consequent PBH mass distribution may be
modulated by the QCD epoch. Notice that, due to the
exponential dependence of thePBHabundance to the spectral
amplitude, even mildly tilted spectra with ns ≠ 1 generate
narrow mass distributions strongly peaked towards small
(when blue with ns > 1) or large (when red with ns < 1)
masses. See Sec. II F for more details.
In reality, sharp cutoffs in momentum space do not

appear in physically motivated curvature power spectra,
which are also typically constrained to obey maximum
growth or decay rates as a function of the wave number
[100–102]. However, due to the exponential dependence of
the PBH abundance to the variance of the density contrast,
we do not expect such a simplification to affect our result.
Indeed, in Sec. VIII we shall show how the features of the
parametrization (10) are naturally reproduced in a USR
inflationary model.
Even though we restrict our parameter space to nearly

scale invariant spectra, the variations of the spectral tilt
would require considering potentially different shapes of
collapsing overdensities (see e.g., [94]). Capturing this
effect on the threshold and the other parameters of collapse
would necessitate numerically simulating the PBH forma-
tion across the QCD epoch over a fine grid of variations
beyond the scale invariant spectrum, which is computa-
tionally very demanding, and is left to future extensions of
this work.

We also assume the absence of primordial non-
Gaussianities of the curvature perturbations (see e.g.,
Refs. [103–106]) while we fully account for the unavoid-
able intrinsic non-Gaussianities induced by the nonlinear
relation between the curvature perturbation and the energy
density contrast [107,108].
Notice that, for fixed spectrum shape parameters

½ns; kmin; kmax�, the overall PBH abundance fPBH (to be
defined later on) is degenerate with the amplitude A. Also,
the minimum and maximum scales at which the power
spectrum is cut correspond to characteristic horizon mass
scales MS ≡MHðkmaxÞ and ML ≡MHðkminÞ. In other
words,MS andML are respectively the smallest and largest
horizon masses bracketing the PBH formation epoch.
Therefore, we equivalently choose to adopt the following
hyperparameters describing the PBH model as

λPBH ¼ ½log10fPBH; ns; log10MS; log10ML�; ð11Þ

where, if not explicitly indicated, the mass scales MS and
ML are intended as expressed in units of the solar massM⊙.
In Table I, we summarize the choice of priors of the PBH
model later adopted in the GWTC-3 Bayesian inference
analyses.

F. Computation of the mass distribution

In this section we report the computation of the PBH
mass distribution starting from the primordial power
spectrum defined in Eq. (10). We shall follow the derivation
reported in Ref. [108], to which we refer for more details.
Looking at (8) it has already been observed that

this equation can be written in terms of a Gaussian
component linearly related to the curvature perturbation
δl ≡ −2Φrmζ0ðrmÞ as

δm ¼
�
δl −

1

4Φ
δ2l

�
: ð12Þ

The probability density function of the linear component of
the smoothed energy density contrast δl is Gaussian, and
thus can be written as

PðδlÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ20

p exp

�
−

δ2l
2σ20

�
: ð13Þ

TABLE I. Hyperparameters of the PBH model and their prior
ranges adopted in the inference analysis. The mass scalesMS and
ML are intended as expressed in units of the solar mass M⊙.

Model PBH

λ log10 fPBH ns log10 MS log10 ML

Prior ½−6; 0� [0, 1.5] ½−2.5; log10 ML� ½log10 MS; 4�

3We warn the reader that the spectral tilt ns defined Eq. (10)
specifically refers to the small (PBH) scales. The tilt observed at
large (CMB) scales will be referred to as nsðk�Þ, where k� is the
CMB pivot scale, see discussion in Sec. VIII. We stress that, as
we shall discuss, they are not a priori related to each other.
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The variance σ20 and the first momentum of the distribution
σ21 are

σ2i ðrmÞ ¼
4

9
Φ2

Z
∞

0

dk
k
ðkrmÞ4W̃2ðk; rmÞT2ðk; rmÞk2iPζðkÞ;

ð14Þ

where i ¼ 0, 1; W̃ðk; rmÞ is the Fourier transform of the
top-hat smoothing function,

W̃ðk; rmÞ ¼ 3

�
sinðkrmÞ − krm cosðkrmÞ

ðkrmÞ3
�
; ð15Þ

and Tðk; rmÞ is the linear transfer function

Tðk; rmÞ ¼ 3

�
sinðkrm=

ffiffiffi
3

p Þ − krm cosðkrm=
ffiffiffi
3

p Þ= ffiffiffi
3

p

ðkrm=
ffiffiffi
3

p Þ3
�
:

ð16Þ

In the following, we are going to identify the smoothing
scale rm with the corresponding horizon massMH (fixed by
the horizon crossing condition aHrm ¼ 1 [91]) using the
relation with power spectral modes,

rmk≡ κ ¼ 4.49; ð17Þ

found for a broad (and nearly scale invariant) power
spectrum [94]. This relation is strictly valid for a shape
parameter α ¼ 3 [94], consistently with the approximations
described above.
By consequence, one finds that the horizon mass MH is

related to power spectral modes through

MH ≃ 17M⊙

�
g�

10.75

�
−1=6

�
k=κ
pc−1

�
−2
; ð18Þ

where g� is the number of degrees of freedom of relativistic
particles. We reiterate here for clarity that Eq. (18) relates
the horizon mass MH to the epoch of horizon crossing of
the peak of the compaction function (of size rm) produced
by the single mode k. This differs from the horizon mass
corresponding to the crossing time of modes k themselves
and we point the attention of the reader to the relating
coefficient κ that has been frequently (but incorrectly)
omitted in the past.
In principle, the transfer function defined in Eq. (16) is

derived using linear perturbation theory in a radiation
dominated Universe (w ¼ 1=3). While Tðk; rmÞ is modified
by varying the EOS, and this would lead to a modified
evolution of subhorizon modes, the presence of a window
function already efficiently smooths curvature perturba-
tions with krm ≫ 1 and the impact of a softer EOS should
be small. As discussed in Sec. II G, we will capture both
Tðk; rmÞ and W̃ðk; rmÞ with an effective smoothing

function, neglecting further modifications of Tðk; rmÞ from
a time-dependent w around the QCD epoch.
The threshold for PBH formation can be translated into a

critical amplitude of the linear component δc;l� by inverting
Eq. (12) as

δc;l� ¼ 2Φ

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

δc
Φ

r !
: ð19Þ

In the computation of the mass distribution we only include
values of δl falling in the range

δc;l− < δl < 2Φ≡ δþl ; ð20Þ

corresponding to type-I PBH formation [91], and neglect
the contribution from PBHs formed in the second branch
whose contribution is exponentially suppressed.
The number density of sufficiently high peaks can

be computed adopting the theory of random Gaussian
fields [109], which gives

N ¼ σ31
4π2σ30

ν3 exp

�
−
ν2

2

�
; ð21Þ

where we introduced the rescaled peak height ν≡ δl=σ0.
The mass fraction for each peak of given height ν which
collapses to form a PBH can be expressed by evaluating

βν ¼
mPBHðνÞ
MH

N ðνÞθðν − νcÞ; ð22Þ

where the Heaviside step function θ implements the
threshold for collapse.
The total energy fraction of the Universe composed

by PBHs formed at a given time (equivalently identified
with a single horizon mass MH) is given by integrating
the relevant range of ν between νc− ≡ δc;l−=σ0 and
νþ ¼ δþl =σ0 [using Eqs. (19) and (20)], which can be
written as

βðMHÞ ¼
Z

νþ

νc−

dν
K
3π

�
νσ0 −

1

4Φ
ðνσ0Þ2 − δc

�
γ

×

�
σ1

aHσ0

�
3

ν3 exp

�
−
ν2

2

�
: ð23Þ

The term 1=aH is fixed by the horizon crossing condition
aH ¼ 1=rm ¼ kH=κ [91]. Finally, the entire energy fraction
composed by PBHs after formation is found by integrating
over all relevant epochs (corresponding to the time span
when modes within kmin < k < kmax cross the Hubble
horizon) as

ΩPBH ¼
Z

ML

MS

d lnMH

�
Meq

MH

�
1=2

βðMHÞ; ð24Þ
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whereMeq ¼ 2.8 × 1017M⊙ is the horizon mass at the time
of matter-radiation equality [110]. The corresponding total
PBH abundance is then simply defined as

fPBH ≡ΩPBH

ΩDM
; ð25Þ

where ΩDM ¼ 0.265.
The mass function ψðmPBHÞ is defined as the fraction

of PBHs with mass in the infinitesimal interval
ðmPBH; mPBH þ dmPBHÞ. This can be obtained by differ-
entiating ΩPBH with respect to the PBH mass as

ψðmPBHÞ ¼
1

ΩPBH

dΩPBH

dmPBH
: ð26Þ

Our definition of the mass distribution implies unit nor-
malization under integration asZ

dmPBHψðmPBHÞ ¼ 1; ð27Þ

so that ψðmPBHÞ has the dimensions of [1/mass]. Notice
that an alternative definition of the mass distribution may

be given in terms of logarithmic mass intervals. This is
found by computing

fðmPBHÞ≡ 1

ΩDM

dΩPBH

d lnmPBH
¼ mPBHfPBHψðmPBHÞ; ð28Þ

yielding a dimensionless function. This alternative quantity
will be useful when comparing the mass distribution
resulting from our analysis with PBH constraints [21],
see Sec. VII.
In order to compute the full mass distribution, it is

convenient to invert the relation between horizon and PBH
mass through the critical collapse relation (9), focusing
only on the type-I branch, as

δl ¼ 2Φð1 −
ffiffiffiffi
Λ

p
Þ; ð29Þ

where

Λ ¼ 1 −
δc
Φ

−
1

Φ

�
mPBH

KMH

�
1=γ

: ð30Þ

At this point, using Eq. (29), we can change the variable of
integration in Eq. (23) and write

ψðmPBHÞ ¼
8

3πΩPBHmPBH

Z
ML

MS

dMH

MH

�
Meq

MH

�
1=2
�

σ1
aHσ0

�
3Φ3K
γσ40

�
mPBH

KMH

�1þγ
γ ð1 − ffiffiffiffi

Λ
p Þ3

Λ1=2 exp

�
−
2Φ2

σ20
ð1 −

ffiffiffiffi
Λ

p
Þ2
�
; ð31Þ

and the integration range of MH is subject to the condition
Λ > 0 (because we require δ > δc). The quantitiesKðMHÞ,
γðMHÞ, ΦðMHÞ, δcðMHÞ, and σiðMHÞ are left within the
integration over the horizon mass scale, as they all
explicitly depend onMH when thermal effects are included.
In the low mass limit, i.e., mPBH ≪ MS, one can find that
the mass distribution (31) scales as

ψðmPBHÞ ∝
�
mPBH

KMS

�
1=γ

; ð32Þ

which gives the characteristic tail ψðmPBHÞ ∝ m2.8
PBH if one

assumes the energy density of the Universe behaving as a
relativistic fluid with w ¼ 1=3, which gives γ ≈ 0.36 [10].
In Fig. 3 we show the mass distribution generated by the

collapse of a single mode kH. Depending on the exact
moment of the cosmological horizon crossing, which fixes
exactly at which epoch across the QCD era the collapse
takes place, the consequent mass distribution deviates from
the one obtained when the Universe is radiation dominated.
In particular, we observe differences in the low mass tail
and in the location of the peak of ψðmPBHÞ. Modes
collapsing before (after) MH ≈M⊙ tend to generate a mass
distribution peaked at larger (smaller) values compared to

FIG. 3. Mass distribution resulting from the collapse of a
single spectral scale kH crossing the horizon at various MH.
The low mass tail is dictated by the critical collapse scaling γ,
see Eq. (32). The dashed black line denotes the result
assuming a Universe with the radiation EOS w ¼ 1=3. In that
case, the peak of the mass function for given MH contribution
would sit at mPBH=MH ¼ 0.602.
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the reference result of a radiation dominated medium. This
generates a pile-up effect around the solar mass, which
additionally contributes to enhance the QCD peak induced
by the reduced value of the threshold around MH ≈M⊙.
To summarize, with KðMHÞ, γðMHÞ, ΦðMHÞ, and

δcðMHÞ computed from the simulations in Ref. [16] and
shown in Figs. 1 and 2, alongside σiðMHÞ from Eq. (14),
the algorithm presented above can be applied to compute
the PBH mass function and the corresponding total
abundance in terms of the parameters of the cosmological
power spectrum.
In Fig. 4, we show a few representative examples of such a

mass distribution, obtained by fixing the hyperparameters
λPBH of the curvature power spectrum. In particular, we focus
the attention on the role of the tilt ns. In case ns ¼ 1, the
spectrum is sizable at modes collapsing during the QCD
epoch and a bump around the solar mass is obtained [15], on
top of what is expected from a scale invariant spectrum
ψðmPBHÞ ≈m−3=2

PBH [99]. On the other hand, already for
slightly red spectra (with ns < 1), the mass distribution
becomes independent of the UV spectrum cutoff kmax (i.e.,
of MS) and increasingly tilted towards larger masses, up to
the point where the QCD enhancement becomes irrelevant,
due to the slightly reduced power at the QCD scale,
compensating the reduced value of threshold δc with respect
w ¼ 1=3. For intermediate values of ns (e.g., ns ≈ 0.7), a
doubly peaked mass distribution can be realized, where the
location of the light peak is fixed by the QCD epoch and the
heavy one is instead controlled by ML.

We can compare these examples with the best-fit
log-normal mass distribution obtained in the analysis of
Ref. [45] (black dashed line in Fig. 4). As one can see, red
tilted spectra may produce similar mass distributions
peaked at around mPBH ≈ 30M⊙, for which the QCD
softening of the EOS plays no role. The critical collapse,
however, generates an asymmetry in the mass distributions
that can only be taken into account by introducing addi-
tional parameters controlling the skewness of the distribu-
tion, as pointed out in Ref. [111].

