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Using mock data for the Hubble diagrams of type Ia supernovae (SNIa) and quasars (QSOs) generated
based on the standard model of cosmology, and using the least-squares method based on the Markov-Chain-
Monte-Carlo (MCMC) algorithm, we first put constraints on the cosmographic parameters in the context of
the various model-independent cosmographic methods reconstructed from the Taylor 4th and 5th order
expansions and the Padé (2,2) and (3,2) polynomials of the Hubble parameter, respectively. We then
reconstruct the distance modulus in the framework of cosmographic methods and calculate the percentage
difference between the distance modulus of the cosmographic methods and that of the standard model. The
percentage difference is minimized when the Padé approximation is used which means that the Padé
cosmographic method is sufficiently suitable for reconstructing the distance modulus even at high-redshifts.
In the next step, using the real observational data for the Hubble diagrams of SNIa, QSOs, gamma-ray-bursts
(GRBs), and observations from baryon acoustic oscillations (BAO) in two sets of the low-redshift
combination (SNIaþ QSOsþ GRBsþ BAO) embracing the redshift range of 0.01 < z < 2.26 and the
high-redshift combination (SNIaþ QSOsþ GRBs) which covers a redshift range of 0.01 < z < 5.5, we put
observational constraints on the cosmographic parameters of the Padé cosmography and also the standard
model. Our analysis indicates that Padé cosmographic approaches do not reveal any cosmographic tension
between the standard model and the observational data. We also confirm this result, using the statistical AIC
criteria. Finally, we put the cosmographic method in the redshift-bin data and find a larger value of Ωm0

extracted from s0 parameter compared with those of the q0 parameter and Planck-ΛCDM values.
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I. INTRODUCTION

In 1998, observations of SNIa confirmed that our uni-
verse is undergoing an accelerated expansion [1–3]. In
addition, this accelerated phase has been approved by a
large body of the cosmic observations including the
Wilkinson Microwave Anisotropy Probe (WMAP) and
the Planck observations of the cosmic microwave back-
ground (CMB) [4–6], the Sloan Digital Sky Survey (SDSS),
WMAP, 2dFGRS, and 6dFGS observations of the large-
scale structure (LSS), and the baryon acoustic oscillations
(BAO) measurements [7–12], high-redshift galaxies [13],
high-redshift galaxy clusters [14,15] and weak gravitational
lensing [16–18].
In order to interpret the accelerated expansion of the

universe, some cosmological groups modified the standard
theory of gravity and considered that the theory of general
relativity (GR) encounters problems on cosmological scales
[19–23]. For a recent review see [24]. In contrast, other
groups have considered an unknown substance with neg-
ative pressure the so-called dark energy (DE) as a respon-
sible for this acceleration. From the latter point of view, the

simplest cosmological model is the ΛCDM model, also
known as the concordance model, which has a constant
equation of state (EoS) for DE equal to −1. In this model,
the Λ and CDM stand for cosmological constant and cold
dark matter, respectively. Even though the ΛCDM cosmol-
ogy is in good agreement with a large body of the
observational data, it suffers from fundamental problems
like fine-tuning and cosmic coincidence [25–29]. In addi-
tion, recently a conflict in the Hubble constant value has
been emerged by CMB measurements of Planck with
classical distance ladder [30]. These discrepancies have
led to cosmological tensions, which have been a popular
topic lately, and a wide variety of DE models with time-
varying EoS have been emerged so far to solve these
problems [31–39]. For a recent review about the cosmo-
logical tensions of the standard model of cosmology, we
refer the reader to [40]. In recent years, many efforts have
been made to obtain the best cosmological model with the
lowest inconsistency with observational data. By comparing
different models, some have been ruled out, though some
showed good agreement with the observational data (see
[41–46]).
While the expansion of the universe can be investigated

model dependently, one can study the expansion history of*malekjani@basu.ac.ir
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the universe directly from observational data without
considering any particular model. These approaches are
recognized as model-independent methods.
Gaussian process is a nonlinear Bayesian approach that

can directly reconstruct observational data. The method is
based on the distribution over function, and a covariance
function will be included to connect two distinct data
points, and the process will progress to predict other data
values in higher redshifts [47–49]. This approach has been
applied broadly in cosmology [49–54].
Another model-independent method is the smoothing

method, a nonparametric iterative approach that recon-
structs functions from an initial ansatz. It uses a smoothing
kernel, and each step results in a better fit for the
cosmological data [55]. Genetic algorithm is another
model-independent approach inspired by natural selection
used in [56] on supernova Ia data to reconstruct the Hubble
parameter H(z). More details and applications of the
genetic algorithm in cosmology can be found in [57].
Artificial neural network (ANN) can be considered as
another model-independent method that has also been used
as a nonparametric reconstruction of the cosmological
functions that does not assume any statistical distribution
of observational data [58].
Finally, the cosmographic approach, which would be used

in this paper as a model-independent approach, is basically
defined on the basis of the Taylor expansion of cosmological
functions of scale factor a (or equivalently cosmic redshift z)
such as Hubble parameter and luminosity distance around
the present time z ¼ 0. This approach has commonly
been used in literature [59–70]. This method relies only
on the assumption of a homogeneous and isotropic universe
described in the Friedman-Lemaitre-Robertson-Walker
(FLRW) metric. While a Taylor expansion with respect to
redshift z can estimate the cosmic evolution at z ∼ 0, it fails
at high redshifts (see [71–73] for earlier attempts). The main
issue of Taylor series in z-redshift, is the convergence
problem at high redshifts causes to serve the error propa-
gation in Taylor series and consequently reduces the
cosmography prediction [61,74–76]. One possible way to
improve the cosmography method is the use of the auxiliary
variables to reparametrize the redshift variable through
functions of z, for example y-redshift as y ¼ z=ð1þ zÞ
[63]. The other way is to assume a smooth evolution of the
observable quantities by expanding them in terms of rational
approximations like Padé [64,65,75,77–79] and Chebyshev
polynomials [80].
Recently, Lusso et al., [67] by using the high-redshift

Hubble diagrams of QSOs and GRBs claimed the existence
of a big tension between the cosmographic parameters of the
standard ΛCDM model and those of the cosmographic
method defined on the basis of the logarithmic expansion of
the luminosity distance in terms of y-redshift (see also [81]).
Notice that the result of [67] is impacted by cosmographic
method, as explained in [82]. The cosmographic approach

presented in [67], has been extended to a general case by
applying the orthogonalized logarithmic polynomials of the
luminosity distance [69]. In this general case, the authors of
[69] showed a big tension (> 4σ) between the standard
model and model-independent cosmographic method
using the Hubble diagrams of SNIa and QSOs. It should
be emphasized that the above tension depends on the
slope parameter of the log-linear relation between the
UVand x-ray luminosities of QSOs described by logLX ¼
γ logLUV þ β. The nonevolution treatment of this relation
against cosmic redshift has been tested in [81]. They drove
an average value for the slope parameter γ ∼ 0.6, insensi-
tively from the specific choice of the redshift bins of their
analysis. However, it is mentionable that the authors of [83]
showed a slight change of the slope parameter can make the
4σ tension disappear. In the other word, they found that the
QSOs relation can affect the cosmographic constraints.
Going beyond the standard model, Rezaei et al., in [68]
investigated three different DE parametrizations namely
wCDM, CPL, and Padé parametrization for EoS parameter
using the Hubble diagrams of SNIa, QSOs, and GRBs in the
cosmographic method. Based on the 4th order Taylor
expansion of the Hubble parameter, they showed that these
parametrizations are consistent with model-independent
cosmographic approach. The same study has been done
for the holographic dark energy (HDE) model with time-
varying EoS parameter in [84]. In the context of cosmo-
graphic method based on the 4th order Taylor expansion of
the Hubble parameter, Pourojaghi and Malekjani showed
that there is no tension between HDE model and high-
redshift Hubble diagrams of QSOs and GRBs [84].
On the other hand, the authors in [85] have shown that the

