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We construct nonlinear inflaton potential-energy densities that describe not necessarily very slowly
rolling closed and open inflation models, and compute tilted primordial spatial inhomogeneity power
spectra that follow from quantum-mechanical fluctuations during inflation in these models. Earlier nonflat
inflation model power spectra computations assumed an inflaton potential-energy density with a linear
slope that resulted in very slow roll during inflation and untilted power spectra. These new tilted power
spectra differ from those that have previously been used to study cosmological data in nonflat cosmological

models.

DOI: 10.1103/PhysRevD.106.123524

I. INTRODUCTION

If general relativity provides an adequate description of
gravity on cosmological scales—and there is no strong
evidence indicating otherwise—dark energy is the domi-
nant contributor to the current cosmological energy budget
and powers the observed late-time accelerating cosmologi-
cal expansion. Earlier on, prior to a redshift z ~0.75,
nonrelativistic (cold dark and baryonic) matter was the
dominant contributor to the energy budget and was
responsible for the observed earlier-time decelerating
cosmological expansion. The simplest model consistent
with these observations is the flat ACDM model [1], the
current “standard” cosmological model. In this model
spatial hypersurfaces are chosen to be flat and the dark
energy is the cosmological constant A, with the next
biggest contributor to the current cosmological energy
budget being cold dark matter (CDM). For reviews
see Ref. [2].

The flat ACDM model is consistent with a variety of
observational constraints, including cosmic microwave
background (CMB) anisotropy observations [3], baryon
acoustic oscillation (BAO) data [4], Hubble parameter
[H(z)] measurements [5], and type la supernova (SNla)
apparent magnitude observations [6]. The standard model
is also consistent with more recent constraints from probes
of the intermediate redshift Universe, that include data
between z ~ 2.3 of the highest redshift BAO observations
and z ~ 1100 of the CMB data. However, the intermediate
redshift data constraints are not yet as restrictive as the
lower-redshift BAO, H(z), and SNIa ones, nor as restrictive
as the higher-redshift CMB anisotropy ones. These inter-
mediate-redshift constraints include those from HII galaxy
apparent magnitude versus redshift data [7], angular size as
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a function of redshift measurements [8], quasar x-ray and
UV flux observations [9], and gamma-ray burst data [10].

While most current measurements are not inconsistent
with the spatially flat ACDM standard model, they also
do not rule out mildly curved spatial hypersurfaces or,
weakly varying in time and space, dynamical dark energy.
Near-future measurements are anticipated to provide sig-
nificantly more restrictive constraints that should help
distinguish between the options and better determine
cosmological parameter values [11].

There are however some suggestions of inconsistencies
between observations and the standard flat ACDM model.
For example, differences between (model-dependent) mea-
surements of the Hubble constant H, could be an indication
of a problem with the standard model." An early median
statistics estimate, [12], H, = 68 &= 2.8 kms~! Mpc~!, is
consistent with a number of more recent H, measurements
made using a variety of methods [13], including from CMB
anisotropy data, H, = 67.36 £ 0.54 kms~! Mpc~' [3]. On
the other hand, some local measurements of the expansion
rate favor a value significantly larger than the CMB one,
Hy =732+ 1.3 kms™' Mpc~! [14].> Similar issues affect
measurements of other parameters but the difference
between H, measurements is the most significant. For
reviews of these issues see Refs. [2].

Given such potential inconsistencies, and given the
improving quality and amount of data, there is significant
interest in studying cosmologies that have a free parameter
or two more than the flat ACDM model. A widely
considered option is dynamical dark energy that mildly
varies in time and space. Scalar-field dynamical dark
energy (¢CDM) models are a popular example [16].

'For recent reviews see Ref. [2].
*We note that some other local expansion rate determinations
of H are slightly lower and have larger error bars [15].
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Allowing for nonzero spatial curvature is another option
now under study. For recent discussions of observational
constraints on spatial curvature and dark energy dynamics
from a variety of different datasets, see Refs. [17,18].3 For
recent discussions of nonflat cosmological models,
see Ref. [20].

CMB anisotropy data provide the most restrictive con-
straints on cosmological models. To use these data to
constrain cosmological parameters of a model requires
knowing the primordial power spectrum of spatial inho-
mogeneities as a function of wave number for the model. In
the inflation scenario [21,22] quantum-mechanical zero-
point fluctuations in the inflaton field during inflation
generate the spatial inhomogeneities [23,24]. If inflation
lasts for a long time spatial curvature is redshifted away to
insignificance (and this is by far the most commonly
considered case). In this case, if the inflaton slow rolls
down a relatively flatter inflaton potential-energy density
the cosmological scale factor grows exponentially in time
(this is spatially flat de Sitter inflation) and the resulting
primordial power spectrum is close to scale invariant, [25],
with very little tilt. It is possible to increase the power
spectral tilt by choosing an inflaton potential-energy
density that causes the inflaton to evolve more rapidly
during inflation and makes the scale factor grow only as a
power of time (this is spatially flat power-law inflation)
[26-28].

Gott [29] generalized inflation to the open cosmological
model. In this open-bubble inflation model a spatially open
bubble nucleates and the interior inflates for only a limited
time so as to not redshift away all spatial curvature. If
necessary, an earlier, pre—open-bubble nucleation, epoch of
less-limited spatially flat inflation can be used to produce
spatial homogeneity. Alternately, a slow enough open-
bubble nucleation process might ensure that the interior
of the open bubble is sufficiently spatially homogeneous.