G. The semianalytical mass distribution

The computation of the integral (31), which should be
performed on a sufficiently dense grid of values of mPBH
for each choice of the PBH hyperparameters λPBH, may
be rather time consuming, because it requires computing
numerically the integrals (14) at each MH.
In order to simplify the description of the PBH abun-

dance and speed up the hierarchical Bayesian analysis, we
absorb the effect of both the window function and linear
transfer function, which are cutting subhorizon curvature
modes, in a single Gaussian window function of the form

Ŵðk; R̂Þ ¼ exp ½−ðkR̂Þ2=4�; ð33Þ

where the smoothing scale R̂ is fitted appropriately. In
particular, R̂ have been adjusted to match the average
smoothing between rm and rm=

ffiffiffi
3

p
through the factor

R̂ ¼ srm with

s ¼ ð1þ 1=
ffiffiffi
3

p Þ
2

≃ 0.78: ð34Þ

We checked that this approximation, solely intended to
speed up the computation of the mass distribution when
running the Monte Carlo Markov chain (MCMC) analysis,
does not introduce any appreciable modification to the
mass distribution.
Within this simplifying assumption, one can solve

Eq. (14) analytically,

σ20¼
4

9
Φ22ðnsþ1Þ=2As−4ðkminrmsÞ1−ns

×

�
Γ
�
nsþ3

2
;
ðkminrmsÞ2

2

�
−Γ
�
nsþ3

2
;
ðkmaxrmsÞ2

2

��
;

ð35Þ

while σ1¼kminσ0ðns→nsþ2Þ, and Γða;zÞ¼R∞z ta−1e−tdt
is the incomplete Gamma function. The variance can
be expressed in terms of the model hyperparameters by
setting

FIG. 4. The mass function obtained with a few choices of the
curvature power spectrum compatible with the posterior distri-
bution inferred by the analysis presented in Sec. VI (see Table V).
This plot assumes fPBH ¼ 10−3, the minimum horizon mass to be
smaller than MS ≲ 10−2.5M⊙, the largest mass in the spectrum
ML ¼ 102.8M⊙ and a variable tilt ns. (Only for an exactly scale
invariant spectrum ns ¼ 1, does the mass function depend onMS,
in which case we fix MS ¼ 10−2.5M⊙.) The black dashed line
reports the log-normal mass distribution found as the best fit in
the analysis of Ref. [45]. Overall, the ab initio distribution shaped
by the QCD phase transition has larger support for PBHs with
mPBH ≲ 10M⊙ compared to the log-normal parametrization.
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kminrm ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MH=ML

p
;

kmaxrm ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MH=MS

p
; ð36Þ

while the amplitude A is fixed with a bisection method to
select the desired PBH abundance fPBH (within subpercent
accuracy on the latter).
In Eq. (36) we implicitly fixed the number of the

effective degrees of freedom g� appearing in Eq. (18),
and in Fig. 5 (top panel) we show how g� varies as a
function of the temperature of the Universe, which is
tracked by MH in our formalism. This induces a small
deviation from the scaling reported in Eq. (36) (see bottom
panel of Fig. 5), which we neglect to make the variance
fully analytical with the aim of speeding up the compu-
tations. Therefore, in the following we will fix g� ¼ 25, i.e.,
the value at the central region of our interest. By fixing g�,
we neglect a small running of ns effectively induced by the
change of degrees of freedom when computing the mass
distribution.
One final simplification one may attempt is to neglect

the critical collapse and remove the integration over the
horizon mass scale MH. This, however, cannot be done
consistently as the width of the QCD modulation around
the solar mass is narrower than the one induced by the
critical collapse. As it can be seen in Fig. 4, the critical mass
distribution has a crucial role in shaping the peak of the
mass distribution around the solar mass. This can be
deduced by realizing that the mass distributions obtained
with different ns have the same scaling ≈m1=γ

PBH below the
QCD peak, induced by the critical collapse of the mode k
corresponding to the minimum of the threshold δc,
while they are basically insensitive to the variance σ0 at
MH < M⊙).

III. THE PBH MERGER RATE

The standard PBH formation mechanism we consider
assumes PBHs are generated from the collapse of sizable
Gaussian cosmological perturbations in the radiation
dominated epoch of the early Universe [5–8]. In this
scenario, PBHs are predicted to be characterized by small
natal spins [112,113], and are not clustered at high redshift
[98,114–118]. Furthermore, the PBH merger rate at low
redshift is dominated by binaries that gravitationally
decouple from the Hubble flow before the matter-radiation
equality [119,120]. We compute the differential volumetric
PBH merger rate density following Refs. [31,34,37,118] as

dRPBH

dm1dm2

¼ 1.6 × 106

Gpc3 yr
f

53
37

PBH

�
tðzÞ
t0

�
−34
37

η−
34
37

�
M
M⊙

�
−32
37

× SðM; fPBH;ψ ; zÞψðm1Þψðm2Þ; ð37Þ

where M ¼ m1 þm2, η ¼ m1m2=M2, and t0 is the current
age of the Universe.
The suppression factor S < 1 accounts for environmental

effects in both the early- and late-time Universe. We can
separately define each contribution as

S≡ SearlyðM; fPBH;ψÞ × SlateðfPBH; zÞ: ð38Þ

An analytic expression for S can be found in Ref. [40],
which we report here for completeness. In the early
Universe, suppression results as a consequence of inter-
actions between PBH binaries and both the surrounding
dark matter inhomogeneities, as well as neighboring PBHs
at high redshift [27,29,31,121]. This factor takes the form4

Searly ≈ 1.42

�hm2i=hmi2
N̄ðyÞ þ C

þ σ2M
f2PBH

�−21=74
exp ½−N̄ðyÞ�;

ð39Þ

with

N̄ðyÞ≡ M
hmi

�
fPBH

fPBH þ σM

�
; ð40Þ

and the rescaled variance of matter density perturbations
takes the value σM ≃ 0.004. In Eq. (39), the constant factor
C is defined as [see Eq. (A.5) of Ref. [40]]

FIG. 5. The top plot shows how the effective degrees of
freedom g� varies as a function of MH . The bottom plot shows
the impact g� has on the relation between spectral modes and the
horizon mass at horizon crossing time.

4The suppression factor in Eq. (39) was tested against N-body
simulations in Ref. [31], also assuming a wide (but log-normal)
mass distribution. While, in this work, we adopt a different mass
distribution, derived from first principles, its width in the stellar
mass range is compatible with the one tested in Ref. [31],
supporting our adoption of Eq. (39).
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C¼f2PBH
σ2M

hm2i
hmi2

��
Γð29=37Þffiffiffi

π
p U

�
21

74
;
1

2
;
5f2PBH
6σ2M

��−74
21

−1

�−1
;

ð41Þ

where ΓðxÞ is the Euler Gamma function and Uða; b; zÞ
denotes the confluent hypergeometric function. We warn
the reader that we are adopting a different notation for the
mass distribution compared to the one used in Ref. [40],
which here is normalized such that

R
dmψðmÞ ¼ 1. With

this choice, the mass average reads

hmni ¼
Z

mnψðmÞdm: ð42Þ

In the late Universe, multiple encounters with other
PBHs that populate small clusters formed from the initial
Poisson conditions lead to a thermalization of the eccen-
tricity distribution, which enhances the merger time and
effectively reduces the late-time universe merger rate
[65,122–125]. By accounting for the fraction of binaries
which avoids dense enough clusters and are not disrupted,
one can write down this additional suppression factor
as [34,40,118,126]

SlateðxÞ ≈ min ½1; 9.6 × 10−3x−0.65 exp ð0.03ln2xÞ�; ð43Þ

where we introduced the variable x≡ ðtðzÞ=t0Þ0.44fPBH.
Notice also that, for fPBH ≲ 0.003, one always finds
Slate ≃ 1, i.e., the suppression of the merger rate due to
disruption inside PBH clusters is negligible. This is also
supported by the results obtained through cosmological
N-body simulations finding that PBHs are essentially
isolated when their abundance is small enough [117].
It is important to mention that the late-time suppression

factor was only computed for a sufficiently narrow mass
distribution [34,40,118]. So far, a full computation con-
sidering wide distributions was not performed in the
literature. However, we do not expect this extension to
modify significantly the formulation used here as Slate is
found to be only mildly dependent on the mass scale (see
e.g., [127]). Furthermore, we generically expect Slate ≈ 1
for the PBH abundance inferred a posteriori by our
analysis. In the computation of the merger rate, we are
also neglecting the contribution from binaries that can form
dynamically within PBH clusters from either capture or
three-body interactions. This is justified because, in this
scenario and for the small values of fPBH we obtain, the
contribution of those channels to the total merger rate is
subdominant relative to the early universe binaries [128].
Finally, the natal distribution of PBH masses and spins

(the latter being initially negligible [112,113], see also
[129]) can be modified if PBHs undergo an efficient
accretion phase during cosmic history [37,130,131]. For
a given accretion model, the peculiar accretion-driven and
redshift-dependent mass-spin distribution can be used to

add extra information in the inference [17,45,132] and also
impact the merger rate [37,130,131]. However, while
certain features of PBH accretion are robust and should
be model independent, there remain large uncertainties in
the mass (and, especially, spin) accretion. Thus, in order to
remain agnostic and conservative, here we neglect PBH
accretion and do not include spin information in the merger
events. In practice, in the inference we shall only use the
dependence of the merger rate on the individual masses and
redshift, conservatively limiting the information that can be
inferred from single merger events [17,132].
Let us conclude by stressing that, while in this work we

compute the mass distribution from first principles across
the QCD era as described in Sec. II, thus going beyond the
parametrization often used in the literature, certain char-
acteristics of the PBH model are general and arise from
the form of the PBH merger rate in Eq. (37). These features
are the monotonic merger rate evolution with redshift,
RPBH ≈ ðt=t0Þ−34=37, a scaling of the merger rate with the
PBH abundance,

RPBH ∝
�
f2=3PBH for fPBH ≳ 10−3;

f2PBH for fPBH ≲ 10−3;
ð44Þ

a lack of preference towards symmetric mass ratios
enforced by the term η−34=47, and an exponential suppres-
sion of heavy (i.e., M ≫ hmi) mergers due to the sup-
pression factor (39).

IV. LVK PHENOMENOLOGICAL MODELS

In the following section, we will compare and mix our
ab initio PBH channel with phenomenological models
used by the LVK collaboration to fit the BH and NS
binary events in the GWTC-3 catalog. This approach is
very conservative, because we choose to confront the PBH
scenario with the best working model specifically tailored
to describe the coarse-grained properties of the observed
merger population. As such, this approach is not meant to
be used to search for a subpopulation of PBHs in the data,
but rather to place an upper bound on the PBH abundance
compatible with the data and to assess whether certain
events are more likely ascribed to a putative primordial
channel. As we will discuss in the Conclusions, one natural
extension of this analysis would entail considering ab initio
astrophysical models, as attempted in Ref. [45].
According to the LVK prescription, compact objects

with masses below 3M⊙ are labeled as NSs, whereas
heavier objects are labeled as BHs. Two different mass
distributions are used to describe mergers of these families,
as discussed below. However, at variance with the LVK
analysis, we shall adopt a more agnostic approach and
allow for the light events to be BH binaries (of primordial
origin), with the exception of GW170817 [133] for which
sufficient evidence for the interpretation as a NS binary was
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gathered with the observation of an electromagnetic
counterpart compatible with a NS merger [134].
In the standard scenario, PBH mergers at low redshift are

due to binaries that had gravitationally decoupled from the
Hubble flow before the matter-radiation equality [119,120],
i.e., much before the first stars were born. Thus, “mixed”
binaries formed by an isolated PBH and either an astro-
physical-origin BH or a NS can be assembled only through
dynamical capture, e.g., in dense clusters. The probability
of forming these binaries is very low [41,135] and we shall
neglect such possibility. In other words, we shall assume
that all primordial binaries are formed by two PBHs and
that all astrophysical-origin binaries are formed by astro-
physical BHs and/or NSs.

A. Astrophysical BH binaries

We describe the merger rate of astrophysical BH binaries
with the reference population model called POWER LAW +

PEAK [136] adopted by the recent LVK population analyses
(see e.g., Ref. [59]). Henceforth we shall refer to this as the
“astrophysical” BH (ABH) population, although it should
be kept in mind that the model is phenomenological and not
based on ab initio astrophysical simulations. The ABH
model assumes that the distribution of primary binary BH
mass m1 is described by a mixture of a power-law model,

PABHðm1jλ; mmin; mmaxÞ ∝ m−α
1 ð45Þ

and a Gaussian peak,

NABHðm1jμm; σm;mmin; mmaxÞ ∝ exp

�
−
ðm1 − μmÞ2

2σ2m

�
;

ð46Þ

normalized to unity across the range mmin ≤ m1 ≤ mmax.
The mixing fraction between the two components is
dictated by λpeak as

pm1

ABHðm1Þ¼ð1−λpeakÞPABHðm1ÞþλpeakNABHðm1Þ: ð47Þ

We describe the distribution of mass ratio via a power
law as

pm2

ABHðqjm1; βÞ ∝ qβ; ð48Þ

constrained within the rangemmin=m1 ≤ q ≤ 1. For simplic-
ity, we do not introduce the term SABHðmjδmÞ adopted in
LVK analyses to smooth the sharp cutoff below mmin.
Finally, the evolution of the merger rate at high redshift
follows

pz
ABHðzjκÞ ∝ ð1þ zÞκ: ð49Þ

The number of events can be found by integrating the merger
rate density with the additional factor of dVc=dz=ð1þ zÞ.
Since observations are limited to small redshift, the merger
rate evolution is still rather poorly constrained. In order to
simplify the analysis, we fix the power-law evolution of the
astrophysical phenomenologicalmodel to the best-fit value of
κ ¼ 2.9 [59]. To summarize, we write the differential merger
rate density of ABH as

dRABH

dm1dm2

¼ R0
ABHp

z
ABHðzÞpm1

ABHðm1Þpm2

ABHðm2jm1Þ; ð50Þ

and the hyperparameters of the ABH model are

λABH ¼ ½log10R0
ABH; λpeak; α; β; mmin; mmax; μm; σm�; ð51Þ

where we introduced the quantity R0
ABH ≡RABHðz ¼ 0Þ

controlling the present-day ABH merger rate density. In
Table II we report the prior ranges for the ABH model
parameters adopted in the following Bayesian analysis.
While evidence of additional features on top of the

POWER LAW+ PEAK coarse-grained model was found by the
LVK collaboration [59] (see also Refs. [132,137–142]) we
do not expect our results—especially the upper bound on
fPBH—to be affected by potential systematic effects in our
choice of benchmark mass model.

B. Binaries involving NSs

Following the LVK population analysis, we model the
distribution of NSs as an underlying Gaussian mass
distribution that is common to all NSs, with random pairing
into compact binaries. For mixed NSBH mergers, the BH
mass distribution is fixed to be uniform between ½3–60�M⊙.
The joint mass distribution takes the form

pNSðm1; m2Þ ¼
�
NNSðm1ÞNNSðm2Þ;
Uðm1; ½3M⊙; 60M⊙�ÞNNSðm2Þ;

ð52Þ

TABLE II. Population hyperparameters λ for the ABH and NS models considered in this work, along with their prior distributions. We
refer to a uniform distribution between two values θmin and θmax as ½θmin; θmax�. Rates ðR0Þ are reported in units of [yr−1 Gpc−3] while
(m, μ, σ) are written in units of ½M⊙�.
Model ABH NS

λ log10 R0
ABH α β mmin mmax λpeak μm σm log10 R0

NS mNS
min mNS

max μNSm σNSm

Prior [−3, 3] [0,5] [0,7] [3,10] [30,100] [0,1] [20,50] [1,10] [−1, 5] [1,1.5] [1.5,3] [1,3] [0.01,2]
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for NS and mixed NSBH binaries, respectively, where the
Gaussian peak is defined as

NNSðmjμNSm ;σNSm ;mNS
min;m

NS
maxÞ∝ exp

�
−
ðm−μNSm Þ2
2ðσNSm Þ2

�
; ð53Þ

normalized to unity across the rangemNS
min ≤ m ≤ mNS

max. We
assume the redshift evolution of the merger rate for this
channel follows the same behavior of the ABH model,
namely RNSðzÞ ≈R0

NSð1þ zÞ2.9. This evolution is, how-
ever, practically irrelevant, as light mergers are currently
observable only at z ≈ 0. Finally, we can write the differ-
ential merger rate as

dRNS

dm1dm2

¼ R0
NSp

z
NSðzÞpNSðm1; m2Þ; ð54Þ

and the hyperparameters of the NS model are (see also
Table II)

λNS ¼ ½log10R0
NS; m

NS
min; m

NS
max; μNSm ; σNSm �: ð55Þ

One may also consider splitting the rate of BNS and NSBH
binaries, thus introducing an additional parameter in
Eq. (55). However, due to the small number of detections
with at least one component lighter than 3M⊙, merger rate
densities remain affected by large uncertainties in the light
sector of the catalog [59], and both contributions are
broadly compatible with each other.