logarithmic polynomial expansion of the luminosity dis-
tance, which is the basis for the strong claim [67,69,81] that
there is a deviation of about 4σ from the flat-ΛCDM model
when fitted to high-redshift Hubble diagrams of QSOs and
GRBs, holds up to redshifts z ∼ 2. In other words, the log
polynomial approximation cannot recover the flat-ΛCDM
model at higher redshifts and thus undermines the 4σ
tension claim (see also [82]). Overall, we should be very
careful when applying the cosmographic method at high-
redshifts, implying that we should be able to recover the
flat-ΛCDMmodel. It is worth noting that the direct fit of the
standard model to the QSOs data shows a deviation of about
4σ in the best-fit matter density Ωm0 ¼ 0.9 from the flat-
ΛCDM value Ωm0 ¼ 0.3 [82]. In this fit, a universe without
DE (Ωm ¼ 1) lies within the 1σ confidence region. We note
that the dynamical DE models are in complete agreement
with high-redshift Hubble diagrams of QSOs and GRBs in
the context of the cosmographic method [68,84]. On the
basis of the above description, we should validate the
cosmographic approach before getting any conclusion at
high-redshifts. In this regard, the authors of [64] showed that
the cosmographic approach based on the rational Padé
series performs better than the standard Taylor series at
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redshifts z > 1. In addition to Padé polynomials, the other
rational polynomials that have been used in cosmographic
method is the Chebyshev approximations [80]. It has been
shown that the rational Chebyshev series works better than
standard Taylor series and reduces the error truncation [80].
In the context of inverse cosmography (see [66]), the
Chebyshev-like EoS parameter of DE mimics the Padé
EoS parameter at high-redshifts, but it has a divergence at
low-redshifts [86].
One possible way to examine the validity of the cosmo-

graphic method at high-redshifts is the use of mock data for
the Hubble diagram generated upon the cosmological
model. In this concern, we expect that the distance modulus
of both cosmographic method and cosmological model are
to agree with the mock data. In fact any tension between
cosmographic method and mock data has not physical
meaning and therefore is related to the error truncation of
the mathematical approximation used in cosmographic
approach. We investigate both Taylor and Padé approx-
imations of the Hubble parameter used in cosmographic
method for reconstructing the distance modulus of SNIa,
QSOs, and GRBs. Using mock data for the Hubble
diagrams of SNIa and QSOs produced based on the normal
distribution around the mean value μΛðziÞ, where μΛðziÞ is
the distance modulus of the standard flat-ΛCDM model,
we can choose the best approximation of Hubble parameter
for cosmographic method. The goal of our analysis based on
mock data is to show that the rational Padé approximation
performs better than Taylor series beyond z ¼ 1, where
the standard cosmographic approach suffers from conver-
gence problem. We will show that unlike to Taylor series,
the approximation is under control in the rational Padé
polynomials. After fixing the cosmographic method that
performs at higher redshift with a minimum error truncation,
we compare the best-fit values of the cosmographic param-
eters of standard ΛCDM model obtained using the real
observational data for the Hubble diagrams of SNIa, QSOs
and GRBs, with those of the model-independent cosmo-
graphic method constrained with the same datasets.
Comparing these two measurements can lead us to get a
reasonable conclusion about the consistency of the standard
ΛCDMmodel with the observational Hubble diagrams from
SNIa, QSOs and GRBs.
The layout of this article is as follows: In Sec. II, we will

introduce cosmographic approaches based on the linear
Taylor series, and rational Padé series. We then present the
cosmographic parameters for cosmographic approaches and
also for the standard ΛCDM model. In Sec. III, the process
of producing mock data for the Hubble diagrams of SNIa
and QSOs has been presented. We then study the validation
of the cosmographic methods using mock data. In Sec. IV,
using the combinations of low-redshift and high-redshift
observational data, we put observational constraints on the
cosmographic parameters of the flat-ΛCDM model and
compare the results with the confidence regions of the

model-independent cosmographic method obtained from
the same datasets. Ultimately, in Sec. V, we conclude
this work.

II. THE COSMOGRAPHIC APPROACH

Recently, many attempts have been made to investigate
the model-independent approaches, extracting information
directly from the observational data instead of utilizing DE
models. Cosmography is one of the model-independent
methods, which profits from an uncomplicated assumption
of homogeneity and isotropy, and can assist us to investigate
the evolution of the universe. By using the Friedman-
Lemaitre- Robertson- Walker (FLRW) metric, one can
express cosmographic parameters by scale factor derivatives
with respect to cosmic time as follows [73]:

H ¼ að1Þ

a
; q ¼ −

að2Þ

aH2
; j ¼ að3Þ

aH3
;

s ¼ að4Þ

aH4
; l ¼ að5Þ

aH5
; m ¼ að6Þ

aH6
; ð1Þ

Where aðnÞ denotes the nth derivatives of the scale factor.
We note that cosmography parameters are independent of
dark energy and its equation of state. Hence the cosmog-
raphy procedure is purely independent of the model. The
cosmographic parameters pointed above are extremely
valuable observables for extracting information from the
universe when calculated at the present time. Moreover,
each has a physical meaning behind them, making
them proper for explaining the expansion history of the
universe. Hubble function with the equation of H ¼ _a

a
indicates the expansion or contraction phase of the universe
( _a > 0 → H > 0 → expansion). Sign of the deceleration
parameter, q ¼ − ä

aH2, controls the accelerated or deceler-
ated expansion phase of the universe. When q < 0, ä > 0
reveals that the universe is in accelerating phase. Other
cosmographic parameters will become important at higher
redshifts. For more information about the physical meanings
of cosmographic parameters, we refer the reader to [84].

A. Taylor series for cosmography

The Taylor expansion of the scale factor up to sixth order
in terms of cosmographic parameters takes the form below:

aðtÞ ≃ 1þH0ðt − t0Þ −
q0
2!

H2
0ðt − t0Þ2

þ j0
3!
H3

0ðt − t0Þ3 þ
s0
4!
H4

0ðt − t0Þ4

þ l0
5!
H5

0ðt − t0Þ5 þ
m0

6!
H6

0ðt − t0Þ6: ð2Þ

We can obtain the following relations between various
time-derivative of Hubble parameter H and cosmographic
parameters
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Hð1Þ ¼ −H2ðqþ 1Þ
Hð2Þ ¼ H3ðjþ 3qþ 2Þ
Hð3Þ ¼ H4ð−4j− 3q2 − 12qþ s− 6Þ
Hð4Þ ¼ H5ð10jqþ 20jþ lþ 30q2 þ 60q− 5sþ 24Þ
Hð5Þ ¼ H6ð−10j2 − 120jq− 120j− 6lþm− 30q3 − 270

× q2 þ 15qs− 360qþ 30s− 120Þ: ð3Þ
While HðnÞ indicates the nth time derivative of the Hubble
parameterH. In a cosmographic method, we reconstruct the

Hubble expansion of the universe by Taylor expanding of
the Hubble parameter around the present time (z ¼ 0) as

HðzÞ ≃H0 þH1jz¼0zþH2jz¼0

z2

2!