Hawking’s prescription for the initial quantum state of
the Universe [30]—that the functional integral include only
those field configurations which are regular on the
Euclidean section—suggests that the Universe nucleated
as a closed de Sitter—Lanczos (inflation) model on the
Lorentzian section [30,31]. The equator of the Euclidean
(de Sitter—Lanczos) four-sphere is identified with the waist
of the Lorentzian de Sitter—Lanczos hyperboloid, which is
where the nucleation occurs [30,31].4 A slow enough
nucleation process might ensure a sufficiently spatially
homogeneous closed inflating de Sitter—Lanczos model.

3Compared to the cosmological constant, dynamical dark
energy density evolves more similarly to spatial curvature energy
density and this results in weaker constraints on both new
parameters when compared to the case when either only nonzero
spatial curvature or only dark energy density dynamics is
assumed [19].

*For variants of this picture see Refs. [32-35].

Again, inflation can occur for only a limited amount of time
s0 as to not redshift away all spatial curvature.’

To compute the power spectrum of spatial inhomoge-
neities generated by quantum fluctuations during inflation
in a given model requires the solution of the spatial
inhomogeneities linear perturbation equations and a set
of initial conditions. Spatially flat, open, and closed de
Sitter spacetimes have as large a symmetry group as
Minkowski spacetime; spatially flat power-law inflation
and the nonflat inflation models we study here have less
symmetry than the flat, open, and closed de Sitter inflation
models. The initial condition prescription we utilize here
gives inflaton scalar-field two-point functions in flat and
closed de Sitter inflation models that have the symmetries
of those spacetimes [24,31,37]. This initial condition
prescription has also been used to compute the primordial
power spectrum in the spatially flat power-law inflation
model [27,28], giving a tilted primordial power spectrum
that is in agreement with the result of Ref. [26]. All these
inflation model spacetimes, as well as the two we consider
in this paper, are conformally flat, i.e., when expressed in
terms of conformal time their line elements are proportional
to the Minkowski spacetime line element.

The initial condition prescription we use here is that
during inflation, for large wave numbers, inside the
horizon, at early time, the conformally rescaled inflaton
scalar-field modes, as a function of conformal time, should
be quantum-mechanically normalized simple harmonic
oscillators.

In the open-bubble inflation model this initial condition
prescription [38] results in a late-time energy-density
inhomogeneity power spectrum [39,40] that is the gener-
alization to the open inflation case [41]6 of the scale-
invariant spectrum of the flat model [25]. In a variant of the
open-bubble inflation model, that includes an initial epoch
of spatially flat de Sitter inflation, applying the initial
condition prescription in the first epoch and following the
computation through the bubble nucleation process, results
in a primordial power spectrum that is observationally
indistinguishable from that of the case when the initial
conditions are applied inside the second, open-bubble
epoch, [42,43].

This initial condition prescription has also been used in a
computation of the primordial power spectrum in the closed
de Sitter inflation model [31,37]. In this case this initial
condition prescription is equivalent to Hawking’s [30]
prescription of only including field configurations regular
on the Euclidean section [31]. It also leads to a de Sitter-
invariant ground-state inflaton scalar-field two-point

SFor a discussions of the nucleation of open and closed
cosmological models, see Refs. [36] and references therein.

®Lyth and Stewart [41] also use this initial condition pre-
scription in their more approximate computation of the wave-
number dependence of the power spectrum.

"For other early papers on open inflation, see Ref. [44].
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correlation function [31]. The wave-number dependence of
the resulting primordial power spectrum is the generaliza-
tion of the scale-invariant spectrum in the spatially flat case
[25] to the closed universe [45].8

The open and closed inflation model primordial power
spectra computations of Refs. [37,39] were done in models
that had an inflaton (@) potential-energy density
x (1 —e®), where ¢ is a small constant. These are very-
slow-roll models and so the resulting power spectra are
untilted on small scales for infinitesimal e¢. When these
power spectra were used in a nonflat ACDM model
analysis of the Planck 2015 CMB anisotropy data [51] it
was found that these data favored closed spatial geometry
[52,53], even in combination with BAO, H(z), SNIa, and
other non-CMB data, where these data jointly favored
about a 1% spatial curvature energy-density contribution to
the cosmological energy budget at 5o significance [54].

A more correct analysis of the CMB anisotropy data
requires tilted open- and closed-model primordial power
spectra. Such spectra would be generated by quantum-
mechanical inflaton fluctuations in open and closed
inflation models with nonlinear inflaton potential-energy
densities, unlike the linear potential-energy density func-
tion assumed in the analyses of Refs. [37,39]. Pending such
a computation, data analyses have been performed utilizing
the primordial power spectra of Refs. [37,39] multiplied by
k"', where k is the wave number and n is the power
spectral index (with n = 1 being the scale-invariant case in
the flat model) [55]. Using this phenomenological primor-
dial power spectrum to define a tilted nonflat ACDM model
for the analysis of CMB anisotropy data, in this model the
Planck 2018 data [3] favor positive spatial curvature
contributing about 1% to the cosmological energy budget
at 1.60, but when BAO data are added to the mix the result
is consistent with flat spatial hypersurfaces [3]; a similar
result was originally found from the Planck 2015 data [51].
It is of interest to determine whether the power spectra [55]
used in these analyses [3,51] can be generated by inflaton
quantum fluctuations in nonflat, nonvery-slow-roll infla-
tion models that are closed but very close to flat, deviating
from flatness at only the ~1% level. A recent numerical
study in closed inflation models that computes power
spectra generated for a few different initial conditions
finds that it is possible to generate spectra of the form
assumed in Refs. [3,51,56], at least in the closed case.

