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We introduce a second-order stochastic effective theory for light scalar fields in de Sitter spacetime,
extending the validity of the stochastic approach beyond the massless limit and demonstrating how it can be
used to compute long-distance correlation functions nonperturbatively. The parameters of the second-order
stochastic theory are determined from quantum field theory through a perturbative calculation, which is
valid if the self-interaction parameter λ satisfies λ ≪ m2=H2, wherem is the scalar andH is the Hubble rate.
Therefore, it allows stronger self-interactions than conventional perturbation theory, which is limited to
λ ≪ m4=H4 by infrared divergences. We demonstrate the applicability of the second-order stochastic
theory by comparing its results with perturbative quantum field theory and overdamped stochastic
calculations, and discuss the prospects of improving its accuracy with a full one-loop calculation of its
parameters.
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I. INTRODUCTION

Scalar quantum field theory (QFT) in de Sitter space-
time is a widely studied topic [1–4], especially in the
context of inflationary cosmology [5–9]. Of particular
interest is the study of the long-distance behavior of
spectator scalar fields as they can lead to present-day
observables with blueprints from inflation [10]. Physical
examples include curvature and isocurvature perturba-
tions [11–13], dark matter generation, [14–17], electro-
weak vacuum decay [18–22], and gravitational-wave
background anisotropies [23].
The issue with scalar QFT in de Sitter spacetime is that

self-interactions, parametrized by the coupling λ, lead to the
existence of infrared divergences in perturbation theory that
cannot be dealt with using standard methods beyond the
limit λ ≪ m4=H4, where m and H are the scalar mass and
Hubble rate, respectively [24–27]. This is problematic
when studying the long-distance behavior of these fields
and has led physicists to consider alternative approaches,
some of which do not require a small λ but do involve other
approximations [28–39]. One such method is the stochastic
approach [40,41], an effective theory where one utilizes
the fact that the expansion of the inflationary spacetime
causes long-wavelength modes to be stretched across the de
Sitter horizon such that they can be considered classical.
The remaining short-wavelength quantum modes then
contribute in the form of stochastic noise. This will only

be possible if m is comparable to or smaller than the
horizon scale, m≲H.
The most common application of this method is to

stochastic inflation where the scalar field plays the part of
the inflaton [42–69]. In this case, the fields are considered
to be in slow roll such that one can use the overdamped
approximation in the stochastic equations, which equates to
neglecting the second derivative of the field. For this to be
valid, we require the fields to be light (m ≪ H) and for the
coupling to be sufficiently small (λ ≪ m2=H2). In this
limit, one can derive the overdamped stochastic equations
by introducing a cutoff between sub- and superhorizon field
modes with a strict boundary [40,41]. The superhorizon
modes then play the role of a classical field while the
subhorizon “quantum” modes contribute via a stochastic
white noise. This mode expansion derivation has been
widely studied [42–57,70,71] alongside an alternative path-
integral approach that aligns more with standard thermal
field theory methods [53,58–69].
The stochastic approach has not exclusively been applied

to the inflaton. From the seminal work of Starobinsky and
Yokoyama [40,41] to more recent applications to infla-
tionary observables [16,17,70–72], there are examples of
the stochastic approach being applied to spectator scalar
fields. In this case, the slow-roll condition can be relaxed
and one should consider the full second-order stochastic
equations. However, in our previous paper [72], we showed
that for free fields the standard cutoff procedure cannot
be used to derive the second-order stochastic equations
when one goes beyond the limit m ≪ H. This is not a fault
in the stochastic equations themselves, but rather in the
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expression for the noise amplitude that one computes using
a cutoff. Given the correct form of the noise, the quantum
correlators can be recovered from these second-order
equations. Following the standard technique for effective
field theories, this form was found by evaluating the
stochastic field correlator for an unspecified noise ampli-
tude and then matching with the quantum field propagator
in order to determine the desired noise amplitude. This
suggests that the stochastic approach is still viable away
from the overdamped limit but the strict cutoff procedure is
no longer a valid means of deriving the stochastic equations
from the underlying quantum theory.
In this paper, we take this idea a step further and

introduce interactions into the stochastic equations. We
relax the overdamped approximation that m ≪ H to show
that in perturbation theory we can once again use the
matching procedure to find the forms of the stochastic
parameters—namely, the mass, coupling, and noise
amplitudes—that reproduce the quantum correlators.
Further, we present a numerical method for solving the
second-order stochastic equations such that stochastic
correlation functions can be found nonperturbatively.
The results we obtain using the second-order stochastic

effective theory in this work are valid for fields with mass
m≲H and quartic self-interaction coupling λ ≪ m2=H2.
We leave it to future work [73] to compute OðλH2

m2 Þ
contributions, where we will have to employ a renormal-
ization scheme in QFT in order to compute the stochastic
noise amplitudes. However, we are already going beyond
perturbative techniques in QFT and the overdamped
approximation, which are only valid in the regimes
λ ≪ m4=H4 and m ≪ H, respectively. The second-order
stochastic approach encompasses these regions and goes
further where it can compute physical results that the
established approximations cannot.
The paper is organized as follows. In Sec. II we review

the status of perturbative QFT and discuss how infrared
divergences limit its computational power, focusing on a
self-interacting theory with quartic coupling. In Sec. III
we briefly summarize the overdamped stochastic
approach before introducing the second-order stochastic
equations. We introduce a spectral expansion method to
compute stochastic correlators and give the forms of these
in terms of the eigenspectrum. In Sec. IV we begin by
summarizing the results from Ref. [72] for free fields
before using perturbation theory to compute stochastic
correlators to leading order in the self-interaction cou-
pling. We compare these results to their equivalents at
OðλH4

m4 Þ in perturbative QFT, from which we find the
values of the stochastic parameters required to reproduce
the quantum result. In Sec. V we outline the numerical
method to evaluate correlators nonperturbatively and

then, using the noise functions found in Sec. IV, we
perform a full comparison between the second-order
stochastic, overdamped stochastic, and perturbative
QFT approaches. Finally, we discuss the results and
conclude in Sec. VI.

II. QUANTUM FIELD THEORY
IN DE SITTER SPACETIME

We begin by reviewing the status of scalar QFT in de
Sitter spacetime, focusing on the calculation of the
Feynman propagator. We consider a spectator scalar field
ϕðt;xÞwith scalar potential VðϕÞ on a de Sitter background
with scale factor aðtÞ ¼ eHt. H ¼ _a=a is the Hubble rate
which will be kept constant throughout. Introducing the
field momentum πðt;xÞ, we can write the equations of
motion as

�
_ϕ

_π

�
¼
�

π

−3Hπ − V 0ðϕÞ

�
; ð1Þ

where primes and dots denote derivatives with respect to ϕ
and t, respectively. We focus on a ϕ4 theory such that the
potential VðϕÞ ¼ 1

2
m2ϕ2 þ 1

4
λϕ4, where m is the scalar

mass and λ is the quartic coupling constant. We introduce a
nonminimal coupling to gravity ξ, which is included in the
scalar mass term as m2 ¼ m2

0 þ 12ξH2.

A. Free quantum fields

For free fields (λ ¼ 0), one can follow standard QFT
procedures to calculate the Feynman propagator, resulting
in [1–4]

iΔðt; t0;x;x0Þ
≔ hT̂ ϕ̂ðt;xÞϕ̂ðt0;x0Þi

¼ H2

16π2
Γ
�
3

2
þ ν

�
Γ
�
3

2
− ν

�
2F1

�
3

2
þ ν;

3

2
− ν;2; 1þ y

2

�
ð2Þ

in the Bunch-Davies vacuum, where 2F1ða; b; c; zÞ is
the hypergeometric function, ΓðzÞ are the Euler-gamma

functions, ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− m2

H2

q
, and y is the spacetime interval

given by

y ¼ coshðHðt − t0ÞÞ −H2

2
aðtÞaðt0Þjx − x0j2 − 1: ð3Þ

We can instead write the Feynman propagator as
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iΔðt; t0;x;x0Þ ¼ H2

16π2

�
Γð2νÞΓð1 − 2νÞ
Γð1

2
þ νÞΓð1

2
− νÞ

X∞
n¼0

Γð3
2
− νþ nÞΓð1

2
− νþ nÞ

Γð1 − 2νþ nÞn!
�
−
y
2

�
−3
2
þν−n

þ Γð−2νÞΓð1þ 2νÞ
Γð1

2
þ νÞΓð1

2
− νÞ

X∞
n¼0

Γð3
2
þ νþ nÞΓð1

2
þ νþ nÞ

Γð1þ 2νþ nÞn!
�
−
y
2

�
−3
2
−ν−n

�
; ð4Þ

which allows us to see the behavior as a function of large
spacetime separations. Explicitly, the leading IR behavior
of the free Feynman propagator is

iΔðt; t; 0;xÞ ¼ H2

16π2
Γð3

2
− νÞΓð2νÞ43

2
−ν

Γð1
2
þ νÞ jHaðtÞxj−3

2
þν; ð5Þ

where we have focused on the equal-time propagator. It is
this behavior that one would expect the stochastic approach
to reproduce for free fields.