þH3jz¼0

z3

3!
þH4jz¼0

z4

4!
þH5jz¼0

z5

5!
; ð4Þ

where Hn can be written as follows:

H1jz¼0 ¼
dH
dz

����
z¼0

¼ H0ð1þ q0Þ

H2jz¼0 ¼
d2H
dz2

����
z¼0

¼ H0ðj0 − q20Þ

H3jz¼0 ¼
d3H
dz3

����
z¼0

¼ H0ð−4j0q0 − 3j0 þ 3q30 þ 3q20 − s0Þ

H4jz¼0 ¼
d4H
dz4

����
z¼0

¼ H0ð−4j20 þ 25j0q20 þ 32j0q0 þ 12j0 þ l0 − 15q40 − 24q30 − 12q20 þ 7q0s0 þ 8s0Þ

H5jz¼0 ¼
d5H
dz5

����
z¼0

¼ H0ð70j20q0 þ 60j20 − 210j0q30 − 375j0q20 − 240j0q0 þ 15j0s0 − 60j0 − 11l0q0

− 15l0 −m0 þ 105q50 þ 225q40 þ 180q30 − 60q20s0 þ 60q20 − 105q0s0 − 60s0Þ: ð5Þ
Because of the divergence problem, we cannot use this expansion at z > 1, while most of the cosmological data are
observed at redshifts higher than z ¼ 1 [61]. By considering the following y-redshift definition, radius convergence has
been improved, while physical definition has not changed [61,63,68,76,79,87]:

y ¼ z
1þ z

: ð6Þ

Utilizing Eq. (6), the Taylor expansion of Hubble parameter around present time (y ¼ 0) can be rewritten as below:

HðyÞ ≃H0 þ
dH
dy

����
y¼0

yþ d2H
dy2

����
y¼0

y2

2!
þ d3H

dy3

����
y¼0

y3

3!
þ d4H

dy4

����
y¼0

y4

4!
þ d5H

dy5

����
y¼0

y5

5!
: ð7Þ

By using Eq. (5) and changing derivatives with respect to z into derivatives with respect to y, we can reconstruct the Hubble
parameter as below:

EðyÞ ¼ 1þ C1yþ C2

y2

2!
þ C3

y3

3!
þ C4

y4

4!
þ C5

y5

5!
; ð8Þ

where coefficients Ci are given as follows:

C1 ¼ q0 þ 1

C2 ¼ j0 − q20 þ 2q0 þ 2;

C3 ¼ −4j0q0 þ 3j0 þ 3q30 − 3q20 þ 6q0 − s0 þ 6

C4 ¼ −4j20 þ 25j0q20 − 16j0q0 þ 12j0 þ l0 − 15q40 þ 12q30 − 12q20 þ 7q0s0 þ 24q0 − 4s0 þ 24

C5 ¼ 70j20q0 − 20j20 − 210j0q30 þ 125j0q20 − 80j0q0 þ 15j0s0 þ 60j0 − 11l0q0 þ 5l0 −m0 þ 105q50 − 75q40

þ 60q30 − 60q20s0 − 60q20 þ 35q0s0 þ 120q0 − 20s0 þ 120: ð9Þ
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In Sec. III, we investigate the 4th and 5th order Taylor
series based on the y variable and calculate the accuracy of
these expansions in terms of cosmic redshift.

B. Rational Padé polynomials for cosmography

As mentioned before, there are limitations in using
cosmography based on Taylor’s expansion of z-redshift
at high-redshifts. In other words, Taylor’s expansion of the
Hubble diagram has divergence problems at z > 1; con-
sequently, the predictions will be unproductive. On the
other hand, though utilizing y-redshift in Taylor’s expan-
sion improve the high-redshifts divergence problem. Since
we cannot continue the Taylor expansion (both z-redshift
and y-redshift) to infinity, the error truncation in a particular
order causes an inaccuracy in our computations and
consequently affects the results. One of the approaches
proposed to overcome this limitation is utilizing the rational
Padé approximation to reconstruct the Hubble parameter
[64,65,75,79].
Compared to Taylor’s expansion, the Padé parametriza-

tion has better efficiency. Since the rational Padé approxi-
mation makes divergence amplitude larger, it can increase
the convergence domain of the approximation. Thus
utilizing it leads to more accurate results in such a way
that in cases where Taylor expansion loses efficiency
because of divergency, Padé approximation can be a better
solution. Typically, a Padé approximation in (n,m) order
can be defined as follows:

Pn;mðzÞ ¼
P0þP1zþ� � �þPnzn

1þQ1zþ� � �þQmzm
¼

P
n
i¼0Pizi

1þP
m
j¼0Qjzj

; ð10Þ

where P and Q coefficients correspond to the Taylor
expansion coefficients as below:

Pn;mð0Þ ¼ fð0Þ
P0
n;mð0Þ ¼ f0ð0Þ

..

.

PðnþmÞ
n;m ð0Þ ¼ fðnþmÞð0Þ: ð11Þ

Considering a Taylor expansion as fðzÞ ¼ Σ∞
0 Cizi and

equalizing it with the Padé approximation, P and Q
coefficients can be achieved according to the Taylor series
coefficients as follow:

X∞
i¼0

Cizi ¼
P

n
i¼0 Pizi

1þP
m
j¼0Qjzj

: ð12Þ

Note that in mentioned equalization, we are only allowed
to equalize the Padé approximation of order (n,m) with
the Taylor series of order nþm. Therefore coefficients of
Padé approximation based on the Taylor expansion

coefficients can be achieved having nþmþ 1 equations
and nþmþ 1 unknowns.
Ultimately, the dimensionless Hubble parameter can be

reconstructed as follows by employing the Padé para-
metrization:

EðzÞ ¼ H
H0

¼
P

n
i¼0 Pizi

1þP
m
j¼0Qjzj

: ð13Þ

In the following, we consider Padé series (2,2) and (3,2),
equivalent to 4th and 5th order Taylor series respectively,

P2;2 ¼
P0 þ P1zþ P2z2

1þQ1zþQ2z2
;

P0 ¼ 1;

P1 ¼ E1;0 þQ1;

P2 ¼ E1;0Q1 þ
E2;0

2
þQ2;

Q1 ¼
−E1;0E1;0 þ 2E2;0E3;0

4E1;0E3;0 − 6E2
2;0

;

Q2 ¼
3E2;0E4;0 − 4E2

3;0

24E1;0E3;0 − 36E2
2;0

; ð14Þ

P3;2 ¼
P0 þ P1zþ P2z2 þ P3z3

1þQ1zþQ2z2
;

P0 ¼ 1;

P1 ¼ E1;0 þQ1;

P2 ¼ E1;0Q1 þ
E2;0

2
þQ2;

P3 ¼ E1;0Q2 þ
E2;0Q1

2
þ E3;0

6
;

Q1 ¼
−3E2;0E5;0 þ 5E3;0E4;0

15E2;0E4;0 − 20E2
3;0

;

Q2 ¼
4E3;0E5;0 − 5E2

4;0

60E2;0E4;0 − 80E2
3;0

; ð15Þ

where En;0 represents Hnjz¼0

H0
and Hnjz¼0 is calculated

from (5).