Here we consider open and closed inflation models with
nonlinear inflaton potential-energy densities. In this paper
we generalize the exponential potential-energy density of
the flat-space power-law inflation model [26-28] to inflaton

There are other computations of primordial spectra in the
closed de Sitter inflation model [34,46—50], using different initial
conditions compared to our prescription. We emphasize that the
initial conditions we use in the closed de Sitter case results in a
scalar-field perturbation two-point function that is de Sitter
invariant [31].

potential-energy densities that allow for not necessarily
very-slow-roll inflation in open and closed models. In the
very-slow-roll limit these potential-energy densities reduce
to that o (1 — e®) used in the open and closed inflation
models of Refs. [37,39], while at large ® they become the
exponential potential-energy density used in the spatially
flat power-law inflation model of Refs. [26-28]. Here we
are interested in a nonvery-slow-roll limit of these models,
and potentially in the parameter-space range where they
deviate from spatial flatness at the ~1% level.

Our computed primordial power spectra of spatial
inhomogeneities—that result from quantum-mechanical
zero-point fluctuations during the inflation epoch in these
tilted closed and open models—differ from power spectra
that have previously been used to analyze observational
data in closed and open cosmological models. These power
spectra have been used in the analyses of CMB anisotropy
and other data [57]. It is interesting that there appears to be
some additional ambiguity in the form of nonflat inflation
model power spectra, caused by the ambiguity in the form
of the assumed nonflat inflation initial conditions, com-
pared to what happens in the flat inflation case.

In Sec. II we summarize the background geometry of the
closed and open models and the Einstein-scalar-field model
equations of motion. For more detailed descriptions see
Refs. [37,39]. In Sec. III we determine the inflaton
potential-energy densities we use and solve the spatially
homogeneous background equations of motion in the
inflation epoch of the closed and open models. We solve
the linear perturbation equations in Sec. IV, where we
compute the late-time primordial power spectra during
inflation in the closed and open models. We conclude in
Sec. V. Appendix A lists some results in the spatially flat,
tilted inflation model, that we use for comparison to some
of our results on smaller scales during inflation in the
nonflat models when spatial curvature is unimportant.
Appendices B and C describe primordial power spectra
definitions and conventions in the flat, closed, and open
models.

II. TECHNICAL PRELIMINARIES

A. Spatially homogeneous background geometries

The positive spatial curvature (closed) Friedmann-
Lemaitre-Robertson-Walker (FLRW) model has line
element

ds* = dr* — a*(t)H ;;(X)dx'dx’
= di* — a*(t)[dy?* +sin’(y){d6” +sin>(9)dg*}], (1)

where a(1) is the cosmological scale factor, H,;(x) is the
metric on the closed spatial hypersurfaces, the “radial”
coordinates 0 <y <z, and 0,¢ are the usual angular
coordinates on the two-sphere. The square of the distance
between two points, (¢,y,60,¢) and (t,,6,¢), is
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& = 2a%(1)[~1 + cos(r3)], 2)

cos(y3) = cos(y) cos(y’) + sin(y) sin(y’) cos(y),  (3)

where y, is the usual angle between the two points (6, ¢)
and (€', ¢') on the two-sphere,

cos(y,) = cos(6) cos(8') + sin(0) sin(@') cos(¢p — ¢'). (4)

The negative spatial curvature (open) FLRW model has
line element

ds* = dr* — a*(1)H ;;(X)dx'dx’/
= di* — a*(1)[dy?* + sinh?(y){d6” + sin>(0)d¢*}],
(5)
where H;;(X) is now the metric on the open spatial

hypersurfaces, and y(0 <y < ),0, and ¢ are defined
above. The square of the distance between two points,

(t,y,0,¢) and (1,,0',¢'), is

6> = 2a2(1)[1 - cosh(ys)]. (6)

cosh(y3) = cosh(y) cosh(y’) — sinh(y) sinh(y’) cos(y,),
(7)

and y, is defined in Eq. (4).

B. Einstein-scalar-field model conventions

The Einstein-scalar-field action, for metric tensor g, and
inflaton @, is

1 1
g""a”(I)aD(I) ) V(D).

(8)

3
S = 1671 dt d’x\/— {

Here m, = G~'/? is the Planck mass and V is the scalar-
field potential-energy density. Varying, we find the inflaton
and gravitation equations of motion,

TS £ V@) =0 )

8x 1
R,Ml/ = — (le - Egm,T> s (10)

mp

where a prime denotes a derivative with respect to ® and T
is the trace of the stress-energy tensor:

T, =22 |9,00,d -
w = Ton

1
gyy{glpa/lq)apq) - V((D)} . (1 1)
To derive the equations of motion for the spatially
homogeneous background fields and for the spatial inho-
mogeneities, we linearize Eqs. (9)—-(11) about an open or
closed FLRW model and a spatially homogeneous scalar
field. We work in synchronous gauge, with line element
ds* = di* — a*(1)[H,;(X) — h;;(1.%)]dx'dx/,  (12)
where the background metric on the closed [open] spatial
hypersurfaces, H;;, is given in Eq. (1) [Eq. (5)], and the
metric perturbations are denoted by £;;. The expansion for
the scalar field is

O(1,%) =

where @, and ¢ are the spatially homogeneous and
inhomogeneous parts of the inflaton field (the inflaton
perturbation ¢ should not be confused with the angular
variable ¢ of Sec. IT A).