B. Perturbative QFT

Introducing interactions is a challenging process; the
Feynman propagator cannot be found for all values of m
and λ using current techniques, namely, perturbation theory.
However, one can still obtain useful results. In perturbative
ϕ4 theory, the only contribution at first-order λ is the
tadpole diagram; therefore, there is no field renormalization
and the only contribution comes via a mass correction,
where the bare mass m is replaced by an effective mass
mQeff via

m2 → m2
Qeff ¼ m2 þ 3λhϕ̂2i: ð6Þ

One can therefore obtain the resummed one-loop Feynman
propagator by replacing m with mQeff in Eq. (2). The
leading IR behavior is given by

iΔðt; t0;x;x0Þ ¼ H2

16π2
Γð3

2
− νQeffÞΓð2νQeffÞ
Γð1

2
þ νQeffÞ

�
−
y
2

�
−3
2
þνQeff

;

ð7Þ

where νQeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
−

m2
Qeff

H2

q
. In practice, this is problematic as

hϕ̂2i contains divergences at OðλÞ. To see this, we expand
Eq. (2) for y → 0 such that the field variance is given by

hϕ̂2i ¼ lim
y→0

iΔðt; t0;x;x0Þ

¼ −
H2

8π2y
þm2 − 2H2

16π2

�
ln yþ iπ − 1þ 2γE − ln 2

þ ψ ð0Þ
�
3

2
− ν

�
þ ψ ð0Þ

�
3

2
þ ν

��
; ð8Þ

where ψ ð0ÞðzÞ are the polygamma functions and γE is the
Euler-Mascheroni constant. We see that the Oð1=yÞ and

Oðln yÞ are UV divergent. Such terms are removed by
introducing a renormalized mass m2

R ¼ m2
0;R þ 12ξRH2

such that the divergentOðm2Þ andOðH2Þ are renormalized
by the m0;R and ξR parameters, respectively. Expanding the
finite part to leading order in mass, the UV-finite effective
mass is given by [62]

m2
Qeff ¼ m2

R þ 9λH4

8π2m2
R
þOðλH2Þ; ð9Þ

where the OðλH2Þ part will include terms that are depen-
dent on the renormalization scheme. This expression tells
us that there also exists an IR divergence in the theory since
the leading term in the small-mass expansion is of relative
order OðλH4

m4 Þ, which is large if m ≪ λ1=4H, and therefore
perturbative QFT is only valid in the limit λ ≪ m4=H4; the
additional finite terms in Eq. (9) are unimportant. Thus, the
leading term in the spacelike Feynman propagator is

iΔðt; t; 0;xÞ ¼
�

H2

16π2
Γð3

2
− νÞΓð2νÞ43

2
−ν

Γð1
2
þ νÞ −

27λH8

64π4m6
R

þO
�
λH6

m4
R

��
jHaðtÞxj−

2ΛðQFTÞ
1
H ; ð10Þ

where

ΛðQFTÞ
1 ¼

�
3

2
− ν

�
H þ 3λH3

8π2m2
R
þOðλHÞ: ð11Þ

It is because of these IR divergences that we pursue other
methods of computing correlators in de Sitter spacetime,
such as the stochastic approach, in order to go beyond the
limit where λ ≪ m4=H4.

III. STOCHASTIC APPROACH

A. Overdamped stochastic approach

The seminal work of Starobinsky and Yokoyama [40,41]
introduced an effective theory for scalar fields in de Sitter
spacetime which goes beyond the perturbative methods
introduced above. We call this the overdamped (OD)
stochastic approach. The principle is that one can separate
the short- and long-wavelength modes of the scalar field
such that the short-wavelength modes contribute a stochas-
tic noise to the classical equations of motion. Thus, we
obtain the IR behavior of the fields. In the overdamped limit
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_π ≪ 3Hπ and V 00ðϕÞ ≪ H2, one can derive the stochastic
equations from the underlying QFT by introducing a strict
cutoff between long- and short-wavelength modes, result-
ing in the OD stochastic equation

_ϕþ V 0ðϕÞ
3H

¼ ξOD ð12Þ

with a white-noise contribution ξODðt;xÞ with correlation

hξODðt;xÞξODðt0;xÞi ¼
H3

4π2
δðt − t0Þ: ð13Þ

From this starting point, one can do fully nonperturbative
calculations to find stochastic correlators that go beyond
perturbative QFT. The details of this calculation were given
in Ref. [70] where the authors used a spectral expansion
method to perform their computation. To compare this
approach with QFT, we write the spacelike OD stochastic
field correlator to one-loop order as

hϕðt; 0Þϕðt;xÞi

¼
�

3H4

8π2m2
−

27λH8

64π4m6
þOðλ2Þ

�
jHaðtÞxj−

2ΛðODÞ
1
H ; ð14Þ

where

ΛðODÞ
1 ¼ m2

3H
þ 3λH3

8π2m2
þOðλ2Þ: ð15Þ

Comparing this to the Feynman propagator (10), we see
that there will only be agreement in the limit wherem ≪ H.
The OD stochastic approach does not reproduce the full
expression for the free part of the Feynman propagator, nor
will it include any terms of relative order OðλH2

m2 Þ since the
next order in the perturbative expansion goes straight to
Oðλ2Þ. Thus, the OD stochastic approach is only valid in
the regime λ ≪ m2=H2.

B. Second-order stochastic equations

For the cosmological applications of spectator fields
in de Sitter spacetime, we wish to go beyond the OD
approximation where m2 ≪ H2. To do this, we introduce
second-order stochastic equations; however, the standard
cutoff procedure used to derive the OD stochastic equation
is no longer valid when the fields become more massive
[72]. Instead of attempting a derivation from the underlying
QFT, we introduce a top-down method where we derive
stochastic correlation functions from a stochastic equation
and then show that these can reproduce their quantum
counterparts given the appropriate choice of stochastic
parameters. Taking inspiration from Eq. (1), we write the
second-order stochastic equation as

�
_ϕ

_π

�
¼
�

π

−3Hπ − V 0ðϕÞ

�
þ
�
ξϕ

ξπ

�
; ð16Þ

where the potential is given by

VðϕÞ ¼ 1

2
m2ϕ2 þ 1

4
λϕ4 ð17Þ

and the stochastic white-noise contributions ξiðt;xÞ,
i ∈ fϕ; πg satisfy

hξiðt;xÞξjðt0;xÞi ¼ σ2ijδðt − t0Þ: ð18Þ

The parameters of the stochastic theory arem, λ, and σ2ij. In
this paper, we determine their relation to QFT parameters
using perturbation theory. Since the perturbative expansion
is in powers of λ, we assume that the couplings in the
stochastic approach and perturbative QFT are the same. On
the other hand, m and σ2ij will be determined by matching
stochastic correlators to their QFT counterparts.
Now that we have a stochastic theory, we introduce the

one-point probability distribution function (1PDF) in phase
space Pðϕ; π; tÞ. Its time evolution is described by the
Fokker-Planck equation

∂tPðϕ; π; tÞ ¼
�
3H − π∂ϕ þ ð3Hπ þ V 0ðϕÞÞ∂π þ

1

2
σ2ϕϕ∂

2
ϕ

þ σ2ϕπ∂ϕ∂π þ
1

2
σ2ππ∂

2
π

�
Pðϕ; π; tÞ

¼ LFPPðϕ; π; tÞ; ð19Þ

where LFP is called the Fokker-Planck operator.

C. Spectral expansion

For free fields, one can solve the Fokker-Planck equa-
tion (19) analytically via a spectral expansion [72]. The
introduction of self-interactions will result in the need for
numerical calculations but one can still use the spectral
expansion for the basis of these computations.
We define a space of functions ffjðf; fÞ < ∞g with the

scalar product

ðf; gÞ ¼
Z

∞

−∞
dϕ
Z

∞

−∞
dπfðϕ; πÞgðϕ; πÞ: ð20Þ

Note that all integrals over ϕ and π have the above limits
unless otherwise stated. There then exists an adjoint to the
Fokker-Planck operator, L�

FP, which is defined via

ðLFPf; gÞ ¼ ðf;L�
FPgÞ: ð21Þ

Explicitly, the adjoint Fokker-Planck operator is
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L�
FP ¼ π∂ϕ − ð3Hπ þ V 0ðϕÞÞ∂π þ

1

2
σ2ϕϕ∂

2
ϕ

þ σ2ϕπ∂ϕ∂π þ
1

2
σ2ππ∂

2
π: ð22Þ

The 1PDF can be written as

Pðϕ; π; tÞ ¼ Ψ�
0ðϕ; πÞ

X∞
N¼0

ΨNðϕ; πÞe−ΛNt; ð23Þ

where ΛN and Ψð�Þ
N ðϕ; πÞ are the respective eigenvalues

and (adjoint) eigenvectors to the (adjoint) Fokker-Planck
operator,

LFPΨNðϕ; πÞ ¼ −ΛNΨNðϕ; πÞ; ð24aÞ

L�
FPΨ�

Nðϕ; πÞ ¼ −ΛNΨ�
Nðϕ; πÞ: ð24bÞ

The eigenvectors obey the biorthogonality and complete-
ness relations

ðΨ�
N;ΨN0 Þ ¼ δN0N; ð25aÞ

X
N

Ψ�
Nðϕ; πÞΨNðϕ0; π0Þ ¼ δðϕ − ϕ0Þδðπ − π0Þ; ð25bÞ

and there exists an equilibrium state Peqðϕ; πÞ ¼
Ψ�

0ðϕ; πÞΨ0ðϕ; πÞ obeying ∂tPeqðϕ; πÞ ¼ 0.