C. Cosmographic parameters of the ΛCDM model

So far, we have outlined the cosmographic approach and
derived its parameters model-independently. Nevertheless,
in order to make a comparison between the cosmographic
method and model, we additionally have to extract the
cosmographic parameters of model. In the context of GR,
by assuming a flat FLRM metric, the Hubble parameter for
a universe composed by radiation, matter and DE can be
written as follows:
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H2ðzÞ ¼ H2
0½Ωm0

ð1þ zÞ3þ;

Ωr0ð1þ zÞ4 þ ð1 −Ωm0
−Ωr0Þe3

R
dz
1þzð1þwÞ�; ð16Þ

where H0, Ωm0
, and Ωr0 represent values of the Hubble

parameter, pressureless matter, and radiation energy den-
sity, respectively, at the current time. Since we are studying
late time evolution, the radiation component portion is
negligible compared to other components. The above
equation for the flat-ΛCDM cosmology takes the simple
form

EðzÞ ¼ HðzÞ
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0

ð1þ zÞ3 þ ð1 − Ωm0
Þ

q
: ð17Þ

Considering derivatives of Eq. (17), we can derive the
cosmographic parameters for the flat-ΛCDM model as
follow (see also [67,68]):

q0 ¼ −1þ 3

2
Ωm0;

j0 ¼ 1;

s0 ¼ 1 −
9

2
Ωm0;

l0 ¼ 1þ 3Ωm0 þ
27

2
Ω2

m0;

m0 ¼ −
81

4
Ω3

m0 − 81Ω2
m0 −

27Ωm0

2
þ 1: ð18Þ

III. COSMOGRAPHIC METHOD AGAINST
MOCK DATA

In this section, we first present the procedure of
producing mock data for the Hubble diagrams of SNIa
and QSOs based on the flat-ΛCDM model, and then check
the validation of different cosmographic methods consid-
ered in this work using mock data. We use the Pantheon
sample for supernovae type Ia dataset with redshift ranging
0.01 < z < 2.26 that contains 1048 type Ia supernovae
gathered from different surveys like Pan-STARRS1, SDSS,
SNLS, various low-z, and HST samples [88]. We also use
1598 data points ranging 0.04 < z < 5.1 for QSOs as the
distance indicator from [81]. We use the observed redshift
and error bars of SNIa and QSOs from the above dataset for
generating mock data.
The theoretical distance modulus for a given redshift is

as follows:

μðzÞ ¼ 5log10ð1þ zÞ
Z

z

0

dz
EðzÞ þ μ0; ð19Þ

where μ0 ¼ 42.384 − 5log10ðhÞ. We first calculate the
distance modulus for the flat-ΛCDM model, μΛðziÞ, in
any given redshift zi from Eq. (19) and by implementing
Eq. (17). Here, we set the canonical values Ωm0 ¼ 0.3 and

h ¼ 0.7. Mock data are generated using a normal distri-
bution with μΛðziÞ as mean and ΔμðziÞ as standard
deviation. Here, ΔμðziÞ are considered as the observational
errors of SNIa and QSOs data points, and zi are their
observational redshifts.
To ensure that our mock data has been well produced

upon the ΛCDM model, we put constraints on the Ωm0

parameter using mock data and compare the result with the
canonical value Ωm0 ¼ 0.3. To do this, we adopt the
standard minimization of chi-square function based on
the statistical MCMC algorithm as below:

χ2 ¼
X
i

½μthðziÞ − μmocðziÞ�2
σ2i

: ð20Þ

Where μth and μmoc denote theoretical and mock distance
modulus, respectively, and σi indicates corresponding errors
of mock data. We can confirm the procedure of generating
mock data for the Hubble diagrams of SNIa and QSOs, if
the canonical valueΩm0 ¼ 0.3 is in full consistency with 1σ
confidence region of Ωm0 obtained from our MCMC
analysis. After confirming that mock data is performing
precisely, free parameters of the Taylor and Padé expansions
will be constrained using this mock data within the context
of MCMC algorithm. Ultimately, distance modulus of
standard ΛCDM and each of the Padé and Taylor expan-
sions can be calculated using the best fit values of the free
parameters. The percentage difference between distance
modulus of ΛCDM and each of the expansions which is
given by

FIG. 1. Best-fit value of Ωm0 parameter for the flat-ΛCDM
model using mock SNIa data.
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Δ ¼ μcosmography − μΛ
μΛ

× 100; ð21Þ

shows the accuracy of the cosmographic method. Lower Δ
for each pair of comparison between expansions and
the ΛCDM model can reveal the minor error truncation,
which indicates that the mentioned expansion will work
better when used in the model-independent cosmographic
approach. In subsequent, we present the numerical results
of our analysis.

A. Mock SNIa sample

In Fig. 1, our constrain utilizing mock SNIa data
indicates Ωm0 ¼ 0.3� 0.013. Since the canonical value
of Ωm0 is in 1σ confidence level, we conclude that the
mock data for the Hubble diagram of SNIa are properly
generated on μΛðzÞ. Furthermore, using Eq. (18), the best-
fit values of the cosmographic parameters for the flat
standard model are obtained as reported in the first row of
Table I. On the other hand, using mock SNIa data, we
constraint the cosmographic parameters model-independ-
ently for different cosmographic methods defined based on
the 4th and 5th order Taylor expansions as well as Padé
(2,2) and Padé (3,2) approximations, respectively. Our
numerical results for various cosmographic methods are
presented in Table II. In Fig. 2, we show 1σ to 3σ
confidence levels of q0 and j0 parameters for the different
cosmographic methods. We observe that in the cases of
cosmographic methods beyond 4th order Taylor series, we
get larger confidence regions for cosmographic parameters
q0 and j0. Now, using the best-fit values of cosmographic
parameters, we reconstruct the distance modulus for
different cosmographic methods and compare them with
that of the standard flat-ΛCDM model. We also compare
the best-fit values of the cosmographic parameters q0 and
j0 obtained in flat-ΛCDM with the confidence regions of

the same parameters obtained in cosmographic methods.
Results are shown in Fig. 3. Our results for the cosmo-
graphic method based on the 4th order Taylor series are
shown in panels (a) and (b). In panel (a), we observe that
the difference between the distance modulus of the
standard model and that of the cosmographic method
based on the 4th order Taylor series reaches to 0.39% at
redshift z ¼ 2.5. In panel (b), we observe no significant
difference between ΛCDM value and confidence region of
cosmography for q0 parameter, while a 3.2σ deviation is
seen for the j0 parameter. We also observe tensions 6.22σ

TABLE I. The best-fit value of Ωm0 for the standard ΛCDM model, using mock SNIa and QSOs data (left). The
best-fit values of cosmographic parameters of the standard ΛCDM model, using mock SNIa and QSOs data (right).

Ωm0 j q0 j0 s0 l0 m0

Mock SNIa 0.300� 0.013 j −0.550� 0.020 1 −0.351� 0.059 3.12þ0.14
−0.15 −10.92þ0.92

−0.82

Mock QSOs 0.2978� 0.0094 j −0.553� 0.014 1 −0.340� 0.042 3.092þ0.097
−0.11 −10.75þ0.67

−0.58

TABLE II. Best-fit values and 1σ confidence intervals of the cosmographic parameters obtained from various
cosmographic approaches, using mock SNIa data.

q0 j0 s0 l0 m0

Taylor 4 −0.565� 0.033 1.45� 0.14 1.43þ0.26
−0.30 1.52� 0.27 � � �

Taylor 5 −0.506þ0.075
−0.068 0.81þ0.40

−0.53 −0.9þ1.2
−2.2 0.9þ2.9

−3.4 −1.1þ7.9
−6.7

Padé (2,2) −0.552� 0.068 1.31� 0.46 1.3þ1.5
−1.1 2.9þ2.3

−1.5 � � �
Padé (3,2) −0.511� 0.064 0.88� 0.45 −0.2� 1.7 0.3� 2.6 −3þ13

−11

FIG. 2. The confidence regions of cosmographic parameters q0
and j0 obtained form various cosmographic methods using mock
SNIa data.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. A comparison between the ΛCDM model with the cosmographic method utilizing mock SNIa data. Left panels show the
reconstructed distance modulus in the context of cosmographic method and its percentage difference with that of the standard ΛCDM
model. Right panels show the difference between ΛCDM values of q0 and j0 with confidence regions of cosmographic approach.

