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One of the most important observational constraints on possible models of dark-matter physics exploits
the Lyman-α absorption spectrum associated with photons traversing the intergalactic medium. Because
these data allow us to probe the linear matter power spectrum with great accuracy down to relatively small
distance scales, finding ways of accurately evaluating such Lyman-α constraints across large classes of
candidate models of dark-matter physics is of paramount importance. While such Lyman-α constraints
have been evaluated for dark-matter models that give rise to relatively simple dark-matter velocity
distributions, more complex models—particularly those whose dark-matter velocity distributions stretch
across multiple scales—have recently been receiving increasing attention. In this paper, we undertake a
study of the Lyman-α constraints associated with general dark-matter velocity distributions. Although such
Lyman-α constraints are difficult to evaluate in principle, in practice there currently exist two classes of
methods in the literature through which such constraints can be recast into forms which are easier to
evaluate and which therefore allow a more rapid determination of whether a given dark-matter model is
ruled in or out. Accordingly, we utilize both of these recasts in order to determine the Lyman-α bounds on
different classes of dark-matter velocity distributions. We also develop a general method by which the
results of these different recasts can be compared. For relatively simple dark-matter velocity distributions,
we demonstrate that these two classes of recasts tend to align and give similar results. However, we find that
the situation is far more complex for distributions involving multiple velocity scales: while these two
classes of recasts continue to yield similar results within certain regions of parameter space, they
nevertheless yield dramatically different results within precisely those regions of parameter space which are
likely to be phenomenologically relevant. This, then, serves as a cautionary tale regarding the use of such
recasts for complex dark-matter velocity distributions.
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I. INTRODUCTION

On large scales, the ΛCDM cosmology—a cosmology
which is built on a relatively simple set of assumptions and
whose components include only ordinary (visible) matter,
cold dark matter (CDM), and a cosmological constant Λ—
has provided a remarkably successful model of the
Universe [1]. However, on smaller scales corresponding
to distances ≲1 Mpc, evidence of this success is not as

solid, with inconsistencies between numerical simulations
and observations [2–5] appearing in several areas.
Several of these inconsistencies can potentially be

addressed by positing that the dark matter is not strictly
cold. Indeed, there exist a variety of mechanisms through
which a population of dark-matter particles with a non-
negligible primordial velocity distribution can be produced
in the early Universe. However, different mechanisms can
give rise to different velocity distributions with dramati-
cally different shapes.
In order to illustrate the range of possibilities, in Fig. 1

we provide two examples of possible dark-matter velocity
distributions which arise in different dark-matter scenarios.
The first of these distributions (dashed gray curve) arises
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from a warm dark matter (WDM) scenario wherein a dark-
matter particle with a mass of OðkeVÞ is produced via
thermal freeze-out while still relativistic. It is a simple,
unimodal distribution which is sharply peaked around a
particular velocity. The second distribution (solid blue
curve), by contrast, arises within the context of a dark-
matter model [6] in which the dark matter is produced as
the end product of a long sequence of possible decays that
take place within a tower of heavier, unstable dark states.
The nontrivial shape of the resulting dark-matter velocity
distribution then reflects the contributions of many possible
decay chains within such a scenario. Indeed, the resulting
dark-matter velocity distribution can be highly complex
and even multimodal. We emphasize that both of the
distributions shown in Fig. 1 have the same average
velocity and would naively be characterized by the same
free-streaming horizon kFSH ≈ 1.1 h=Mpc, where h is the
dimensionless Hubble constant. However, they also clearly
differ significantly and indeed give rise to different pre-
dictions for small-scale structure—even for the same
background cosmology.
One way in which the detailed structure of the primordial

dark-matter velocity distribution leaves its imprint on
small-scale structure is through free-streaming effects,
which impact the shape of the linear matter power spec-
trum. Indeed, a great deal of information about the velocity
distribution can be inferred from the shape of the matter
power spectrum directly. That said, deriving rigorous
constraints on the dark-matter velocity distribution in this
way presents some challenges. One such challenge stems
from the fact that the Lyman-α forest currently provides the

most stringent constraints on the shape of the matter power
spectrum across a broad range of comoving wave numbers
k. In order to translate these Lyman-α constraints into
rigorous bounds on any particular dark-matter model, one
would typically need to perform detailed numerical hydro-
dynamic simulations specifically tailored to that model and
its characteristic dark-matter velocity distribution. Since
simulations of this sort are computationally intensive, it is
impractical to employ them when surveying broad classes
of dark-matter models.
For this reason, methods for evaluating these constraints

have been developed which effectively involve recasting
the Lyman-α data onto a baseline WDM model for which
these sorts of hydrodynamic simulations have already been
carried out. Different methods exist in the literature for
constructing such recasts, but these methods typically fall
into two general classes. The first class comprises methods
which are sensitive to the properties of the power spectrum
only at relatively low values of k [7–18]. By contrast, the
second class comprises methods which are sensitive to the
properties of TðkÞ over a broader range of k [19–29]. We
shall refer to recasts which fall into these two classes as
“half-mode” and δA recasts, respectively. The methods
involved in formulating recasts within each class will be
reviewed in Sec. II.
In this paper, we shall utilize these recasts in order to

undertake a general study of Lyman-α constraints on dark-
matter models which transcend the traditional CDM
hypothesis. More specifically, we shall utilize these recasts
in order to evaluate the Lyman-α constraints for a variety of
dark-matter velocity distributions. Given that both half-
mode and δA recasts are constructed in reference to a
baseline WDM velocity distribution, we shall find it useful
to classify the different possible dark-matter velocity
distributions that we shall examine in this paper into two
overall categories:
i. Class I: velocity distributions whose shapes are well

approximated by the characteristic profile which arises
in WDM scenarios. Such velocity distributions have a
single peak, as exemplified by the unimodal distribu-
tion depicted in Fig. 1, and rise and fall smoothly from
that peak on either side.

ii. Class II: more complicated velocity distributions
whose shapes depart significantly from the WDM
profile. Such distributions exhibit a variety of different
internal features, and include multimodal distributions
of the sort illustrated in Fig. 1.

We shall begin our analysis by examining the Lyman-α
constraints on dark-matter scenarios whose characteristic
velocity distributions unambiguously fall within class I. By
definition, these include the baseline WDM scenario itself.
We shall then systematically study departures from this
baseline scenario and investigate how the Lyman-α con-
straints vary as the shape of the dark-matter velocity
distribution is modified. Finally, fully breaking from class

FIG. 1. Examples of possible dark-matter velocity distributions
gðvÞ=N which lead to departures from the small-scale structure
predicted by CDM. The dashed gray curve represents the
distribution which arises from the thermal freeze-out of a
dark-matter particle with a mass of OðkeVÞ. By contrast, the
solid blue curve represents a highly nonthermal velocity distri-
bution generated by decay cascades within a nonminimal dark
sector [6]. Both of the distributions shown have the same present-
day average velocity and would naively be characterized by the
same free-streaming horizon kFSH ≈ 1.1 h=Mpc.
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I, we examine the constraints on dark-matter scenarios
which give rise to multimodal velocity distributions—
distributions which decidedly fall within class II.
Because we shall employ both the half-mode and δA

recasts in our analysis, the results of our paper will also
enable us to compare these two classes of recasts. For class-I
velocity distributions, we find that these recasts tend to align
and give similar results. However, we find that the situation
is far more complex for class-II velocity distributions.While
the two classes of recasts continue to yield similar results
within certain regions of parameter space, they can never-
theless yield dramatically different results within precisely
those regions of parameter space which are likely to be
phenomenologically relevant. Indeed, these differences can
be quite significant. Our results thus provide a cautionary
tale regarding the use of such recasts when more general
velocity distributions are considered.
This paper is organized as follows. In Sec. II, we begin

by reviewing the calculations necessary in order to evaluate
the Lyman-α constraints on dark-matter models. We also
outline the two classes of recasts that we consider in this
paper. In Sec. III, we then develop a general method
through which these two recasts can be compared on an
equal footing. In Sec. IV, we evaluate the Lyman-α
constraints obtained from both of these recasts for a simple
baseline dark-matter model as well as for certain extensions
of this model. In Sec. V, we then turn our attention to
nonminimal dark-matter scenarios in which the dark-matter
velocity distribution is multimodal and compare the results
obtained from our two recasts within such scenarios. In
Sec. VI, we apply a parametric function for multimodal
distributions. Finally, in Sec. VII, we discuss the potential
implications of our results and identify areas meriting
further exploration.

II. EVALUATING LYMAN-α CONSTRAINTS ON
DARK MATTER

Given a proposed model of dark-matter physics and a
given background cosmology, one can in principle calcu-
late the spatial distribution of dark matter within and
between galaxies. The spatial distribution of dark matter
affects the spatial distribution of visible matter—including
the frequency and density of clouds of neutral hydrogen—
which can be probed by astronomical observations. In
particular, as light emanating from distant quasars and other
bright objects passes through the intergalactic medium, it
interacts with the neutral hydrogen and can be observed
today. By analyzing the Lyman-α absorption spectrum of
this radiation, one can infer properties of the hydrogen
distribution. In this way, measurements of the observed
Lyman-α absorption spectrum within such light can indi-
rectly be used to constrain models of dark-matter physics.
As we shall see, the central object in evaluating such

Lyman-α constraints is the so-called “transfer function”
TðkÞ. For any model of dark-matter physics with a

predicted linear matter power spectrum PðkÞ, or for any
set of cosmological observations that yield an observed
linear matter power spectrum PðkÞ, the corresponding
transfer function TðkÞ is defined as

T2ðkÞ≡ PðkÞ
PCDMðkÞ

; ð2:1Þ

where PCDMðkÞ is the matter power spectrum that would
have arisen in a model consisting of purely cold dark matter
and where k once again denotes a comoving wave number.
The transfer function thus tracks how cosmological struc-
ture, either in theoretical predictions or in data gathered
from observations, deviates from that of CDM.
In general, in order to evaluate Lyman-α constraints on a

given dark-matter model, one is faced with two tasks. The
first is to determine the transfer function TðkÞ predicted by
the theoretical dark-matter model; the second is to translate
observational data in such a way that they may be compared
directly to these predictions. We shall now provide a brief
outline of how these tasks are typically performed.