D. Stochastic correlators

To obtain stochastic correlators, we introduce the
transfer matrix Uðϕ0;ϕ; π0; π; tÞ between ðϕ0; π0Þ ¼
ðϕð0;xÞ; πð0;xÞÞ and ðϕ; πÞ ¼ ðϕðt;xÞ; πðt;xÞÞ, which
is defined as the Green’s function of the Fokker-Planck
equation, i.e.,

∂tUðϕ0;ϕ; π0; πÞ ¼ LFPUðϕ0;ϕ; π0; π; tÞ ð26Þ

for all values of ϕ0 and π0. Then, the time dependence of
the 1PDF is given by

Pðϕ; π; tÞ ¼
Z

dϕ0

Z
dπ0Pðϕ0; π0; 0ÞUðϕ0;ϕ; π0; π; tÞ:

ð27Þ

From Eq. (23), making use of the relations (25), we find
that the transfer matrix can be written with the spectral
expansion as

Uðϕ0;ϕ;π0;π;tÞ¼
Ψ�

0ðϕ;πÞ
Ψ�

0ðϕ0;π0Þ
X
N

Ψ�
Nðϕ0;π0ÞΨNðϕ;πÞe−ΛNt

ð28Þ

and in turn we can write a two-point probability distribution
function (2PDF) as

P2ðϕ0;ϕ; π0; π; tÞ
¼ Peqðϕ0; π0ÞUðϕ0;ϕ; π0; π; tÞ
¼ Ψ�

0ðϕ; πÞΨ0ðϕ0; π0Þ
X
N

Ψ�
Nðϕ0; π0ÞΨNðϕ; πÞe−ΛNt:

ð29Þ

The two-point timelike (equal-space) stochastic correlator
between some functions fðϕ0; π0Þ and gðϕ; πÞ is given by

hfðϕ0; π0Þgðϕ; πÞi

¼
Z

dϕ0

Z
dϕ
Z

dπ0

×
Z

dπP2ðϕ0;ϕ; π0; π; tÞfðϕ0; π0Þgðϕ; πÞ

¼
X
N

f�NgNe
−ΛNt; ð30Þ

where

f�N ¼ ðΨ0f;Ψ�
NÞ; ð31aÞ

gN ¼ ðΨNg;Ψ�
0Þ: ð31bÞ

In a similar vein to the 2PDF, we can write a three-point
probability distribution function (3PDF) between points
ðϕ0; π0Þ, ðϕ1; π1Þ, and ðϕ2; π2Þ as

P3ðϕ0;ϕ1;ϕ2; π0; π1; π2; t1; t2Þ
¼ Peqðϕ0; π0ÞUðϕ0;ϕ1; π0; π1; t1ÞUðϕ0;ϕ2; π0; π2; t2Þ

¼ Ψ0ðϕ0; π0ÞΨ�
0ðϕ1; π1ÞΨ�

0ðϕ2; π2Þ
Ψ�

0ðϕ0; π0Þ
×
X
N

Ψ�
Nðϕ0; π0ÞΨNðϕ1; π1Þ

×
X
N0

Ψ�
N0 ðϕ0; π0ÞΨN0 ðϕ2; π2Þe−ðΛNt1þΛN0 t2Þ: ð32Þ

To evaluate the spacelike (equal-time) stochastic correla-
tors, we follow Ref. [41] and introduce the time coordinate
tr at which the comoving x1 and x2 are inside the same
Hubble volume,

tr ¼ −
1

H
lnðHjx2 − x1jÞ: ð33Þ

Using the 3PDF P3ðϕr;ϕ1;ϕ2; πr; π1; π2Þ, the spacelike
stochastic correlator between the functions fðϕðt;x1Þ;
πðt;x1ÞÞ and gðϕðt;x2Þ; πðt;x2ÞÞ is given by integrating
over ϕr and πr as
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hfðϕ; π; t;x1Þgðϕ; π; t;x2Þi

¼
Z

dϕr

Z
dϕ1

Z
dϕ2

Z
dπr

Z
dπ1

Z
dπ2P3ðϕr;ϕ1;ϕ2; πr; π1; π2Þfðϕ1; π1Þgðϕ2; π2Þ

¼
Z

dϕr

Z
dπr

Ψ0ðϕr; πrÞ
Ψ�

0ðϕr; πrÞ
X
NN0

Ψ�
Nðϕr; πrÞΨ�

N0 ðϕr; πrÞfNgN0 jHaðtÞðx1 − x2Þj−
ΛNþΛN0

H : ð34Þ

IV. COMPARISON WITH PERTURBATIVE QFT

A. Free field theory

We now have a formalism that can be used to calculate
stochastic correlators but we have yet to attribute it to
anything physical as we have not yet specified the noise
amplitudes. We now compare it with the QFT results from
Sec. II, starting with free fields. This case was studied in
full in Ref. [72] so this section will be a review.
It will prove convenient to change our field variables

from ðϕ; πÞ to ðq; pÞ, with the transformation

�
p

q

�
¼ 1ffiffiffiffiffiffiffiffiffiffi

1 − α
β

q �
1 αH
1
βH 1

��
π

ϕ

�
; ð35Þ

where α ¼ 3
2
− ν and β ¼ 3

2
þ ν. All of the formalism

introduced in the previous section can also be applied to
ðq; pÞ variables. In particular, the Fokker-Planck operators
are given by

LFP ¼ Lð0Þ
FP þ λLð1Þ

FP ; ð36aÞ

L�
FP ¼ Lð0Þ�

FP þ λLð1Þ�
FP ; ð36bÞ

where the free part is given by

Lð0Þ
FP ¼ αH þ αHq∂q þ

1

2
σ2qq∂

2
q þ βH þ βHp∂p

þ 1

2
σ2pp∂

2
p þ σ2qp∂q∂p; ð37aÞ

Lð0Þ�
FP ¼ −αHq∂q þ

1

2
σ2qq∂

2
q − βHp∂p þ

1

2
σ2pp∂

2
p þ σ2qp∂q∂p

ð37bÞ

and the interacting part is given by

Lð1Þ
FP ¼ λ

ð1 − α
βÞ2
�
−

1

βH
pþ q

�
3
�
∂p þ

1

βH
∂q

�
; ð38aÞ

Lð1Þ�
FP ¼ −Lð1Þ

FP : ð38bÞ

The ðq; pÞ noise amplitudes are written in terms of their
ðϕ; πÞ counterparts as

σ2qq ¼
1

1 − α
β

�
1

β2H2
σ2ππ þ

2

βH
σ2ϕπ þ σ2ϕϕ

�
; ð39aÞ

σ2qp ¼ 1

1 − α
β

�
1

βH
σ2ππ þ

�
1þ α

β

�
σ2ϕπ þ αHσ2ϕϕ

�
; ð39bÞ

σ2pp ¼ 1

1 − α
β

ðσ2ππ þ 2αHσ2ϕπ þ α2H2σ2ϕϕÞ: ð39cÞ

Further, the ϕ − ϕ correlator is written in terms of the ðq; pÞ
correlators as

hϕðt;xÞϕðt0;x0Þi

¼ 1

1 − α
β

�
1

β2H2
hpðt;xÞpðt0;x0Þi − 1

βH
hqðt;xÞpðt0;x0Þi

−
1

βH
hpðt;xÞqðt0;x0Þi þ hqðt;xÞqðt0;x0Þi

�
: ð40Þ

Similar expressions can be found for the ϕ − π, π − ϕ, and
π − π correlators but we will focus on the ϕ − ϕ correlator
in this work. Following the work of Ref. [72], we compute
the stochastic free field correlator and match it to the free
Feynman propagator (5) to obtain an expression for the
noise amplitudes, resulting in

σ2ð0Þqq ¼
2H3Γð1þ νÞΓ

�
5
2
− ν

�
π5=2ð3þ 2νÞ ; ð41aÞ

σ2ð0Þqp ¼ 0; ð41bÞ

σ2ð0Þpp ¼ 0: ð41cÞ

The qq noise is matched such that the leading-order term
in the Feynman propagator is reproduced and the qp noise
is chosen such that there is an analytic continuation
from timelike to spacelike stochastic correlators, a behavior
prevalent in QFT. However, the choice of σ2pp is arbitrary. In
this paper, we set it to zero—the subleading term does not
contribute—because it is the simplest case. The ðq; pÞ
noise matrix contains a zero eigenvalue and thus one would
expect the stochastic equations to simplify, though we do
not pursue this here.
In Ref. [72] we used a different choice, where the

subleading contribution reproduces the leading term in the
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second sum ∝ jHaðtÞxj−3
2
−ν. We denote this by σ2ðNLOÞpp and

use it for comparison with Eq. (41c) in Sec. V. We discuss
the differences this makes in the conclusions drawn in
Ref. [72] in Appendix A. Henceforth, we will use Eq. (41) as
our free noise but we include a more general formalism for
calculating stochastic field correlators in Appendix B.