V. ANALYSIS SETUP

In this section we summarize the statistical framework
we use to perform the analysis and model comparison (see
e.g., [143,144]), alongside our event selection within the
GWTC-3 dataset [24].

A. Hierarchical Bayesian inference

The aim of the hierarchical Bayesian inference is to
produce posterior distributions for the hyperparameters of
a model M which is assumed to explain the GW dataset,
alongside the corresponding evidence ZM allowing for
statistical model comparisons. The LVK collaboration’s
Gravitational Wave Open Science Center [145,146]
releases the output of the parameter estimation performed
on each GW signal as a collection of posterior distributions
for the parameters describing the properties of each
individual merger. We denote this as event posteriors
pðθjdiÞ, where θ indicates the binary event parameters.
The index i runs over all the detected GW events while, in
our analysis, we restrict the set of intrinsic binary param-
eters to θ ¼ ðm1; m2; zÞ.
We compute the number of GW events produced in a

given model within the observation time as

NðλÞ≡
Z

dθNpopðθjλÞ ¼ TobsRðλÞ
Z

dθppopðθjλÞ; ð56Þ

where RðλÞ is the intrinsic merger rate, ppopðθjλÞ is the
population likelihood, corresponding to the distribution of
event parameters for the model M characterized by hyper-
parameters λ, and Tobs is the duration of the various LVK
observing runs.
One can account for the selection effects induced by the

finite sensitivity of the detectors by introducing the
observable number of events,

NdetðλÞ≡ αðλÞNðλÞ; ð57Þ

where the selection bias parametrized by αðλÞ ≤ 1 will be
discussed in the next subsection.
Given a vector of hyperparameters λ (or population

parameters) describing the model M, the posterior dis-
tribution inferred from the data is

pðλjdÞ
πðλÞ ∝ e−NdetðλÞNðλÞNobs

YNobs

i¼1

Z
dθi

pðθijdÞppopðθijλÞ
πðθiÞ

;

ð58Þ

where the prefactor introduces the standard terms describ-
ing the statistics of an inhomogeneous Poisson process (see
e.g., Refs. [143,147–149] for detailed derivations), πðλÞ is
the prior distribution assumed for the model hyperpara-
meters, and πðθiÞ is the prior distribution over the intrinsic
parameters adopted by the LVK collaboration when per-
forming the parameter estimation for each individual event.
The factor πðθiÞ in the denominator removes the depend-
ence of the analysis on the priors adopted by the LVK
collaboration to perform parameter estimation, which was
shown to potentially affect the interpretation of individual
events [150,151] (see also Ref. [152] for this analysis with
PBH informed priors).
In order to speed up the evaluation of Eq. (58), the

integral is performed using importance sampling, i.e., by
computing the expectation value of the prior-reweighted
population likelihood as a discrete sum over the samples of
the event posteriors. In practice, this can be equivalently
written as

pðλjdÞ
πðλÞ ∝ e−NðλÞαðλÞYNobs

i¼1

1

Si

XSi

j¼1

NpopðjθijλÞ
πðjθiÞ

; ð59Þ

where j labels the jth sample of the ith event, and Si
identifies the length of the ith posterior. We sample Eq. (59)
using the MCMC package emcee [153].
Given a model M, the evidence ZM is defined as the

marginal population likelihood. This is found by perform-
ing the integral of the population posterior,
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ZM ≡
Z

dλpðλjdÞ: ð60Þ

We compute the evidence for each model from the
posterior data following Ref. [154]. One can then compare
different models by computing the so-called Bayes factors,
defined as

BM1

M2
≡ ZM1

ZM2

: ð61Þ

According to Jeffreys’ scale criterion [155], a Bayes factor
larger than ð10; 101.5; 102Þ would imply a strong, very
strong, or decisive evidence in favor of model M1 with
respect to model M2 given the available dataset.

B. Selection bias

One of the most time consuming tasks when evaluating
the likelihood function in Eq. (59) is the computation of the
selection bias αðλÞ, quantifying the fraction of observable
events in modelM characterized by the hyperparameters λ.
Following recent work (see e.g., Ref. [156]), we estimate
the selection bias by computing the signal to noise ratio
(SNR) for LIGO Hanford, LIGO Livingston and Virgo
operating at midhighlatelow sensitivity [157] while
adopting the IMRPhenomPv2 waveform approximant
[158,159] built in the PyCBC package [160]. The network
SNR threshold for detection is set by requiring the quad-
rature sum of the SNRs from the three detectors to be above
ρth ¼ 10, a value which is consistent with the false-alarm-
rate threshold used as a detection criterion for events in
LVK searches [157].
Analogously to what is done in the LVK analyses, we

speed up the computation of the observable number of
events [Eq. (57)] by building an injection which covers all
the parameter space reached by the models we consider
(which is larger than the injection released by the LVK
collaboration). We select successfully found injections (i.e.,
SNR > ρth) and reweight to the population with hyper-
parameters λ as

αðλÞ ¼ 1

Ninj

XNfound

j¼1

ppopðθjjλÞ
pinjðθjÞ

: ð62Þ

In the previous step, we introduced Nfound as the number of
recovered events, Ninj as the total number of injections
(including those that are not observable with low SNR) and
pinjðθÞ as the reference distribution from which injections
were built. In particular, the injected distribution of masses
follows pinjðm1Þ ∝ m−2.35

1 for 0.1M⊙ ≤ m1 ≤ 500M⊙ and
pinjðqjm1Þ ∝ q2, pinjðzÞ ∝ ð1þ zÞ2−1dVc=dz, and again
we neglect the binary spins. In order to efficiently cover
the wide mass range, we split the injection in two parts with
primary mass below and above 5M⊙. We analyze events for

the latter region injecting a population up to redshift z ≤ 2.
The light events, given the much smaller detection horizon,
are injected with a redshift distribution extending up to
redshift z ≤ 0.2.
When computing the expected number of events during

the future O4/O5 observing runs, we adopt the same
framework presented here but with updated LIGO and
Virgo future sensitivity curves from Ref. [161].

C. The GWTC-3 dataset

Out of the ≈90 GW detection candidates found by the
first three LVK observing runs, here we use the same
subset of confident detections selected for the GWTC-3
population analysis in Ref. [59]. Following this choice, the
GWTC-3 dataset contains 69 binary BH events and seven
potential NS-involving binaries (which are characterized by
at least one object with mass below 3M⊙).
It is particularly important to include light events in our

analysis due to the potential PBH contribution to light binary
components, in particular in the solar-mass range mostly
affected by the QCD phase. This implies, in particular, that
we do include the light events GW170817, GW190425,
GW190426_152155, GW190814, GW190917_114630,
GW200105_162426, GW200115_042309, out of which
only the first one is confidently regarded as a NS binary
due to the observation of the electromagnetic counterpart
[134]. We do not consider the additional candidate events
found by independent searches performed outside the LVK
collaboration (e.g., [162,163]), and leave such a task for
future work.
We adopt the Overall_posterior samples pro-

vided in Ref. [164] for the 11 considered events from the
GWTC-1 catalog, the PrecessingSpinIMRHM poste-
riors provided in Refs. [165,166] for events in the GWTC-2
and GWTC-2.1 catalogs, respectively, while we adopt the
C01:Mixed samples for the O3b events reported in the
GWTC-3 dataset [167].

VI. CONSTRAINTS ON PBHs FROM GWTC-3

In this section we report the results of the Bayesian
inference analyses of GWTC-3 data, assuming either the
astrophysical phenomenological models or PBHs (or a
mixture of both) are generating mergers of binary BHs and
NSs. While it was already shown that PBHs alone are not
able to explain all the features observed in the recent GW
catalogs [38,40,42,45] assuming a log-normal mass dis-
tribution, repeating such simplified analysis is useful to
confirm this conclusion remains valid also in a first-
principle model including the effects of the QCD phase
transition.

A. Single-population inference

We start by discussing the inference on each model
separately, focusing on the two subsets of the total events
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divided by the condition m2 ≶ 3M⊙ (which are defined
by the LVK collaboration as events containing NS com-
ponents or not).
Focusing on the light set of GWTC-3 events, in Fig. 6 we

show the inferred merger rate distribution, where at least
one of the binary components has mass smaller than 3M⊙.
We either assume the NS phenomenological model or the
PBH model. In the latter case, we do not include the binary
NS event GW170817. We report the corresponding pos-
terior distributions in Appendix A.
As previously discussed, the probability of a binary

formed by only one PBH is very low, so we neglect this
possibility. This implies that, for a highly asymmetric binary
with m2 < 3M⊙ and m1 ≫ 3M⊙ (like, e.g., GW190814
[168]), if the secondary is identified as a PBH then also the
primary should be. This is not the case for the astrophysical
channels, where the secondary is naturally identified as a NS

and the primary as an ABH. This difference explains why the
best-fit PBH merger rate distribution in Fig. 6 has support at
larger masses compared to the NS case, although they both
peak when 1≲m1=M⊙ ≲ 2, driven by the events with
m1;2 < 3M⊙ commonly identified as NS binaries. As a
consequence, one falsifiable prediction that follows from the
interpretation of GW190814 as a PBH binary is the gen-
eration of events filling the lower mass gap potentially
existing in the ABH sector between the heaviest allowed NS
mass (see e.g., Ref. [169] for a review) and the lightest BH
observed [170–172] (see also [173]). Furthermore, due to the
features of the ab initio PBH mass distribution previously
discussed, the PBH merger rate is broader than in the NS
case and inevitably has a non-negligible support also in the
subsolar range induced by the critical collapse tail. As we
shall see, this is a general feature of the model that allows
making predictions on subsolar mergers in the PBH
scenario.
In Fig. 7, we show the merger rate distribution inferred

using only the heavy GWTC-3 events, where both binary
components have mass larger than 3M⊙ and are therefore
identified as BHs. We assume a single binary BH popu-
lation, either described by the phenomenological ABH
model (red) or by our ab initio PBH model (green), or also
by a phenomenological PBH model using a log-normal
mass distribution (blue) often used in the literature (see,
e.g., [38,40,42,45]) and shown here for comparison. More
details on these are given in Appendix A. Interestingly, in
this case we observe that the two PBH models yield fairly
similar distributions both for the primary mass (left panel)
and mass ratio (right panel). This is because the effects of
the power spectrum and QCD phase are largely washed out
by the absence of detections with masses below ≈6M⊙ in
this subset of events and some universal properties of the
merger rate in Eq. (37), which make the final result largely
independent of the details of the two specific parametriza-
tion of the PBH mass distribution.

FIG. 6. NS and PBH merger rate distributions as a function of
primary mass as inferred from a subset of the GWTC-3 catalog
(m2 < 3M⊙) assuming either the NS phenomenological model
or the ab initio PBH model with QCD effects and including
GW190814.

FIG. 7. BH merger rates as a function of the primary mass (left panel) or of the mass ratio (right panel) as inferred from a subset of the
GWTC-3 catalog (m2 > 3M⊙) and assuming only a single binary BH population, either described by the ABH phenomenological
model (red), the PBH model assuming a log-normal mass distribution (blue), or the ab initio PBH model with a mass distribution fixed
by the curvature spectrum in Eq. (10) and modulated by the QCD phase (green).
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Figure 7 confirms previous results (e.g., [38,40,42,45])
finding that the PBH merger rate distribution is markedly
different from the ABH one, in particular it lacks a double
peak in the mass distribution, it predicts a larger merger
rate at high masses, and (in the absence of accretion
[17,37,45,130–132]) it predicts a broader merger-rate
distribution as a function of the mass ratio which does
not favor q ¼ 1. The Bayes factors strongly disfavor
the interpretation of the totality of the events as coming
from the PBH channel alone. In particular, we find
log10BABH

PBH;LN ¼ 18.5 and log10BABH
PBH;QCD ¼ 17.0. The value

obtained for a log-normal mass distribution is consistent
with what was estimated in previous analysis [38,42], but
scaled considering the larger statistical sample available
with the newest GWTC-3 catalog.

B. Multipopulation inference

Let us now move to population inferences assuming
multiple channels. The corresponding posterior corner
plots are presented in Appendix A.
In Fig. 8, we show the (differential) merger rate

distribution as a function of the primary mass for the entire
GWTC-3 catalog allowing contributions from three chan-
nels: the LVKABH and NS phenomenological models, and
the ab initio PBH model originating from the curvature
power spectrum and modulated by the QCD phase tran-
sition. The most striking feature of this plot is the fact
that the PBH distribution can cover the entire mass
range, from subsolar (m1 ≲M⊙) to intermediate mass
(m1 ≳ 100M⊙), with a large support also in the lower
mass gap (3≲m1=M⊙ ≲ 5) which is instead avoided
by the ABH and NS distributions. Note that this last

property is nontrivial, since the ABH and NS models are
phenomenological and not informed by astrophysical
priors, so a priori there is no constraint preventing the
best-fit ABH and NS distributions from having support in
the lower mass gap.
The support of the PBH distribution at high masses is

due both to heavy events potentially interpretable as PBHs
and also (as in the previous case of single-population
analyses) to the fact that if the secondary is interpreted as a
PBH then automatically also the heavier primary is
primordial, so the low-mass (≤3m⊙) and high-mass ranges
(≥3m⊙) are intertwined. This is not the case for the
ABH/NS models, since they allow for mixed BH-NS
binaries following independent distributions.
Furthermore, the PBH merger rate distribution shown in

Fig. 8 has significant support in the subsolar range. This
contribution is only bounded from above by the non-
observation of subsolar events in the GWTC-3 catalog.
As previously discussed, this interesting property is due to
the inevitable broadness of the PBH mass function below
the QCD peak induced by the critical collapse. Since the
PBH distribution has support in the solar mass range, as it
provides a competitive explanation for GW190814 and a
marginal contribution to the otherwise NS binaries
(although the PBH merger rate is 1–2 orders of magnitude
smaller than for the NS distribution), then in our ab initio
PBH model it is inevitable to have support for subsolar
mergers. This is not the case for the NS phenomenological
model, whose mass distribution abruptly drops in the
subsolar range.
Finally, note that while the ABH and NS distributions

shown in Fig. 8 have an upper and lower value given by
their corresponding 90% credible interval, the PBH