A. Determining theoretical predictions for TðkÞ
In general, the form of TðkÞ which arises from any

particle-physics model of dark matter depends on a variety
of factors. One of the most important is the dark-matter
phase-space distribution gðp; tÞ, which in an approximately
homogeneous and isotropic universe can be expressed in
terms of the three-momentum magnitude p≡ jp⃗j and the
time t alone. We shall find it convenient to define gðp; tÞ as
a distribution in ðlogpÞ space according to the relation

NðtÞ ¼ gint
2π2

Z
∞

−∞
d logpgðp; tÞ; ð2:2Þ

where NðtÞ is the comoving number density of the particle
species which constitutes the dark matter and where gint is
the number of internal degrees of freedom for that species.
With this definition for gðp; tÞ, cosmological redshifting
does not alter the shape of gðp; tÞ, but instead merely
shifts the entire distribution uniformly to lower values of
logp.
For many dark-matter models, gðp; tÞ effectively ceases

evolving—except in the trivial way discussed above, as a
consequence of cosmological redshifting—well before the
time tMRE of matter-radiation equality. For such models,
one may unambiguously characterize the primordial dark-
matter velocity distribution in terms of the distribution
gðpÞ≡ gðp; tnowÞ, where the extrapolation of gðp; tÞ to the
present time tnow is performed accounting for cosmological
redshifting alone. Indeed, this gðpÞ distribution tells us
whether the dark matter is cold or hot, thermal or non-
thermal, and so forth. Moreover, the functional form
for gðpÞ contains all of the information we require in
order to calculate the corresponding transfer function
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directly by evolving the spectrum of primordial cosmo-
logical perturbations forward in time. In this paper, we shall
carry out calculations of this sort using the CLASS software
package [30–33].
Since gðpÞ contains all of the information necessary to

produce predictions for TðkÞ, we can survey large classes of
dark-matter models simply by examining different possible
profiles for gðpÞ without worrying about the underlying
physics from which these distributions might ultimately
have been produced. Indeed, while many details of the
underlying physics leave unique imprints on the gðpÞ
distributions, many features do not. This issue is studied
in some detail in Ref. [6].
Our primary interest in this paper is to investigate how

dark-matter models with different gðpÞ distributions are
constrained by Lyman-α data. As such, we are primarily
interested in gðpÞ distributions for which free-streaming
effects have an impact on structure on scales that can be
meaningfully probed using such data. For a class-I dis-
tribution, the effect of free-streaming on PðkÞ is compa-
ratively straightforward to assess. The primary figure of
merit in this regard is the present-day value hvi ¼ hvðtnowÞi
of the time-dependent average velocity

hvðtÞi ¼ 2π2

gint

Z
∞

−∞
d logp

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2a2ðtÞ

p gðpÞ; ð2:3Þ

where aðtÞ is the scale factor, defined such that
aðtnowÞ ¼ 1. In particular, for such distributions, one
may sensibly define the free-streaming horizon

dFSH ≡
Z

dt
aðtÞ hvðtÞi

≈
hvi

ða2HÞMRE

�
2þ log

�
2aMRE

hvi
��

; ð2:4Þ

where the subscript “MRE” represents the value of the
corresponding quantity at tMRE. Roughly speaking, the
corresponding wave number kFSH ∼ 1=dFSH represents
the value of k above which PðkÞ is suppressed by free-
streaming effects for a given hvi. Given that ða2HÞMRE ≈
8 × 10−6 h=Mpc and aMRE ≈ 2.84 × 10−4, we find that
the range of velocities which correspond to the range of
wave numbers 1 h=Mpc≲ k≲ 50 h=Mpc constrained by
Lyman-α data is roughly 10−8 ≲ hvi≲ 10−6. For class-I
dark-matter velocity distributions, then, assessing whether
gðpÞ would have an observable impact of Lyman-α data is
simply a matter of assessing whether or not hvi exceeds the
lower limit of this range.
By contrast, for class-II velocity distributions, the sit-

uation is more complicated. For such distributions, hvi no
longer provides a reliable characterization of the effect
of free-streaming. Indeed, for such distributions, the
whole notion of a single “free-streaming scale” kFSH is

inappropriate, given that different parts of the distribution
free-stream at significantly different values of k. For class-
II distributions, then, all parts of the phase-space distribu-
tion that lie within or above the range 10−8 ≲ hvi ≲ 10−6

can in principle affect Lyman-α data. The corresponding
constraints on such distributions are therefore more subtle
and must be dealt with more carefully.

B. Applying Lyman-α constraints to TðkÞ
In order to determine the constraints on the transfer

function TðkÞ from Lyman-α data, knowledge of the spatial
distribution of neutral hydrogen is necessary. Calculating
this distribution typically requires detailed hydrodynamic
simulations, often in conjunction with N-body simulations.
Unfortunately, performing these numerical calculations is
not always computationally feasible. For this reason, it is
useful to reformulate or “recast” these constraints in
different approximate forms that may be easily applied
to different candidate models of dark-matter physics.
In general, we may group the recast methods that are in

common use in the literature into two different classes. The
first class comprises recasts which focus exclusively on the
behavior of the power spectrum at relatively small values of
k, while the second comprises recasts which incorporate the
weighted behavior of the power spectrum over a broad
range of wave numbers, typically including contributions
from relatively large values of k.
In order to perform this analysis, we shall employ a

single representative recast method from each class. Our
representative of the first class will be a well-known recast
method based on the so-called “half-mode” mass [7]. By
contrast, our representative of the second class will be a
method based on the so-called δA estimator [20]. In this
section, we shall review both of these methods.

1. Analysis based on the half-mode

This method of assessing Lyman-α constraints on a given
dark-matter model exploits the fact that the sorts of
numerical simulations described above have actually been
performed [34–36] for the case of one particular model of
dark-matter physics: a model in which all of the dark matter
is warm, with mass mWDM. For such a model, the transfer
function takes the approximate form

T2
WDMðkÞ ≈ ½1þ ðαkÞ2ν�−10=ν; ð2:5Þ

where ν ¼ 1.12 and where

α ¼ 0.049

�
mWDM

keV

�
−1.11

�
ΩWDM

0.25

�
0.11

�
h
0.7

�
1.22 Mpc

h
:

ð2:6Þ

We thus see that taking the dark matter to be warm rather
than cold suppresses structure formation for wave-number
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scales k≳Oð1=αÞ, but has essentially no effect for scales
k ≪ 1=α, where TðkÞ ≈ 1. The scale 1=α which character-
izes the onset of suppression depends on the massmWDM of
the WDM particle, with smaller masses resulting in larger
deviations from the predictions of CDM. Lyman-α con-
straints on this model then take the form of a lower bound
on mWDM, with the lower bounds mWDM ≥ 3.5 keV and
mWDM ≥ 5.3 keV often quoted in the literature [21]. These
two benchmark values correspond to different assumptions
concerning the thermal history of the Universe, and can
thus be viewed as providing a measure of the uncertainty in
the Lyman-α constraint.
While these results apply to WDM, it is possible to

exploit them in order to place constraints on other, more
general models of dark matter. Essentially the above WDM
analysis can be viewed as imposing a lower limit on the
transfer function TðkÞ that can be consistent with Lyman-α
constraints within the critical region of k space which
describes the onset of structure suppression. To describe
this onset region, one typically defines the so-called half-
mode scale k1=2, which is simply the scale at which the
squared transfer function has fallen to 1=2:

T2
WDMðk1=2Þ≡ 1

2
: ð2:7Þ

One then takes the onset region to be that in which k≲ k1=2.
Given Eq. (2.5), we find that

k1=2 ≈
1

α
ð2ν=10 − 1Þ1=2ν: ð2:8Þ

For any general model of dark-matter physics with transfer
function TðkÞ, we then ensure that we have satisfied
Lyman-α constraints by demanding that

TðkÞ ≥ TWDMðkÞ for all 0 ≤ k ≤ k1=2; ð2:9Þ

wheremWDM is set to its lower limit (either 3.5 or 5.3 keV).
Taking the larger critical WDM mass clearly leads to a
more stringent constraint.
Of course, a violation of the TðkÞ ≥ TWDMðkÞ bound for

any value of k can technically be considered a violation of
the Lyman-α constraint. However, this would be overly
conservative, since a violation of the bound at very large k
is not as critical as a violation at small k. It is for this reason
that one demands TðkÞ ≥ TWDMðkÞ only for k ≤ k1=2.

2. Analysis based on δA

An alternative approach to imposing Lyman-α con-
straints was proposed in Ref. [20], building on results in
Ref. [19]. Given a model of dark-matter physics and its
associated matter power spectrum PðkÞ, we first calculate
the corresponding “one-dimensional” power spectrum

P1DðkÞ≡ 1

2π

Z
∞

k
dk0 k0Pðk0Þ; ð2:10Þ

which is simply the k0-integral of the matter power
spectrum over all k0 > k. We then define

A≡
Z

kmax

kmin

dk
P1DðkÞ
PCDM
1D ðkÞ ; ð2:11Þ

where kmin ¼ 0.5 h=Mpc and kmax ¼ 20 h=Mpc, corre-
sponding to the limits used in the MIKE/HIRES and
XQ-100 combined dataset [21]. We emphasize that A is
sensitive to the behavior of PðkÞ at all wave numbers
k > kmin, including those above kmax.
Given the definition in Eq. (2.11), we immediately see

that ACDM ¼ kmax − kmin. Our interest concerns the degree
to which A for a given dark-matter model differs from
ACDM. We therefore define the fractional deviation

δA≡ ACDM − A
ACDM

¼ 1 −
� R∞

k dk0k0Pðk0ÞR
∞
k dk0k0PCDMðk0Þ

�
k

; ð2:12Þ

where h� � �ik indicates an average over the range of
comoving wave numbers kmin ≤ k ≤ kmax. We can then
recast the Lyman-α constraints as placing a bound

δA ≤ δAref ; ð2:13Þ

where δAref is a reference value obtained by applying
Eq. (2.12) to a WDM model with mWDM set to its lower
limit. Thus, once again, taking the larger critical WDM
mass leads to a more stringent constraint.
It turns out that there is some disagreement in the

literature concerning the precise numerical values for
δAref that should be applied in Eq. (2.13). However, we
shall ultimately evaluate these quantities directly rather
than rely on previously quoted results. The method by
which we do this will be discussed further in Sec. III.