Since σ2ð0Þqp ¼ 0, the variables p and q separate and so we
now use two indices ðr; sÞ ∈ f0;∞g, corresponding to p
and q, respectively, as opposed to just N. Thus, the free
field eigenquations are given by

Lð0Þ
FPΨ

ð0Þ
rs ðq; pÞ ¼ −Λð0Þ

rs Ψð0Þ
rs ðq; pÞ; ð42aÞ

Lð0Þ�
FP Ψð0Þ�

rs ðq; pÞ ¼ −Λð0Þ
rs Ψð0Þ�

rs ðq; pÞ; ð42bÞ

where the Λð0Þ
rs and Ψð0Þð�Þ

rs ðq; pÞ are the free eigenvalues
and (adjoint) eigenstates, respectively. The eigenvalues of
Eq. (42) are

Λð0Þ
rs ¼ ðsαþ rβÞH; ð43Þ

while the normalized eigenstates can be written in terms of
the Hermite polynomials HnðxÞ as

Ψð0Þ
rs ðq; pÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rþsr!s!
p

�
αβH2

π2σ2qqσ
2
pp

�
1=4

Hs

 ffiffiffiffiffiffiffi
αH
σ2qq

s
q

!

×Hr

 ffiffiffiffiffiffiffi
βH
σ2pp

s
p

!
e
− αH
σ2qq

q2− βH

σ2pp
p2

; ð44aÞ

Ψð0Þ�
rs ðq; pÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rþsr!s!
p

�
αβH2

π2σ2qqσ
2
pp

�
1=4

Hs

 ffiffiffiffiffiffiffi
αH
σ2qq

s
q

!

×Hr

 ffiffiffiffiffiffiffi
βH
σ2pp

s
p

!
: ð44bÞ

For the case where σ2pp ¼ 0, the eigenstates can be written
as1

lim
σ2pp→0

Ψð0Þ
rs ðq; p̃Þ ¼ ð−1Þ−rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rþsr!s!
p

�
αH
σ2qq

�
1=4

× δðrÞðp̃ÞHs

 ffiffiffiffiffiffiffiffiffiffi
αH
σ2qq

q

s !
e
− αH
σ2qq

q2

; ð45aÞ

lim
σ2pp→0

Ψð0Þ�
rs ðq; p̃Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2r

2sr!s!

r �
αH
π2σ2qq

�
1=4

p̃rHs

 ffiffiffiffiffiffiffiffiffiffi
αH
σ2qq

q

s !
;

ð45bÞ

where p̃ ¼
ffiffiffiffiffiffi
βH
σ2pp

q
p and the superscript (r) indicates that we

are taking the rth derivative of the δ function. These are
well-behaved eigenstates if we use ðq; p̃Þ as our variables,
with which we have the biorthogonality and completeness
relations.

B. Stochastic perturbation theory

We will now move to the more interesting case of an
interacting theory. To relate the stochastic correlators to
the perturbative results of QFT, we expand our solutions to
the eigenproblem (24) in terms of the ðq; pÞ variables
to OðλÞ,

Λrs ¼ Λð0Þ
rs þ λΛð1Þ

rs ; ð46aÞ

Ψð�Þ
rs ðq; pÞ ¼ Ψð0Þð�Þ

rs ðq; pÞ þ λΨð1Þð�Þ
rs ðq; pÞ: ð46bÞ

Using the eigenequations with the biorthogonality con-
ditions for ðq; pÞ, equivalent to Eqs. (24) and (25), theOðλÞ
terms in the eigenvalues and eigenstates are given by

Λð1Þ
rs ¼ −ðΨð0Þ�

rs ;Lð1Þ
FPΨ

ð0Þ
rs Þ; ð47aÞ

Ψð1Þ
rs ðq; pÞ ¼

X
r0s0

Ψð0Þ
r0s0 ðq; pÞ

ðΨð0Þ�
r0s0 ;L

ð1Þ
FPΨ

ð0Þ
rs Þ

Λð0Þ
r0s0 − Λð0Þ

rs

; ð47bÞ

Ψð1Þ�
rs ðq; pÞ ¼

X
r0s0

Ψð0Þ�
r0s0 ðq; pÞ

ðΨð0Þ
r0s0 ;L

ð1Þ�
FP Ψð0Þ�

rs Þ
Λð0Þ
r0s0 − Λð0Þ

rs

; ð47cÞ

where for Eqs. (47b) and (47c), r0 ≠ r and s0 ≠ s. By
applying the expansion (46) to Eq. (30), we can write
the timelike correlator between two functions f and g to
OðλÞ as

hfðq0; p0Þgðq; pÞi ¼
X
rs

h
fð0Þ�rs gð0Þrs þ λðfð0Þ�rs gð1Þrs

þ fð1Þ�rs gð0Þrs Þ
i
e−ðΛ

ð0Þ
rs þλΛð1Þ

rs Þt ð48Þ

where grs ¼ gð0Þrs þ λgð1Þrs such that

gð0Þrs ¼ ðΨð0Þ
rs g;Ψð0Þ�

00 Þ; ð49aÞ

gð1Þrs ¼ ðΨð1Þ
rs g;Ψð0Þ�

00 Þ þ ðΨð0Þ
rs g;Ψð1Þ�

00 Þ ð49bÞ

with a similar relation holding for f�rs. A similar expression
for the spacelike correlator can be written using Eq. (34) as

1To take the limit, we have used the identity

limϵ→0
ð−1Þ−nð ffiffi2p

ϵÞn−1ffiffi
π

p Hnð xffiffi
2

p
ϵ
Þe− x2

2ϵ2 ¼ δðnÞðxÞ.
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hfðq1; p1Þgðq2; p2Þi ¼
Z

dqr

Z
dpr

X
r0rs0s

�
Ψð0Þ

00 ðqr; prÞ
Ψð0Þ�

00 ðqr; prÞ
Ψð0Þ�

rs ðqr; prÞΨð0Þ�
r0s0 ðqr; prÞfð0Þrs g

ð0Þ
r0s0

þ λ

�
Ψð1Þ

00 ðqr; prÞ
Ψð0Þ�

00 ðqr; prÞ
Ψð0Þ�

rs ðqr; prÞΨð0Þ�
r0s0 ðqr; prÞfð0Þrs g

ð0Þ
r0s0

−
Ψð1Þ�

00 ðqr; prÞΨð0Þ
00 ðqr; prÞ

Ψð0Þ�
00 ðqr; prÞ2

Ψð0Þ�
rs ðqr; prÞΨð0Þ�

r0s0 ðqr; prÞfð0Þrs g
ð0Þ
r0s0

þ Ψð0Þ
00 ðqr; prÞ

Ψð0Þ�
00 ðqr; prÞ

Ψð1Þ�
rs ðqr; prÞΨð0Þ�

r0s0 ðqr; prÞfð0Þrs g
ð0Þ
r0s0 þ

Ψð0Þ
00 ðqr; prÞ

Ψð0Þ�
00 ðqr; prÞ

Ψð0Þ�
rs ðqr; prÞΨð1Þ�

r0s0 ðqr; prÞfð0Þrs g
ð0Þ
r0s0

þ Ψð0Þ
00 ðqr; prÞ

Ψð0Þ�
00 ðqr; prÞ

Ψð0Þ�
rs ðqr; prÞΨð0Þ�

r0s0 ðqr; prÞfð1Þrs g
ð0Þ
r0s0

þ Ψð0Þ
00 ðqr; prÞ

Ψð0Þ�
00 ðqr; prÞ

Ψð0Þ�
rs ðqr; prÞΨð0Þ�

r0s0 ðqr; prÞfð0Þrs g
ð1Þ
r0s0

��
jHaðtÞðx1 − x2Þj

−
�

Λð0Þrs þΛð0Þ
r0s0

H þλ
Λð1Þrs þΛð1Þ

r0s0
H

�
: ð50Þ

In this paper we focus on the spacelike correlator.
We are now in a position where we can substitute explicit

expressions for the eigenvalues and eigenstates in terms of
the noise amplitudes (41). We will only consider the zeroth
and first two nonzero states in the spectral expansion since
these are the only terms that are needed to compare stochastic
and QFT results. Hence, we only need to concern ourselves
with finding the terms in the correlators corresponding to
ðr; sÞ equal to (0, 0), (0, 1), and (1, 0). FromEq. (47), theOðλÞ
corrections to the first two eigenvalues are