@, (1) + (2. %), (13)

III. TILTED CLOSED AND OPEN INFLATION
MODELS AND SPATIALLY HOMOGENEOUS
BACKGROUND SOLUTIONS

The Einstein-scalar-field model equations of motion for
the spatially homogeneous background fields, derived in
Sec. III. A of Ref. [39] for the open case and in Sec. III. A
of Ref. [37] for the closed case, are

q>b+39cbb+§w(cbb)=0, (14)
a
a\? 1 K2
(&) - el even+ S as)
i 1. 1
P _E(Db + = B V(D,), (16)

where an overdot denotes a derivative with respect to time
and x> = +1(—1) for open (closed) spatial hypersurfaces.

Motivated by the power-law expansion inflation model
in the spatially flat case, [26-28], for suitable scalar-field
potential-energy densities, discussed below, the back-
ground Friedmann equation (15) during closed or open

inflation becomes
a\2 Q0 «?
<_> T al + a®’ (17)

where Q and ¢ are constants and 0 < ¢ < 2 for inflation. In
the closed case where x> = —1, we require, at the waist at
t = t;, the initial condition a(¢ ) = 0, so the right-hand side

of Eq. (17) must also vanish at the waist, which results in
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Qa’ =1 where a; = a(t;) and p =2 —g. In the closed
case the inflation model includes only the 7 > ¢; part of the
spacetime.

The integral of Eq. (17) is

ViR(t = tg) = ayFy(1/2,1/p; 1 + 1/ p; —Qa? /%)
— ap, Fy(1/2,1/p3 1 + 1/ p;—Qal, /2),
(18)

where ,F; is the Gauss hypergeometric function, see
Chap. 15 of Ref. [58], and ay = a(r = t,) is the constant
of integration.

In the open case, this is

t=a,F(1/2,1/p;1+ 1/p;—Qa”) + constant, (19)
and in the closed case, where ¢; is at the waist,

t—t; = iayFy(1/2,1/p;1 4+ 1/p; Qa?)

iy s LA+ 1/p)

O AR T 1) (20)
where I' is the Euler Gamma function.

In the flat limit where k> — 0, or Qa” /x> — oo, Eq. (18)
becomes a « (t — t,)?/4, the usual flat-space tilted power-
law inflation result; see Eq. (2.5) of Ref. [27]. In the ¢ — 0
limit Eqgs. (19) and (20) reduce to the correct open and
closed slow-roll untilted de Sitter inflation relations, a(t) =
sinh(v/Q( = 19))//Q and a(t) = cosh(v/O(t = 19))//Q:
see Eq. (4.10) of Ref. [39] and Eq. (105) of Ref. [37].

In the open case, conformal time

_ ! ln{\/m_l}, (21)

~1

ik L/0aP /kr+1+1
where —oo <7 <0, while in the closed case, conformal
time
o2 tan‘l{ 0a (=) — 1] (22)
pV—«*

where 0 <7< 7/p.
With the scalar-field potential-energy density in the open
case,

_ 2(6—9)Q
V= (k*/Q)4/P[sinh { p®/+/8q}]?7/P (23)
and in the closed case,
V(D) = 2(6-9)Q 24

(=x%/Q)9/P[cosh { p®/+/8q}]?/P"

the homogeneous part of the scalar-field equation of motion
(14) and the Friedmann equation (15)9 are satisfied by, in
the open case,

a = (2/Q)"?[sinh {p®,/\/8¢}]7",  (25)

and in the closed case,

a = (—x*/Q)"?[cosh {p®,/\/8¢}]".  (26)

In the closed case we have used the initial condition
@, (1;) = 0.

In the untilted, slow-roll, small-g limit, both scalar-field
potential-energy densities, Eqs. (23) and (24), become
« (1 —e®), where ¢ = y/q/2, which are the potential-
energy densities used in untilted very-slow-roll open- [39]
and closed- [37] inflation model computations. However,
the a(®,) equations (25) and (26) appear to not behave
sensibly at ¢ = 0 and so it appears that these models do not
make sense at g = 0. For small ¢ the potential-energy
densities, Egs. (23) and (24), change only slowly with ®
and at ¢ = 0 they are flat. At ¢ = 0 the scalar field will not
move if is initially at rest, but a(¢) grows, resulting in a
breakdown of Egs. (25) and (26) at g = 0.

In the Ilimit that & 1is large, both scalar-field
potential-energy densities, Eqgs. (23) and (24), become
x exp(—4/q/2®), which is the potential-energy density
used in the standard flat-space tilted inflation model [26-28].

IV. LINEAR SCALAR PERTURBATIONS
DURING INFLATION

A. Synchronous-gauge linear
scalar perturbation equations

The scalar parts of the synchronous gauge inflation-
epoch linear perturbation equations in spatial momentum
space are derived in Secs. II and III. A of Refs. [37,39] for
the open and closed cases.

With —A(A +2), integer A =0,1,2--- (A > 2 modes
are physical), being the closed model spatial Laplacian
eigenvalue, and —(A% + 1), A > 0, being the open model
spatial Laplacian eigenvalue, we define k> = A% + 1 and
k> = A% + 4 for the open case and k> = A(A + 2) and k> =
(A —1)(A + 3) for the closed case.