POUROJAGHI, ZABIHI, and MALEKJANI PHYS. REV. D 106, 123523 (2022)

123523-8



and 5.22σ, respectively, for higher cosmographic param-
eters s0 and l0 by comparing first rows of Tables I and II.
These big differences indicate that the cosmographic
method based on the 4th order Taylor series is inadequate
to reconstruct the distance modulus up to redshift z ¼ 2.5.
We emphasize that mock SNIa data were generated based
on the standard ΛCDM model. Therefor, we expect the
standard model to be well fitted to the mock data. On the
other hand, as a model-independent approach, we expect
the cosmographic method to be consistent with mock data
and consequently with the standard ΛCDM model. Hence,
in the analysis based mock data, any significant difference
between the cosmographic approach and the standard
model can be interpreted as an inadequacy of the cosmo-
graphic method due to errors of mathematical approxima-
tion. The insufficiency of the 4th order Taylor expansion of
the Hubble parameter is also confirmed from the statistical
AIC and BIC criteria in [83].
In panels (c) and (d), we display the results for cosmog-

raphy based on the 5th order Taylor series. In panel (c), we
observe that the percentage difference between the recon-
structed distance modulus in cosmographic method and that
of the flat-ΛCDM model reduces to 0.28%. Consequently,
we detect no tension between flat-ΛCDM model and
cosmographic method in q0 − j0 plane in panel (d).
Comparing the first row of Table I and the second row of
Table II, we also observe that the higher cosmographic
parameters s0, l0, and m0 of the standard model are
consistent with those of the cosmographic method. This
means that we can apply the cosmographic method defined
on the basis of the 5th order Taylor series of the Hubble
parameter for reconstructing the distance modulus at red-
shifts lower than z ¼ 2.5. In panels (e) and (f), we present
our results for Padé (2,2) approximation. In this case the
percentage difference reduces to the value 0.22% and
consequently we have no tension between cosmographic
parameters q0 and j0 of the standard model and those of the
cosmographic approach. In addition, we detect the statistical
1.3σ and 0.11σ errors, respectively, for the values of s0 and
l0 parameters (compare first row of Table I and third row of
Table II). Hence, cosmography based on the rational Padé
(2,2) approximation is also an appropriate model-indepen-
dent method for reconstructing the distance modulus dia-
gram at SNIa redshifts. Notice that Padé (2,2) has one lower
free parameter than 5th order Taylor series. Though, Padé
(2,2) approximation shows reasonable consistency with the
ΛCDM model, examining Padé (3,2) approximation can
also enhance the certainty of employing the Padé approxi-
mation in the context of the cosmographic approach. In
panels (g) and (h) of Fig. 3, we present our results for Padé
(3,2) cosmographic method. The difference between dis-
tance modulus of Padé (3,2) cosmography and the standard
model is 0.16%, which is the lowest value compared with
the previous cases. It is reasonable to infer that in this case,
the error of Padé (3,2) is so small that it can be considered

almost negligible. On the other hand, same as Padé (2,2), the
cosmographic parameters of the standard model, including
q0 and j0 parameters, are well constrained in confidence
levels of the cosmographic approach based the Padé (3,2)
approximation. Correspondingly, the difference between the
s0, l0, and m0 parameters in the two approaches is 0.09σ,
1.08σ, and 0.66σ, respectively. Thus, we have an excellent
consistency between Padé (3,2) cosmographic method and
standard model, indicating that this case of cosmographic
method can be applied for reconstructing the low-redshift
(redshifts smaller than ∼2.5) distance modulus diagram
model-independently.

B. Mock QSOs sample

Here we present our numerical results using mock QSOs
data for the Hubble diagram. Our procedure is the same as
one presented in the previous sub-section. We obtain the
constrained value of matter density for the flat-ΛCDM
model asΩm0 ¼ 0.2978� 0.0094. In Fig. 4, we see that the
canonical value Ωm0 ¼ 0.3 is full consistent with the
constrained value with the difference lower than 1σ error.
This means that mock data for Hubble diagram of QSOs
generated based on the canonical value Ωm0 ¼ 0.3 and
h ¼ 0.7 are properly fitted to the standard ΛCDM model.
Now, using Eq. (18) and constraints on Ωm0 obtained from
mock QSO sample, we obtain the best fit-values and 1σ to
3σ confidence levels of cosmographic parameters in the flat-
ΛCDM model, as reported in the second row of Table I.
Comparing the first and second rows of Table I, we see that
the best-fit values of cosmographic parameters in flat-
ΛCDM model respectively obtained from mock SNIa
and mock QSOs are consistent to each other. In the next

FIG. 4. Same as Fig. 1, but for mock QSOs data.
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step, using mock QSOs data, we constrain the cosmo-
graphic parameters in the context of various cosmographic
methods considered in this work. Results are presented
in Table III. In addition, in Fig. 5, we show 1σ to 3σ
confidence regions of cosmographic parameters q0 and j0
for different cosmographic methods. As a quick result, we
observe that the confidence level of j0 obtained from the
cosmographic method based on the 4th order of Taylor
expansion completely differs from j0 ¼ 1 which means that
this cosmographic method is not valid. Using the best-fit
values of the cosmographic parameters presented in
Table III, we reconstruct the Hubble diagram in the context
of cosmographic methods as shown in left panels of Fig. 6.
In right panels, we show the confidence regions of q0 and j0
parameters and compare the results of cosmographic meth-
ods with ΛCDM values. In panel (a), we observe that the
percentage difference between reconstructed distance
modulus in cosmographic method based on 4th order
Taylor series and μΛ reaches to 0.69% at z ∼ 5.5. In panel
(b), our constraint shows that q0 and j0 parameters in
cosmographic approach based on the 4th order Taylor series

are equal to q0 ¼ −0.963þ0.054
−0.046 and j0 ¼ 2.75þ0.13

−0.17 , while
corresponding values in the standard flat-ΛCDM model are
q0 ¼ −0.553þ0.014