Λð1Þ
00 ¼ 0; ð51aÞ

Λð1Þ
01 ¼ 3HΓðνÞΓð3

2
− νÞ

8π5=2ν
; ð51bÞ

where the fact that Λð1Þ
00 ¼ 0 is consistent with its corre-

spondence to the equilibrium solution. Using Eq. (50), we
can find the spacelike q − q, q − p, p − q, and p − p
stochastic correlators. To complete our perturbative expan-
sion, we also need to account for the λ dependence in the
noise by

σ2ij ¼ σ2ð0Þij þ λσ2ð1Þij : ð52Þ

Note that we will show to relative order OðλH4

m4 Þ that σ2ð1Þij is
zero; however, at this stage it is important to show that no
such IR-divergent piece contributes. To OðλÞ, the spacelike
ðq; pÞ stochastic correlators are

hqðt; 0Þqðt;xÞi ¼
�
H4Γð1þ νÞΓð5

2
− νÞ

2π5=2m2
þ λ

�
σ2ð1Þqq

Hð3 − 2νÞ −
3H4ΓðνÞ2Γð3

2
− νÞ2

8π5ð3þ 2νÞm2

��
jHaðtÞxj−2Λ01

H ; ð53aÞ

hqðt; 0Þpðt;xÞi ¼ hpðt; 0Þqðt;xÞi ¼ −
3λH3ΓðνÞ2Γð3

2
− νÞ2

32π5ν
jHaðtÞxj−2Λ01

H þ λ

�
σ2ð1Þqp

3H
þH5ΓðνÞ2Γð5

2
− νÞ2

16π5νm2

�
jHaðtÞxj−3;

ð53bÞ

hpðt; 0Þpðt;xÞi ¼ λσ2ð1Þpp

Hð3þ 2νÞ jHaðtÞxj−2Λ10
H : ð53cÞ

Substituting these expressions into Eq. (40), we obtain an expression for the ϕ − ϕ stochastic correlator up to first order in λ.
The spacelike version is
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hϕðt; 0Þϕðt;xÞi ¼
�
H2

16π2
Γð3

2
− νÞΓð2νÞ43

2
−ν

Γð1
2
þ νÞ þ λ

�ð3þ 2νÞσ2ð1Þqq

4νHð3 − 2νÞ þ
3ð3 − 4νÞH4ΓðνÞ2Γð3

2
− νÞ2

32π5νm2

��
jHaðtÞxj−2Λ01

H

þ λσ2ð1Þpp

H3νð3þ 2νÞ2 jHaðtÞxj−2Λ10
H − λ

�
σ2ð1Þqp

3H2ν
þH4ΓðνÞ2Γð5

2
− νÞ2

8π5νm2

�
jHaðtÞxj−3: ð54Þ

C. Second-order stochastic parameters

In Sec. II we found the Feynman propagator toOðλÞ. We
will use this result to match the OðλÞ noise. First, we need
to match the stochastic mass m to the parameters mR and λ
from the QFT such that the exponents of Eqs. (10) and (54)
agree to relative order OðλH4

m4 Þ. Combining the free and
interacting parts of the first nonzero eigenvalue, we find
that to relative order OðλH4

m4 Þ

Λ01 ¼
�
3

2
− ν

�
H þ 3λH3

8π2m2
þOðλHÞ ð55Þ

has the same functional form as the exponent in the
Feynman propagator (11). This tells us that the stochastic

mass m2 ¼ m2
Rð1þOðλH2

m2
R
ÞÞ. In particular, they agree at

relative order OðλH4

m4 Þ and thus the stochastic exponent can
be found for λ ≪ m2=H2, in contrast to the direct pertur-
bative calculation which requires λ ≪ m4=H4. In order to
compute the term at relative orderOðλH2

m2
R
Þ, we would have to

choose a regularization scheme. This will be considered in
future work [73]. For the rest of this paper, we will just set
anyOðλH2

m2 Þ corrections—be they quantum or stochastic—to
zero. It is noteworthy that Eq. (55) is also obtained if we

were to choose σ2pp ¼ σ2ðNLOÞpp .
To match the amplitude, we expand the spacelike

stochastic field correlator (54) to relative order OðλH4

m4 Þ,
resulting in

hϕðt; 0Þϕðt;xÞi ¼
�
3H4

8π2m2
−

27λH8

64π4m6
þ 3Hσ2ð1Þqq

2m2
þO

�
λH6

m4

��
jHaðtÞxj−2m2

3H2þ 3λH2

4π2m2þOðλÞ

þ
�
λσ2ð1Þpp

54H3
þO

�
λH4

m2

��
jHaðtÞxj−3−2m2

3H2−
3λH2

4π2m2þOðλÞ

þ λ

�
2σ2ð1Þqp

9H2
þO

�
λH4

m2

��
jHaðtÞxj−3: ð56Þ

We see that if we set all three OðλÞ noise amplitudes to
zero, we reproduce the Feynman propagator to relative
order OðλH4

m4 Þ. Thus, our matched noise from perturbation
theory is

σ2qq ¼
2H3Γð1þ νÞΓð5

2
− νÞ

π5=2ð3þ 2νÞ þO
�
λH5

m2

�
; ð57aÞ

σ2qp ¼ 0þO
�
λH6

m2

�
; ð57bÞ

σ2pp ¼ 0þO
�
λH7

m2

�
: ð57cÞ

We are assuming that σ2ð0Þqp and σ2ð0Þpp are parametrically
OðH4Þ and OðH5Þ, respectively, such that the correction to
all three noise amplitudes is of the same relative order

OðλH2

m2 Þ. Converting the noise amplitudes to ðϕ; πÞ variables
gives

σ2 ¼ H3ΓðνÞΓð5
2
− νÞ

2π5=2

×

 
1þOðλH5

m2 Þ − 2m2

Hð3þ2νÞ þOðλH6

m2 Þ
− 2m2

Hð3þ2νÞ þOðλH6

m2 Þ 4m4

ð3þ2νÞ2H2 þOðλH7

m2 Þ

!
:

ð58Þ

This matrix gives the components of the noise aligning with
Eq. (18).

D. Comparing models and their limitations

The strength of a stochastic approach is that the Fokker-
Planck equation can be solved—analytically for some
examples, but usually numerically—and therefore
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correlation functions can be obtained nonperturbatively. The
second-order stochastic approach loses some of this power
because it requires the noise to be calculated perturbatively
and thereforewe are at present limited to the regime λH2

m2 ≪ 1.
To investigate the usefulness of this approach, we compare
its regime of validity with that of the other two approx-
imations introduced above: perturbative QFT and stochastic
OD. Their respective regimes of validity are

Perturbative QFT : λ ≪
m4

H4
; λ ≪ 1; ð59aÞ

OD stochastic : λ ≪
m2

H2
; m ≪ H; ð59bÞ

Second-order stochastic : λ ≪
m2

H2
; m≲H: ð59cÞ

A comparison between these regimes is given in Fig. 1. For
the purposes of making the boundaries obvious, we choose
“≪ 1” to mean “< 0.2” in this plot. In reality, we would not
expect these boundaries to be so clear cut.
Perturbative QFT is encompassed by the second-order

stochastic approach in the limit m≲H, which is unsur-
prising given that the matched correlators were found
directly from the Feynman propagators. The OD results
should also be completely covered by the second-order
stochastic approach (we will confirm this in Sec. V B 3)
and are resigned to the left-hand side of Fig. 1 as the
approximation requires the fields to be light. Importantly,
this leaves an area in the parameter space—the purely

orange zone—where we expect the second-order stochastic
approach to work when the others do not. To obtain such
results, we need to numerically solve our two-dimensional
Fokker-Planck equation. From this, we can compare the
three approximations.

V. NUMERICAL SOLUTIONS TO THE
FOKKER-PLANCK EQUATION

A. Expansion in free eigenstates

Thus far, we have shown that the second-order stochastic
approach can be made to coincide with perturbative QFT if
we choose the stochastic parameters to be Eq. (57). We will
now solve the stochastic equations numerically to obtain
nonperturbative results. We continue to use the ðq; pÞ
coordinates so that we can continue to use the free
eigenstates (44). We make the ansatz that our eigensolu-
tions to the eigenequations (24) can be written as

ΨNðq; pÞ ¼
X
rs

cðNÞ
rs ψ ð0Þ

rs ðq; pÞ; ð60aÞ

Ψ�
Nðq; pÞ ¼

X
rs

c�ðNÞ
rs ψ ð0Þ�

rs ðq; pÞ; ð60bÞ

where cð�ÞðNÞ
rs are two sets of coefficients to be determined

and ψ ð0Þ�
rs ðq; pÞ are the free eigenstates given in Eq. (44).