The linear scalar perturbation equations for the spatial
momentum space scalar field ¢(A, 1), trace of the metric
perturbation h(A, ) (the perturbation to the size of the
proper volume element), and the trace-free part of the
metric perturbation H(A, ¢) (the shearing perturbation of
the volume element) modes are

*More precisely, Eqs. (25) and (26) reduce the Friedmann
equation (15) to Eq. (17) which is solved by Egs. (19) and (20).
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30 K Yyr@)p = Lid,  ©7)
¢+ a¢+a2¢+2 b¢—2 bs
S
h+ 25h =20,¢ - EV’(d)b)zﬁ, (28)
RT3
i - k2[ Byp - h} (29)
- 272 . 7.
ﬁ+63h+wh+H+3gH
2 3
(";)HJr SV(@)¢ =0, (30)
. a. kK K?
38y w2 oo 31
T aH 3a2H 3a® B

B. Synchronous-gauge linear scalar
perturbation solutions
Using Eqgs. (17) and (23)—(26), Egs. (27) and (28) can be
reexpressed as
2 ¢ 1 5
(0ar + )% 5 + - [(8 — q)0ar + 66
(6-4q)
4a®

_ V2490
2q4/2

dp K2
a2’

_|_

290a” + (2 + q)x*|¢

dh
4 1277
[Qa? + k7] Ja’

(32)

and

2]\ (33)

These can be combined to give a third-order equation
for ¢:

[Qa? + k?]
L

&> 1 d’
o f +5.[28 - 9)Qa” + (10 + g)x’] d—ﬁ

(48 —10g — ¢*)Qa” +

d¢
Vda +8

+(6-9) 2+ q)x?

tin +(12-q)(2 + q)x?
+ 4Kk2 2p(6 —q)Qa?
+4K2¢ = 0. (34)

Changing variables from ¢ and a to f and x, where ¢ =
f/a?? and x = Qa” /x?, this equation becomes

d’z 11 dz

1 2 pdx|—
x?(x+ )d2+[2 +x}dx
N {(40—41q+10q ) +(11—8q+2q2+k2/1<2)

X
2p? p?

Z=0,
(35)

where Z(x) =df/dx. The general solution Z(x) of
Eq. (35) can be expressed in terms of Gauss hypergeo-
metric functions and this can be integrated once with
respect to x to get f(x) and so ¢(a).

Defining A, B, D, and G,

4pAL =3p—-2W=+(2+q). (36)
pB=p-W, (37)
pD=p+W, (38)
4pG. =3p+2W =+ (2+q). (39)

where
W— \/_8 —4q+ ¢* — 4K )K2, (40)

the scalar-field
equations is

solution of the linear perturbation

a??¢p = &re xB-212F, (A, ,A_,B/2 — 1B, B/2;—x)
4+ ¢_x\P=2/12F,(G,,G_,D/2 - 1;D,D/2; —x).
(41)

Here ¢ and ¢ are constants of integration, the ¢ solution is
a gauge solution corresponding to the remnants of time
translation invariance in synchronous gauge, and ;F, is a
generalized hypergeometric function; see Chap.IV of
Ref. [59] and Chap. 16 of Ref. [60].

In terms of x, Eq. (33) is

h  [(8-3q) , (3—q) ]dh
2 2 i
x(x+1)d2+ T X p x|
242 —q)V?2
:—qx3/2(x+1)1/2_d¢+7(6 61)2 qx'/z(x+1)l/2¢.
p dx 2p

(42)

Using Eq. (41) to evaluate the right-hand side of this
equation, it can be solved to give the trace of the metric
perturbation solution:
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3.2 q/2p
h=cy=2c;(=1)YP\/x+1,F (1/2,1+1/p;3/2;x+ 1) v <%> e(=D)VPVx+ 1,F (1/2,1/p;3/2;x+ 1)
P \K

3./2 q/2p (B-2)/2-1/p
+—q<g> E-+ dxx {3F2(A+,A_,B/2_1;B,B/2;_x>

2p \&? vx+1
(B-2) 3y2q (Q\ 92 _ (D=2)/2-1/p
5 3F2(AL,A_,B/2;B,B/2+ 1, - (= B

T3 3 2(Ay / /2+1-x) ¢ + 2 \@ ¢ =

D-2
x {3F2(G+9G—,D/2— 1,D,D/2,—x)+(34D)

where the integrals can be done (and expressed as infinite
series) but this is not of use to us and so these series are not
recorded here. In Eq. (43) ¢ and ¢, are the constants in
|

dH K [32q

3F2(G.,G_,D/2;D,D/2+ 1;—x)},

(43)

Eq. (41) and ¢, and c, are constants of integration, with ¢,
corresponding to a gauge mode.
In terms of x, Eq. (29) is

L

dx k| 2p

x(x+1) dx|’ (44)

Using Eqgs. (41) and (43) to evaluate the right-hand side of this equation, it can be solved to give the trace-free metric

perturbation solution:

1.2

k
pH =c3+ 2, (-D)PVx+ 1,F (1/2,1 +1/p;3/2;x + 1)

V2q (0\4?_ (B=2) x(B-2)/2-1/p
\/E 0\ 4/2p_ (D_g) x(D=2)/2-1/p

X2 (= R —— ——F,(G.,G_,D/2;D,D/2 + 1;,—x), 45
&) &5 | W= +F6+.G-.D/%D.D/2+ =) (45)

where the integrals can be done (and expressed as infinite
series) but this not of use to us and so these series are not
recorded here. In Eq. (45) ¢, and ¢, are the constants in
Egs. (41) and (43), and c3 is a constant of integration
corresponding to a gauge mode.

Using the solutions given in Egs. (41), (43), and (45), the
left-hand sides of Egs. (30) and (31) are proportional.
Requiring they vanish results in the relation

21 (Q\4/2r_k?
c) = —— 1\ C—2,
qp \K K

we are unable to analytically establish that the coefficients
of ¢,—the gauge-invariant contributions—vanish in these
equations, as they must. However, we are convinced that
they indeed do vanish since, as discussed below, the
complete numerical solution (for given sets of parameter
values) of the linear perturbation equations results in power
spectra that are in very good agreement with the analytic
power spectra we have derived. Additionally, we show
below that on smaller scales when spatial curvature is
unimportant, the primordial power spectra in these tilted

(40)

|
nonflat inflation models are identical to the primordial
power spectrum in the tilted flat model of Refs. [26-28],
where in the computation of Ref. [27] it was shown that the
corresponding coefficients of ¢, vanished in the corre-
sponding equations.