−0.014 and j0 ¼ 1.00. This issue indicates a big
difference equal to 7.9σ on q0 and 11.6σ on j0 parameters,
as shown in panel (b). According to the above result, it is
evident that the cosmographic approach based on the 4th
order Taylor expansion of the Hubble parameter will not be
consistent with the standard model at higher redshift (see
also [68,81]. This inconsistency is due to the error of 4th
order Taylor series at high-redshifts. Nevertheless, as shown
in panel (c) of Fig. 6, utilizing the cosmographic approach
based on the 5thorder Taylor expansion of the Hubble
parameter can decrease the percentage difference to the
value 0.58%. In addition, we can notice that despite the
Taylor’s 4th order expansion, no significant difference can
be shown between q0 and j0 parameters in ΛCDM model
and confidence regions in cosmographic method based on
the 5th order Taylor expansion, as shown in panel (d) of
Fig. 6. It can be concluded that by increasing the order of
Taylor expansion, the difference between cosmographic
parameters of the ΛCDM model and confidence regions of
the cosmographic method based on the Taylor series will
decrease. In the other words, the inconsistency between
Taylor cosmographic method and the standard model will
vanish. Comparing the constrained values of the second row
of Table III and the second row of Table I, we observe no
significant difference between higher cosmographic param-
eters of the model-independent cosmographic approach and
flat-ΛCDM cosmology. This result shows that we can use
the cosmographic method based on the 5th order Taylor
expansion to reconstruct the distance modulus up to high-
redshift z ∼ 5. In panels (e) and (f) of Fig. 6, our results for
the cosmographic method based on the Padé (2,2) approxi-
mation have been shown. As shown in panel (e), employing
cosmography based on the Padé (2,2) approximation
reduces the difference in distance modulus diagrams to
0.02%. In addition, panel (f) shows that in this case, the
consistency between the cosmographic parameters in the
model-independent approach and the standard model is
higher than the previous case. Ultimately, the cosmographic
parameters have been constrained using the cosmographic
approach based on the Padé (3,2) approximation. In this
case, the difference between the distance modulus diagram
in the standard model and the cosmographic approach is
0.42%, which is less than the 4th and 5th order TaylorFIG. 5. Same as Fig. 1 for quasars mock data.

TABLE III. Same as Table II, but using mock QSOs data.

q0 j0 s0 l0 m0

Taylor 4 −0.963þ0.054
−0.046 2.75þ0.13

−0.17 0.15þ0.78
−0.24 0.01� 0.57 � � �

Taylor 5 −0.812þ0.082
−0.10 2.08þ0.54

−0.45 0.19þ2.0
−0.88 3.3þ1.9

−1.5 −5.2þ4.8
−8.8

Padé (2,2) −0.602þ0.069
−0.095 1.33þ0.32

−0.20 0.49þ0.58
−0.44 4.80þ1.1

−0.58 � � �
Padé (3,2) −0.70� 0.14 1.67� 0.66 0.0� 1.6 2.69þ3.2

−0.94 −1.8� 7.1
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(g) (h)

FIG. 6. Same as Fig. 3, but for mock QSOs data.
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expansions but more than Padé (2,2) approximation.
According to the panels (g) and (h) in Fig. 6, together
with the results of fourth-row in Table III, we report no
deviation between the cosmographic parameters in this
approach and the standard model. Based on the above
results, it can be inferred that in higher redshifts, cosmog-
raphy using the 5th order Taylor expansion and the
approximations of the Padé (2,2) and (3,2) can be a reliable
approach for reconstructing the Hubble diagram of cosmo-
logical objects like QSOs and GRBs. Although the 5th order
Taylor series in cosmographic method works correctly at
high-redshifts, the Padé (2,2) approximation with one lower
free parameter is more reliable approximation to be
employed. Accordingly in the next section, we constrain
the cosmographic parameters using the real observational
data for the Hubble diagrams of SNIa, QSOs and GRBs in
the context of cosmographic method defined based on the
Padé (2,2) and Padé (3,2) approximations. In this concern, if
the observational data reveals any significant deviation
between the cosmographic parameters of cosmographic
methods and flat-ΛCDM model, it can be interpreted as
an observational tension for standard model.

IV. OBSERVATIONAL DATA

As shown in the previous section, the Padé (2,2) and
(3,2) polynomials, despite Taylor’s 4th order expansion,
can reconstruct the proper distance modulus in the model-
independent approach at both redshifts z < 2.5 and
z < 5.5. In this section, we compare the flat-ΛCDM model
with the Padé cosmographic approaches, using the real
observational data. Since the error truncation of Padé (2,2)
and Padé (3,2) are negligible at least up to redshift z ∼ 5.5,
if any tension between the cosmographic parameters of
standard model and those of the cosmographic method is
revealed using the observational Hubble diagrams or other
cosmological data, it is due to the standard model itself. In
this study, we set two combinations of observational data
samples including Hubble diagram of SNIa in the Pantheon
catalogue, BAO measurements, binned data for Hubble
diagram of QSOs, and the Hubble diagram of GRBs. We
mention that the complete sample of QSOs contains 1598
data points ranging 0.04 < z < 5.1, while we used a binned
catalogue including 25 data points from [81]. More details
of sample selection and the procedure of binned data have
been discussed in 81. The data sample for GRBs used in
this research contains 137 data points at the redshift range
0.03 < z < 5.5 collected in [89]. We note that the GRBs
sample in [89] has 141 data points extended to redshift 9.3.
However, we neglect 4 data points at redshifts higher than
z ¼ 5.5, because our Padé cosmographic methods was not
examined beyond z ∼ 5.5, in the previous section. We use
the BAO data from seven different surveys: 6dFGS, SDSS-
LRG, BOSS-MGS, BOSS-LOWZ, WiggleZ, BOSS-
CMASS, BOSS-DR 12 (for details see [90,91]). Sample
(i) includes the low-redshift data: SNIaþ BAOþ QSOs

ðup to z ¼ 1.8Þ þ GRBs (up to z ¼ 2), which embraces
redshift range 0.01 < z < 2.26 and sample (ii) includes all
observational data: SNIaþ QSOsþ GRBs that covers red-
shift range 0.01 < z < 5.5. Notice that the binned QSOs up
to z ¼ 1.8 contains 16 data points from all 25 data points.
In addition, GRBs at z < 2 includes 76 data points from all
141 data points. In the case of sample (i), we read the total
chi-square from

χ2tot ¼ χ2SNIa þ χ2QSOsðz<1.8Þ þ χ2GRBsðz<2Þ þ χ2BAO; ð22Þ

and in the case of sample (ii), we use

χ2tot ¼ χ2SNIa þ χ2QSOs þ χ2GRBs: ð23Þ

Our numerical results for minimizing χ2 function in the
context of MCMC algorithm have been reported in
Tables IV, V, and VI. In Table IV, we first report the best
fit values of the free parameters of the flat-ΛCDM model
for both dataset combinations and then show the best fit
values of the cosmographic parameters of the model,
utilizing Eq. (18). In Table V (Table VI), we present the
best-fit values of the cosmographic parameters in the
context of Padé cosmographic methods, using sample (i)
[(sample (ii)]. In the following, we discuss our numerical
results in this section.

A. Numerical results for sample (i)

As it is shown in the upper part of Table IV for sample
(i), using the low-redshift observations including SNIa,
QSOs (z < 1.8), GRBs (z < 2) and BAO, we can put

TABLE IV. Upper part: Best-fit values of the cosmological
parameters for theΛCDMmodel, utilizing two data combinations
consist of sample (i) and sample (ii). Middle part: Best-fit values
of the cosmographic parameters of the standard ΛCDM model,
using samples (i) and (ii). Lower part: The minimum value of χ2

function and corresponding AIC value obtained for the standard
ΛCDM cosmology.