FIG. 8. Merger rate distribution as a function of the primary mass for the GWTC-3 population inference and including contribution
from three channels: ABH phenomenological model, NS phenomenological model, and ab initio PBH model modulated by the QCD
phase. Events in the lower mass gap (e.g., GW190814) are more naturally interpreted as PBHs rather than being included in the ABH or
NS phenomenological channels. This is where the black line mostly deviates from the median distribution of the NS/BBH astrophysical
channels. Each black tick at the top of the frame indicates the median values for the primary mass of each GWTC-3 event. In red, we
highlight those with non-negligible probability (i.e., >5%) of being of primordial origin in our analysis, see Table III.
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distribution has no lower value since the posterior of fPBH
is also compatible with zero (see Appendix A). This
property is natural in our analysis, since the ABH and
NS distributions are phenomenological models built to
reproduce most of the features of the data.5 Therefore, as
previously remarked, our analysis is not meant to search for
a PBH subpopulation but rather to place an upper limit on
the PBH abundance compatible with the data (see next
section).
Nonetheless, it is interesting that there exist events with a

significant likelihood to be interpreted as PBH binaries by
our inference, as shown in Table III. In general, the most
interesting events are those being either in the light or
heavy portions of the catalog, close to either mass gaps, or
being characterized by a small mass ratio. While many

events have Oð%Þ probability, for GW190924_021846,
GW190814, GW190412, and GW190521 the probability is
approximately 40%, 29%, 25%, and 7% respectively. We
stress that we are comparing an ab initio PBH model with
phenomenological LVK fits tailored to match current data
without any astrophysical input. In particular, the LVK fits
do not enforce any mass gap in the ABH/NS distri-
bution, so it is possible that events like GW190814 and
GW190924_021846 (with masses m2 ≈ 2.7M⊙ and
m2 ≈ 5M⊙, which respectively lie squarely in the lower-
mass gap and on its upper end) are well fitted by the ABH
or NS phenomenological models. Thus, it is interesting and
a priori not granted that precisely these events have a
sizable probability to be interpreted as primordial. This is
due to the fact that they nevertheless lie in a relatively
scarcely populated mass range, so the phenomenological
distributions should stretch significantly to accommodate
them, possibly reducing their ability to fit the many other
heavier events in the catalog. Overall, these results may
indicate that such events, regardless of their primordial
interpretation, may not fit consistently within the popula-
tion described by the LVK reference model and may belong
to distinct populations of NS and BH binaries.
It is also interesting that the light events (m1;2 ≲ 3M⊙)

that are interpreted as standard NS binaries by the LVK
analysis (e.g., GW190425) have only Oð%Þ likelihood to
be interpreted as PBHs. This is due to the fact that, even if
the PBH distribution modulated by the QCD phase peaks at
m1 ≈M⊙, its magnitude is anyway much smaller than the
inferred value of the NS distribution. This is most likely due
to the combination of the critical collapse tail (which does
not allow for a sharp drop of the mass function below the
solar mass) and the constraint from the absence of subsolar
detections in GWTC-3.
To conclude this section, we report the Bayes factors

comparing the ABHþ NS model to the one which includes
a PBH subpopulation, found to be

log10B
ABHþNSþPBH;QCD
ABHþNS ¼ 0.9; ð63Þ

showing a marginal evidence in favor of a contribution
from a PBH channel. This interpretation implicitly includes
the downplaying effect of a larger set of parameters
introduced in the model when a PBH subpopulation is
allowed. Indeed, the ratio between the best-fit likelihood of
the two models is

log10

�
L�
ABHþNSþPBH;QCD

L�
ABHþNS

�
¼ 1.4: ð64Þ

Therefore, the PBH subpopulation improves the fit to the
data but not to a sufficient level that would make their
absence strongly disfavored.
Overall, this analysis suggests the presence of more

features in the GWTC-3 data than what is captured by the

TABLE III. GWTC-3 events with highest PBH likelihood listed
in chronological order. The two groups refer to m2 > 3M⊙ (top)
or m2 < 3M⊙ (bottom). We also report the measured masses of
each event.

GW event
PBH probability

[%] m1½M⊙� m2½M⊙�
GW151012 1.2 23.2þ14.9

−5.5 13.6þ4.1
−4.8

GW190412 25.4 30.1þ4.7
−5.1 8.3þ1.6

−0.9
GW190512_180714 1.6 23.3þ5.3

−5.8 12.6þ3.6
−2.5

GW190519_153544 1.5 66.0þ10.7
−12.0 40.5þ11.0

−11.1
GW190521 7.2 95.3þ28.7

−18.9 69.0þ22.7
−23.1

GW190602_175927 2.7 69.1þ15.7
−13.0 47.8þ14.3

−17.4

GW190701_203306 1.4 53.9þ11.8
−8.0 40.8þ8.7

−12.0
GW190706_222641 1.3 67.0þ14.6

−16.2 38.2þ14.6
−13.3

GW190828_065509 2.8 24.1þ7.0
−7.2 10.2þ3.6

−2.1
GW190924_021846 40.3 8.9þ7.0

−2.0 5.0þ1.4
−1.9

GW191109_010717 2.9 65þ11
−11 47þ15

−13
GW191129_134029 1.2 10.7þ4.1

−2.1 6.7þ1.5
−1.7

GW190425 2.8 2.0þ0.6
−0.3 1.4þ0.3

−0.3

GW190426_152155 1.2 5.7þ3.9
−2.3 1.5þ0.8

−0.5
GW190814 29.1 23.2þ1.1

−1.0 2.59þ0.08
−0.09

GW190917_114630 3.0 9.3þ3.4
−4.4 2.1þ1.5

−0.5
GW200105_162426 3.6 8.9þ1.2

−1.5 1.9þ0.3
−0.2

GW200115_042309 1.2 5.9þ2.0
−2.5 1.44þ0.85

−0.29

5For example, the phenomenological ABH distribution can
accommodate the upper mass-gap event GW190521 [174], even
if it is challenging to explain the latter in standard astrophysical
scenarios due to the pulsational pair supernova instability
preventing the formation of binaries with masses above the
(uncertain) limit ≈50M⊙ [175–187]. One possibility widely
investigated in the literature is the interpretation of such an event
as a second generation merger in globular clusters or galactic
nuclei [188–194], even though it may be challenging to explain
the observed rate of this event (see also [45,58]).
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LVK NS and BBH phenomenological models. Even in the
most conservative setting, we found that a PBH subpopu-
lation may capture some of these features, even when the
nonobservation of a subsolar merger population is taken
into account. We now proceed to discuss some interesting
implications of our results for future detections and con-
straints on PBHs and early universe models of inflation.

VII. IMPLICATIONS FOR FUTURE GW
EXPERIMENTS AND PBH MODELS

In this section we discuss some implications of our
results for the upcoming LVK observation runs and for the
PBH scenario.

A. Predicted rate of subsolar mergers and mass-gap
events in future LVK searches

As previously discussed, a general property of the
ab initio PBH model is to predict a significant merger
rate in the subsolar range and in the lower mass gap, due to
the broadness of the PBH mass function. Thus, once fixing
the best-fit PBH abundance distribution through the
Bayesian inference, it is possible to make falsifiable
predictions about the expected numbers of events in the
subsolar mass range and in the lower mass gap, assuming
some of the GWTC-3 events already detected are inter-
preted as a primordial binary.
In Table IV, we show these predictions, assuming

GW190814 is primordial (29% likelihood in our analysis).
Assuming a primordial origin for GW190924_021846
(40% likelihood in our analysis) provides similar predic-
tions.6 First of all, the first row in Table IV shows that the
interpretation of at least GW190814 as a PBH binary
implies the current catalog may include a fraction between
1% and 29% of PBH mergers. On the other hand, the
number of expected subsolar mergers within the O1-O2-O3
observation runs is below unity, consistently with the
absence of observations in that mass range.
Due to the much improved sensitivity of future obser-

vation runs, we notice that O4 and O5 would be bound to
detect many PBH events, as expected. However, unless
some of these events have smoking-gun features [17], it
would be hard to distinguish them from ordinary astro-
physical channels. Therefore, a more interesting prediction
of Table IV is the number of subsolar and mass-gap events
detectable in O4 and O5. In particular, in O5 there could
be as many as ≈8 subsolar events per year (but the
90% confidence interval is also compatible with zero

events). More interestingly, if GW190814 is assumed to
be primordial then O5 should detect one to a few dozen
events per year in the lower mass gap (and up to ≈50 upper
mass-gap events), which might be more difficult to interpret
in astrophysical scenarios.
While detecting a subsolar merger would be a unique

smoking gun for PBHs (or would anyway call for new
physics beyond the standard astrophysical formation sce-
nario [196–203]), the lower mass gap [204] could be
populated also by second-generation mergers formed in
dense stellar clusters, whose rates in this mass range are
particularly uncertain. A way to distinguish second-
generation BH mergers from PBH mergers is by measuring
the binary spins, since in the former case the spin is
expected to be non-negligible [204,205], at variance with
the latter case [17,132].
We conclude this section by speculating that the exist-

ence of a lower mass-gap population of PBHs may be
compatible with the OGLE-2011-BLG-0462 low mass BH
microlensing observation [206,207], whose x-ray luminos-
ity is consistent with the small radiative efficiency expected
for a BH and disfavors a NS interpretation [208], see also
Ref. [209].

B. PBH constraints

The posterior distribution describing the parameters
of the PBH population (see Appendix A) can be used to
set an upper bound on the PBH abundance in the solar
mass range.
In Fig. 9 we show the posterior predictive distribution for

the PBH mass function fðmPBHÞ in a logarithmic scale
obtained from the GWTC-3 inference, together with existing
constraints in this mass range (see, e.g., [21] for a recent
review). In the mass range of interest for our discussion, the
most relevant constraints come from CMB anisotropies
produced by accreting PBHs in the early universe [20,210].
Other constraints come from comparing the late time
emission of electromagnetic signals from interstellar gas
accretion onto PBHs with observations of galactic radio and
x-ray isolated sources (XRay) [211,212] and x-ray binaries
(XRayB) [213], x-ray and radio backgrounds (XRR) [214],

TABLE IV. Assuming GW190814 had primordial origin, this
table reports the 90% confidence interval (C.I.) for the number of
detected PBH events within GWTC-3, and predicted events (per
year) with O4 and O5 sensitivity. We also indicate forecasted
detections within the subsolar (m2 < M⊙, SS), lower mass gap
(m1 or m2 ∈ ½2.5; 5�M⊙, LMG), and upper mass-gap
(m1 > 50M⊙, UMG) ranges.

Ndet
PBH Ndet

PBHðSSÞ Ndet
PBHðLMGÞ Ndet

PBHðUMGÞ
O1–O3 [0.8, 22.4] [0.0, 0.6] [0.1, 2.3] [0.0, 6.1]
O4 [1.9, 43.7] [0.0, 1.3] [0.3, 13.0] [0.0, 13.1]
O5 [10.3, 216.7] [0.0, 8.6] [0.8, 25.2] [0.0, 47.3]

6In the following we shall mostly assume that GW190814 is a
primordial binary, even though the PBH likelihood of
GW190924_021846 is higher. Besides the fact that the two
assumptions would provide similar results, GW190814 is more
challenging to fit within standard astrophysical scenarios and the
mass of its secondary [195] motivates exploring other explan-
ations for this event.
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lensing searches of massive compact halo objects
(MACHOs) towards the Large Magellanic Clouds (EROS,
E) [215], fast transient events near critical curves of massive
galaxy clusters (ICARUS,I) [216], and observations of stars
in the Galactic bulge by the Optical Gravitational Lensing
Experiment (OGLE,O) [217]. The deflection of light by
PBHs in the density spike likely existing around the M87
supermassive black hole combined with EHT measurements
give rise to additional constraints [218], which are not shown
as their conservative version would fall behind the region
already excluded by CMB. Consistently with the assump-
tions made in the previous sections, here we also do not
account for the potential impact of PBH accretion that may
shift CMB constraint to higher masses [131].
The black area in Fig. 9 corresponds to the (90% con-

fidence level) upper bound on the PBH mass distribution
fðmPBHÞ derived from the GWTC-3 multipopulation infer-
ence and hence extends up to fðmPBHÞ → 0. The cyan
region is instead the posterior distribution assuming that the
lower mass-gap event GW190814 is a primordial binary,
which forces fðmPBHÞ to be nonzero and therefore bounded
from below. A similar bound can be obtained by assuming
that GW190924 is primordial (yellow curves). First of all,
we note that the allowed region for the PBH model is not
excluded by other constraints not based on GW events.
Only a minor overlap between the cyan band and the CMB
constraints is observed, which is not however sufficient to
constrain the scenario. Finally, the mass distribution is
allowed to gain a higher contribution going towards masses
well below ≈M⊙ due to the reduced sensitivity of LVK
deep in the subsolar mass range.
We can also translate the constraint on the mass

distribution on the overall value of the abundance defined
from Eq. (28) as

fPBH ≡
Z

d lnmPBHfðmPBHÞ: ð65Þ

While most of the posterior of fPBH is constrained to be
much smaller than unity, see Fig. 20, there is also a small
support for a tail reaching fPBH ¼ 1. This tail is correlated
with blue spectra (i.e., large ns) giving larger support to
light masses, and small MS. This means that values of the
PBH abundances of order unity can only be reached for
light PBH populations where the LVK sensitivity suffi-
ciently degrades. We can better visualize this result by
computing the maximum fPBH at 90% C.I. as a function of
the average PBH mass hmPBHi. This upper bound repre-
sents the maximum value of the fraction of the dark matter
which can be explained by a PBH population derived
assuming a power spectrum of the form (10) and an average
mass hmPBHi, when also an ABH population of mergers is
allowed to efficiently explain the majority of mergers in the
GWTC-3 dataset. This bound is shown in Fig. 10, showing
a marked plateau around fPBH ≈ 2 × 10−3, consistently
with previous approximated studies [29,34,39,40,45],
which drastically degrades at masses belowM⊙, eventually
hitting other non-GW-based constraints. This also confirms
that LVK observations set the most stringent constraints in
the mass range hmPBHi ∈ ½0.3; 50�M⊙.

7

Furthermore, as already shown in Table III, we see that
the best-fit PBH model allows for a certain number of
events (GW190412, GW190924_021846, GW190814,
GW190521) to have a primordial origin with probability

FIG. 9. Constraints on the PBHmass distribution derived in this
work and compared to existing ones [21]. The black curve shows
the upper bound (90% C.I.) for the mass distribution obtained
from the GWTC-3 inference. The cyan (yellow) band shows the
posterior distribution assuming GW190814 (GW190924) is
interpreted as a PBH binary.

FIG. 10. Upper bound on the PBH abundance as a function of
average mass hmPBHi derived at 90% C.I. from the GWTC-3
dataset assuming a power-law parametrization of the primordial
power spectrum and (conservatively) a dominant contribution of
astrophysical mergers in the LVK band.

7While our constraint is derived assuming nearly Gaussian
perturbations and a consequent initial Poisson spatial distribution
of PBHs, it was recently shown that even assuming a (more
exotic) clustered initial condition does not allow to evade
constraints preventing stellar mass PBHs from being a dominant
component of the dark matter [219].
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respectively about (25%, 40%, 29%, 7%). This means, in
contrast with the analysis of Ref. [69], that the absence
of subsolar events during the past LVK runs (which is
automatically included in our analysis) does not exclude the
possibility that some of the detected events have a pri-
mordial origin. This is due to the fact that in our ab initio
model we allow the tilt ns to vary and its inferred value is
given in Table V (along with the posteriors of the other
PBH population hyperparameters), while the same param-
eter was fixed to ns ≈ 0.95 (very close to its value at the
much larger, and uncorrelated, CMB scales) in Ref. [69]
(following the choice made in Refs. [64,65]).
Although error bars on ns are large, the population

inference systematically selects a redder tilted curvature
power spectrum which reduces the abundance in the (sub)
solar mass range and erases the dependence to the high
scale kmax (i.e., low mass MS) cutoff, which is compatible
with the left boundary of its prior range MS ¼ 10−2.5M⊙.
This is needed in order to counteract the QCD enhancement
at the solar mass and reduce the hierarchy in mass
distribution between the solar mass and OðtensÞ of solar
masses (where GW190814 and other events get support).
The PBH abundance is found to depend strongly on the tilt,
so even a change by ∼10% can change the abundance
significantly. In particular, a smaller value of ns makes the
QCD peak less pronounced and the slope at higher masses
less steep, resulting in observable rates in the Oð10M⊙Þ
range even in the absence of subsolar events.8 Finally, the
contribution to the heavier portion of the catalog depends
instead on the scale where the power spectrum grows
from the CMB values (kmin or ML). This is an inevitable
ingredient in PBH models, as we shall discuss in the next
section.