C. Gauge-invariant variables solutions

For scalar perturbations there are two independent
gauge-invariant variables, invariant under the remnants
of general coordinate invariance in synchronous gauge
[61]. We choose these to be

1

Ap =+
R Y V(@)

2B, + V(D)) + 6g<i>b¢ , (47)

1

B L ey
=& v, 2D,¢ + V(@) — D, (h + H)].

Ao

(48)

Another useful gauge-invariant combination is
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_ D+ V(D)

62 [Ap — Ag]. (49)

(0]

During inflation, from the ¢, h, and H solutions of the previous subsection, the gauge-invariant variables are

12 2

2 q/2p
Ay =PV <g> Vx+1[(B =2)¢, xB-2/2=1/r,F (A, A_; B; —x)
K
+ (D =2)e_xP=2/>1/p, (G, G_; D; —x)], (50)

and

q (0 q/2p 6 _ v
Ap = ~¢ (K2> Vax + 1 \/—Z_qc+x<3 2/2-1/p F,(A.,A_,B/2 - 1;B, B/2;—x)

+ \/Lz_qé_x(D‘2>/2‘l/”3F2(G+, G_,D/2-1;D,D/2; —x)

- %Q’I_Z—zx v 1) \/LZ_q (B —2)¢,xB-2/21/p F (A, A_; B; —x)

- (37‘“;—2 + 1> qu(z) —2)e_x\P=2/2-1/r F (G, .G_; D; —x)

‘%g gD 0 Ey (A, AL B/2:B.B/2 4 1)

_ %Z_z 2q¥5_x0/2‘1/1’3F2(G+, G_.D/2:D.Dj2+ 1;-x)|. (s1)

We assume that the gauge-invariant solutions, those proportional to ¢, obey Egs. (30) and (31), and use these and Eq. (46)
to simplify the expression for Ag to that given in Eq. (51); see the discussion around Eq. (46).
From the expressions for A, and A, above,

Q) 4/2p 1 . RN
Ro = | = Vx+1|—=¢ xB2/2"Vr F,(A, ,A_,B/2 —1;B,B/2;—
@ <K2 X+ \/ECHC sFa(AL / /25 =x)
+—=e_xP=2/2"Vr.F)(G,,G_,D/2 - 1;D,D/2; —x)
/2 2
—ﬂl_c—(B—2)é+x3/2‘1/P2F1(A+,A_;B;—x)

%) 2
_ %%(D = 2)e_xP27UPF\(Gy. G Ds —x)

V2qK* (B=2) B
1T B ¢, xB/2=Vr Fy(A,,A_,B/2;B,B/2 + 1;—x)

V2qx> (D=2
—Tq%%a_wz—l/%&(@,G_,D/2;D,D/2+ 1;—x)|. (52)

D. Initial conditions and constants of integration
Defining ¢, = ¢, \/«x*/Q, and ignoring the first, gauge-dependent, term on the right-hand side of Eq. (41), a
more convenient form of the inflaton field perturbation solution is

ap = ¢, x BV F, (AL, A_,B/2 — 1,B,B/2; —x) + ¢_xP~V/2F,(G.,G_,D/2 = 1;D,D/2; —x). (53)
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We assume as an initial condition that the conformally
rescaled scalar-field perturbation (a¢) is in the conformal
time harmonic oscillator ground state, when nonflat
inflation initiated, on small length scales. That is, we require

, 167\ 1/2 =141
limy_, ap(A, 1) = (F) ok (54)
P %

where conformal time 7 is defined, for the open and closed
models, in Egs. (21) and (22). See Refs. [27,28,31,37-39]
for discussions of such initial conditions in a variety of flat
and nonflat inflation models. These initial conditions result
in de Sitter invariant inflaton two-point correlation functions
in the very-slow-roll flat and closed de Sitter inflation
models. The nonflat open and closed not-necessarily very-
slow-roll inflation models which we apply them to here
have less symmetry than the flat and closed de Sitter
inflation models and so it is possible that our assumption
here of the absence of an additional subdominant at large A
correction, that cannot be determined from Eq. (54), and
that might be important at small A, might not be justified in
the nonflat not-necessarily very-slow-roll inflation models
(such corrections do not contribute in the flat and closed de
Sitter inflation models).10

We have not been able to analytically compute the
large-A asymptotic limit of Eq. (53)."" However, if we
set ¢, =0 in both nonflat models, and choose for the
closed model

167\ 1/22724/p(=1)4/P
e=(n) o 69
m, V24
and for the open model
16 1/2 '2—i2A/p
()T
my 2A

it may numerically be shown in both nonflat models that
the initial condition of Eq. (54) is satisfied [62].
Additionally, we show below that on smaller scales when
spatial curvature is unimportant, the primordial power
spectra in these tilted nonflat inflation models (which
depend on these expressions for ¢.), are identical to the
primordial power spectrum in the tilted flat inflation model
of Refs. [26-28], where in Ref. [27] the corresponding
asymptotic limits were computed.

E. Px at late time during inflation
in the open and closed models

Here we record expressions for the power spectra at late
time during inflation in the open and closed tilted inflation
models. The power spectrum definition and conventions are
given in Appendices B and C.