III. RECASTING THE RECASTS:
A “FLOATING” mWDM

As we have seen, the analysis above is typically meant to
produce a binary yes/no answer to the question of whether a
given dark-matter model is consistent with the Lyman-α
constraints. For example, in the half-mode analysis, a dark-
matter model is consistent with the Lyman-α constraints if
and only if its transfer function T2ðkÞ exceeds T2

WDMðkÞ for
all 0 ≤ k ≤ k1=2, in which T2

WDMðkÞ takes some reference
value mWDM that is determined from observational data.
While a binary yes/no answer is suitable for assessing the

viability of an isolated dark-matter model, we would like to
explore the space of possible dark-matter models more
generally. That is, we would like to understand in a
quantitative way how “close” to being ruled out a given
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model might be and whether a fine-tuning might be
involved. We also would like to understand how close a
given model might come to being ruled out in the future,
assuming further observational data, and wewould also like
to map out how these results might vary as we change the
parameters in our underlying dark-matter model. Finally,
we would also like to compare these two Lyman-α recasts
in a meaningful and quantitative way.
In order to accomplish this, we look to extract more than

a simple binary yes/no viability decision from these recasts.
Instead, we would like to establish a “viability parameter”
for each recast—a parameter which takes continuous values
and thereby enables quantitative studies of the sorts out-
lined above. If formulated correctly, such viability param-
eters would also permit a direct comparisons between these
different recasts.
For the δA recast, it is natural to take the value of δA itself

as such a continuous viability parameter. However, it is less
obvious what might serve as a corresponding parameter for
the half-mode recast. One possibility, for example, might be
to define a parameter k× which corresponds to the wave
number at which the transfer function T2ðkÞ of a given
dark-matter model crosses below the corresponding
T2
WDMðkÞ in Eq. (2.5). We would then assess the viability

of a given dark-matter model in terms of the gap between
k× and the half-mode k1=2.
Unfortunately, such viability parameters are unsuited to

our purposes. First, k× and δA are completely different in
their formulations and cannot be directly compared.
Indeed, they do not even have the same units. Moreover,
the definition of k× intrinsically depends on the particular
reference value mWDM. Thus, any changes in this reference
value (such as might occur in the future as further
observational data are collected) would change the value
of k× associated with a given dark-matter model, even if the
model itself is unchanged.
For such reasons, we shall now formulate two different

parameters by exploiting the single “common denomina-
tor” that underlies both of these Lyman-α recasts, namely
the WDM model for which full Lyman-α simulations have
been performed. Clearly, the predictions of a given WDM
model depend on the mass mWDM of the supposed dark-
matter candidate. We shall therefore exploit this observa-
tion by using each recast method in order to determine the
effective value of mWDM which would place the given
model directly on the critical allowed/disallowed boundary.
These effective values will then be identified as m1=2 and
mδA, respectively.
More specifically, we shall define m1=2 as follows. For

any proposed model of dark-matter physics, there exists a
corresponding transfer function T2ðkÞ. We identify m1=2 as
the maximum value of mWDM for which T2ðkÞ ≥ T2

WDMðkÞ
for all 0 ≤ k ≤ k1=2, where T2

WDMðkÞ is given in terms of
mWDM through Eq. (2.5). In this way, m1=2 is identified
as the critical value of mWDM for which our proposed

dark-matter model would have resided directly on the
critical line between being allowed and disallowed, accord-
ing to the half-mode recast. Of course, a given dark-matter
model itself may contain various adjustable parameters as
part of its definition. This critical value m1=2 of mWDM will
then “float” as we move across the parameter space of
the model.
We shall follow a similar procedure in defining mδA.

At first glance, defining mδA is not as straightforward,
since there is no general map between δA and mWDM given
in the literature. Indeed, only a few particular values of
ðmWDM; δAÞ are quoted, usually corresponding to the more
and less conservative Lyman-α bounds on mWDM.
Nevertheless, we can build such a map directly. Starting
from T2

WDMðkÞ in Eq. (2.5), we can calculate the corre-
sponding one-dimensional WDM spectrum

½PWDM�1D ¼ 1

2π

Z
∞

k
dk0 k0T2

WDMðk0ÞPCDMðk0Þ; ð3:1Þ

where we use CLASS to evaluate PCDMðk0Þ. Using
Eq. (2.12), we can then calculate δAWDM. Carrying out
this procedure numerically, we obtain the results shown in
Fig. 2. In this figure, the discrete point markers indicate our
numerical results. We find that these numerical results
follow the functional form

δAWDM ¼
�
1þ a

�
mWDM

keV

�
b
�
−c

ð3:2Þ

with best-fit parameters fa; b; cg ¼ f0.19; 1.63; 0.75g. As
is apparent from Fig. 2, our numerical results are fit
remarkably well by this function across the four orders
of magnitude in mWDM most relevant for our purposes.
Equipped with a map between δAWDM and mWDM, we

may now identify mδA for a given dark-matter model as the

FIG. 2. Relation between δAWDM and mWDM. The point
markers correspond to numerical results obtained through
Eq. (3.1), while the solid curve corresponds to the best-fit
parametrization in Eq. (3.2).
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value of mWDM for which δA ¼ δAWDM. Equivalently,
given the value of δA for our model, we can simply invert
Eq. (3.2) to define

mδA ≡
�ðδAÞ−1=c − 1

a

�
1=b

keV: ð3:3Þ

For any proposed model of dark-matter physics, we now
have a recipe for calculating two mass scales, m1=2 and
mδA, corresponding to the two different recast methods.
Each of these is a continuous parameter which varies across
the parameter space of a given dark-matter model and
which quantifies how close to satisfying the Lyman-α
bounds the different recast methods find the model to
be. In other words, m1=2 and mδA independently assess the
viability of the proposed dark-matter model.
However, these variables not only permit us to construct

Lyman-α constraints—they also permit us to compare our
two recast methods in a quantitative manner by evaluating
the quotient

R≡m1=2

mδA
: ð3:4Þ

Indeed, just like m1=2 and mδA, this comparator R will
generally also vary across the parameter space of a given
dark-matter model. On the one hand, when R ≈ 1, the two
recasts are consistent with each other and provide similar
results. On the other hand, when R differs significantly
from 1, the recasts are inconsistent with each other. In this
case, the choice of recast has a significant effect on the
corresponding Lyman-α constraints, producing different
exclusion regions for the same dark-matter model.
The questions we face, then, are twofold. First, we would

like to determine the sorts of general dark-matter models
and associated parameter-space regions which are generally
viable or excluded by Lyman-α constraints. At the same
time, however, we also seek to determine for which classes
of dark-matter models—and for which portions of their
associated parameter spaces—we obtain R ≈ 1, and for
which classes of models and regions of associated para-
meter space we do not. It is to these questions that we
now turn.

IV. LYMAN-α CONSTRAINTS ON CLASS-I
VELOCITY DISTRIBUTIONS

Our aim in this paper is to investigate the Lyman-α
constraints on a multitude of possible dark-matter velocity
distributions. In conducting this investigation, we shall
proceed systematically, beginning with the simplest such
distributions and then broadening the scope of our analysis
to include more complicated, multimodal ones. In this
section, we shall begin by focusing on class-I velocity
distributions, including thermal distributions and distribu-
tions which can be approximated as Gaussian. We shall

then expand our analysis to consider class-II velocity
distributions in Sec. V.
Before we proceed, however, we emphasize once again

that a lack of complexity in the dark-matter velocity
distribution does not necessarily reflect a corresponding
lack of complexity in the particle content of the dark sector
or in the interaction Lagrangian which governs the dynam-
ics within that sector. Indeed, one can easily imagine
complicated dark sectors which involve large numbers of
particle species and/or nontrivial interactions, but which
nevertheless yield dark-matter velocity distributions which
are trivial in terms of their overall shapes.

A. Thermal distributions

In order to establish a baseline, we shall first consider
velocity distributions similar to the canonical distribution
which arises in WDM scenarios. Indeed, such velocity
distributions can be expected to arise for dark-matter
particles of mass m which are initially in thermal equilib-
rium with a radiation bath, but subsequently decouple from
that bath at a time prior to tMRE when the bath temperature
Td greatly exceeds m. The present-day phase-space dis-
tribution for such a dark-matter species is then given by the
Maxwell-Boltzmann form

gðpÞ ¼ 1

2
N
�

p
Tdad

�
3

exp ½−p=ðTdadÞ�; ð4:1Þ

where we have ignored modifications due to Fermi/Bose
statistics, where N is a normalization factor defined
according to Eq. (2.2), and where ad denotes the value
of the scale factor at td. The average momentum for a
population of dark-matter particles with a phase-space
distribution given by Eq. (4.1) is

hpi ¼ 3Tdad: ð4:2Þ

This result implies that the gðpÞ distribution in Eq. (4.1) is
completely specified by hpi and can be viewed as a
function of the ratio p=hpi.
It is well known that hpi plays a crucial role in

determining how cosmological perturbations grow in sce-
narios with gðpÞ distributions of this sort. Indeed, as
indicated in Eq. (2.4), hvi ≈ hpi=m effectively sets the
free-streaming horizon for the dark matter and thereby the
wave number kFSH above which PðkÞ is suppressed.
However, the shape of the distribution can also be impor-
tant [6,37], particularly if the higher moments of the
distribution—such as the standard deviation or the skew-
ness—are large.
For the phase-space distribution in Eq. (4.1), we observe

that these higher moments are all independent of hpi.
Indeed, this is related to the fact that a change in the value
of hpi does not affect the shape of this distribution in logp
space, but instead merely shifts it uniformly to higher or
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lower values of logp. For example, the standard deviation
of logp for this distribution turns out to be

σ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðlogp − hlogpiÞ2i

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π2

6
−
5

4

r
≈ 0.63: ð4:3Þ

Likewise, the skewness for this distribution is

S≡ hðlogp − hlogpiÞ3i
σ3

¼
9
4
− 2ζð3Þ

ðπ2
6
− 5

4
Þ3=2 ≈ −0.62: ð4:4Þ

The negative value of S indicates that the distribution “tilts”
to the right as compared with one which would have been
perfectly symmetric in logp space.
We now seek to assess for which velocities hvi the

Lyman-α constraints can be satisfied, given the distribution
in Eq. (4.1). In order to do this, we evaluate the transfer
function T2ðkÞ which corresponds to the dark-matter
distribution gðpÞ for many different values of hvi. We
then employ the recasts from Sec. III in order to obtain
information about the Lyman-α bounds.
In the upper panel of Fig. 3, we plot the critical masses

m1=2 andmδA (blue curves) for the dark-matter phase-space
distribution in Eq. (4.1) as functions of hvi. In the lower
panel of the same figure, we plot the corresponding value
of the comparator R≡m1=2=mδA (red curve). Since the
relation between hvi and the free-streaming horizon in
Eq. (2.4) establishes a one-to-one correspondence between
values of hvi and values of the comoving wave number
kFSH for class-I velocity distributions such as this one, tick
marks indicating the values kFSH have also been included at
the top of each panel.
We immediately see from Fig. 3 that whilem1=2 and mδA

agree quite well for large hvi, a significant difference
between them begins to develop as hvi decreases. As a
result of this difference, the constraints on hvi obtained
from each of the two recasts differ. Indeed, when we
employ the less conservative bound mWDM ≳ 3.5 keV in
implementing each recast, we find that the half-mode
analysis excludes the light-gray region on the right side
of the figure, while the δA analysis also excludes the thin,
dark-gray stripe. Likewise, if we employ the more
conservative bound mWDM ≳ 5.3 keV, we find that the
half-mode analysis further excludes the dark-red region,
while the dA analysis also excludes the thin, light-red
stripe.
While these differences are not terribly significant, we

observe that the difference between m1=2 and mδA becomes
more and more pronounced as hvi decreases. Indeed, we
observe that the comparator falls to R ≈ 0.72 at the left edge

of Fig. 3. That such a difference between recast predictions
can arise even for the case of a simple, class-I velocity
distribution suggests that significantly smaller R values
could arise for other, more complicated distributions. As we
shall see, this indeed turns out to be the case.