VIII. PBHs FROM INFLATIONARY DYNAMICS:
A DATA-DRIVEN MODEL

We now come to the theoretical interpretation of our
data-driven results. The goal we set in this section is
simple but ambitious: we aim to construct a model of PBH
formation that gives an abundance distribution compatible
with the allowed region shown in Fig. 9. This question will
be addressed in Sec. VIII A. Even more ambitiously, we
may ask whether such PBH distribution could comprise the
entirety of the dark matter observed in the universe. This
question will be addressed in Sec. VIII B.
Before entering into the details, let us illustrate the

general strategy. At first sight, the answer to the last
question is a resounding no—after all the very same
constraint extracted in Fig. 10 limits the maximum
abundance of PBHs to be far below order-one values. It
is well known, in fact, that the only mass range, consistent
with observational bounds, in which dark matter could
entirely consist of PBHs is 10−16 ≲mPBH=M⊙ ≲ 10−12

[21] (dubbed the asteroid mass range in the following),
that is for PBHs way lighter than the solar-mass range
covered by LVK data. However, a first exception to this
apparent incompatibility was pointed out in Ref. [220],
where it was shown that a broad curvature power spectrum
in the form of a double-step Heaviside theta function
could potentially give birth to a population of PBHs with a
mass distribution covering vastly different scales (see
also Ref. [73]).
In light of this result, one could be tempted to interpret a

putative mass distribution compatible with the constraint
in Fig. 9 as the proverbial tip of the iceberg, which is just
the final part of a much wider mass distribution possibly
reaching order-one abundances at values of mPBH com-
patible with the asteroid mass range. The idea of
Ref. [220]—originally thought in reference to the sto-
chastic signal of GWs generated, as a second-order effect,
by the large scalar perturbations that form PBHs—was
recently explored in much more detail in Ref. [72]. Two of
the results of this paper are worth emphasizing. First, it
was shown how to engineer consistent (that is, compatible
with CMB observations and the end of inflation) infla-
tionary dynamics which give rise, starting from a handful
of physically meaningful parameters, to a curvature
power spectrum compatible with the toy model given in
Ref. [220]; second, and most importantly, it was shown
that, once the relevant parameters that control the back-
ground dynamics have been identified, it is relatively
simple to understand what are the conditions that are
needed in order to generate a PBH mass distribution that
gives an order-one abundance of dark matter in the
asteroid mass range and, simultaneously, a detectable
fraction of solar-mass merger events. In this section, we
will add one more piece of information to this picture,
quantitatively assessing and reinforcing its robust obser-
vational consequences in the solar-mass range.

TABLE V. Posterior 90% C.I. for PBH population parameters
assuming GW190814 is primordial (similar results are found by
assuming that GW190924 is primordial).

Parameter All GW190814 GW190924

log10 A −1.9þ0.4
−0.6 −1.93þ0.10

−0.05 −1.9þ0.1
−0.1

ns 0.68þ0.66
−0.61 0.68þ0.18

−0.40 0.64þ0.29
−0.56

log10ðkmin=Mpc−1Þ 6.0þ1.6
−0.6 5.9þ0.2

−0.4 6.0þ0.3
−0.2

log10ðkmax=Mpc−1Þ 7.8þ0.6
−0.9 8.1þ0.3

−0.9 8.0þ0.4
−1.2

log10 fPBH −3.4þ2.2
−2.3 −3.1þ0.5

−0.4 −3.2þ0.3
−0.5

log10ðMS=M⊙Þ −1.2þ1.8
−1.2 −1.6þ1.7

−0.7 −1.6þ2.5
−0.9

log10ðML=M⊙Þ 2.4þ1.3
−3.2 2.6þ0.7

−0.3 2.5þ0.5
−0.5

8We note that current constraints in the subsolar mass [70] rely
on assuming a given PBH mass distribution, which is not the one
induced by the QCD phase transition considered here. We stress
that our analysis automatically accounts for possible subsolar
events and the absence thereof in GWTC-3.
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As in Ref. [72], our starting point for the following
discussion is the analytical ansatz:

ηðNÞ ¼ 1

2

��
ηI − ηII þ ðηII − ηIÞ tanh

�
N − NI

δNI

��

þ
�
ηII þ ηIII þ ðηIII − ηIIÞ tanh

�
N − NII

δNII

��

þ
�
ηIV − ηIII þ ðηIV − ηIIIÞ tanh

�
N − NIII

δNIII

���
ð66Þ

that describes the time evolution of the Hubble parameter
η≡ −Ḧ=2H _H, where _H ¼ dH=dt is the cosmic-time
derivative of the Hubble rate H and N, defined by
dN=dt ¼ H, is the number of e-folds.

A. Solar-mass PBHs from inflationary dynamics

Consider first the limit ηIII ¼ ηIV in Eq. (66). The last
line vanishes, and we are left with the expression

ηðNÞ ¼ 1

2

��
ηI − ηII þ ðηII − ηIÞ tanh

�
N − NI

δNI

��

þ
�
ηII þ ηIII þ ðηIII − ηIIÞ tanh

�
N − NII

δNII

���
:

ð67Þ

The meaning of the free parameters entering in Eq. (66)
becomes manifest by looking at Fig. 11. The right-side
y axis of this figure shows Eq. (67) as a function of the
number of e-fold N (upper-side x axis) or, equivalently, the
comoving wave number k (lower-side x axis); these two
quantities are indeed related by the horizon-crossing con-
dition k ¼ aðNÞHðNÞ that we normalize in such a way that
N ¼ 0 corresponds to the crossing time of the CMB pivot
scale k⋆ ¼ 0.05 Mpc−1. Once the time evolution of η is
given, it is immediately possible to obtain the time
evolution of the Hubble parameter ϵ≡ − _H=H2 by solving
the differential equation η ¼ ϵ − 1=2d log ϵ=dN with initial
condition ϵI at N ¼ 0; at this stage, therefore, the back-
ground inflationary dynamics is completely specified. The
curvature power spectrum can be now obtained by solving
numerically the Mukhanov-Sasaki equation (cf. Ref. [72]
for technical details). In Fig. 11 we superimpose the
curvature power spectrum PζðkÞ that corresponds to the
time evolution of η shown in the same figure.
The most important part of the dynamics is the presence

of a phase of USR during which we have η≳ 3=2 in our
parametrization, inducing an exponential growth of a
specific set of modes. Such USR phase takes place in
the e-fold time interval NI ≲ N ≲ NII.
Curvature perturbations that cross the horizon well

before the USR phase are not affected by the latter, and

contribute to the power spectrum according to the usual
slow-roll approximation. This part of the power spectrum
follows the scaling Pζ ∼ k2ηI (cf. Fig. 11) and the numerical
values of ηI and ϵI are chosen in such a way to fit CMB data
at the pivot scale.
Curvature perturbations that cross the horizon right

before the USR phase are those that are mostly affected
by the latter. These modes are exponentially enhanced and
give rise to a steep growth of the power spectrum that in our
model follows the scaling Pζ ∼ k4. Because of this growth,
the curvature power spectrum experiences a parametric
change (with respect to the preceding slow-roll value) of
the order ΔPζ ∼ e2ηIIΔNUSR, with ΔNUSR ≡ NII − NI. To fix
ideas, in order to get a 7 orders-of-magnitude enhancement
of the power spectrum (that would bring the typical
slow-roll amplitude Pζ ∼ 10−9 up to Pζ ∼ 10−2) one needs
ηIIΔNUSR ∼ 8. In other words, the combination of param-
eters ηIIΔNUSR controls the height that the curvature power
spectrum reaches as a consequence of the USR phase.
Curvature perturbations that cross the horizon well after

the USR phase during the e-fold time interval N ≳ NII give
rise to the final part of the power spectrum with scaling
Pζ ∼ k2ηIII . In this part of the dynamics the slow-roll
approximation is again applicable. The value of ηIII is
negative, and this is crucial for inflation to end. We fix
the numerical value of ηIII by imposing a total number

FIG. 11. Curvature power spectrum (red, left-side y axis) as a
function of the comoving wave number k (lower-side x axis); on
the upper-side x axis, we indicate the number of e-folds N
according to the horizon-crossing condition k ¼ aðNÞHðNÞ,
normalized at N ¼ 0 for the pivot scale k⋆ ¼ 0.05 Mpc−1. We
superimpose (blue, right-side y axis) the time evolution of the
Hubble parameter η. The figure refers to the explicit realization of
our model A in Table VI. The vertical region shaded in blue
indicates the USR phase (NI ≤ N ≤ NII). The meshed region
shows the FIRAS constraint from CMB spectral distortions
computed for the steepest growth power spectrum, Pζ ∼ k4,
cf. Ref. [100]. The dotted black line illustrates the projected
constraints from a future PIXIE-like spectral distortion experi-
ment [55,221].
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of 55 inflationary e-folds; different choices of this bench-
mark value would slightly affect the parameters of our
model while not significantly changing the dynamics.
Finally, the parameters δNI and δNII control the width

of the tanh transitions between different values of η at,
respectively, NI and NII. The limit δNI;II → 0 corresponds
to a step transition.
The above discussion captures the most evident features

of the curvature power spectrum and explains the for-
mation of the peak shown in Fig. 11. The precise form of
the power spectrum at the tip of the peak is shaped by
curvature modes that cross the horizon during and immedi-
ately after the USR phase. This aspect is truly crucial for
our analysis since this is the part of the power spectrum
that should be compared with the model in Eq. (10). On the
theory side, the key aspect is the possibility to establish the
so-called Wands duality [222] between the USR phase that
takes place during the e-fold time interval NI ≤ N ≤ NII
and the subsequent phase N > NII. In short, the Wands
duality is the statement that phases with η and 3 − η give
rise to the same spectral slope in the curvature power
spectrum (cf. also Refs. [223,224]). In our model, this
implies that if we set ηII ¼ 3 − ηIII we expect that the form
of the power spectrum right after the tip of the peak will
take the same power-law form Pζ ∼ k2ηIII that, as discussed
before, characterizes the last part of the dynamics. In
model A, therefore, we enforce the condition ηII ¼ 3 − ηIII,
see Table VI.
In the left panel of Fig. 12 we enlarge the peak of the

power spectrum. The solid black line corresponds to model
A. The numerical solution of the Mukhanov-Sasaki equa-
tion confirms our analytical intuition: right after the peak,
the curvature power spectrum can be well approximated by
a power law with spectral index that, in the notation of
Eq. (10), takes the approximate value ns ¼ 1þ 2ηIII. Since
ηIII is negative and jηIIIj < Oð1Þ (otherwise the inflaton will

roll too fast towards the end of inflation) it is natural to
expect a red tilted power spectrum, consistently with our
previous analysis using GW data. In the explicit realization
given by model A, we find ns ≈ 0.45, consistent with our
population inference (see Table III). In the left panel of
Fig. 12 we also show (region shaded in cyan) the 90% C.I.
posterior distribution assuming GW190814 is interpreted
as a PBH binary. This is the same region shown in Fig. 9
but recomputed in terms of the parameters of the power
spectrum. The comparison shows that the USR dynamics in
model A gives a good agreement with the data-driven
results derived in Sec. VI B. En route, we note that, after
mapping the inference to the parameters of the power
spectrum in Eq. (10), the posterior distribution of PζðkÞ is
extremely well constrained at around k ¼ 3 × 106 Mpc−1,
whereas the error bars become larger towards the two cutoff
scales in momentum. Intuitively, this is expected. We
remind that this posterior is based on the assumption that
GW190814 is a primordial binary, which forces fðmPBHÞ to
be nonzero (and pretty well determined in particular for
mPBH ≃ 20M⊙ that is the primary mass of GW190814).
Since the abundance has an exponential dependence on
the amplitude A of the power spectrum, the latter cannot
change too much around the corresponding wave numbers.
Additionally, the remaining parameters entering in the
spectrum (10) correlate in such a way to respect the
stringent bound around 3 × 106 Mpc−1 while broadening
the permitted regions at both sides.
In the right panel of Fig. 12 we show the mass distribution

fðmPBHÞ computed according to the formalism set9 in

TABLE VI. Free parameters of our models together with their numerical benchmark values. We define ΔNUSR ≡ NII − NI and
ΔNplateau ≡ NIII − NII. Consistently with Planck data [225], at the CMB pivot scale k⋆ ¼ 0.05 Mpc−1, all models give nsðk�Þ ¼ 0.965
and As ¼ 2.1 × 10−9 for, respectively, spectral index and amplitude of the curvature power spectrum, and a tensor-to-scalar ratio
r ¼ 0.005. Only models C and D produce PBHs that can account for the entirety of the dark matter without violating existing constraints
(see also Appendix B for more details).

Model parameters
in Eq. (66) ϵI, ηI Nref NI ηII, ΔNUSR ηIII ΔNplateau NIV, ηIV δNI δNII δNIII fPBH ¼ 1

Model A ϵI ¼ 3.125 × 10−4 0 15.75 ηII ¼ 3 − ηIII −0.292 ✗ NIV ¼ 55 0.50 0.59 ✗ ✗

ηI ¼ −1.68 × 10−2 ΔNUSR ¼ 2.342 ηIV ¼ ηIII

Model B ϵI ¼ 3.125 × 10−4 0 15.5 ηII ¼ 3.17 −0.294 ✗ NIV ¼ 55 0.50 0.59 ✗ ✗

ηI ¼ −1.68 × 10−2 ΔNUSR ¼ 2.47 ηIV ¼ ηIII

Model C ϵI ¼ 3.125 × 10−4 0 15.75 ηII ¼ 3.197 0 17.56 NIV ¼ 55 0.50 0.68 0.50 ✓

ηI ¼ −1.68 × 10−2 ΔNUSR ¼ 2.44 ηIV ¼ −0.576

Model D ϵI ¼ 3.125 × 10−4 0 15.5 ηII ¼ 3.11 0.012 17.56 NIV ¼ 55 0.50 0.50 0.50 ✓

ηI ¼ −1.68 × 10−2 ΔNUSR ¼ 2.44 ηIV ¼ −0.567

9It should be noted that we now fully compute the variances in
Eq. (14) numerically without relying on the analytical approxi-
mation in Eq. (35). The agreement between both approaches
confirms the validity of the approximations adopted to perform
the MCMC Bayesian analysis.
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Sec. II. We compare the distribution given by model Awith
the 90% C.I. posterior distribution assuming GW190814 is
interpreted as a PBH binary. As expected, the model is
consistent with the region bracketed by the confidence
interval. Since we have ns ≈ 0.45, the model tends to
underproduce PBHs in the subsolar mass range with respect
to the median value.
It is important to stress that model A relies on the

condition ηII ¼ 3 − ηIII. If we break the Wands duality, it is
no longer guaranteed that, after the tip of the peak, the
curvature power spectrum will be described by a single
power law. On the contrary, we expect that curvature modes
that cross the horizon during and immediately after the
USR phase will give to the power spectrum a slightly
different scaling compared to the one that characterizes the
subsequent phase, Pζ ∼ k2ηIII . To better illustrate this point,
we consider model B in Table VI. In this model, the Wands
duality is broken, ηII ≠ 3 − ηIII. In Fig. 12 model B is
represented by the black dashed line. As expected, we see
that model B gives a curvature power spectrum that, right
after the peak, is characterized by a broken power law with
two slightly different spectral indices. The second one is
fixed by the last part of the dynamics and always given by
ns ¼ 1þ 2ηIII. The first one, on the contrary, can be tuned
to match more accurately the central value ns ≈ 0.68 given
in Table V and, therefore, it would enhance the number of
PBHs in the subsolar mass range. As shown in the right
panel of Fig. 12, this is exactly what model B was designed
for and it matches the data-driven distribution much more
closely than model A.
At this point of the analysis, we are already in the

position to draw a number of relevant conclusions. The
formation of PBHs is a rare event that requires some finely

tuned underlying dynamics. This statement seems to be true
whatever formation mechanism one decides to consider
and, in our analysis, we focused on the presence of a phase
of USR during inflation. Once we are willing to accept the
presence of this tuned dynamics, the point that we would
like to stress is that the latter naturally comes with a number
of features that fully justify the simplified approach taken in
our numerical analysis.