Using Egs. (52) and (55), and setting ¢, = 0, we find at
late time during inflation in the closed model

162\'2 _,, (2
|PR|:<LHZ> Ql/pw'_l_F%‘

where

W= \/_8—4q—|—q2 +4A(A+2). (58)

while Eqgs. (52) and (56), and setting ¢, = 0, give at late
time during inflation in the open model

1/2
w/|PR|_<£Z) Ql/pw‘_l_FK'
m, NT P

y 2764/ \ (1 4+ W/p)I((2+ q)/ (2p))'
VA(A? + 4) r'((2+w)/p)

(59)
where

"I thank A. Guth for emphasizing this point.

llExcept for the ¢_ term in the closed case where the result
agrees with the expression given in Eq. (55) below.

(O 2AWe (1 + W/p)T((2 + 9)/(2p)) (57)
VAA - 1)(A+3) T((2+w)/p) ’
W:\/—12—4q+q2—4A2, (60)

and in both cases the scalar spectral power-law index
n=(2-3q)/(2— q).In the closed case, for fixed param-
eter values, the power spectrum of Eq. (57) agrees very well
with power spectra computed numerically in the model
described by the potential energy density of Eq. (24) [62].
For representative plots of these and other nonflat inflation
model power spectra, see Fig. 1 of Ref. [57].

In the large-A limit where W = 2A (2iA) in the tilted
closed (open) case, the Py expressions in Egs. (57) and
(59) reduce identically to the flat-space tilted inflation
model expression of Eq. (C1). This shows that on small
scales at late times during tilted nonflat inflation, when
spatial curvature is not important, the tilted closed and open
model primordial power spectra are identical to the tilted
flat model primordial power spectrum. This is a useful
consistency test of our analyses, including the initial
conditions we have used here. This is because there is
somewhat less uncertainty about initial conditions in the
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flat inflation model compared to the closed inflation model,
as well as possibly even the open inflation model. Given
that potentially only a tiny ~1% deviation from flatness is
what is of interest, it is reassuring that this initial condition
consistency test is passed.

V. CONCLUSION

We have extended from the very-slow-roll, untilted,
linear inflaton potential-energy density open and closed
inflation models of Refs. [37,39] to not-necessarily very
slowly rolling, tilted, nonlinear inflaton potential-energy
density open and closed inflation models. We have deter-
mined power spectra for quantum-mechanically produced
spatial inhomogeneities in these models. These power
spectra can be used to characterize spatial inhomogeneities
in closed and open inflation models, and have been used in
analyses of CMB anisotropy and other data [57]. They
differ from those that have previously been used for this
purpose [3,51]. The power spectra of Refs. [3,51] can also
be generated by quantum fluctuations during (so far, only in
closed) inflation, assuming different initial conditions [56].

Recent hints of observational tension with a few pre-
dictions of the spatially flat ACDM model provides
motivation for studying nonflat cosmological models as
well as other alternatives. Moreover, even if space is flat, to
properly establish this from CMB anisotropy data requires
use of consistent nonflat cosmological models—such as
those constructed here—and the primordial power spectra
in these models, and in Ref. [56] for the closed case. It
might be significant that in the nonflat inflation model
there appears to be additional freedom in the form of the
inflation-generated power spectrum, compared to the spa-
tially flat case.
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APPENDIX A: Ry IN THE SPATIALLY FLAT
TILTED INFLATION MODEL

In the spatially flat tilted inflation model of Refs. [26-28],
the scalar-field potential-energy density during inflation is

V@w:(igﬁgﬁdﬁapkv%¢—®@ﬂ,<An

where @ and pg) ) are the scalar field and the scalar-field
energy density during inflation at scale factor a,. The scalar-
field energy density during inflation is

(A2)

_ (% \*
Po qua-

During inflation, the gauge-invariant

1 (q\G-9/a aH(10-9)/(2q)
Re=—=|= N
6\2 k

a [ 2k @ ( 2k
X {@HDH (W—H> + e H <pa—H . (A3)

where H is the Hubble parameter,v = (2 + q)/(2p), H 5’11
are Hankel functions, and from the initial conditions the

constant of integration c_ = 0 and

12 12
¢, = (16_”> / f(ﬂ) / (agM?/9)~5/26iw=1/207/2 (A4)
p

2
m, 2

where

q 87 0 1/2
M:E( ngj) . (A5)

3mp

APPENDIX B: RELATION BETWEEN P AND P
IN FLAT, OPEN, AND CLOSED MODELS

In this appendix we define two power spectra we use and
relate them to the two-point function in spatial momentum
space. In this appendix we do not explicitly indicate the
time dependence of the fields.

In the flat model, defining the Fourier expansion of a
position space field

3 > >
aaw—/é%%ama@, (B1)
and
(R (K)) = P,(k)(22)36 (k- k), (B2)

where P;(k) is the power spectrum and k = k|, we have

- 3 S e
CEE@) = [ 55 [ G O e @)

Pk - s
= [ G Pb), (B3)
Setting X = ;’ we have
. &k o dk k*P:(k)
@) = [ Gapdi = [TEET ®y

and so define the power spectrum
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I P (k)

,Pc(k) = 2”2

. (B5)

which gives the power in a logarithmic wave-number
interval.
In the open model, defining

(@) = [T Y Zupel@)i)
BC

where B and C are “magnetic” integral indices, Z,pc is
defined in Eq. (2.9) of Ref. [39], and

(B6)

(C(A)C*(A")) = P (A)6(A = A")dppdcc,  (BT)

we have

/ dA / IS 3" Zanel©) 2y (@) (LA ()
BC B'C’