B. Gaussian distributions

The thermal dark-matter phase-space distribution in
Eq. (4.1) provides a well-motivated and simple baseline
from which to begin our exploration of more general
functional forms of gðpÞ. However, since the parameters
characterizing the shape of this baseline distribution—i.e.,
its width σ, its skewness S, etc.—were completely speci-
fied, our analysis thus far has exposed the sensitivity of the
Lyman-α constraints to a single variable only, namely the
average velocity hvi.
Wewould now like to extend our study and examine how

variations in the shape of a unimodal distribution modify

FIG. 3. The critical masses m1=2 and mδA (upper panel) and the
comparator R (lower panel), plotted as functions of hvi for the
thermal velocity distribution in Eq. (4.1) and the Gaussian
velocity distribution to be discussed in Eq. (4.5), the latter with
a width σ ¼ 0.63 taken to match that of the thermal distribution.
Also shown are the Lyman-α exclusion regions for the thermal
velocity distribution according to our half-mode and δA recasts
for the critical masses 3.5 and 5.3 keV. The top axis indicates the
dark-matter free-streaming horizon wave number kFSH corre-
sponding to each value of hvi. We observe that within the
observationally viable regions of hvi, the comparator R departs
considerably from unity, indicating a meaningful disagreement
between the results of the two recasts.
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the Lyman-α constraints. To this end, we shall now
consider the case in which gðpÞ takes the form of a
Gaussian distribution in ðlogpÞ space:

gðpÞ ¼ Nffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
ðlogp − hlogpiÞ2

2σ2

�
; ð4:5Þ

where we take the mean hlogpi and standard deviation σ to
be free parameters, and where N is a normalization factor.
We note that for a log-normal distribution of this sort we
may also express hlogpi in terms of hpi—or, equivalently,
in terms of hvi ≈ hpi=m—through the relation
hlogpi ¼ loghpi − σ2=2. This relation will allow us to
compare the results we obtain for this phase-space dis-
tribution directly with those obtained from the baseline
thermal distribution in Eq. (4.1).
We shall begin our analysis of the phase-space distri-

bution in Eq. (4.5) by considering how the difference in
shape between this distribution and the baseline thermal
distribution in Eq. (4.1) affects our results form1=2 andmδA.
In order to facilitate a direct comparison between these two
distributions, we fix the standard deviation for our Gaussian
to the value σ ¼ 0.63 which accords with Eq. (4.3) and
examine how these two critical masses behave as functions
of hvi. Our results form1=2 andmδA are indicated by the red
curves in the upper panel of Fig. 3, while the corresponding
results for R are indicated by the red curve in the lower
panel. The mδA curve for the Gaussian distribution coin-
cides almost exactly with the corresponding curve for the
baseline thermal distribution in Eq. (4.1)—so much so, in
fact, that it is effectively hidden beneath that curve. By
contrast, the m1=2 curve for the Gaussian distribution
departs appreciably from the corresponding curve for the
baseline distribution, and the value of R is consequently

smaller for the Gaussian. These results indicate that even
for unimodal, class-I velocity distributions, the shape of the
distribution can have a small but appreciable impact on the
results obtained from the half-mode recast. Nevertheless,
we do not find a particularly large difference between the
Lyman-α bounds obtained for these two distributions.
We now expand our analysis of the phase-space dis-

tribution in Eq. (4.5) in order to examine the effect of
varying σ as well as hvi. Indeed, by varying σ as well as
hvi, we are now actually varying the shape of the log-
normal distribution in Eq. (4.5) and not merely shifting this
distribution rigidly along the ðlogpÞ axis. In Fig. 4, we
display contours ofm1=2 (left panel) and mδA (center panel)
in ðhvi; σÞ space for the velocity distribution in Eq. (4.5).
The thick black curve in each of these two panels panel
shows the Lyman-α bound obtained by employing the less
conservative bound mWDM ≳ 3.5 keV in implementing the
corresponding recast. The gray region to the right of each
each thick black curve is excluded. In the right panel of the
figure, the exclusion contours for both of these recasts are
superimposed on the contours of the comparator R. For
σ ¼ 0.63 (yellow line shown in each panel), the results
obtained for m1=2 and mδA correspond to those plotted
in Fig. 3.
Once again, we observe that while there are regions of

parameter space wherein the results of the half-mode and
δA recasts coincide quite well, there are other regions—
especially those within which hvi is small or σ is large—
wherein R differs significantly from unity. The results
shown in the left panel indicate that the constraint derived
from the half-mode recast tightens by roughly 30% over the
region of parameter space shown as σ increases and gðpÞ
becomes broader. Ultimately, this stems from the fact that a
broader phase-space distribution includes a non-negligible

FIG. 4. Contours in the ðhvi; σÞ plane of the critical massesm1=2 (left panel) andmδA (center panel), as well as the comparator R (right
panel), for the Gaussian phase-space distribution in Eq. (4.5). The thick black curves in the left and center panels indicate the Lyman-α
constraint obtained by employing the less conservative boundmWDM ≳ 3.5 keV when implementing the corresponding recast. The gray
region to the right of each thick black curve is excluded. The exclusion contours for both of these recasts are also superimposed on the
contours of R shown in the right panel. The dashed yellow line in each panel corresponds to σ ¼ 0.63, which matches the standard
deviation of the distribution in Eq. (4.1). The magenta and green stars indicate the locations in the ðhvi; σÞ plane for which the
corresponding transfer functions are plotted in Fig. 5.
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population of dark-matter particles at higher velocities that
can smooth out structure on larger scales. As a result, m1=2

decreases as σ increases, leading to more stringent con-
straints on models with broader gðpÞ distributions. By
contrast, the results shown in the center panel of Fig. 4
indicate that the constraint derived from themδA recast does
not depend sensitively on the value of σ. Indeed, across the
range of σ shown, this constraint is approximately the same
as that obtained for our baseline thermal distribution
in Eq. (4.1).
The results for R displayed in the right panel of Fig. 4

indicate that the half-mode and δA recasts yield similar
bounds when σ is relatively small. However, for σ ≳ 0.5,
the constraints obtained from the two recasts diverge, with
R deviating significantly from unity across the upper
portions of the panel. Furthermore, the results for R within
the region of ðhvi; σÞ space which is not currently excluded
by Lyman-α data indicate how the Lyman-α constraints
would change if future observations were to further tighten
the Lyman-α bound on mWDM. In particular, we find that
the disagreement between recasts becomes more severe as
hvi decreases and as σ increases.
The results shown in Fig. 4 beg the question whether an

even more dramatic departure from the results obtained for
our baseline thermal distribution in Eq. (4.1) would be
obtained for Gaussian gðpÞ distributions with even
larger values of σ. Unfortunately, within this region of
parameter space—particularly for small values of hvi—
assessing the values of m1=2 and mδA becomes challenging
in practice, as the simulations required to evaluate T2ðkÞ
become significantly more computationally expensive.
Nevertheless, based on our qualitative understanding of
how the bounds obtained from the m1=2 and mδA recasts
arise, we would expect that the bounds obtained from both
recasts become significantly tighter when σ becomes
increasingly large.
Further insight into the results shown in Fig. 4 can be

gleaned from examining how the shape of the transfer
function itself varies across ðhvi; σÞ space. In Fig. 5, we
show the numerical results for T2ðkÞ (solid black curves)
for two different points within that parameter space. The
curve in the left panel corresponds to the point ðhvi; σÞ ¼
ð4 × 10−9; 0.63Þ indicated by the magenta star in Fig. 4,
while the curve in the right panel corresponds to the point
ðhvi; σÞ ¼ ð2.5 × 10−8; 0.63Þ indicated by the green star. In
each panel, alongside the true T2ðkÞ curve obtained for the
Gaussian gðpÞ distribution in question, we also plot the
T2ðkÞ curves obtained for WDM models with mWDM set
equal to the value of m1=2 (dashed blue curve) and mδA

(dashed red curve) that we obtain for this gðpÞ distribution.
In other words, these dashed blue and red curves respec-
tively represent the WDM transfer functions onto which the
true T2ðkÞ is effectively mapped by the half-mode and δA
recasts.

We see from the right panel of Fig. 5 that the T2ðkÞ curves
associated with both recasts nearly coincide both with each
other and with the true T2ðkÞ curve obtained for this
parameter-space point. Indeed, this result is not unexpected,
given thatR ≈ 0.90 is reasonably close to unity for this point,
which lies very close to the Lyman-α exclusion contours in
Fig. 4 associated with both recasts. By contrast, for the point
shown in the left panel, not only do the WDM transfer
functions associated with these two recasts differ appreci-
ably from each other, they also both differ appreciably from
the true T2ðkÞ curve. Again, this is not unexpected, given
that R ≈ 0.74 differs significantly from unity for this point.
However, the results shown in this panel illustrate the ways
in which these recasts can yield unreliable results when the
shape of the dark-matter velocity distribution differs from
that ofWDM.Moreover, they also illustrate how sensitively
the Lyman-α constraints depend on the precise form of
T2ðkÞ. Indeed, as we shall now see, these issues can become
even more pronounced for class-II distributions.