(i) First, we note that the cutoff kmin (equivalently, ML)
arises naturally as a consequence of the sharp
enhancement of the power spectrum (with respect
to CMB values) that is essential for the generation of
a sizable abundance of PBHs; in our explicit
realization, such enhancement is provided by the
presence of the USR phase.

(ii) Second, curvature modes that cross the horizon
during and after the USR phase shape the form of
the power spectrum for k > kmin. In the context
of the parametrization given in Eq. (67), and
imposing the Wands duality condition ηII¼3−ηIII,
it is possible to get a red tilted power-law functional
dependence with ns ¼ 1þ 2ηIII (cf. model A in
Table VI and Fig. 12).

(iii) More in general, if we drop the condition
ηII ¼ 3 − ηIII, the power spectrum is better approxi-
mated by a broken power law with two spectral
indices (cf. model B in Table VI and Fig. 12).

(iv) Finally, as already noticed, a red tilted spectrum as
that suggested by GW data makes the PBH mass
distribution practically insensitive to the cutoff kmax
(equivalently, MS). This aspect is well illustrated by
our model since the explicit USR dynamics that we
consider does not really give any specific value for

FIG. 12. Left panel: enlargement of Fig. 11 near the peak of the spectrum. On the top x axis we consider, instead of comoving wave
numbers k, the horizon mass according to Eq. (18). In addition to model Awe also show the power spectrum that corresponds to model B
in Table VI (the latter is not shown in Fig. 11 since the small differences between models A and B can be only appreciated near the peak).
The cyan shaded region corresponds to the 90% C.I. posterior distribution obtained in Sec. VI B assuming GW190814 is interpreted as a
PBH binary (cf. Table V). Right panel: mass distribution fðmPBHÞ for both models A and B compared with the 90% C.I. posterior
distribution assuming GW190814 is interpreted as a PBH binary (cf. Fig. 9).
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kmax; on the contrary, we find that the power
spectrum just decreases as Pζ ∼ k2ηIII following
the last part of the dynamics that ends inflation.

Overall, our analysis shows that it is possible to devise
USR inflationary models that produce the curvature power
spectrum in Eq. (10) assumed as the chief starting ingre-
dient of our GW data-driven population inference. In
practice, instead of parametrizing the spectrum as in
Eq. (10) one could directly start by parametrizing the
evolution of the Hubble parameter η [e.g., Eq. (67)] or the
potential and couplings of the inflaton field(s), and directly
run the inference on the values of the inflationary model.

B. Solar-mass PBHs and dark matter
from inflationary dynamics

We now move to consider the second question raised in
the introductory part of this section: Is it possible to make
the presence of a PBH subpopulation that explains a frac-
tion of GWTC-3 events compatible with the assumption
that the entirety of dark matter observed in the universe
consists of PBHs?
Answering this question requires devising a realization

of inflationary dynamics tuned in such a way that the
logarithmic integral of the mass distribution gives unity,
cf. Eqs. (28) and (65). Since in the solar mass range the
fraction of dark matter in the form of PBHs is constrained
to be at most Oð10−3Þ, the integral must be dominated by
the peak in the asteroid mass range (for further details see
Appendix B).

1. Power spectrum with a plateau: How to bridge PBH
populations with widely different mass

We consider the full evolution given by Eq. (66).
Compared to the situation discussed in Sec. VIII A, we
now have ηIII ≠ ηIV and one additional tanh transition at
e-fold time NIII. In the left panel of Fig. 13 we show (blue,
right-side y axis) the evolution of η dictated by Eq. (66)
in the explicit realization given by model C in Table VI.

We superimpose the (red, left-side y axis) the curvature
power spectrum that corresponds to such dynamics.
As discussed in Ref. [72], we impose the condition

ηIII ¼ 0. This condition generates a wide plateau in the
power spectrum, raised in amplitude with respect to CMB
values because of the preceding USR phase. The sub-
sequent transition at NIII from ηIII ¼ 0 to ηIV < 0 is
necessary to end inflation.
The presence of the plateau in the power spectrum

provides the concrete possibility to have a mass distribution
of PBHs that covers many orders of magnitude.
What is actually crucial for our analysis is the precise

form of the power spectrum at the two edges of the
aforementioned plateau. The left-side edge is shaped by
curvature modes that cross the horizon during and immedi-
ately after the USR phase while the right-side edge is
shaped by curvature modes that cross the horizon during
and immediately after the transition at N ≃ NIII.
At the left-side edge of the plateau, the power spectrum is

characterized by a bumplike feature (cf. Ref. [72] for a
detailed discussion about its formation). This bump provides
the link with our numerical analysis. To make this point
more transparent, in the right panel of Fig. 13 we enlarge the
bumplike feature at the left-side edge of the plateau.
It is instructive to compare the curvature power spectrum

with the 90% C.I. posterior derived from our numerical
analysis assuming GW190814 is a PBH binary. From this
comparison we see that the curvature power spectrum
features a cutoff at small wavelengths. In full analogy with
the previous case (cf. Fig. 12, left), this cutoff is naturally
generated by the sharp transition (Pζ ∼ k4) that, because of
the USR phase, brings the power spectrum from CMB
values up to the typical amplitudesOð10−2Þ that are needed
to generate PBHs. After the initial ∼k4 growth, the power
spectrum decreases before it settles to the constant value of
the plateau. This decreasing part of the bump plays the role
of the red-tilted power spectrum found in our numerical
analysis. This is evident from the comparison shown in the

FIG. 13. Left panel: same as in Fig. 11 but for model C in Table VI. Right panel: we enlarge the left-side edge of the plateau (same as in
the left panel of Fig. 12). In addition to model C we also show (dashed black line) the curvature power spectrum of model D in Table VI.
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right panel of Fig. 13 between the posterior distribution and
the power spectrum of model C. It should be noted that the
power spectrum of model C is constrained to match the
power-law behavior of the posterior distribution, in par-
ticular in the interval of comoving wave number where the
latter is almost precisely nailed down by the numerical
analysis (at about mPBH ≈ 20M⊙, i.e., the primary mass of
GW190814). On the contrary, away from this k-interval
deviations are possible. This is consistent with the fact
that the numerical analysis is practically insensitive to kmax.
In the explicit realization of our model discussed in
Sec. VIII A, this freedom was exploited to directly connect
the power spectrum to the last part of the dynamics that
ends inflation (cf. Fig. 11). In the present scenario, we
exploit the same freedom to connect the bump to the
subsequent plateau.
At the right-side edge of the plateau, the curvature

power spectrum is characterized by a second bumplike
feature (cf. Ref. [72] for a detailed discussion about its
formation). As in Ref. [72], we will exploit the bump at
the left-side edge of the plateau for the generation of a
solar-mass population of PBHs while the bump at the
right-side edge of the plateau will be responsible for the
generation of much lighter PBHs in the asteroid mass
range. To this end, Eq. (18), together with the approximate
horizon crossing condition N ¼ logðk=k⋆Þ, gives a good
intuition about how to choose the values of NI and NIII.
We compute the full PBH mass distribution following the
formalism introduced in Sec. II F. Intuitively, the PBH
abundance roughly scales as ≈ exp ½−1=PζðkÞ� and in our
model it will be dominated by the two bumps of PζðkÞ
where the latter takes its largest values. In addition, the
abundance of heavier PBHs will be further boosted by the

effect of the QCD phase transition. We expect, therefore,
two peaks in the mass distribution of PBHs, one in the
solar mass range and the other in the asteroid mass range.
In between the two peaks, we expect the typical redshift-
induced scaling m−1=2

PBH associated to scale invariant
power spectra (because of the plateau in between the
two bumps).
The above expectations are confirmed by the numerical

result shown in Fig. 14. Model C corresponds to the mass
distribution given by the solid black line. In the same
figure, we also plot a fourth realization of our model,
dubbed model D in Table VI, that, contrary to the previous
case, is characterized by ηIII ≠ 0; the corresponding mass
distribution is given by the dot-dashed black line and
features, as expected, a violation of the scaling m−1=2

PBH in
between the two peaks. The rationale behind the different
choice of ηIII that distinguishes model C from model D is
discussed in details in Appendix B.
Let us summarize here our findings:
(i) As discussed in Ref. [72], it is possible to tailor an

USR dynamics that gives a population of asteroid-
mass PBHs consistent with the abundance of dark
matter observed in the present-day universe and, at
the same time, a subpopulation of solar-mass PBHs.
Remarkably, what we have shown with our analysis
is that this subpopulation of solar-mass PBHs has the
right features to explain a fraction of GWTC-3
events.

(ii) As in Sec. VIII A, the cutoff kmin (equivalently, ML)
arises naturally as a consequence of the sharp
enhancement of the power spectrum (with respect
to CMB values) that is essential for the generation of
a sizable abundance of PBHs.

FIG. 14. Left panel: PBH mass distribution as a function of the PBH mass. We show the curves that correspond to model C and
model D in Table VI. We show the following constraints (see Ref. [55] for a review and /bradkav/PBHbounds). Envelope of evaporation
constraints (see also [226–228]): EDGES [229], CMB [230], INTEGRAL [231,232], 511 keV [233], Voyager [234], EGRB [235];
microlensing constraints from the Hyper-Supreme Cam (HSC) [236]; microlensing constraints from EROS [237]; microlensing
constraints from OGLE [217]; Icarus microlensing event [216]; constraints from modification of the CMB spectrum due to accreting
PBHs [20]. The yellow band corresponds to the allowed region for a PBH mass function ∝ m−0.5

PBH consistent with the HSC microlensing
candidate event [236] (see also [238]). Right panel: same as the left panel but we enlarge the solar-mass region. To guide the eye, we add
the posterior distribution assuming GW190814 is interpreted as a PBH binary (cyan band, same as in Fig. 9).
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(iii) The bulk of the PBH distribution in the solar-mass
range is given by the bump at the left-side edge of
the plateau in the curvature power spectrum (cf. the
right panels of Figs. 13 and 14). The form of this
bump is shaped by curvature modes that cross the
horizon during and immediately after the USR
phase. Despite its simplicity, Eq. (10) captures well
the form of the bump. In particular, the red tilt
ns < 1 is absolutely crucial since it models the
transition between the k4 growth of the power
spectrum and the subsequent plateau.

(iv) The PBHmass distribution in the solar-mass range is
practically insensitive to the cutoff kmax (equiva-
lently, MS). We exploit such freedom to connect the
part of the power spectrum that matches the ansatz in
Eq. (10) with the plateau that in our model bridges
solar- to asteroid-mass PBHs.

Let us mention that, while in this draft we focused on a
model of USR inflation, the key ingredient is the peculiar
shape of the power spectrum. Thus, we expect similar
results would hold for any early universe model that can
produce a similar curvature power spectrum.

C. Reconstructed inflaton potential

Once the Hubble parameters ϵ and η are determined, one
can derive the inflationary potential by computing [72]

VðNÞ ¼ VðNrefÞ exp
�
−2
Z

N

Nref

dN0
�
ϵð3 − ηÞ
3 − ϵ

��
; ð68Þ

ϕðNÞ ¼ ϕðNrefÞ −
Z

N

Nref

dN0 ffiffiffiffiffi2ϵp
: ð69Þ

The combination of VðNÞ and ϕðNÞ allows reconstructing
the profile of the inflationary potential VðϕÞ in field space.
Equation (68) highlights the advantages of our approach,
based on parametrizing the inflationary dynamics in terms
of the Hubble parameters, as in Eq. (66). As both ϵ and η
enter in the exponent of Eq. (68), their determination is free
from the fine-tuning necessary when working directly on a
parametrization of the potential.
In Fig. 15 we show the reconstructed inflationary

potentials in the case of model A and model C,
cf. Ref. [72] for details. In both cases, we denote as ϕref
the field value at which we fit CMB observables [and define
Vref ¼ VðϕrefÞ]. Both models exhibit the presence of a
transition region that corresponds to the USR phase. The
blue band limits, in field space, the e-fold time interval
NII < N < NI. It is interesting to notice that the inflaton
velocity is drastically reduced by the USR phase enhancing
the power spectrum. As a consequence, generating the
extended plateau in Fig. 13 (which is absent in models A
and B) only requires the inflaton to remain in the second
slow-roll configuration for a very short displacement in
field space (still related to numerous e-foldings). Therefore,

small modifications to the inflaton potential are needed in
order to generate the various models, as shown in Fig. 15.
We now move to describe the phenomenological con-

sequences of our model as far as stochastic GWs are
concerned.