Cosmological parameters Sample (i) Sample (ii)

Ωb0 0.0507� 0.0041 � � �
Ωdm0 0.2504� 0.0093 � � �
Ωm0 0.3011� 0.0080 0.295� 0.012
h 0.7167� 0.0018 � � �
Cosmographic parameters
q0 −0.548� 0.012 −0.557� 0.019
j0 1 1
s0 −0.355� 0.036 −0.328� 0.056
l0 3.128� 0.089 3.06þ0.13

−0.14
m0 −10.97� 0.54 −10.57þ0.86

−0.76

Statistical criteria
χ2min 1148.49 1220.12
AIC 1154.49 1222.12
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observational constraints on the cosmological parameters
Ωm0 and h of the standard flat-ΛCDM model as Ωm0 ¼
0.3011þ0.008

−0.008 and h ¼ 0.7167� 0.0018. Our constraints on
h ¼ H0=100 is between the Planck measurement H0 ¼
67.4� 0.5 km s−1 Mpc−1 [92] and local determinations
H0 ¼ 73.0� 1.4 km s−1 Mpc−1 [93]. Using our constrains
on Ωm0 and Eq. (18), we obtain the best-fit values of the
cosmographic parameters in flat-ΛCDM cosmology, as
reported in the middle part of Table IV for sample (i).
Finally, we report the minimum value of χ2 function and
corresponding AIC value in the lower part of Table IV. In
the next step, we constraint the cosmographic parameters in
the context of Padé cosmographic methods, using the
datasets of sample (i) as shown in Table V and Fig. 7.
In Fig. 7. we have shown 1σ to 3σ confidence levels of the
cosmographic parameters q0 and j0 in the context of Padé
(2,2) and Padé (3,2) approaches. We observe that the
ΛCDM value (q0 ¼ −0.548, j0 ¼ 1.0) is inside the

confidence regions of cosmographic methods, meaning
that there is no observational tension between standard
ΛCDM cosmology and datasets of sample (i).
Quantitatively speaking, the differences between best-fit
values of the cosmographic parameters of the flat-ΛCDM
model and those of the Padé (2,2) cosmographic method
are 1.4σ for q0, 0.97σ for j0, 1.18σ for s0 and 4.4σ for l0. All
these differences (except l0) are the statistical error of the
MCMC algorithm and cannot be considered as observa-
tional tension. Our comparison between standard ΛCDM
model and Padé (3,2) cosmographic method shows 2.05σ,
1.55σ, 1.22σ, 2.23σ, and 1.3σ deviations for the cosmo-
graphic parameters q0, j0, s0, l0 and m0, respectively. Like
Padé (2,2), these deviations show that there is no significant
tension between ΛCDM cosmology and Padé (3,2) method
and consequently observational data in sample (i). In
addition, we report the values of χ2min, AIC and ΔAIC
for Padé cosmographic approaches in Table V. Form the
statistical AIC criteria, we observe no strong evidence
(jΔAICj > 6) against the flat-ΛCDM model. This result is
in agreement with cosmographic analysis for both Padé
(2,2) and Padé (3,2) shown in Fig. 7. In similar study, Hu
and Wang [83] have shown that the Padé approximations
perform well compared to other approximations. We
mention that their data sample consists of low- and
high-redshift SNIa and GRBs and their Padé approximation
directly used for luminosity distance.

B. Numerical results for sample (ii)

Our constraint on the free parameter Ωm0 of the flat-
ΛCDMmodel using the dataset of sample (ii) including the
Hubble diagrams of SNIa, QSOs and GRBs represents
Ωm0 ¼ 0.295� 0.012. Using this constraint and Eq. (18),
we report the best-fit values of the cosmographic

TABLE VI. Same as Table V, but using sample (ii).

Cosmographic parameters Padé (2,2) Padé (3,2)

q0 −0.562� 0.029 −0.727� 0.064

j0 0.94þ0.10
−0.14 1.63þ0.35

−0.40

s0 −0.02� 0.22 −2.28þ0.33
−0.73

l0 3.81þ0.16
−0.090 0.4þ3.5

−4.2

m0 � � � −9.1þ2.5
−5.4

Statistical criteria
χ2min 1215.15 1207.95
AIC 1223.15 1217.95
ΔAIC ¼ AIC − AICΛCDM 1.03 −4.17

TABLE V. Up: Best-fit values of the cosmographic parameters
of the Padé cosmographic method obtained from minimizing χ2

function in the context of MCMC algorithm, using the observa-
tional data in sample (i). Down: The minimum value of χ2

function, the corresponding AIC values, and the difference
between AIC value of Padé cosmographic approaches and that
of the standard ΛCDM Universe obtained using sample (i).

Cosmographic parameters Padé (2,2) Padé (3,2)

q0 −0.628þ0.066
−0.045 −0.685þ0.069

−0.062

j0 1.36þ0.29
−0.45 1.59� 0.38

s0 0.13þ0.39
−0.43 −1.14þ0.59

−0.69

l0 4.55þ0.37
−0.25 0.0� 1.4

m0 � � � −2.7þ4.8
−7.8

Statistical criteria
χ2min 1144.17 1142.75
AIC 1152.17 1152.75
ΔAIC ¼ AIC − AICΛCDM −2.32 −1.74

FIG. 7. 1σ to 3σ confidence regions of the cosmographic
parameters q0 and j0 obtained in the context of Padé (2,2) and
Padé (3,2) cosmographic approaches using the combination of
observational datasets in sample (i). The ΛCDM constraint for q0
using the same datasets is shown for comparison.
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parameters in the context of standard model in the last
column of the middle part of Table IV. The statistical results
are reported in the last column of the lower part. We
observe that, in this case, q0 is equal to −0.557� 0.019,
which is in 1σ confidence level of its corresponding value
obtained form sample (i). This means that the q0 parameter
in standard model does not change considerably due to
varying the low-redshift Hubble diagrams to high-redshift
data. This result is valid for higher cosmographic param-
eters s0, l0 and m0 (see our constraints for samples (i) and
sample (ii) in Table IV). In the context of Padé cosmo-
graphic methods, our constraints on the cosmographic
parameters using sample (ii) are reported in Table VI. In
addition, we show 1σ to 3σ confidence levels of q0 and j0
parameters in Fig. 8. We observe that the best-fit values of
q0 and j0 parameters of Padé (2,2) cosmographic method
are very close to those ΛCDM values. In fact, using sample
(ii), the best-fit values of q0 and j0 in Padé (2,2) cosmo-
graphic method respectively decreases as 11% and 42%
compare to corresponding values obtained from sample (i).
On the other hand, we observe 2.55σ and 1.68σ deviations
between best-fit values of q0 and j0 obtained in Padé (3,2)
cosmographic approach with those of the standard ΛCDM
model (see Fig. 8). We mention that these deviations do not
show any tension between Padé (3,2) and standard model
and therefore can be assumed as statistical errors of the
MCMC algorithm. Form the view point of AIC criteria,
as reported in the lower part of Table VI, we observe no
strong evidence (jΔAICj > 6) against the standard
ΛCDM model.