V. LYMAN-α CONSTRAINTS ON CLASS-II
VELOCITY DISTRIBUTIONS

We now expand our analysis to include a broader variety
of dark-matter velocity distributions—distributions which
depart more dramatically from the simple, unimodal class-I
distributions we have considered thus far. One particularly
interesting possibility along these lines is to consider
distributions which are multimodal. Indeed, class-II dis-
tributions of this sort arise in a variety of dark-matter

FIG. 5. The transfer functions T2ðkÞ which correspond to the
parameter-space points indicated by the magenta and green stars
in Fig. 4. The results in the left panel correspond to the magenta
star, which is situated within a region of parameter space which
lies far from the exclusion region and for which the value of R is
relatively small, while the results in the right panel correspond to
the green star, which is situated near the Lyman-α exclusion
contours associated with both recasts. The solid black curve in
each panel represents the result of a numerical calculation, while
the dashed curves represent the WDM transfer functions onto
which this T2ðkÞ is effectively mapped by the half-mode and δA
recasts.
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scenarios in which non-negligible contributions to the dark-
matter abundance occur at different timescales. Such
scenarios include those in which freeze-out or freeze-in
[7,38,39] production is accompanied by production from
the out-of-equilibrium decays of heavy particles at late
times; those in which different decay channels for the same
unstable particle species with different decay kinematics
contribute non-negligibly to the dark-matter abundance [8];
and those in which dark matter is produced nonthermally
through decay cascades [6].
In order to examine multimodal velocity distributions of

this sort, we shall consider a phase-space distribution gðpÞ
which consists of a sum of Gaussian peaks, each of which
takes the form specified in Eq. (4.5) and each of which
provides a contribution Ωi toward the total present-day
dark-matter abundance Ω≡P

iΩi ≈ 0.26 [1]. Such a form
for gðpÞ is indeed nothing but a Gaussian decomposition of
the phase-space distribution in logp space, and as such is
capable of approximating most distributions of interest. We
shall parametrize this phase-space distribution as follows:

gðpÞ ≈
XNG−1

i¼0

NΩiffiffiffiffiffiffi
2π

p
σiΩ

exp

	
−

1

2σ2i

�
log

�
p

hpii

�
þ 1

2
σ2i

�
2


;

ð5:1Þ

where hpii is the average momentum of the ith Gaussian,
where σi is the corresponding width, where NG is the
number of Gaussian components included in the sum, and
where the index i ¼ 0; 1; 2;…; NG − 1 labels these com-
ponents in order of decreasing hpii.
Since a gðpÞ distribution of this form with NG Gaussian

components is described by 3NG − 1 free parameters,

systematically surveying the parameter space of possible
gðpÞ distributions rapidly becomes impractical as NG
increases. It will therefore be necessary for us to impose
certain simplifying assumptions if we wish to explore the
landscape of possible gðpÞ distributions of the form given
in Eq. (5.1) in a meaningful yet tractable way. One of our
principal aims in this paper is to assess how the detailed
shape of a particular feature in gðpÞ—not merely the
average velocity of the particles associated with that
feature, but the full distribution of velocities—affects the
results of the half-mode and δA recasts. Whatever pro-
cedure we adopt should further this aim to whatever extent
possible and highlight the ways in which the detailed shape
of gðpÞ impacts the Lyman-α constraints derived from the
half-mode and δA recasts.
An analysis procedure which furthers this aim is illus-

trated schematically in the left panel of Fig. 6. According to
this procedure, one begins with a gðpÞ distribution con-
sisting of a single Gaussian peak with a specified width σ0
and average velocity hvi0. One then splits this peak into two
individual peaks whose individual widths σ0 and σ1 are
each equal to the width of the original peak and whose
total abundance Ω0 þΩ1 is equal to the abundance
of the original peak. Next, one separates these new peaks
in velocity space by endowing them with different
average velocities hvi0 and hvi1. However, one does this
in such a way that the abundance-weighted center of
velocity hlog vi01 for these peaks—a quantity which we
define as

hlog viij ≡ Ωi

Ωi þ Ωj
hlog vii þ

Ωj

Ωi þ Ωj
hlog vij ð5:2Þ

FIG. 6. Two schematics illustrating methods through which multimodal dark-matter velocity distributions can be generated from a
single unimodal distribution. Left panel: the lowest-velocity peak at each step is bifurcated into two peaks in such a manner as to
preserve the “center of velocity” hlogpiij defined in Eq. (5.2) for the two-peak system, while keeping hlogpi fixed. Right panel: here
the bifurcation procedure keeps both hlogpiij and hlogpi0 fixed. The analysis to be discussed in Secs. VA and V B is based on this
approach.
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for any two peaks labeled by indices i and j—remains
equal to the center of velocity of the original peak. One may
then iterate this procedure by taking the lowest-velocity
peak in the resulting distribution, splitting it into two peaks
whose individual widths σ1 and σ2, total abundance
Ω1 þ Ω2, and center of velocity hlog vi12 are equal to
the abundance and center of velocity of that original peak,
and so forth. In this procedure, hlogpi remains fixed for the
total population of dark-matter components.
This iterative procedure has several features. First, each

time we perform such a bifurcation, we introduce only two
additional free parameters: one which characterizes the
relative abundances of the two resulting peaks and one
which characterizes their separation in ðlogpÞ space.
Second, since the shape of the matter power spectrum is
quite sensitive to small modifications of gðpÞ at large p, it is
useful to adopt a procedure in which one examines the
effect of modifying the shape of gðpÞ of small p while
leaving the structure at large p fixed. Third, since we hold
the center of velocity fixed when we perform this bifurca-
tion, any difference between the Lyman-α constraints that
we obtain for the resulting gðpÞ distribution relative to the
original distribution is solely a consequence of the
differences in their detailed shapes.
More mathematically, we can understand this approach

as follows. Like any distribution function, gðpÞ can be
described in terms of its moments. The zeroth moment of
any distribution is the total area under the curve. For gðpÞ,
this is the total dark-matter abundance, which we are
holding fixed. The first moment of any distribution is then
the average value of its independent variable—in this case,
the average velocity hlog viij. Holding this quantity fixed
therefore enables us to disentangle the effects of these first
two moments of gðpÞ on the Lyman-α constraints, and
thereby isolate the dependence of the Lyman-α constraints
on the higher moments of the distribution which concern
the distribution of the dark-matter velocities around this
average velocity. Indeed, in some sense this has been the
goal of our study all along, given that class-I and class-II
distributions differ in precisely how these velocities are
distributed relative to the mean.
This procedure, although mathematically elegant, is

computationally difficult to realize in practice. However,
we may follow a slightly modified version of this procedure
which is also capable of surveying phenomenologically
rich portions of the multimodal parameter space. This
alternative procedure is shown in the right panel of
Fig. 6. As before, one begins with a gðpÞ distribution
consisting of a single Gaussian peak with a width σ0 and
average velocity hvi0, and splits it into two peaks. However,
instead of holding the center of velocity of the system fixed,
one holds hlog vi0 fixed and fission off some of the
abundance of this peak in order to construct a second
peak with average velocity hlog vi1 < hlog vi0. One then
proceeds by bifurcating this colder peak in the same way

that one would have done it in the original procedure, by
holding hlog vi12 fixed, and so forth. This modified
procedure allows us to examine the impact of the lower-
velocity peak on the Lyman-α constraints for the NG ¼ 2
case in a more straightforward manner. In what follows,
we adopt the procedure outlined in the right panel in our
analysis.

A. Bimodal distributions

We begin our analysis of the Lyman-α constraints on
phase-space distributions of the general form in Eq. (5.1)
by considering the simplest nontrivial case—the case of
distributions with NG ¼ 2 Gaussian components. For
simplicity, in exploring the five-dimensional parameter
space which characterizes these double-peak gðpÞ distri-
butions, we shall set the widths of the two Gaussian
components to be equal to each other and focus on the
effects of varying the average velocity hvi0 ≈ hpi0=m
associated with the highest-momentum component,
the fractional abundance contribution Ω0=Ω associated
with this same component, and the ratio hvi1=hvi0 ≈
hpi1=hpi0 < 1 of the average velocities of the two com-
ponents. Moreover, we shall take σ0 ¼ σ1 ¼ 0.63, such that
these widths accord with the standard deviation of logp for
our baseline velocity distribution in Eq. (4.1).
In Fig. 7, we show three examples of double-peak gðpÞ

distributions, all with hvi0 ¼ 8.0 × 10−7 and hvi1=hvi0 ¼
1.3 × 10−2, but with different values of Ω0=Ω. We plot
these distributions as functions of p=m. In order to provide
a sense of how different parts of these gðpÞ distributions
impact structure formation, we also associate a wave
number k with each value of p=m. This wave number,
which is indicated on the top axis of the figure, effectively
represents the value of k above which a population of
dark-matter particles all moving at exactly the same speed
v ≈ p=m contributes to the suppression of PðkÞ through
free-streaming, according to Eq. (2.4). The dashed
green vertical lines indicate the values of k1=2 which
correspond to the WDM masses mWDM ¼ 3.5 keV and
mWDM ¼ 5.3 keV. The Lyman-α constraint derived from
the half-mode recast for either of these mWDM values is
sensitive to the detailed shape of gðpÞ in the region of the
plot to the right of the corresponding k1=2 line. By contrast,
the dashed brown vertical lines in the figure delimit the
range of wave numbers kmin ≤ k ≤ kmax over which the
averaging is performed in Eq. (2.12) in order to obtain δA.
The Lyman-α constraint derived from the δA recast is
sensitive to the detailed of gðpÞ in the region to the left of
the kmin line.
Proceeding as we did with the class-I distributions that

we examined in Sec. IV, we survey the parameter space of
possible double-peak gðpÞ distributions, evaluating the
critical masses m1=2 and mδA and the comparator R at
each point. The results of this analysis are shown in Fig. 8.
In particular, we show contours of m1=2 (left panel of each
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row), mδA (center panel), and R (right panel) in the
ðΩ0=Ω; hvi1=hvi0Þ plane for two different choices of
hvi0. The results displayed in the top row correspond to
the choice hvi0 ¼ 10−7, while those displayed in the
bottom row correspond to the choice hvi0 ¼ 10−6. In both
rows, we have fixed σ0 ¼ σ1 ¼ 0.63. As in Fig. 4, the thick
black curves in the left and center panels of each row of the
figure indicate the Lyman-α constraints obtained by
employing the bound mWDM ≳ 3.5 keV in implementing
the corresponding recast. The gray region above and to the
right of each such curve is excluded. The exclusion
contours for both of these recasts are superimposed on
the contours of R shown in the right panel of the
corresponding row. Within the brown crosshatched regions
of the figure, gðpÞ is consistent with Lyman-α constraints,
but the values of m1=2 and mδA could not both be reliably
determined numerically to the desired accuracy.
The shapes of the exclusion contours in Fig. 8 reveal that