Substituting Eq. (60) into Eq. (24) gives

X
rs

cðNÞ
rs LFPψ

ð0Þ
rs ðq; pÞ ¼ −ΛN

X
rs

cðNÞ
rs ψ ð0Þ

rs ðq; pÞ; ð61aÞ

X
rs

cðNÞ
rs L�

FPψ
ð0Þ�
rs ðq; pÞ ¼ −ΛN

X
rs

c�ðNÞ
rs ψ ð0Þ�

rs ðq; pÞ: ð61bÞ

Applying the Fokker-Planck operator to the free eigenstates
will give us

Lð�Þ
FPψ

ð0Þð�Þ
rs ðq; pÞ ¼

X
r0s0

Mð�Þ
rsr0s0ψ

ð0Þð�Þ
r0s0 ; ð62Þ

where the matrices Mð�Þ are given by

Mrsr0s0 ¼ ðψ ð0Þ�
r0s0 ;LFPψ

ð0Þ
rs Þ ¼ M�

r0s0rs: ð63Þ

Explicit expressions for these matrices can be found but
they are complicated. Applying Eq. (62) to Eq. (61) and
making use of the completeness of the free eigenstates (25),
one can write

X
r0s0

MT
rsr0s0c

ðNÞ
r0s0 ¼ −ΛNc

ðNÞ
rs ; ð64aÞ

X
r0s0

ðM�ÞTrsr0s0c�ðNÞ
r0s0 ¼ −ΛNc

�ðNÞ
rs : ð64bÞ

FIG. 1. Regimes in which we expect our approximations to
work. Perturbative QFT, OD stochastic, and second-order (SO)
stochastic are expected to work in the blue left-hashed, green
right-hashed, and orange regions, respectively. Note that there is
some overlap. The pure white space is where none of these
approximations work.
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Thus, by diagonalizing the matrices ðMð�ÞÞT , we can

obtain the eigenvalues ΛN and the coefficients c�ðNÞ
rs and

hence the full solution to the Fokker-Planck equation.
In theory, this sum is infinite and our matrices are

infinite dimensional. Therefore, we have to choose values
for r and s (rmax and smax, respectively) at which we
truncate the series so that we can practically diagonalize
the matrices. This approximation only works if the
expansion in our chosen eigenstates (60) converges as
rmax and smax become large. Indeed, we can use this fact
to improve the accuracy of the spectral expansion by
evaluating the eigenvalues for a range of r and s and then
fitting an appropriate curve that converges at infinity.
This essentially gives us the eigenvalue at infinity. There
will naturally be some error associated with this fit but, as
we will see, it is exceedingly small. The convergence
speeds up as m2=H2 increases with constant λ and as λ
decreases with constantm2=H2. This is the case where the
free solution is the dominant one.
For the purposes of this work, we focus on calculating

the first nonzero eigenvalue in our spectral expansion Λ1.
To make the idea of truncation and fitting more concrete,
we consider the specific example in Fig. 2 where we
calculate Λ1 at m2=H2 ¼ 0.01 and λ ¼ 0.0005 with
the level of truncation ðrmax; smaxÞ ranging from (26, 26)
to (34, 34). The fit in Fig. 2 gives the eigenvalue at infinity

Λð∞Þ
1 ¼ 0.004530997449ð4Þ. The error is exceedingly

small, of order 10−12. Even if one just studies Fig. 2
roughly, one can see that the value of Λ1 changes on the
scale of 10−10 when going from a truncation at (26, 26)

to (34, 34), 7 orders of magnitude below the leading
significant figure of the eigenvalue. This is so small that we
can consider our numerical approach to have negligible
error. This is the scale of errors for all data taken in this
work and therefore we can ignore numerical errors and
henceforth drop the superscript (∞).

B. Comparing the second-order stochastic approach
to the OD limit and perturbative QFT

We now have a nonperturbative approach for finding
the eigenvalues associated with the second-order Fokker-
Planck equation (19). The only perturbative effect in
these eigenvalues is in the relationship between the
parameters of the second-order stochastic approach and
QFT. Thus, we have the spectrum of solutions that covers
the region λH2

m2 ≪ 1 in the parameter space (the orange
region in Fig. 1). This encompasses the parameter
space where the OD approximation is valid. However,
thus far we have not explicitly checked that the OD
and second-order results agree. To do this, we calculate
the first nonzero eigenvalue in each method in the
region where the OD approach is valid, m2=H2 ≪ 1 and
λ ≪ m2=H2.
We also make an explicit comparison with the perturba-

tive QFT eigenvalue (11). This is done to check that the
eigenvalues of the second-order stochastic approach behave
as expected; there should be a good level of agreement in
the regimes where the established approximations are valid
and a degree of difference when they are not.

1. Example 1: m2=H2 = 0.1

We start by considering two examples of how Λ1

compares to the equivalent quantities in the other two
approximations by plotting them as a function of λ for
constantm2=H2. For clarity, we label the first nonzero state

of the second-order stochastic approach as ΛðSOÞ
1 . In both

Figs. 3 and 4, the solid cyan line shows the choice σ2pp ¼ 0

(57c) with the choice σ2ðNLOÞpp [Eq. (59c) of Ref. [72]] shown
for comparison as the dot-dashed cyan line. One can see
that in both figures the two cyan lines diverge from one
another as λ increases, suggesting that the choice of σ2pp is
important. This is not the case. The reason for the
discrepancy is because we have not included the one-loop
corrections to the stochastic parameters, which enter at
relative order λH

2

m2 , so this difference really tells us the size of
such corrections. If one were to include these, the choice
of σ2pp would be irrelevant. This will be undertaken in
future work [73].
The first example is for m2=H2 ¼ 0.1. This is chosen

because the mass is sufficiently small such that the OD
stochastic approach will be valid beyond both the pertur-
bative QFT and second-order stochastic approaches.
Consider Fig. 3. One can see that for small λ, all three

FIG. 2. Difference between the first nonzero eigenvalue as
found at the highest order of truncation Λ1 and the fit Λð∞Þ

1 ¼
0.004530997449ð4Þ for a range of ðrmax; smaxÞ at m2=H2 ¼ 0.01
and λ ¼ 0.0005. Red crosses are the data found by numerically
diagonalizing the matrixMT up to the truncation ðrmax; smaxÞ and
the green line is the fit, which is exponential. Note that we always
take rmax ¼ smax and hence use a single number, rmax, to label the
x axis.
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models converge. This is as expected because it is in this
limit that all three models are valid. As we move towards
higher λ, λH4

m4 quickly becomes comparable to 1 and there-
fore the perturbative QFT eigenvalue diverges from the
other three curves. This divergence is large, which is no
surprise because even at λ ¼ 0.01, λH4

m4 ¼ 1 so we are
already out of the regime of validity for perturbative
QFT. One can see that there is good agreement between
the OD and second-order stochastic approaches throughout
for σ2pp ¼ 0, as expected, as we are still in the region where
the two models should agree.

2. Example 2: m2=H2 = 0.3

For our second example, we consider a larger mass
m2=H2 ¼ 0.3 such that the OD stochastic results become
less reliable. Consider Fig. 4. One can see that for small λ
the second-order stochastic and perturbative QFT results
agree well, but as one increases λ the two results diverge
from each other. This is once again because increasing λ

results in an increase of λH
4

m4 . Conversely, even at small λ, the
OD stochastic approach gives a different value for the
eigenvalue compared to the other two approaches, sug-
gesting that even at m2=H2 ¼ 0.3 we are at too high a mass
for the OD stochastic approach to be trustworthy.

3. OD versus second-order stochastic approaches

From these two examples, we can see that the behavior
of the second-order stochastic approach is as expected;
there is agreement and difference in the regimes where one
would expect to find them. To make this more quantitative,
we now consider more carefully the difference between
eigenvalues between the second-order stochastic approach
and the other two approaches.
First, we consider the difference between the second-

order and OD stochastic results. We take the relative
difference between the second-order and OD eigenvalues
ΛðSOÞ
1

−ΛðODÞ
1

ΛðSOÞ
1

as a function of m2=H2. As one increases m2=H2

the OD stochastic approach becomes less reliable so we
expect to see an increase in the difference between the two
results. In Fig. 5 we plot the relative difference for different
values of λ for the case when σ2pp ¼ 0. We immediately see
that all of the curves follow the same linearly increasing
behavior. As we increase m2=H2 towards the right-hand
side of the figure, we see that the relative difference
increases, as expected.

FIG. 5. Plot of ΛðSOÞ
1

−ΛðODÞ
1

ΛðSOÞ
1

against m2=H2 for λ ¼ 0.001 (red),

0.005 (green), 0.01 (yellow), and 0.02 (blue).