/ U3 Zioc D e (Q)P,(A)

:A""

where we have used Eq. (2.11) of Ref. [39], P is the
associated Legendre function of the first kind, and cosh(ys)
is defined in Eq. (7). Setting Q=0 and using Eq. (A3) of
Ref. [38], we have

dAAPP(A) PS5 (cosh(r3))
A (27)%? sinh(y3)

(B8)

- © dAA3P:(A)
QP = [ =5 B9
(e@P) = [~ G5 (89)

and so define
A3P:(A)
A)=—52 B10
P4) =225 (B10)
In the closed model, defining

ZZYABC (B11)

=2 BC

where B and C are magnetic integral indices, Y pc is
defined in Eq. (9) of Ref. [37], and

(C(A)L*(A)) = Pe(A)danbppbcc.  (BI2)

we have

(D) (@)

=S S S Ve (@) ¥ (@AY (A1)
BC B'C’

wpel

Yanc(D)Yipc(Q)P(A)

L& 1 (A4 1)3P(A) P (cos(r3))
_ZAJrl C ’

(2n)’? sin(y3)

(B13)

where we have used Eq. (11) of Ref. [37], and cos(y3) is
defined in Eq. (3). Setting Q = Q' and using Eq. (3.9.2 (8))
on page 163 of Ref. [59], we have

- S 1 (A+1)3P,(A)
Q) = , (Bl4
@R =3 5757 (B14)

27>

(the factor of 1/(A+ 1) = 1/v is chosen for consistency
with the definition of Ref. [55]; see below) and so define

(A+1)°Py(A)

s (B15)

Pe(A) =

APPENDIX C: Pz AND Pr AT LATE TIME IN
THE FLAT EXPONENTIAL POTENTIAL AND
THE OPEN AND CLOSED LINEAR POTENTIAL
INFLATION MODELS, AND COMPARISON TO
CAMB AND CLASS INPUT POWER SPECTRA

In the flat model of Refs. [26-28], at late time during
inflation, using the results of Appendix A and Eq. (9.1.9) of
Ref. [58], we have

Pr = Ck"™*, (C1)

where n=(2-3q)/(2-q)
constant

4 6—gq 87 (o) 2/p
C= r2(——2)pvr Oapa ), (2
mpzq < 2p >p <3mp2p<1> aop ( )

and the proportionality

so, from Eq. (BYS),

C

Pr =k, (c3)
272
In the limit of small ¢ = 2¢2, Eq. (C1) reduces to
27h?
PR—m22k3, (C4)

p

where h2 = 4z(6 — q)p /(9m,?).
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In the open linear scalar-field potential-energy density
model of Ref. [39], with V(®) = 12h*[1 — e®] where h is a
constant, at late times during inflation

27h? 1
P _— C5
R m, m,2e2 A(A2+ 1) (€5)
)
h? A?
C6
Pr = mm, am, 22 A2+ 1 (Co)

In the closed linear scalar-field potential-energy density
model of Ref. [37], at late times during inflation

27h? 1
Pr = , C7
R 2e2A(A+1)(A+2) (€7)

SO
o (A+1)?
P C8
R mm,’e? A(A+2) (C8)
In the limit A > 1, Egs. (C5) and (C7) become
27h?

Pp=—"55A", 9
R — mp2€2 ( )

which is identical to the expression in Eq. (C4). As
expected, on small scales at late times during nonflat
inflation when spatial curvature is unimportant, the very-
slow-roll closed and open inflation model primordial power
spectra are identical to the very-slow-roll flat inflation
model primordial power spectrum.

The CAMB and CLASS input power spectra are defined
in Ref. [55]. The definition in their Eq. (3.23) is a little
unusual given the (27)* in their Eq. (3.24), but the
normalization of the power spectrum is an adjustable
parameter to be determined by fitting to data.

Comparing Ref. [55] Egs. (3.25) and (3.26) in the
flat case, we see that their Eq. (3.26) is identical to
Eq. (C3) above.

Reference [63] defines the negative of the eigenvalue of
the spatial Laplacian to be k?/|K| in their Eq. (1.11). Here
K = —H%Qko is negative (positive) for open (closed)
spatial hypersurfaces and €2, is the current value of the
spatial curvature density parameter. In the second line
below Eq. (3.4) of Ref. [55] (where they define ¢ in terms
of k) they define another wave number v = ¢/+/|K|. It can
be seen that in the open model their v is identical to the A
we use here while in the closed model their v is identical to
the A + 1 we use here.

Reference [55] uses an unusual but now standard
convention. They define Pr = A;k"~! to be the flat space
expression; see their Eq. (3.26). To make this clear, in what
follows, we put a superscript FS on this and write
PES = Ak"~!. What we call Py they refer to as

Pr() = = PR (C10)

Here K = K/|K| which is —1(+1) for open (closed)
hypersurfaces. The above expression can be derived from
their Eq. (3.29) by changing variables from ¢ to v. That our
Px is their Py follows from their Eq. (3.28) by rewriting
dv? as (dv/v)v? and combining the * with the last factor
in the integrand and then comparing to the flat-space
expression in their Eq. (3.25).

Setting n = 1 in the Ref. [55] nonflat expressions, as we
want to compare to the linear scalar-field potential-energy
density inflation expressions above, we find in the open
case the Ref. [55] formula is

A2

Ry (c1)

PR X

that is in agreement with Eq. (C6) above, and in the closed
case the Ref. [55] formula is

(A+1)?

REAAT2) (C12)

which agrees with Eq. (C8) above.
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