Lyman-α data effectively impose two separate constraints
on these double-peak gðpÞ distributions. First, they place an
upper bound on the abundance Ω0 associated with the
higher-velocity peak. Second, they also place an upper
bound on the average velocity hvi1 associated with the
lower-velocity peak. The precise upper limit on each of

these quantities depends on the value of hvi0. It is also
worth noting that the entire right edge of each panel in the
top row of the figure—an edge along which m1=2 and mδA

are both constant—corresponds to the single point along
the dashed yellow line in Fig. 4 at which hvi0 ¼ 10−7.
More striking, however, is the disagreement between the

results derived from the half-mode and δA recasts for
class-II velocity distributions of this sort. For hvi0 ¼ 10−7,
the exclusion region obtained from the half-mode recast
extends beyond the region obtained for the δA recast by
roughly a factor of 5 in the Ω0=Ω direction. For
hvi0 ¼ 10−6, the difference can be over two orders of
magnitude, and nearly the entire region of the
ðΩ0=Ω; hvi1=hvi0Þ plane shown in the figure is excluded
according to the m1=2 recast. This disagreement is also
reflected in the values of the comparator. We observe that
the values of R across a significant portion of the parameter
space shown in Fig. 8 are quite extreme in comparison with
any value of R which we encountered for the class-I
velocity distributions in Sec. IV. We also observe that R
is not a monotonic function of Ω0=Ω, but rather falls,
reaches a minimum, and then rises again as this parameter
is varied along any line of constant hvi1=hvi0.
The results in Fig. 7 actually illustrate one way in which

these disagreements can arise for class-II distributions. The
vast majority of the abundance associated with the high-
velocity peak in the gðpÞ distributions shown lies within the
range of p=m within which both the half-mode and δA
recasts are sensitive. However, the majority of the abun-
dance associated with the low-velocity peak lies within the
region to which the δA recast is sensitive, but the half-mode
recast is not. We might therefore anticipate disagreements
between the recasts to arise in situations in which Ω0 and
Ω1 are both sizable.
Another way to understand the origin of the disagree-

ment between these two recasts is to consider how the
shape of T2ðkÞ varies across our parameter space. In Fig. 9,
we show the numerical results for T2ðkÞ (solid black
curves) for two different points within that space. The
curve in the left panel corresponds to the point
ðΩ0=Ω; hvi1=hvi0Þ ≈ ð7.0 × 10−4; 0.015Þ indicated by the
magenta star in Fig. 8, while the curve in the right panel
corresponds to the point ðΩ0=Ω; hvi1=hvi0Þ ≈ ð4.8 ×
10−2; 0.015Þ indicated by the green star. In each panel,
alongside the true T2ðkÞ curve we also plot the T2ðkÞ curves
obtained for WDM models with mWDM set equal to the
corresponding value of m1=2 (dashed blue curve) or mδA

(dashed red curve).
The true T2ðkÞ curve shown in the left panel of Fig. 9

represents a relatively mild but nevertheless meaningful
departure from the transfer functions to which the class-I
distributions that we examined in Sec. IV give rise. The
free-streaming of dark-matter particles associated with the
higher-velocity peak leads to a suppression of power at

FIG. 7. Three gðpÞ distributions of the general form specified in
Eq. (5.1), each of which is a superposition of NG ¼ 2 Gaussian
peaks. The average momenta hpi0 and hpi1 associated with these
two peaks are the same for all three distributions, but the
fractional abundance Ω0=Ω associated with the higher-momen-
tum peak is different for each one. The value of k above which the
dark-matter particles in gðpÞ with velocity p=m can suppress
power due to free-streaming effects is indicated along the top
axis. The dashed brown vertical lines indicate the wave numbers
kmin and kmax which delimit the range of k values over which the
averaging is performed in Eq. (2.12) in order to obtain δA.
The dashed green vertical lines indicate the values of k1=2
which correspond to the WDM masses mWDM ¼ 3.5 keV and
mWDM ¼ 5.3 keV.
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lower k. Since Ω0=Ω ≈ 7.0 × 10−4 is quite small in this
case, this suppression is barely discernible to the eye.
Nevertheless, it has a non-negligible impact onm1=2, which
is quite sensitive to the behavior of T2ðkÞ at low k. By
contrast, mδA is far less sensitive to such behavior, and the
corresponding WDM transfer function accords reasonably
well with the true form of T2ðkÞ. As a result, a disagreement
arises between the values of m1=2 and mδA.
The true T2ðkÞ curve shown in the right panel represents

an even more dramatic departure from the transfer func-
tions to which class-I velocity distributions give rise. The
abundance associated with the higher-velocity peak is
significantly larger in this case, and the free-streaming of
dark-matter particles associated with this peak has a more
pronounced effect on T2ðkÞ at lower k. As a result, the value
of m1=2 is comparatively low. However, since the lower-
velocity peak carries the vast majority of the overall dark-
matter abundance, T2ðkÞ initially decreases only gradually
with increasing k. Indeed, it is only at substantially higher
values of k that the free-streaming of the dark-matter
particles associated with the low-velocity peak contributes
to the suppression of structure and induces a precipitous

FIG. 8. Contours in the ðΩ0=Ω; hvi1=hvi0Þ plane of m1=2 (left panel of each row) and mδA (center panel), as well as the comparator R
(right panel), for the general phase-space distribution in Eq. (5.1) with NG ¼ 2. The results shown in the top and bottom rows
respectively correspond to the choices hvi0 ¼ 10−7 and hvi0 ¼ 10−6 for the average velocity of the higher-velocity Gaussian peak, while
the widths of both peaks have been set to σ0 ¼ σ1 ¼ 0.63 in all panels. As in Fig. 4, the thick black curve in the left and center panels of
each row indicates the Lyman-α constraint obtained by employing the bound mWDM ≳ 3.5 keV in implementing the corresponding
recast. The gray region above and to the right of each thick black curve is excluded. The exclusion contours for both of these recasts are
superimposed on the contours of R shown in the right panel. The magenta and green stars indicate the combinations of Ω0=Ω and
hvi1=hvi0 for which the transfer functions are plotted in Figs. 9 and 12. The blue star indicates an additional combination of Ω0=Ω and
hvi1=hvi0 for which the transfer function is also plotted in Fig. 12. Within the brown crosshatched regions of the panels in the upper row,
gðpÞ is consistent with Lyman-α constraints, but the values of m1=2 and mδA could not both be reliably determined numerically to the
desired accuracy.

FIG. 9. The transfer functions T2ðkÞ which correspond to the
parameter-space points indicated by the magenta and green stars
in Fig. 8. The results in the left panel correspond to the magenta
star, which is situated on the Lyman-α exclusion contour obtained
from the half-mode recast, while the results in the right panel
correspond to the green star, which is situated on the Lyman-α
exclusion contour obtained from the δA recast. The solid black
curve in each panel represents the result of a numerical calcu-
lation, while the dashed curves represent the WDM transfer
functions onto which this T2ðkÞ is effectively mapped by the half-
mode and δA recasts.
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drop in T2ðkÞ. As a result, the value ofmδA is comparatively
high, and a significant disagreement arises between the
results of our two recasts.
Figure 8, especially when supplemented by Fig. 9,

reveals a great deal of information about the way in which
the results of the half-mode and δA recasts are modified by
the presence of an additional Gaussian peak in gðpÞ.
However, since the center of velocity hlog vi01 for gðpÞ
in the NG ¼ 2 case depends on both hvi1=hvi0 and Ω0=Ω,
this figure does not reveal to what extent the variation of
m1=2 and δA across the parameter space shown is simply a
consequence of the variation in hlog vi01 and to what extent
it is in fact a consequence of variations in the detailed shape
of gðpÞ. As such, in Fig. 10, we provide additional
information which illustrates how the detailed shape of
gðpÞ affects our results for these critical masses across the
same region of the ðΩ0=Ω; hvi1=hvi0Þ plane shown in
Fig. 8. In the left panel of Fig. 10, we show contours (black

curves) of the ratio m1=2=m
hlog vi
1=2 of the half-mode mass

obtained for the resulting gðpÞ distribution to the half-mode
mass obtained for the gðpÞ distribution with NG ¼ 1 and
σ0 ¼ 0.63 which has the same center of velocity. In the
right panel of each row, we show contours of the corre-

sponding ratio mδA=m
hlog vi
δA for the other critical mass. In

each panel of the figure, we also show contours (red curves)
of the center of velocity hlog vi01 itself.

The ratiosm1=2=m
hlog vi
1=2 andmδA=m

hlog vi
δA characterize the

impact that the detailed shape of gðpÞ has on the results of
the two recasts. When either of these ratios departs
significantly from unity, the result obtained from the
corresponding recast differs significantly from the naive
result that one would obtain from a class-I distribution with
the same center of velocity. We see from Fig. 10 that indeed
both ratios depart significantly from unity across large
regions of the ðΩ0=Ω; hvi1=hvi0Þ plane. The most signifi-
cant departures occur when hvi1=hvi0 is small and Ω0=Ω
is Oð0.1Þ.
We also observe that m1=2=m

hlog vi
1=2 and mδA=m

hlog vi
δA are

both less than unity throughout the entirety of the
ðΩ0=Ω; hvi1=hvi0Þ plane. This is ultimately a reflection
of the fact that the bimodal gðpÞ distribution associated
with each point in this plane can be viewed as a bifurcation
of the unimodal gðpÞ distribution to which it is being
compared—a bifurcation of precisely the sort described in
the procedure outlines at the beginning of this section. This
bifurcation shifts some portion of the abundance associated
with the original peak to higher v and some portion to lower
v. However, because m1=2 and mδA are in general more
sensitive to modifications of the dark-matter velocity
distribution at high v than at low v, this shift leads to a
decrease in both critical-mass ratios. Moreover, as we
observe from the figure, the smaller hvi1=hvi0 is for a

FIG. 10. The effect of the detailed shape of gðpÞ on the critical massesm1=2 andmδA. The left panel of each row shows contours (black

curves) in the ðΩ0=Ω; hvi1=hvi0Þ plane of the ratio m1=2=m
hlog vi
1=2 of the half-mode mass obtained for a gðpÞ distribution of the form in

Eq. (5.1) with NG ¼ 2 and σ0 ¼ σ1 ¼ 0.63 to the half-mode mass obtained for the gðpÞ distribution with NG ¼ 1 and σ0 ¼ 0.63 which

has the same value of hlog vi. In the right panel of each row, we show contours of the corresponding ratio mδA=m
hlog vi
δA for the other

critical mass. Contours (red curves) of hlog vi itself are also included in each panel. The results shown in the top and bottom rows

correspond to the choices hvi0 ¼ 10−7 and hvi0 ¼ 10−6, respectively. We observe that m1=2=m
hlog vi
1=2 and mδA=m

hlog vi
δA can each differ

significantly from unity, even within the region parameter space which is consistent with the corresponding exclusion contour in Fig. 8.
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given Ω0=Ω, the more significant that decrease is. We note
that this is due not to any decrease in these critical masses
themselves—indeed, m1=2 and mδA both actually increase
as hvi1=hvi0 decreases, as is evident from Fig. 8—but
rather to the fact that the corresponding critical masses

mhlog vi
1=2 andmhlog vi

δA increase more quickly. We also note that

the decrease in m1=2=m
hlog vi
1=2 for a given set of model

parameters is typically more extreme than the decrease in

mδA=m
hlog vi
δA , owing to the fact thatm1=2 is more sensitive to

small changes in the dark-matter velocity distribution at
high v than mδA is.
We remark that in defining the ratios m1=2=m

hlog vi
1=2 and

mδA=m
hlog vi
δA for a given gðpÞ distribution with NG ¼ 2, we

have taken as our point of comparison a unimodal gðpÞ
distribution which has the same center of velocity as the
bimodal distribution, but which also has the same width σ
as either of its two individual peaks. Since we have taken
these widths, and therefore σ, to be equal to that of a
WDM distribution, this comparison allows us to inves-
tigate the effect of the detailed shape of gðpÞ beyond the
first moment—i.e., the mean—of this distribution. That
said, it would also be interesting to compare the results for
m1=2 and mδA that we obtain for NG ¼ 2 to the corre-
sponding values obtained for a unimodal gðpÞ distribution
which not only has the same center of velocity, but also
has a width equal to the standard deviation of the entire
bimodal gðpÞ distribution in ðlogpÞ space. Indeed, such a
comparison would highlight the importance of even
higher moments of the gðpÞ distribution beyond the
second. However, performing such a comparison is
challenging because interesting regions of the NG ¼ 2
parameter space correspond to extremely large values of
σ—values for which the numerical tools we have used in
computing m1=2 and mδA become insufficient. We leave
such an analysis to future work.