FIG. 4. Plot of the first excited eigenvalue Λ1 as a function
of λ for m2=H2 ¼ 0.3 using the perturbative QFT (purple,
dashed), OD stochastic (orange, dotted), and second-order

stochastic (cyan) approaches, with σ2pp ¼ σ2ðNLOÞpp (dot-dashed)
and σ2pp ¼ 0 (solid).

FIG. 3. Plot of the first excited eigenvalue Λ1 as a function of λ
form2=H2 ¼ 0.1 using the perturbative QFT (purple, dashed), OD
stochastic (orange, dotted), and second-order stochastic (cyan)

approaches, with σ2pp ¼ σ2ðNLOÞpp (dot-dashed) and σ2pp ¼ 0 (solid).
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4. Perturbative QFT versus second-order
stochastic approaches

We now do the same analysis with a comparison of the
second-order stochastic and perturbative QFT eigenvalues

where we plot the eigenvalue difference ΛðQFTÞ
1

−ΛðSOÞ
1

ΛðSOÞ
1

for

several values of λ (solid lines in Fig. 6). Now, we use
λH4=m4 on the x axis. As one increases this parameter,
perturbative QFT becomes less reliable so we expect to see
an increase in the difference between the two results. We
see the expected behavior: for small λH4

m4 , all of the curves

converge to 0. As λH4

m4 increases, we see an increasing
relative difference between the two eigenvalues due to a
breakdown of perturbative QFT.

5. OD stochastic versus perturbative QFT approaches

The final comparison we make is between the two
established approximations: perturbative QFT and the
OD stochastic approach. The dotted lines in Fig. 6 plot
the eigenvalue difference between the two approaches,
ΛðQFTÞ
1

−ΛðODÞ
1

ΛðODÞ
1

, as a function of λH4

m4 for the four λ values.

On the right-hand side of the plot, we can see that the
deviation from the QFT result follows the same pattern as
that of the second-order stochastic approach. This is
unsurprising because, as we move to higher λH4

m4 , we are
moving to smaller m2=H2, the limit where the OD and
second-order stochastic approaches agree. In this regime,
perturbative QFT is breaking down so we see a high relative
difference between it and the stochastic approaches. As we

move to smaller values of λH
4

m4 , the dotted curves dip to some
minimum before turning upward. As one moves left, there
is an increasing relative difference between the two; this is
now due to the breakdown of the OD stochastic approach
since we are getting to highm2=H2 values. One can see that
the second-order stochastic approach continues towards a
zero relative difference, indicating the region where the OD
approach breaks down but the other two approximations are
still valid.

VI. CONCLUDING REMARKS

We have shown that the second-order stochastic effec-
tive theory can be used to calculate correlation functions
for self-interacting scalar fields in de Sitter spacetime.
The stochastic parameters were determined by matching
stochastic correlators to their counterparts in perturbative
QFT and a novel numerical calculation was implemented
in order to perform computations for fields of mass
m≲H and coupling λ ≪ m2=H2. This goes beyond the
regimes of the established approximations of perturbative
QFT and the overdamped stochastic approach, which are
limited to λ ≪ m4=H4 and m ≪ H, λ ≪ m2=H2, respec-
tively. It would be interesting to compare our results to
other nonperturbative approaches, but that is beyond the
scope of this paper.
Future work is in progress to extend the second-order

stochastic approach further to incorporate the full one-loop
correction, which will capture the relative order OðλH2

m2 Þ
contributions. This will improve the results of the current
paper and extend the regime of validity of the second-order
stochastic theory even further. Ideally, one would like to
derive the stochastic parameters from an underlying quan-
tum theory nonperturbatively as opposed to using the
perturbative matching procedure; however, it is not clear
how one should proceed in this direction.
Regardless, the second-order stochastic effective theory

has strong computational power that will be useful in a
range of topics in inflationary cosmology, such as the
precision calculation of the primordial curvature and
isocurvature perturbations in scenarios with light scalar
fields. The formalism outlined in this work suggests that the
stochastic approach has applications beyond its widely
used overdamped state and that it is a method that warrants
further study.
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FIG. 6. Plot of ΛðQFTÞ
1

−ΛðIÞ
1

ΛðIÞ
1

, where I ∈ fSO;ODg as a function of
λH4

m4 for λ ¼ 0.001 (red), λ ¼ 0.005 (green), λ ¼ 0.01 (yellow),
and λ ¼ 0.02 (blue). The solid lines show the relative difference
between the SO and QFTeigenvalues, which lie directly on top of
each other for most λH4

m4 values, while the dashed lines show the
relative difference between the OD and QFT eigenvalues.
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APPENDIX A: CHOICE OF THE
pp NOISE AMPLITUDE

The choice of setting σ2pp ¼ 0 as opposed to fitting it
with the subleading contribution is a deviation from our
work in Ref. [72] and so it is worth discussing here where
any difference may occur. The key difference we need to
address here is the comparison we made in Eq. (71) of
Ref. [72]. In that work, we had an alternative second-order
stochastic approach, where one introduced a cutoff between
the sub- and superhorizon modes. We compared this with
the matching procedure for free fields and showed that the
two models would only reproduce equivalent leading-order
contributions in the limit m ≪ H. Here, we show these
results again for free fields but also include the matching
prescription when σ2pp ¼ 0 as well. The result is

σ2ð0Þqq

			
m≪H

¼ H3

4π2
;

σ2cut;qq

			
m≪H

¼ H3

4π2

�
1þ ϵ2

3
þ ϵ4

9

�
; ðA1aÞ

σ2ð0Þqp

			
m≪H

¼ 0;

σ2cut;qp

			
m≪H

¼ H4

4π2

�
−ϵ2 þ ϵ4

3

�
; ðA1bÞ

σ2ð0Þpp

			
m≪H

¼


σ2ðNLOÞpp jm≪H ¼ 36H5

π2
;

0;

σ2cut;ppjm≪H ¼ H5

4π2
ϵ4: ðA1cÞ

ϵ is the cutoff parameter which one takes to be small such
that ϵ2 ∼ 0. We see that the two approaches agree for all

three noise amplitudes if σ2ð0Þpp ¼ 0. This is not what is
found if one matches σ2pp with the subleading contribution,

when σ2ð0Þpp ¼ σ2ðNLOÞpp .

This choice also proves convenient because it is now
straightforward to recover the OD stochastic equations
from the full second-order theory. Writing the ðϕ; πÞ noise
amplitudes found through matching in the limit m ≪ H,

σ2ϕϕjm≪H ¼ H3

4π2
; ðA2aÞ

σ2ϕπjm≪H ¼ 0; ðA2bÞ

σ2ππjm≪H ¼ 0; ðA2cÞ

we see that the only nonzero component to the noise
amplitude is σ2ϕϕ. Considering Eq. (16) in the OD limit
_π ≪ 3Hπ, it becomes

_ϕþ V 0ðϕÞ
3H

¼ ξϕ; ðA3Þ

which is just the OD stochastic equation (12).

APPENDIX B: STOCHASTIC PERTURBATION
THEORY USING GENERAL NOISE

In this appendix, we outline the derivation of the
stochastic field correlator for a general noise contribution.
We include both the timelike and spacelike correlators for
completeness.
From Eq. (47), the lowest two eigenvalues at OðλÞ are

Λð1Þ
00 ¼ 0; ðB1aÞ

Λð1Þ
01 ¼ 3ασ2pp − 4Hαβ2σ2qp þ 3H2β3σ2qq

8ν2H4αβ2
: ðB1bÞ

By using Eqs. (48) and (50), respectively, we can find the
timelike and spacelike q − q, q − p, p − q, and p − p
stochastic correlators. Including the perturbed noise (52),
the timelike ðq; pÞ stochastic correlators to OðλÞ are

hqð0;xÞqðt;xÞi ¼
�
σ2ð0Þqq

2Hα
þ λ

�
σ2ð1Þqq

2Hα
þ ð3νHσ2ð0Þqq − ασ2ð0Þqp Þð3ασ2ð0Þpp − 4Hαβ2σ2ð0Þqp þ 3H2β3σ2ð0Þqq Þ

48ν3H7α3β2

��

× e
−
�
αHþλ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

8ν2H4αβ2

�
t

þ
�
λ

�
σ2ð0Þqp ð−3ασ2ð0Þpp þ 4Hαβ2σ2ð0Þqp − 3H2β3σ2ð0Þqq Þ

48ν3H7αβ3

��
e
−
�
βH−λ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

8ν2H4αβ2

�
t
; ðB2aÞ
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hpð0;xÞqðt;xÞi ¼
�
σ2ð0Þqp