D. Predictions: Stochastic GWs from PBHs

Once the free parameters of our model have been fixed
by the condition fPBH ¼ Oð1Þ and the consistency with the
posterior spectrum of curvature perturbation compatible
with the primordial interpretation of GW190814, we are in
the position to compute the predicted signal of scalar-
induced stochastic GWs [239–247] and the SGWB pro-
duced by PBH mergers [28,46,248].
As shown in Refs. [72,220], the scalar-induced GW

signal in the case of a very broad power spectrum, like the
ones we are considering in models C and D, covers the
wide range of frequencies 10−9 ≲ f=Hz≲ 1, and its ampli-
tude is both compatible with the putative signal recently
reported by the NANOGrav collaboration [249] at about
f ¼ Oð10−9Þ Hz (also independently supported by other

FIG. 15. Reconstructed inflationary potentials computed by
means of the approach discussed in Ref. [72] in the case of model
A (top panel) and model C (bottom panel). In the inset plots we
enlarge the USR region.
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Pulsar Timing Array experiments [250–252])10 and detect-
able by future space-based GW interferometers like LISA
[254] (in the interval 10−4 ≲ f ½Hz� ≲ 10−1). We confirm
this expectation in the case of our models in Fig. 16.
The scalar-induced signal of GWs is proportional to P2

ζðkÞ
[see Eq. (71) below] and, therefore, it inherits its shape. The
bump at the left-side edge of the plateau falls precisely
inside the contour favored, at the 2-σ level, by the putative
signal reported by NANOGrav (see also [255–257]); this is
interesting because it means that our dynamics may predict
a peculiar frequency dependence that could be tested by
future pulsar timing array measurements.
For completeness, we also show the stochastic signal of

scalar-induced GWs computed using the posterior distri-
bution, expressed in terms of the parameters of the power
spectrum in Eq. (10), assuming GW190814 is a PBH
binary (cyan region). Interestingly, we note that the part
of the signal that is most constrained by the numerical
analysis falls precisely in the frequency band of the
NANOGrav region.
It should be noted that, as in Refs. [72,220], we compute

the scalar-induced GW signal in Fig. 16 assuming a
radiation-dominated universe while a more accurate

computation should include the effect of the quark-hadron
phase transition through the change of the number of
effective degrees of freedom, the EOS parameter w, and the
sound speed cs.
To comment more quantitatively on this point, let us

write the amplitude of induced GW spectral density
measured today in the form [247]

ΩGW;0h2¼0.39Ωr;0h2
�
g�ðTHÞ
106.75

��
g�;sðTHÞ
106.75

�
−4
3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡cgðTHÞ

ΩGW;H; ð70Þ

with

ΩGW;H¼
�

k
kH

�
−2bZ ∞

0

dv
Z

1þv

j1−vj
duT ðu;vÞPζðkuÞPζðkvÞ;

ð71Þ

where b≡ ð1 − 3wÞ=ð1þ 3wÞ, Ωr;0 is the density fraction
of radiation, g�ðTÞ and g�;sðTÞ the temperature-dependent
effective degrees of freedom for energy density and entropy
density, T ðu; vÞ the transfer function that fully depends on
the universe EOS; the subscript H stands for the time when
induced GWs of given wave number k are sufficiently
inside the cosmological horizon to be treated as a radiation
fluid in an expanding universe.
There are two effects induced by the thermal history of

the universe across the QCD era. First, cgðTHÞ is constant
and equal to unity only for perturbation modes reentering
the Hubble horizon deep in the radiation epoch; as the left-
side edge of the curvature power spectrum reenter the
Hubble horizon at around the quark-hadron phase tran-
sition, the reduction of g� and g�;s induces a modulation of
the SGWB spectrum. In Fig. 17 we show the evolution of
cgðTÞ trading its temperature dependence for the depend-
ence on the horizon mass MH (top x axis) as [15]

MH ¼ 1.5 × 105M⊙

�
g�ðTÞ
10.75

�
−1=2

�
T

MeV

�
−2

ð72Þ

and the comoving wave number k (bottom x axis) using
Eq. (18). To guide the eye, we superimpose the frequency
range (translated into a wave number interval by means of
f ¼ k=2π) favored by the putative NANOGrav signal. We
conclude that modeling the temperature dependence of the
factor cg enhances the GW signal in the low-frequency part
of the spectrum relevant for the comparison with pulsar
timing array data (about a factor 2 but with some frequency
dependence). The second physical effect is induced by the
dependence of T ðu; vÞ on both w and cs in Eq. (71).
Both effects have been discussed in Ref. [261] (see also

Ref. [262]) specifically addressing the thermal history
induced by the QCD phase transition. For a scale-invariant
power spectrum, it turns out that the evolution of w and cs

FIG. 16. Fraction of the energy density in GWs relative to the
critical energy density of the Universe as a function of the
frequency. We show the power-law integrated sensitivity curves
of future ground- and space-based GW experiments (two-years
observation with LVK at design sensitivity, the Einstein Tele-
scope and LISA, cf. Ref. [258]) as well as previous Parkes Pulsar
Timing Array (PTA) constraint [259], NANOGrav putative band
[249] and SKA projected sensitivity [260]. We plot the signals
predicted by our model in the two realizations A and C proposed
in Table VI.

10The band compatible with recent NANOGrav observations is
in partial tension with previously derived PTA constraints.
According to the NANOGrav collaboration [253], the improved
priors for the intrinsic pulsar red noise used in the most recent
analysis relaxes previous bounds.
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only induces a subleading modification with respect to
the effect of the changing effective degrees of freedom.
However, in view of future tests of the putative NANOGrav
signal, it would be certainly important to include, following
Ref. [261], the full effect of the QCD phase transition in the
computation of the spectrum of induced GWs, and nail
down more precisely the frequency dependence of the
signal that our inflationary dynamics predicts in the range
relevant for pulsar timing array measurements. We leave
this investigation for future work.
In Fig. 16 we also show the SGWB produced by the

population of mergers in the solar mass range, again under
the assumption of GW190814 being a primordial binary
and adopting the best-fit values from Table V. We do not
show the astrophysical contribution as it strongly depends
on the rate evolution above the peak expected around
redshift z ≈ 2, following the star formation rate [263]. This
can, therefore, be regarded as a lower bound on such a
background from mergers in the stellar mass range.
We compute the spectrum at frequency ν by integrating

the PBH merger rate across the cosmological history as

ΩGWðfÞ ¼
f
ρ0

Z
f3=f−1

0

dz
RPBH

ð1þ zÞHðzÞ
dEGWðfsÞ

dfs
; ð73Þ

in terms of the redshifted source frequency fs ¼ fð1þ zÞ,
the present energy density ρ0 ¼ 3H2

0=8π, the Hubble
constant H0, and the energy spectrum of GWs denoted
dEGW=dνs. Notice that Eq. (73) implicitly requires an
integration over m1;2. Finally, f3 controls the maximum
redshift beyond which mergers cannot contribute to a given

spectral frequency f and it is determined by the effective
cutoff of the spectrum (see Appendix A of Ref. [46] and
references therein for more details).
It may be possible to distinguish the contribution to the

SGWB coming from either PBH or ABH/NS mergers
thanks to their predicted different merger rate evolution.
The SGWB results from the integrated contribution of the
merger history [264–268], and PBHs are characterized
by an extended rate growth reaching much before star
formation. Therefore, given the same detection rate of
resolved binaries at low redshift, a PBH contribution
produces a larger SGWB. Correlating rates of individual
detections and the SGWB amplitude may allow to set a
lower bound on the primordial contribution at future third-
generation experiments [46] (see also [269,270]).
The peak frequency of GWs emitted from BH mergers

is close to innermost stable circular orbit frequency,
fISCO ≃ 4.4 × 103 HzðM⊙=ðm1 þm2ÞÞ. As the solar-mass
and intermediate-mass PBH population is bounded to be
belowOð102ÞM⊙ by CMB accretion constraints (cf. Fig. 9)
and eventually by FIRAS/PIXIE data, the SGWB cannot
get sizable contributions at frequencies smaller than
Oð10Þ Hz, if not from the ≈f2=3 tail produced by the
inspiral phase. Therefore, the contribution to the SGWB
from PBHs with masses smaller than Oð102ÞM⊙

11 falling
in the LISA band cannot overcome the one induced at
second order by the formation of an asteroid mass popu-
lation of PBHs explaining the dark matter [273,274].12

Finally, we neglect the second peak potentially generated
by the asteroidal mass PBHs which would fall at much
higher frequencies, of interest for UHF-GW experiments
[275] (see in particular Ref. [127] and references therein).

IX. CONCLUSIONS AND OUTLOOK

We have performed the first Bayesian PBH population
inference on GW data directly using ab initio curvature
power spectrum parameters and including the effect of
the modified threshold due to the QCD EOS [16]. We
critically confronted this state-of-the-art PBH model
with LVK phenomenological population models that
describe the GWTC-3 catalog both in the NS and in
the BH mass range.
We found that the upper bound on the PBH abundance

is consistent with previous analyses (fPBH ≲ 10−3) and it
is stronger than other constraints in this mass range.
Nonetheless, we also found marginal evidence for
extra information in the data on top of the LVK phenom-
enological distributions, which may be captured by a

FIG. 17. Evolution of the factor cg defined in Eq. (70) as a
function of the horizon mass MH (top x axis) and the comoving
wave number k (bottom x axis). The yellow region shaded in
gray marks the frequency range (converted into k ¼ 2πf)
2.4 × 10−9 ≤ f ½Hz� ≤ 1.2 × 10−8 favored by the NANOGrav
putative signal.

11One also expects GWs signals in the LISA band from
mergers of supermassive BH binaries [271,272], which we do not
quantify in Fig. 16. As the majority of those mergers will be
resolved, and subtracted, they would marginally contaminate
SGWB searches.

12These constraints were neglected in Refs. [66,67].
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primordial subpopulation of binaries. Indeed, a PBH
subpopulation can explain a fraction of GWTC-3 events,
in particular binaries with light (such as the lower mass-
gap event GW190814) or heavy (e.g., GW190521) com-
ponents. Interestingly, the light events that are assigned
the highest PBH likelihood by our inference happen also
to be those which are more challenging to accommodate
within standard astrophysical scenarios.
Intriguingly, our ab initio PBH distribution allows us to

make some falsifiable predictions: if some of the GWTC-3
events are primordial (in particular the lower mass-gap
events GW190814, which is assigned ≈29% probability of
being primordial by our inference), then the merger rates in
the subsolar mass range and in the lower mass gap are high
enough to be detectable by future LVK runs. In particular,
the absence of subsolar mergers in O5 would automatically
exclude the primordial origin of the light events within
GWTC-3.
Our work is just a first attempt to use ab initio PBH

models in GW population inference, and we hope it will
be extended in several ways. Most importantly, one
should perform multipopulation Bayesian inference by
mixing our PBH model with astrophysical models for BH
and/or NS binaries, similarly to what was recently done
in Ref. [45].
It is also possible to improve the PBH modeling, in

particular by considering a different parametrized curvature
spectrum (e.g. peaked Gaussian bump etc. [111,224]),
primordial non-Gaussianities [103–106,276,277], accretion
effects [37,130,131], and spin information in the inference
[132]. Eventually, extending the numerical simulations of
Ref. [16] used here for a sufficient set of shapes of the
collapsing overdensities would allow capturing the thresh-
old and mass dependence on deviations from the nearly
scale invariant spectra (i.e., ns), allowing us to include a full
dependence of parameters of collapse on each specific
spectral mode (or MH in our formalism) beyond the effect
of the QCD EOS.
On the theory side, building on the reverse engineering

approach recently devised in Ref. [72], we have mapped the
GW data-driven curvature power spectrum into an USR
inflationary model. We remark that the reverse engineering
approach used in this analysis goes beyond the mere
parametrization of the dynamics given in Eq. (66) since
it allows to numerically reconstruct the inflationary poten-
tial, which we showed in Fig. 15 in the case of models A
and C. It is legitimate to ask whether it would be possible to
move directly to the analysis based on some scalar potential
and skip the reverse engineering approach of Ref. [72]. The
answer is certainly positive; however, working directly at
the level of the potential may not give the same control on
the shape of the power spectrum compared to the reverse
engineering approach, thus making the analysis much more
difficult and way less transparent. Ultimately, it may be
possible to run the population inference directly on the

fundamental coupling constants of a given inflationary
model and investigate the possible quantum field theory
origin of the reconstructed potential. We leave these tasks
for future work.
We also confirmed a remarkable feature of this approach

[72], namely that a single USR model can consistently
accommodate a double-peaked PBH mass function. The
dominant peak occurs in the asteroid-mass range and it is
responsible for explaining the totality of the dark matter in
small PBHs, while the second (subleading) peak is pro-
duced by the enhancement beyond the effect of the QCD
phase transition and provides a detectable PBH merger rate
in the band of current and future GW detectors.
An important by-product of our analysis is that the

inferred value of the (red) tilt of the spectrum makes
the above scenario fully compatible with the absence of
subsolar mergers in GWTC-3, although it also predicts that
subsolar mergers and more lower-mass-gap events can be
detectable in the future.
Finally, we showed that other falsifiable predictions of

the designed curvature power spectrum are: (i) a detect-
able scalar-induced SGWB signal compatible with the
NANOGrav putative measurement and detectable by future
PTA observations and by LISA; and (ii) a SGWB produced
by PBH mergers which will be detectable by the Einstein
Telescope. In both cases, an urgent extension of our work is
to properly account for the full richness of the ab initio
PBH model (including the effects of the QCD phase
transition) in shaping the frequency dependence of these
SGWB signals. These advancements are required in order
to fully exploit the constraining power of GW data soon to
be available.
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Note added.—Recently, we became aware of Ref. [279],
which independently explores the role of the QCD phase
transition in shaping the PBH mass function and PBH
merger rate distribution. Reference [279] provides a
detailed numerical description of the threshold for PBH
formation, which looks to be in reasonable agreement
with the results of Ref. [16] used in our analysis. However,
the computation of the mass distribution in [279] does
not include the dependence of the critical collapse and
density variance on the EOS, leading to an approxi-
mate mass function which does not take into account
the additional pileup of PBHs around the solar mass
produced by the critical collapse. More importantly, they
restrict the discussion to a nearly scale invariant shape
of the enhanced spectrum at small scales with tilt
ns ¼ 0.965–0.975, and do not compare the PBH model
to GWTC-3 data through a Bayesian analysis. The values
of fPBH considered in Ref. [279] are larger than ours by
2–3 orders of magnitude and compatible with fPBH ≈ 1.
This discrepancy can be attributed to various differences,
which we list in the following: (i) a different suppression
factor in the PBH merger rate formula is used in
Ref. [279]. While Ref. [279] used the analytical treatment
of Refs. [57,66], we adopt the results of Refs. [31,34,118]
(informed by N-body simulations), which give smaller
values of fPBH, compatible with the analyses of
Refs. [29,38–40,42,45] and also not excluded by other
non-GW constraints. (ii) Reference [279] restricts the

parameter space to masses above mi > M⊙ and mass ratio
larger than q≳ 0.1 when computing13

dRPBH

dm1

≡
Z

dm2 × 2θðm1 −m2Þ ×
dRPBH

dm1dm2

: ð74Þ

This leads to a drastic reduction of the differential rate, which
however would only be justified if LVK were unable to
detect such neglected events. Using their approximated mass
distribution and their choice of merger rate formula with
fPBH ¼ 1, we find LVK would have observed around
Ndetðmi < M⊙Þ ≈ 20 mergers with at least one subsolar
component during GWTC-3. With our modeling of the mass
distribution, while fixing ns ¼ 0.97 and fPBH ¼ 1, we
obtain Ndetðmi < M⊙Þ ≃ 36. This means that the absence
of subsolar detections in the various LVK runs is incom-
patible with such mass function and large values of the
abundance, as already pointed out in Ref. [69]. This
constraint is automatically included in our MCMC analysis.
(iii) Finally, our inclusion of a dominant contribution from
ABH mergers to the GWTC-3 catalog only has a minor
impact on the constraint on fPBH (as shown by our single
population analyses).