B. The effects of additional modes

Our analysis of the bimodal distributions in the pre-
vious section constitutes a necessary first step in establish-
ing Lyman-α constraints on class-II velocity distributions.
However, the results of this analysis prompt several
additional questions. Perhaps the most important such
question concerns the manner in which the Lyman-α
constraints that we have derived for the gðpÞ distribution
in Eq. (5.1) with NG ¼ 2 generalize to the case in which
NG > 2.
Given that a systematic survey of the full parameter

space of possible gðpÞ distributions is impractical for
NG > 2, we shall investigate the answer to this question
according to the procedure outlined at the beginning of this
section. We begin by identifying an illustrative benchmark
point within the NG ¼ 2 parameter space that we examined
above. We then examine the subspace of the full NG ¼ 3
parameter space associated with bifurcations of the lowest-
velocity peak in the gðpÞ distribution for this benchmark for
which the center of velocity hlog vi12 is the same as it was
for that original peak. We adopt as our parameter-space
benchmark a point which lies directly on one of the
exclusion contours in Fig. 8. In particular, we choose
the point ðΩ0=Ω; hvi1=hvi0Þ ¼ ð4.8 × 10−2; 0.015Þ indi-
cated by the green star appearing in the bottom panels
of Fig. 8. We take the two free parameters which describe
the possible bifurcations of the low-velocity peak in this
distribution consistent with our condition on hlog vi12 to be
hvi1=hvi0 and Ω1=ðΩ1 þΩ2Þ.
In Fig. 11, we show contours of m1=2 (left panel), mδA

(center panel), and R (right panel) in the ðΩ1=ðΩ1 þ
Ω2Þ; hvi1=hvi0Þ plane for the values of Ω0=Ω, hvi0, σ0,
σ1, σ2, and hlog vi12 specified above. The bottom right
corner of each panel corresponds to the location of our
benchmark point within this space. The thick black curves
in the center and right panels represent the Lyman-α

FIG. 11. Contours in the ðΩ1=ðΩ1 þΩ2Þ; hvi1=hvi0Þ plane of m1=2 (left panel) and mδA (center panel), as well as the comparator R
(right panel), for the general phase-space distribution in Eq. (5.1) with NG ¼ 3. The results shown correspond to the choices
hvi0 ¼ 10−6, σ0 ¼ σ1 ¼ σ2 ¼ 0.63, Ω0=Ω ¼ 4.8 × 10−2, and hlog vi12 ¼ −18.21. The thick black curves in the center and right panels
indicate the Lyman-α constraints obtained by employing the bound mWDM ≳ 3.5 keV in implementing the δA recast. The gray regions
above and to the right of these constraint contours are excluded.
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exclusion contours obtained by employing the bound
mWDM ≳ 3.5 keV in implementing the δA recast. The gray
regions above and to the right of these contours are
excluded. We observe that each of these contours termi-
nates on and includes our benchmark. Indeed, this is to be
expected, given that this benchmark corresponds to a point
which lies along the exclusion contour in Fig. 8 obtained
from the same recast. By contrast, we find that the entirety
of the parameter space shown in Fig. 11 is excluded
according to the half-mode recast. This is not unexpected
either, given that our benchmark lies well within the region
of the ðΩ0=Ω; hvi1=hvi0Þ plane in Fig. 8 which is excluded
according to this same recast.
Generally speaking, we observe from Fig. 11 that

increasing either the relative abundance Ω1=ðΩ1 þΩ2Þ or
the average velocity hvi1 of the intermediate-velocity peak
decreases both m1=2 and mδA and thus increases the tension
with Lyman-α data. These results accord well with our
qualitative expectations, given that we are holdingΩ1 þΩ2

and hlog vi12 fixed as we vary these other quantities. Indeed,
increasing eitherΩ1=ðΩ1 þ Ω2Þ or hvi1 increases the differ-
ential number density of dark-matter particles at higher v
and enhances the suppressionof power at lower kdue to free-
streaming effects. Moreover, the shapes of the contours in
the left two panels of Fig. 11 provide interesting additional
information about how the results of the two recasts depend
on the properties of the two lower-velocity peaks. In
particular, they indicate that the values of both m1=2 and
mδA are more sensitive to changes in hvi1=hvi0 than they are
to Ω1=ðΩ1 þ Ω2Þ, at least in the regime in which latter
quantity is sizable. Indeed, it is only for Ω1=ðΩ1 þΩ2Þ ≲
0.05 that the slope of the exclusion contour associated with
the δA recast steepens.
Most importantly, however, we see from Fig. 11 that our

comparator R can again differ significantly from unity, and
moreover does so precisely within the region of parameter
space which is considered viable according to our recasts.
This reinforces the cautionary note—already observed
from Fig. 8—that our recasts can yield Lyman-α constraints
which differ significantly from each other for complex,
multimodal dark-matter phase-space distributions.

VI. COMPARISON WITH PARAMETRIC-
FUNCTION TECHNIQUES

Our primary focus in this paper has been to illustrate the
pitfalls which can arise when the half-mode and δA recasts
are employed in order to estimate Lyman-α constraints on
dark-matter scenarios with class-II velocity distributions.
Of course, there exists an alternative method for estimating
Lyman-α constraints on noncold dark-matter scenarios
[20]. This method involves positing a simple, parametric
model for T2ðkÞ and performing numerical simulations in
order to evaluate the corresponding flux power spectra at a
representative sample of points within the parameter space
of that model. These spectra can then be compared to

observed flux power spectra in order to determine which
regions of that parameter space are consistent with Lyman-
α data and which are excluded. Once a survey of this sort
has been performed, constraints on a given dark-matter
scenario can be estimated by fitting the transfer function
obtained for that scenario to the parametric model. If the
best-fit values for the parameters of that model lie within an
excluded region, the dark-matter scenario is excluded.
Such a survey was performed in Ref. [26] using the

parametric function [20]

T2ðkÞ ¼ ½1þ ðαkÞβ�2γ; ð6:1Þ

where α ≥ 0, β > 0, and γ > 0 are the free parameters
which characterize the model. The authors of Ref. [26]
employed hydrodynamic simulations in order to place
Lyman-α constraints on the three-dimensional parameter
space of this model based on a scan over a large number of
combinations of α, β, and γ.
While the parametric function in Eq. (6.1) is capable of

modeling a broad range of transfer functions quite accu-
rately, in general it is not capable of modeling accurately
the kinds of transfer functions that arise from class-II
velocity distributions. Indeed, as was shown in Eqs. (3.19)–
(3.21) of Ref. [6], the matter power spectra described by
this parametric function are characteristic of strictly unim-
odal gðpÞ distributions.1
The implications that this property of the parametric

function in Eq. (6.1) has for establishing Lyman-α con-
straints on dark-matter models with class-II velocity dis-
tributions are perhaps best conveyed by means of concrete
examples. In the top panel of Fig. 12, we show the transfer
functions (solid magenta, green, and blue curves) obtained
for the three parameter-space points indicated by the stars
of the corresponding colors in the bottom panels of
Fig. 8. The point indicated by the blue star corresponds
to the parameter assignments ðΩ0=Ω; hvi1=hvi0Þ ¼
ð0.032; 10−3Þ. This point, which lies within the allowed
region in Fig. 8 associated with the δA recast, is excluded
according to the m1=2 recast. However, the corresponding
transfer function represents a far more dramatic departure
from the transfer functions characteristic of class-I velocity
distributions than do the transfer functions obtained for the
other two parameter-space points. In the bottom panel, we

1After this paper was originally submitted for publication,
Ref. [40] appeared, in which this parametrization of the transfer
function was extended to include an additional parameter δ.
While this extension extends the applicability of this paramet-
rization to a wider variety of situations (including the possibility
of an additional, purely cold dark-matter component), the
resulting T2ðkÞ function continues to correspond to that
of a single peak, as can be verified using the same techniques
as were employed in analyzing the fα; β; γg parametrization in
Eqs. (3.19)–(3.21) of Ref. [6]. The existence of this additional
parametrization therefore does not change any of our
conclusions.