3H
þ λ

�
σ2ð1Þqp

3H
þ ðνH2β2σ2ð0Þqq − ασ2ð0Þpp Þð3ασ2ð0Þpp − 4Hαβ2σ2ð0Þqp þ 3H2β3σ2ð0Þqq Þ

48ν3H7α2β3

��

× e
−
�
αHþλ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

8ν2H4αβ2

�
t

þ
�
λ

�
σ2ð0Þpp ð−3ασ2ð0Þpp þ 4Hαβ2σ2ð0Þqp − 3H2β3σ2ð0Þqq Þ

32ν3H7αβ4

��
e
−
�
βH−λ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

8ν2H4αβ2

�
t
; ðB2bÞ

hqð0;xÞpðt;xÞi ¼
�
λ

�
σð0Þqq ð3ασ2ð0Þpp − 4Hαβ2σ2ð0Þqp þ 3H2β3σ2ð0Þqq Þ

32ν3H5α2β

��
e
−
�
αHþλ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

8ν2H4αβ2

�
t

þ
�
σ2ð0Þqp

3H
þ λ

�
σ2ð1Þqp

3H
þ ðνσ2ð0Þpp þH2β3σ2ð0Þqq Þð3ασ2ð0Þpp − 4Hαβ2σ2ð0Þqp þ 3H2β3σ2ð0Þqq Þ

48ν3H7αβ4

��

× e
−
�
βH−λ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

8ν2H4αβ2

�
t
; ðB2cÞ

hpð0;xÞpðt;xÞi ¼
�
λ

�
σ2ð0Þqp ð−3ασ2ð0Þpp þ 4Hαβ2σ2ð0Þqp − 3H2β3σ2ð0Þqq Þ

48ν3H5αβ

��
e
−
�
αHþλ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

8ν2H4αβ2

�
t

þ
�
σ2ð0Þpp

2Hβ
þ λ

�
σ2ð1Þpp

2Hβ
þ ð3νσ2ð0Þpp þHβ2ασ2ð0Þqp Þð3ασ2ð0Þpp − 4Hαβ2σ2ð0Þqp þ 3H2β3σ2ð0Þqq Þ

48ν3H6αβ4

��

× e
−
�
βH−λ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

8ν2H4αβ2

�
t ðB2dÞ

and their spacelike counterparts are

hqðt; 0Þqðt;xÞi ¼
�
σ2ð0Þqq

2Hα
þ λ

�
σ2ð1Þqq

2Hα
þ ð3ασ2ð0Þpp − 4Hαβ2σ2ð0Þqp þ 3H2β3σ2ð0Þqq Þð3ασ2ð0Þqp − 3νHβσ2ð0Þqq Þ

48ν3H7α3β3

��

× jHaðtÞxj−2α−λ
3ασ

2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

4ν2H5αβ2

þ
�
λ

�
σ2ð0Þqp ð−3ασ2ð0Þpp þ 4Hαβ2σ2ð0Þqp − 3H2β3σ2ð0Þqq Þ

24ν3H7αβ3

��
jHaðtÞxj−3; ðB3aÞ

hqðt; 0Þpðt;xÞi ¼ hpðt; 0Þqðt;xÞi

¼
�
λ

�
σ2ð0Þqq ð−3ασ2ð0Þpp þ 4Hαβ2σ2ð0Þqp − 3H2β3σ2ð0Þqq Þ

32ν3H5α2β

��
jHaðtÞxj−2α−λ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

4ν2H5αβ2

þ
�
λ

�
σ2ð0Þpp ð−3ασ2ð0Þpp þ 4Hαβ2σ2ð0Þqp − 3H2β3σ2ð0Þqq Þ

32ν3H7αβ4

��
jHaðtÞxj−2βþλ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

4ν2H5αβ2

þ
�
σ2ð0Þqp

3H
þ λ

�
σ2ð1Þqp

3H
þ ðσ2ð0Þpp þH2β2σ2ð0Þqq Þð3ασ2ð0Þpp − 4Hαβ2σ2ð0Þqp þ 3H2β3σ2ð0Þqq Þ

48ν3H7αβ3

��
jHaðtÞxj−3; ðB3bÞ

hpðt; 0Þpðt;xÞi ¼
�
σ2ð0Þpp

2Hβ
þ λ

�
σ2ð1Þpp

2Hβ
þ ð3νσ2ð0Þpp þ 3Hβ2σ2ð0Þqp Þð3ασ2ð0Þpp − 4Hαβ2σ2ð0Þqp þ 3H2β3σ2ð0Þqq Þ

48ν3H6αβ4

��

× jHaðtÞxj−2βþλ
3ασ

2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

4ν2H5αβ2

×

�
λ

�
σ2ð0Þqp ð−3ασ2ð0Þpp þ 4Hαβ2σ2ð0Þqp − 3H2β3σ2ð0Þqq Þ

24ν3H5αβ

��
jHaðtÞxj−3: ðB3cÞ
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Substituting these expressions into Eq. (40), we obtain an expression for the ϕ − ϕ stochastic correlator up to first order in λ.
The timelike version is

hϕð0;xÞϕðt;xÞi ¼ 1

1 − α
β

�
σ2ð0Þqq

2Hα
−

σ2ð0Þqp

3H2β
þ λ

�
σ2ð1Þqq

2Hα
−

σ2ð1Þqp

3H2β
þ ð2Hα4βσ2ð0Þqp ð−3σ2ð0Þpp þ 4Hβ2σ2ð0Þqp Þ

þ 9H4β7
�
σ2ð0Þqq

�
2 þ 9H2αβ4σ2ð0Þqq

�
−σ2ð0Þpp þ 2Hβ2

�
σ2ð0Þqp þHσ2ð0Þqq

��
− 3α3

�
6
�
σ2ð0Þpp

�
2 þ 6H3β4σ2ð0Þqp σ2ð0Þqq −Hβ2σ2ð0Þpp

�
8σ2ð0Þqp þ 3Hσ2ð0Þqq

��
þHα2β3

�
6σ2ð0Þpp σ2ð0Þqp þHβ2

�
−8ðσ2ð0Þqp

�
2
− 24Hσ2ð0Þqp σ2ð0Þqq þ 9H2

�
σ2ð0Þqq

�
2
���

=ð288ν3H8α3β4Þ
��

× e
−
�
αHþλ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

8ν2H4αβ2

�
t

þ 1

1 − α
β

�
σ2ð0Þpp

2H3β3
−

σ2ð0Þqp

3H2β
þ λ

�
σ2ð1Þpp

2H3β3
−

σ2ð1Þqp

3H2β
þ ð9αð−α2 þ 2αβ þ β2Þ

�
σ2ð0Þpp

�
2

þ 6Hαβ2ð3α2 − 4αβ − 3β2Þσ2ð0Þqp σ2ð0Þpp þ 6H3β5ðα2 þ 4αβ − β2Þσ2ð0Þqp σ2ð0Þqq − 18H4β7
�
σ2ð0Þqq

�
2

þH2β3ðβ2 − α2Þð8αβðσ2ð0Þqp Þ2 þ 9σ2ð0Þpp σ2ð0Þqq ÞÞ=ð288ν3H8αβ6Þ
��

e
−
�
βH−λ

3ασ
2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

8ν2H4αβ2

�
t ðB4Þ

while the spacelike version is

hϕðt; 0Þϕðt;xÞi ¼ 1

1 − α
β

�
σ2ð0Þqq

2Hα
þ λ

�
σ2ð1Þqq

2Hα
þ ðHβð3α − βÞσ2ð0Þqq þ 2ασ2ð0Þqp Þð3ασ2ð0Þpp − 4Hαβ2σ2ð0Þqp þ 3H2β3σ2ð0Þqq Þ

32ν3H7α3β3

��

× jHaðtÞxj−2α−λ
3ασ

2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

4ν2H5αβ2

þ 1

1 − α
β

�
σ2ð0Þpp

2H3β3
þ λ

�
σ2ð1Þpp

2H3β3
þ ðð3β − αÞσ2ð0Þpp þ 2Hβ2σ2ð0Þqp Þð3ασ2ð0Þpp − 4Hαβ2σ2ð0Þqp þ 3H2β3σ2ð0Þqq Þ

32ν3H8αβ6

��

× jHaðtÞxj−2βþλ
3ασ

2ð0Þ
pp −4Hαβ2σ

2ð0Þ
qp þ3H2β3σ

2ð0Þ
qq

4ν2H5αβ2

þ 1

1 − α
β

�
−
2σ2ð0Þqp

3H2β
þ λ

�
−
2σ2ð1Þqp

3H2β
þ
�
2Hα2βσ2ð0Þqp

�
4Hβ2σ2ð0Þqp − 3σ2ð0Þpp

�

− 3H2β3σ2ð0Þqq

�
3σ2ð0Þpp þHβ2

�
2σ2ð0Þqp þ 3Hσ2ð0Þqq

��
− α
�
9
�
σ2ð0Þpp

�
2
− 3Hβ2σ2ð0Þpp

�
2σ2ð0Þqp − 3Hσ2ð0Þqq

�
− 2H2β4σ2ð0Þqp

�
4σ2ð0Þqp þ 3Hσ2ð0Þqq

����
ð72ν3H8αβ4Þ

��
jHaðtÞxj−3: ðB5Þ

This reduces to Eq. (54) if we use the free noise amplitudes (41).
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