APPENDIX A: POSTERIOR DISTRIBUTIONS

Here we present the posterior distributions resulting
from the various Bayesian inferences. While the main
phenomenological consequences of these posteriors are
described in the main text, here we report a few interest-
ing insights on these distributions, also highlighting
relevant correlations between parameters. We note that,
in order to simplify the notation, we report mass scales
in solar mass units ½M⊙� and rate densities in units
of ½Gpc−3 yr−1�.
We start with the phenomenological NS or ABH

channels. Focusing first on light events with m2 ≤ 3M⊙
(i.e., left panel of Fig. 18), which is based on fitting only
seven detections, we observe that the posterior selects
narrow mass distributions centered around the solar mass
scale, while the mass cutoffs are poorly constrained beyond
the basic requirement of encompassing all the events in this
mass range. This can be observed by noticing thatmNS

min and
mNS

max flatten reaching the lower, or upper, boundaries of
their respective prior range. The latter, in particular, is
forced to be above mNS

max ≈ 2.5M⊙ to include the secondary
mass of GW190814.
The posterior distribution for the ABH model (i.e., right

panel of Fig. 18) is instead better constrained, due to the
larger number of detections (i.e., 69 in GWTC-3). Similar
conclusions as for the NS case can be drawn on the

13Also, Ref. [279] neglected the factor 2 when deriving the
merger rate as a function of primary (heavier) mass due to the
two possible mass orderings in Eq. (37), which allows for both
m1 < m2 and m2 < m1 by construction [31].
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minimum and maximum scales bracketing the ABH
population mmin and mmax. In particular, the latter is
bounded to be above ≈70M⊙ to capture the mass-gap
event GW190521, whose primary mass is measured to be
m1 ¼ 95.3þ28.7

−18.9M⊙ [59] (see Table III). Also, a distinct
anticorrelation is observed between the central scale and
the width of the Gaussian peak, accounting for a small
fraction of the intrinsic population of mergers. This is most
probably enforced by the requirement of not overproducing
mergers in the heavy tail (i.e., m1 > μm) of the Gaussian
contribution.
These general features are consistent with the results

of the LVK population analysis reported in Ref. [59]. While
the overall posterior is fully compatible with LVK findings,
slight deviations are observed, most probably introduced
by the omission of spin information in our inference,
the absence of subdominant smoothing terms enforced at
the tails of the mass distribution of the LVK model, and the
adoption of a selection bias solely based on SNR compu-
tations, see Sec. V B (instead of the one based on the LVK
injection campaign). The latter choice, which is custom-
arily adopted in the recent literature (see e.g. [45,156]), is
required in our setting, as our analysis necessitates con-
sistently computing the selection bias also in the subsolar
mass range, which is not captured by the LVK injection
campaign [280] and which is crucial to enforce the

constraint on the PBH population from the absence of
subsolar detections in GWTC-3. We do not expect these
approximations to impact our results.
In Fig. 19 we report the analogous posteriors obtained

assuming the PBH population alone explains the popula-
tion of mergers. In the left panel, we report the result
assuming an ab initio mass distribution of PBHs derived
from the curvature spectrum in Eq. (10) and the effect of the
QCD epoch. The gray (cyan) color indicates the result of
the inference on the light (heavy) events. The much larger
uncertainties observed in the gray posterior is due to the
aforementioned smaller sample of events with m2 < 3M⊙.
Strikingly, both analyses provide similar best-fit values for
the hyperparameters λPBH, apart from MS which is
unbounded from below—and allows for the presence of
the QCD induced bump just above M⊙—in the first case,
while it is constrained to be log10ðMS=M⊙Þ ¼ 0.95þ0.11

−0.19 in
the second case. The correlation between ns andML can be
explained by noticing that the smaller values of the tilt,
corresponding to redder spectra, enhance ψðmPBHÞ at high
masses, and the high mass cutoff ML needs to adjust to
reduce the prominence of heavy mergers. Both analyses
constrain the abundance to be much smaller than unity in
this mass range, namely log10 fPBH ¼ −2.70þ0.32

−0.25 and
log10 fPBH ¼ −2.78þ0.08

−0.07 , respectively.

FIG. 18. Posterior distribution for the hyperparameters characterizing the LVK NS (left) and ABH (right) phenomenological models,
obtained within a single-population inference of the GWTC-3 catalog.
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In order to fully compare the constraint on the PBH
abundance obtained with this single population analysis
of GWTC-3 with previous literature, we also repeat the
inference assuming the PBH population is described by a
log-normal mass distribution of the form (e.g., [281])

ψðmPBHÞ ¼
1

mPBH

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
log2ðmPBH=McÞ

2σ2

�
; ðA1Þ

where Mc is the central mass scale and σ the width. The
right panel of Fig. 19 shows that the best-fit values of such a
scenario are consistent with results previously derived in
the literature [29,31,37–40] under analogous assumptions
but with older datasets. In particular, the mass distribution
is found to be broad and peaked at ≈20M⊙. However, as
discussed in the main text, such shape would overproduce
mergers in the heavy portion of the catalog and give rise to
a flat distribution of mass ratio, in sharp contrast with what
was observed in the data; see the detailed discussion in
Sec. VI A. Finally, assuming a log-normal mass distribu-
tion gives a slightly less stringent, but statistically com-
patible, bound on the PBH abundance, which is found to
be log10 fPBH ¼ −2.65þ0.07

−0.07 .
Let us conclude this Appendix by discussing the result of

the mixed population inference. The corresponding pos-
terior distribution is shown in Fig. 20. In this case, the
dataset includes all 76 detections in GWTC-3, and allows
for ABH, NS and PBH mergers (with a QCD induced mass
distribution) to contribute to the population of mergers.

First, we notice that the ABH and NS models are mostly
uncorrelated with each other, as can be observed by focusing
the bottom-left 8 × 5 box. This is because they explain
different sets of events, and a crosstalk between them would
only be introduced by a dominant contribution from PBH
mergers that, instead, can cover both mass ranges. Second,
bimodal distributions are observed in various mass cutoffs.
In particular, secondary peaks appear in the distributions
of mmin, mmax, and mNS

max when extreme events, potentially
outliers of the astrophysical populations, such as
GW190814, GW190924_021846 and GW190521, are
explained by the PBH channel, respectively. In the portions
of the posterior where PBHs are necessary to explain the
various special events, the PBH abundance fPBH is found
to be bounded from below and takes values around fPBH ≈
10−3 (see also Table V). We also observe that the posterior
shows small support for the simultaneous interpretation
of GW190814 and GW190521 as PBH mergers, see the
ðmmax; mNS

maxÞ [or (6,17)] panel of the posterior.
Finally, we observe that the hyperparameters of the PBH

population are all characterized by a pronounced peak,
corresponding to the high likelihood regions where PBHs
contribute to the observations and improve the fit (see
discussion in Sec. VI B). However, fPBH is not bounded
from below and has a tail reaching the left boundary
fPBH ¼ 10−6, where PBH contribution is negligible. This
also implies that the remaining parameters have posterior
distributions with broad tails filling the prior volume, with
the small mass scale subject to the condition MS < ML.

FIG. 19. Same as Fig. 18 but for the PBH model assuming a mass distribution obtained from first principles with the effect of QCD
softening of the EOS (left) or a log-normal mass function (right). Different colors correspond to separate fits of the light (heavy) portion
of the catalog, with events characterized by m2 < 3M⊙ (m2 > 3M⊙) (canonically referred to events containing NS or not by the LVK
analysis).
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A correlation between ns andML is found also in this case,
due to the requirement of not overproducing heavy merg-
ers. We conclude by highlighting that the tail at large values
of fPBH reaching unity is strongly correlated with high
values of ns > 1 (blue tilts) and small MS. This is because
one can evade the constraint from LVK measurements
only with light enough populations strongly peaked at
light mass scales below Oð10−1ÞM⊙, where the LVK
sensitivity strongly deteriorates. This is reflected in the

bound on fPBH as a function of the average mass hmPBHi
shown in Fig. 10.

APPENDIX B: PBHS WITH WIDELY DIFFERENT
MASS, A TECHNICAL INSIGHT

This is a slightly technical appendix providing key
details useful to fully understand the rationale behind the
numerical values of the parameters chosen in Table VI.

FIG. 20. Posterior distribution for the hyperparameters in the mixed NSþ ABH þ PBH analysis where the primordial channels
assume the ab initio mass distribution shaped by the QCD epoch.
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The two realizations of our model discussed in
Sec. VIII B 1 (models C and D) are tuned to give the totality
of dark matter in the form of PBHs. Concretely, this means
that the logarithmic integral of the mass distribution gives
unity, cf. Eqs. (28) and (65). Since in the solar mass range the
fraction of dark matter in the form of PBHs is constrained to
be at mostOð10−3Þ, the integral is dominated by the peak in
the asteroid mass range. In turn, this implies that the value of
the curvature power spectrum in correspondence of the
bump at the right side of the plateau should be high enough
to get the desired order-one abundance of PBHs.
This is a nontrivial task to accomplish. The reason is that

one should be careful to enhance the amplitude of the
power spectrum at the right-side end of the plateau without
also altering too much the amplitude of the left-side edge
since, otherwise, the risk is to overproduce solar mass
PBHs which are incompatible with LVK merger rates.

We envisage four possible ways to tackle this problem (see
also Fig. 21):
(a) First, we consider the case in which we take ηIII ¼ 0

and tune the value of ηIIΔNUSR appropriately to get
fPBH ¼ Oð1Þ. Furthermore, we fix the widths of
the three transitions to the benchmark value
δNI ¼ δNII ¼ δNIII ¼ 0.5.
The above tuning of ηIIΔNUSR basically corre-

sponds to a rigid shift of the whole power spectrum
towards larger values. Consequently, a larger abun-
dance of asteroid mass PBHs will unavoidably en-
hance also the abundance of solar mass PBHs.
Numerically, we find that (in this initial setup with
δNI ¼ δNII ¼ δNIII ¼ 0.5) it is not possible to make
the totality of dark matter in the form of PBHs without
violating the constraints in the solar mass range (that
is, without exceeding the allowed region in Fig. 9).

(a) (b)

(c) (d)

FIG. 21. Four examples for the enhancement of the abundance of asteroid mass PBHs while also confronting with the constraints in
the solar-mass range. In all four panels, the dashed black line represents the curvature power spectrum (we enlarge the very top part) that
corresponds to model C in Table VI but taking δNI ¼ δNII ¼ δNIII ¼ 0.5 and with ΔNUSRηII tuned in order to make the abundance of
solar mass PBHs compatible with Fig. 9. In this realization, the model gives fPBH ≪ 1. The task, therefore, is to enhance the height of
the bump at the right-side edge of the plateau [that is, enhance the abundance of asteroid mass PBHs in order to get fPBH ¼ Oð1Þ]
without altering the bump at the left-side edge of the plateau. (a) We take larger ηII; this change shifts the whole power spectrum towards
larger values, and overproduces solar mass PBHs. (b) We take smaller δNIII; the tanh transition at NIII becomes too sharp, and this fact
introduces additional non-Gaussianity in the computation of the PBH abundance. (c) We take larger ηII and larger δNII; as in (a),
increasing ηII shifts the whole power spectrum towards larger values. However, δNII controls the amplitude of the bump at the left-side
edge (without altering the rest of the spectrum). Increasing δNII has the consequence of decreasing the amplitude of the left-side bump
without altering the amplitude of the right-side one. As shown in the figure, from the combinations of these two effects one gets the
desired enhancement in the amplitude of the right-side bump while the amplitude of the left-side bump is kept at the level of the dashed
line. This is model C. (d) We take ηII slightly different from zero and positive. This introduces a tilt in the plateau that enhances the
amplitude of the bump at the right-side edge without changing the left-side one. This is model D.
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(b) To fix this problem, a possible way out is to keep
ηIIΔNUSR fixed to some value that is compatible with
constraints in the solar mass range and change the
shape of the bump at the right side of the plateau. As
discussed in Ref. [72], this is possible by tuning the
value of δNIII (smaller values of δNIII make the bump
more pronounced). However, we find that, in order to
boost the abundance of asteroid mass PBHs to values
fPBH ¼ Oð1Þ, we need δNIII ≪ 1. The drawback is
that such a sharp transition typically generates sizable
non-Gaussianities that may threaten the validity of our
computation of the abundance [106,282,283]. For this
reason, we discard this possibility (in addition, it is
unclear whether very sharp transitions in the evolution
of η are realizable in concrete models).

(c) The third possibility is the one we adopted in model
C. As in (a), we take ηIII ¼ 0 and tune the value of
ηIIΔNUSR appropriately to get fPBH ¼ Oð1Þ; as dis-
cussed, we end up with an overabundance of solar
mass PBHs. However, as noticed in Ref. [72], the
value of δNII controls the height of the bump at the
left-side edge of the plateau. In particular, increasing
the value of δNII decreases the amplitude of the
bump. It is, therefore, sufficient to consider a slightly
larger value of δNII to smooth out the abundance
of solar mass PBHs and get a perfect fit of
fPBH ¼ Oð1Þ.

(d) Finally, the fourth possibility is the one we adopted in
model D. We keep ηIIΔNUSR fixed to some value that
is compatible with the constraints in the solar mass
range (in particular, compatible with the posterior in

Fig. 9). If we now take ηIII nonzero and positive, the
power spectrum will scale as Pζ ∼ k2ηIII in the region
between the two bumps, and this will enhance the
height of the bump at the right-side edge of the plateau
without affecting the one at the left-side edge. Numeri-
cally, we find that values of ηIII as small as few ×10−2

are enough to get the desired enhancement that
gives fPBH ¼ Oð1Þ.

A bonus possibility is to move the asteroid mass peak
towards smaller masses in order to exploit the enhancement
of the abundance due to the redshift factor M−1=2

H in
Eq. (24). In our model this means taking larger values
of NIII. However, we find that one quickly clashes with the
constraint given by Hawking evaporation. For clarity’s
sake, we illustrate the four possibilities (a)–(d) in Fig. 21,
see caption for details.
As a technical remark, we would like to emphasise the

power of the parametrization in Eq. (66). As clear from
the above discussion, the free parameters that enter in the
evolution of η have a clear connection with the shape of the
curvature power spectrum and, therefore, it turns out to be
extremely simple to manipulate the dynamics and carve out
the desired form of PζðkÞ.
Since in model D ηIII is not exactly zero, we expect,

as anticipated, a violation of the redshift-induced scaling
m−1=2

PBH associated to scale invariant power spectra.
Numerically, we find the power-law scaling m−1.2

PBH,
cf. Fig. 14. To the contrary, in model C we have
ηIII ¼ 0. In this model, therefore, the scaling m−1=2

PBH is
recovered, as confirmed in Fig. 14.
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[268] C. Périgois, F. Santoliquido, Y. Bouffanais, U. N. Di Carlo,

N. Giacobbo, S. Rastello, M. Mapelli, and T. Regimbau,
Phys. Rev. D 105, 103032 (2022).

[269] Z.-C. Chen and Q.-G. Huang, J. Cosmol. Astropart. Phys.
08 (2020) 039.

[270] S. Mukherjee and J. Silk, Mon. Not. R. Astron. Soc. 506,
3977 (2021).

[271] A. Sesana, M. Volonteri, and F. Haardt, Mon. Not. R.
Astron. Soc. 377, 1711 (2007).

[272] S. Banks, K. Lee, N. Azimi, K. Scarborough, N. Stefanov,
I. Periwal, N. Chen, C. DeGraf, and T. Di Matteo, Mon.
Not. R. Astron. Soc. 512, 6007 (2022).

[273] N. Bartolo, V. De Luca, G. Franciolini, A. Lewis, M. Peloso,
and A. Riotto, Phys. Rev. Lett. 122, 211301 (2019).

[274] N. Bartolo, V. De Luca, G. Franciolini, M. Peloso,
D. Racco, and A. Riotto, Phys. Rev. D 99, 103521
(2019).

[275] N. Aggarwal et al., Living Rev. Relativity 24, 4
(2021).

[276] M. Biagetti, V. De Luca, G. Franciolini, A. Kehagias, and
A. Riotto, Phys. Lett. B 820, 136602 (2021).

[277] G. Ferrante, G. Franciolini, A. J. Iovino, and A. Urbano,
arXiv:2211.01728.

[278] LIGO Scientific Collaboration and Virgo Collaboration
and KAGRA Collaboration, GWTC-3: Compact Binary
Coalescences Observed by LIGO and Virgo During the
Second Part of the Third Observing Run—O3 search
sensitivity estimates, 10.5281/zenodo.5546676.
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