EVALUATING LYMAN-α CONSTRAINTS FOR GENERAL … PHYS. REV. D 106, 123521 (2022)

123521-17



show the gðpÞ distributions for these three parameter-space
points. We note that the ranges of k associated with the
individual peaks in each of these gðpÞ distributions align
with the ranges of k within which the corresponding T2ðkÞ
curve exhibits a significant decrease in its slope. The
relationship between features in gðpÞ and T2ðkÞ suggested
by this juxtaposition is articulated more concretely
in Ref. [6].
In the top panel of Fig. 12, we also show the transfer

function (dashed curve of the corresponding color) which
represents the best fit to the true T2ðkÞ curve for each of
three parameter-space points using the parametrization in
Eq. (6.1). The values of α, β, and γ for each of these best-fit
curves are provided in the legend. The yellow and gray
curves represent the transfer functions of the form given in
Eq. (6.1) for the combinations of α, β, and γ included in the
parameter-space survey performed in Ref. [26]. The yellow
curves represent the transfer functions which were found to
be consistent with Lyman-α constraints, while the gray
curves represent the transfer functions which were found to
be excluded.
For the magenta gðpÞ distribution—a distribution for

which the relative abundance Ω0=Ω ≈ 7.0 × 10−4 of the
higher-velocity peak is quite small—we observe that
the parametrization in Eq. (6.1) provides an excellent fit
to the corresponding transfer function. Since this transfer
function lies well within the region spanned by the yellow
curves, it is clear that this distribution would not be
excluded by Lyman-α constraints according to the simu-
lations performed in Ref. [26]. According to half-mode
recast, this gðpÞ distribution would be marginal, while
according to the δA recasts, it would be allowed, as shown
in Fig. 8. In this case, then, the results obtained using the
parametric function in Eq. (6.1) are more consistent with
the results of the δA recast.
By contrast, for the green gðpÞ distribution, the best fit to

the corresponding transfer function using the functional
parametrization in Eq. (6.1) differs more significantly from
the true T2ðkÞ curve. Indeed, for wave numbers within the
range 1 h=Mpc≲ k≲ 20 h=Mpc, the relative error can be
as high as 5%. Nevertheless, it is still reasonable to assume
that this gðpÞ distribution is excluded. Indeed, the T2ðkÞ
curve obtained from the fit reflects a significant suppres-
sion of power within the relevant range of k and lies well
within the region spanned by the gray curves, while the true
T2ðkÞ curve is even further suppressed. This gðpÞ distri-
bution would likewise be excluded by the half-mode recast,
while according to the δA recast it would be marginal. In
this case, then, the results obtained using the parametric
function in Eq. (6.1) are more consistent with the results of
the half-mode recast.

FIG. 12. Top panel: the solid magenta and green curves
represent the transfer functions obtained for the parameter-space
points indicated by the stars of the corresponding colors in Fig. 8,
while the solid blue curve represents the transfer function
obtained for the parameter-space point with the same hvi0, σ0,
and σ1 values as these other two points, but with Ω0=Ω ¼ 0.032
and hvi1=hvi0 ¼ 10−3. The dashed curves of the corresponding
colors represent the best-fit functions of the form given in
Eq. (6.1) to these three curves. The best-fit values of the
parameters α, β, and γ in each case are provided in the legend.
The yellow and gray curves represent the transfer functions of the
form given in Eq. (6.1) for the combinations of α, β, and γ
included in the survey performed in Ref. [26]. The yellow curves
represent the transfer functions which were found to be consistent
with Lyman-α constraints, while the gray curves represent the
transfer functions which were found to be excluded. Bottom
panel: the gðpÞ distributions which give rise to the T2ðkÞ curves of
the corresponding colors in the top panel. The value of k above
which the dark-matter particles in gðpÞ with velocity p=m can
suppress power due to free-streaming effects is indicated by the
tick marks on the top axis. These gðpÞ distributions are displayed
such that these tick marks are uniformly spaced on a logarithmic
scale and such that k increases from left to right. The corre-
sponding p=m values indicated on the bottom axis are therefore
spaced nonuniformly and increase from right to left. The gðpÞ
distributions for WDM models with mWDM ¼ 3.5 keV and
mWDM ¼ 5.3 keV, which are indicated by the dashed and dotted
gray curves, respectively, are also included for reference.
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Finally, for the blue gðpÞ distribution, the best fit to the
corresponding transfer function using the functional para-
metrization in Eq. (6.1) overestimates the true value of
T2ðkÞ by as much 12% for wave numbers within the range
1 h=Mpc≲ k≲ 100 h=Mpc. Based solely on the T2ðkÞ
curve obtained from the fit, one would conclude that this
gðpÞ distribution is allowed, given that it lies well within
the region spanned by the yellow curves. However, the true
T2ðkÞ curve lies significantly below this best-fit curve
throughout most of the relevant range of k. Thus, we cannot
conclusively determine whether the corresponding gðpÞ
distribution is allowed or excluded by comparing with the
simulation results provided in Ref. [26]. Thus, for class-II
velocity distributions of this sort, Lyman-α constraints
obtained from this parametric-function technique are not
necessarily any more reliable than those obtained from the
half-mode or δA recasts.
Taken together, the results displayed in Fig. 12 indicate

that while the parametric function in Eq. (6.1) may capture
the gross features of the transfer functions associated with
certain class-II dark-matter velocity distributions (particu-
larly those that resemble class-I distributions), they do not
generically provide an accurate fit to these T2ðkÞ. Indeed,
the more significantly gðpÞ departs from the class-I velocity
distributions that we examined in Sec. IV, the less accurate
the fit to the corresponding T2ðkÞ becomes. Thus, for
velocity distributions of this sort, the Lyman-α constraints
obtained from this parametric function are not necessarily
any more reliable than those obtained from the half-mode
or δA recasts.
That said, the results displayed in Fig. 12 also highlight

the importance of performing hydrodynamic simulations
on dark-matter models beyond the baseline WDMmodel in
deriving Lyman-α constraints. The parametric-function
technique developed in Ref. [26] provides a benchmark
for establishing such constraints on dark-matter models
with more general velocity distributions. Indeed, while the
parametric function in Eq. (6.1) is not capable of modeling
accurately the kinds of transfer functions that arise from
class-II velocity distributions, an analysis similar to the one
performed in Ref. [26], but with a more adaptable para-
metric function could in principle extend the applicability
of this technique to velocity distributions within this class.

VII. CONCLUSIONS

In this paper, we have conducted a preliminary inves-
tigation into the constraints imposed by Lyman-α-forest
data on general dark-matter velocity distributions. In
particular, we have investigated the bounds obtained from
two common methods of recasting the Lyman-α constraints
onto a baseline WDM model—methods which are fre-
quently employed in order to estimate these constraints in
situations in which it would be impractical to perform the
hydrodynamic simulations that would otherwise be neces-
sary. In order to conduct this study, we also introduced

two new quantities—our critical mass parameters m1=2 and
mδA—which enabled us to compare the results of these two
recasts in a systematic, quantitative way.
After evaluating the Lyman-α constraints on a baseline

WDM velocity distribution, we applied our methods in
order to study departures from this baseline distribution.
We began by examining how Lyman-α constraints are
affected by comparatively mild departures, such as replac-
ing this distribution with a Gaussian distribution and
varying the width of the distribution. Even for such simple,
class-I velocity distributions, we demonstrated that dis-
agreements arose between the results obtained from the
half-mode and δA recasts. We then extended this study to
encompass dark-matter velocity distributions which re-
present a even more dramatic departures from our baseline
distribution, including multimodal distributions consisting
of superpositions of Gaussian peaks. The impact of free-
streaming on T2ðkÞ in these cases is more subtle, given that
different parts of these velocity distributions have different
thresholds in k above which they contribute to the sup-
pression of power. Even for the simplest possible such
distributions, which comprise only two Gaussian peaks, we
have demonstrated that dramatic disagreements between
m1=2 and mδA—and therefore between the Lyman-α con-
straints obtained for the two recasts—can arise. We also
examined how these results are modified by the incorpo-
ration of additional peaks into these dark-matter velocity
distributions.
While the results in Sec. V serve to highlight how

disagreements between the half-mode and δA recasts arise
for class-II velocity distributions, we can make no state-
ment as to which of these recasting methods provides a
more accurate representation of the Lyman-α constraint for
a given dark-matter velocity distribution without perform-
ing the necessary hydrodynamic simulations. Nevertheless,
our findings provide important insights into how highly
nontrivial velocity distributions of this sort are constrained
by Lyman-α data. First, our results provide qualitative
information about how the Lyman-α constraints on par-
ticular kinds of dark-matter velocity distributions are likely
to be affected when certain features of those distributions
are modified. Second, however, our results provide general
indications as to when each of these recasts is likely to be
reliable and when it is likely to be unreliable across the
landscape of possible class-II velocity distributions. In this
way, our results serve as a cautionary tale concerning the
implementation of these recasts and highlight the kinds of
distributions for which the need for dedicated numerical
analysis is the most pressing.
Several additional comments are in order. First, while we

have taken a step toward exploring the Lyman-α constraints
on the landscape of possible class-II dark-matter velocity
distributions, this landscape is vast and there are a number
of areas that merit further exploration. Indeed, while a wide
variety of such distributions can be decomposed according
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to Eq. (5.1) with reasonably fidelity, such a Gaussian
decomposition cannot capture every feature of a generic
function perfectly. It does not, for example, permit us to
study the extent to which the exclusion contours are
sensitive to the detailed shapes of the individual peaks.
Second, along similar lines, there are other aspects of

class-I velocity distributions which merit further explora-
tion as well. In particular, we would like to know how
general modifications of the shape of the peak can affect the
results of the half-mode and δA recasts. This shape may be
quantitatively characterized by its different moments—the
average momentum, standard deviation, skewness, kurto-
sis, etc. We have examined the effect of varying the first
two of these moments in Sec. IV, but there are many
reasons to expect that the higher moments also have a
significant impact on the results of these recasts, particu-
larly for a distribution with a sizable width. For example, a
positively skewed distribution contains a higher proportion
of low-velocity particles than a symmetric distribution
does. As a result, the suppression of structure due to
free-streaming may become particularly pronounced only
at smaller scales (corresponding to larger k). By contrast, a
negatively skewed distribution contains a higher proportion
of high-velocity particles than a symmetric distribution
does. As a result, the suppression of structure can become
significant at even larger distance scales (corresponding to
smaller k). Such effects on T2ðkÞ are likely to have have an
impact on the results of our recasts. Indeed, as discussed in
Ref. [6], the skewness of the dark-matter velocity distri-
bution is directly connected to fundamental properties of
the dark-matter production mechanism.
Finally, our study in this paper was performed under the

assumption that the shape of the dark-matter phase-space
distribution is essentially fixed well before the time of
matter-radiation equality. For this reason, our analysis may
not be applicable to scenarios in which gðp; tÞ is still
dynamically evolving at subsequent times, when matter
perturbations are growing at a significant rate. Such
complications may arise for models in which the dark
matter has non-negligible self-interactions [23]. Such
complications may also arise in multicomponent dark-
matter models wherein the heavier dark-matter species

are unstable but long-lived and decay primarily to final
states comprising lighter dark-matter species. Indeed, this is
what occurs within the context of the Dynamical Dark
Matter (DDM) framework [41–43]. The resulting gradual
conversion of mass energy to kinetic energy within the dark
sector can then “heat up” the dark matter at late times,
resulting in a nontrivial modification of the dark-matter
velocity distribution. Indeed, for certain scenarios of this
sort, numerical studies have been performed in order to
investigate the impact of this effect on the Lyman-α forest
[44] and on other aspects of small-scale structure [45,46].
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