1. Cosmographic method in redshift-bin

Let us start with the results of the recent work [94] in
which the authors showed that QSOs at redshifts lower than
zmax ∼ 0.7 recover the Plank-ΛCDM Universe (flat-ΛCDM
model withΩm0 ≃ 0.3), in agreement with the predictions of
the SNIa observations. By increasing the redshift range to
z > 0.7, one can get the transition from the Planck-ΛCDM

Universe to the Einstein-de Sitter Universe (EdS) (spatially
flat FLRW with only pressureless matter.) From the
observational point of view, the QSOs and SNIa are very
different objects since SNIa in the Pantheon catalogue are
more populated toward low-redshifts, while the QSOs in the
Risaliti-Lusso sample [81,95] are more numerous at higher
redshifts. Interestingly, using the SNIa data at z > 1, the
authors of [94] have shown a substantial increase of Ωm0

and a decrease in the H0 measurement at redshifts higher
than zmin ¼ 1. It is emphasized that any evolution of the H0

value is equivalent to the evolution of the absolute magni-
tude of SNIa, which means that we have a stark choice
between a SNIa cosmology and a flat-ΛCDMUniverse. The
same result with a different analysis was achieved by
placing the standard flat-ΛCDM model in the redshift
bin of observational data, including observational Hubble
data (OHD), SNIa and QSOs, supporting the idea of [96]. In
the line of [94,96], we explore here the redshift evolution of
Ωm0 using the Padé cosmographic method. For this purpose,
we first remove the data of SNIa and QSOs at redshifts
smaller than z ¼ 1, respectively, from the Pantheon cata-
logue and binned QSOs sample. We repeat our cosmo-
graphic analysis in the context of the Padé (3,2)
approximation using the reduced binned sample of QSOs
at redshifts z > 1 (14 data points out of all 25 data) and 23
SNIa data points out of all 1048 data points in the Pantheon
catalogue. The numerical results for the cosmographic
parameters q0 and s0 obtained from the SNIa sample
(z > 1), binned QSOs sample (z > 1) and combined
SNIaþ QSOs samples (z > 1) are shown in Table VII.
For comparison, we then show our results obtained from all
data points of SNIa and QSOs. Substituting the numerical
results of q0 and s0 into Eq. (18), we obtain the best-fit value
ofΩm0 for standard model, as shown in Table VII. Note that
our cosmographic analysis for higher parameters l0 and m0

yields nonreal solutions (complex values) of Ωm0 from the
corresponding quadratic and cubic relations in Eq. (18).
Therefore, we restrict our analysis to the parameters q0 and
s0 and their linear relations in Eq. (18). The Ωm0 value
resulted from q0 −Ωm0 and s0 −Ωm0 relations is approx-
imately ∼0.5 for the restricted data samples at z > 1, as
reported in the up-part of Table VII. This result is in contrast
to the Planck-ΛCDM Universe and approximately in agree-
ment with the predictions of [94,96]. Moreover, the value of
Ωm0 ∼ 0.5 predicted by our cosmographic approach sup-
ports the result of [97], where it was shown that the higher
value of Ωm0 is likely related to the high-redshift QSOs at
z ∼ 2–5. We repeat the above analysis for data samples
consisting of all SNIa, QSOs, and SNIaþ QSOs data points
and report our results in the down-part of Table VII. We see
that the extracted Ωm0 value from q0 is close to the Planck-
LCDM value Ωm0 ¼ 0.3, as expected. While there is a
potential to get larger values of Ωm0 from the cosmographic
parameter s0.This result is due to this fact that s0 parameter

FIG. 8. Same as Fig. 7, but for sample (ii).
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becomes more relevant than q0 at high-redshifts. Notice that
this result is obtained without restricting data samples
to z > 1. Hence, any larger value of Ωm0 extracted from
s0 directly relates to this fact that s0 is more relevant at
higher redshift, while q0 is more significant at low redshifts.

V. CONCLUSION

The cosmographic approach is used as a model-
independent method to reconstruct the Hubble expansion
of the universe. In this context, we use relevant mathemati-
cal series to reconstruct the Hubble parameter. The coef-
ficients of this reconstruction which are related to the time
derivative of the Hubble parameter (known as cosmographic
parameters) can be constrained utilizing statistical methods
and observational data. In other words, we can constrain the
cosmographic parameters model-independently. Since the
cosmographic method is a mathematical technique, it can
serve as a benchmark for testing the physical models
proposed in the field of cosmology. In this work, we
examined the standard flat-ΛCDM model from the view-
point of cosmographic method using the Hubble diagrams
of SNIa, QSOs, and GRBs, as well as the BAO observa-
tions. We investigated the Taylor series and rational Padé
polynomials using mock data for SNIa and QSOs. We
showed that in the redshifts z < 2.5, where SNIa objects
were observed [88], the 4th order Taylor expansion is
insufficient to reconstruct the Hubble parameter, while
the 5th order Taylor series, Padé (2,2) and Padé (3,2)
polynomials are acceptable approximations. At higher red-
shifts and in the redshift interval 0 < z < 5.5, where QSOs
have been observed [98], we have shown that Padé cosmo-
graphic approaches are the useful approximations to recon-
struct the Hubble function in a model-independent manner,

while the 4th order Taylor series is strongly rejected. In the
next step, using the low-redshift combination of the Hubble
diagrams from SNIa, binned QSOs, GRBs and also the
BAO measurements as well as the high-redshift combina-
tion of the Hubble diagrams for SNIa, binned QSOs and
GRBs, we showed that the cosmographic parameters of
the standard flat-ΛCDM model are well consistent with
those of the Padé cosmographic methods. In other words,
our results for both low- and high-redshift Hubble diagrams,
do not show any cosmological tension between the con-
strained values of the cosmographic parameters in the flat-
ΛCDMmodel and those of the cosmographic method based
on the rational Padé polynomials. This result is against the
cosmographic tension presented for standard model, using
the high-redshift Hubble diagrams from QSOs and GRBs in
[67,81]. In addition, from the viewpoint of statistical AIC
criteria, our Padé cosmographic analysis showed no strong
evidence against the standard ΛCDM cosmology. Finally,
we put the cosmographic method in redshift-bin of
Hubble diagram data in order to explore the possibility
of the variation of Ωm0 extracted at high-redshift observa-
tions. Using the restricted data points of SNIa, QSOs
and SNIaþ QSOs samples at z > 1, we found larger values
of Ωm0 for standard flat-ΛCDM model extracted from both
q0 and s0 parameters. This result confirms a transition
form Planck-ΛCDM value Ωm0 ¼ 0.3 at low-redshift to
larger values at high-redshifts (see also [94,96]). In addition,
using all data points of SNIa, QSOs and SNIaþ QSOs
samples, we extracted a larger value of Ωm0 from s0
parameter, while the extracted value from q0 parameter is
sufficiently close to Planck-ΛCDM value. This result is
expected because the s0 (q0) parameter is more relevant at
high-(low) redshifts.

TABLE VII. The best-fit values of the cosmographic parameters q0 and s0 in the context of Padé (3,2) method and
their extracted Ωm0 values in standard flat-ΛCDM model obtained using high-redshift (z > 1) and all data samples
of SNIa, QSOs and SNIaþ QSOs observations.

High-z data q0 Ωm0ðq0Þ s0 Ωm0ðs0Þ
SNIa −0.24� 0.42 0.51� 0.28 −1.48þ0.98

−1.8 0.55þ0.40
−0.22

QSOs −0.095þ0.49
−0.28 0.60þ0.33

−0.18 −1.5þ1.1
−1.5 0.55þ0.34

−0.24

SNIaþ QSOs −0.16þ0.45
−0.34 0.56þ0.30

−0.23 −1.5� 1.3 0.55� 0.28

All data q0 Ωm0ðq0Þ s0 Ωm0ðs0Þ
SNIa −0.658� 0.076 0.23� 0.05 −1.3þ1.4

−1.5 0.51þ0.33
−0.31

QSOs −0.58þ0.16
−0.39 0.28þ0.11

−0.26 −1.5� 1.3 0.55� 0.29

SNIaþ QSOs −0.664� 0.072 0.22� 0.04 −2.09þ0.58
−1.3 0.69þ0.28

−0.13
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