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Constraining the inflationary epoch is one of the aims of modern cosmology. In order to fully exploit
current and future small-scale observations, it is necessary to devise tools to directly relate them to the early
Universe’s dynamics. We present here a novel reverse engineering approach able to connect fundamental
late-time observables to consistent inflationary dynamics and, eventually, to the inflaton potential.
Employing this procedure, we are able to describe which conditions can give rise to a raised plateau in the
power spectrum of curvature perturbations at small scales, which are not constrained by CMB observations.
Within this new phenomenologically driven approach, we find that inflation can generate a raised plateau
in the spectrum of curvature perturbations that potentially connects three fundamental observables; a
dominant component of the dark matter in the form of asteroid-mass/atomic-size primordial black holes,
detectable signals in stochastic gravitational waves, and a subdominant fraction of stellar-mass primordial
black holes mergers.
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I. INTRODUCTION

The increasing accuracy of observational data relating
to measurements of the cosmic microwave background
(CMB) anisotropy place severe constraints on cosmic
inflation. In the framework of standard single-field infla-
tionary models with Einstein gravity, the latest results
reported by the Planck and BICEP2/Keck Collaborations
[1,2] imply that the predictions of slow-roll models with a
concave potential are strongly favored by data and no
evidence for dynamics beyond slow-roll was found. On
the theoretical side, these constraints have far-reaching
implications. For instance, a simple inspection of the
theoretical predictions regarding the power spectra of
scalar and tensor perturbations leads to the conclusion that
the standard version of natural inflation and the full class
of monomial potentials VðϕÞ ∼ ϕn are now strongly dis-
favored [3].
However, it is important to keep in mind that the above

discussion is limited only to a relatively short part of the
inflationary dynamics, namely the one that took place at
around 60 e-folds before the end of inflation when
curvature perturbations with comoving wave number in
the range 0.005≲ k ½Mpc−1�≲ 0.2 exited the Hubble
horizon. On smaller scales (larger k), the observational
constraints are far weaker implying that deviations from the
slow-roll paradigm are possible; consequently, claiming

any theoretical control over the inflationary potential is, at
these scales, way more difficult.
Deviations from slow-roll dynamics at small scales may

have interesting consequences as far as the formation of
primordial black holes (PBHs) is concerned [4–7]. In the
inflationary picture, spacetime fluctuates quantum mechan-
ically around a background that is expanding exponentially
fast; after the end of inflation, these curvature fluctuations
are transferred to the radiation field, creating slightly over
and underdense regions. Regions where the overdensity is
large enough, gravitationally collapse and form PBHs
[8–11]. At the practical level, the implementation of this
idea requires some mechanism that boosts, at scales
relevant for PBH formation, the power spectrum of
curvature fluctuations PRðkÞ way above the value inferred
from CMB observations [that is, PRðk⋆Þ ≈ 2 × 10−9 with
k⋆ ≡ 0.05 Mpc−1 the CMB pivot scale] and necessarily
breaks the slow-roll paradigm [12]. A popular option is the
introduction of an ultraslow-roll (USR) phase during the
inflationary dynamics. At the classical level, during USR
the inflaton nearly stops its descent along the potential
and remains for a long interval of time with almost zero
velocity before reaccelerating towards the end of inflation.
At the quantum level, during USR comoving curvature
perturbations on superhorizon scales are not conserved and
are subject to exponential growth due to the presence of a
negative friction term in their equation of motion. It is
precisely this exponential enhancement that provides the
above mentioned boost in the power spectrum of scalar
perturbations. The simplest option to get such dynamics is
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to consider an inflationary potential that features (after the
first flattish region that ensures the slow-roll dynamics
needed for the fit of CMB measurements) an approximate
stationary inflection point.
The cosmological setup we have in mind is summarized

in Fig. 1 (see caption for details). Observational data
force the curvature power spectrum (that we plot in the
right panel of Fig. 1) to have, in the range 0.005≲
k ½Mpc−1�≲ 0.2, a power law functional form of the type
PRðkÞ ¼ Asðk=k⋆Þns−1, with amplitude As ≃ 2.1 × 10−9

and spectral index ns ≃ 0.965, which fits extremely well
the typical outcome of slow-roll inflationary models (black
dashed line in the right panel of Fig. 1). However, if we
consider larger k an almost uncharted territory opens up,
and huge deviations from the slow-roll paradigm are
possible. The solid black line in the right panel of Fig. 1
differs from the dashed line because of the presence of an
USR phase. In this respect, Fig. 1 summarizes the main
objectives of the present work. We are interested in
curvature power spectra that feature, because of USR, a
raised plateau at small scales which are not constrained by
CMB observations. We impose three phenomenological
requirements;

(i) The part of the power spectrum at large scales (that
is, for comoving wave numbers corresponding to the
horizontal green band in the left panel of Fig. 1)
must be consistent with CMB observations.

(ii) The left-side edge of the plateau (that is, at small k)
corresponds to values of k for which curvature
perturbations re-enter the cosmological horizon
when the latter has a mass of the order of the solar
mass (the horizontal red band in the left panel of
Fig. 1). This is to generate a sizable abundance of
solar-mass PBHs. This is an interesting phenom-
enological requirement since it implies the possibil-
ity that a fraction of merger events directly observed
by the LIGO/Virgo/KAGRA Collaboration (LVKC)
is (or will be) ascribable to stellar-mass PBHs
[13,14]. We remark that the red band reenters the
cosmological horizon when the temperature of the
Universe (labels on the upper x-axis) is of the order
of the QCD quark-hadron phase transition (in Fig. 1
taken to be TQCD ¼ 0.1 GeV).

The right-side edge of the plateau (that is, at large
k) corresponds to values of k for which curvature
perturbations reenter the cosmological horizon when

FIG. 1. (left) Time evolution (in terms of the number of e-folds N defined by dN ¼ Hdt) of the inverse comoving Hubble horizon
R−1
H ≡ aH throughout the history of our observable Universe. We start from N ¼ 0, defined as the time at which the CMB pivot scale

k⋆ ¼ 0.05 Mpc−1 crossed the Hubble horizon, k⋆ ¼ að0ÞHð0Þ. We assume instantaneous reheating and, after inflation, standard ΛCDM
cosmology. The three horizontal bands mark the milestones of our phenomenological analysis. The region shaded in green
(0.005≲ k ½Mpc−1� ≲ 0.2) represents the range of comoving wave numbers (horizontal lines with constant k in the figure) constrained
by CMB anisotropy measurements, the region shaded in red (1.7 × 106 ≲ k ½Mpc−1�≲ 1.7 × 107) corresponds to the range of comoving
wave numbers for which curvature perturbations, after reentering the cosmological horizon, have the chance of generating solar-mass
PBHs (1≲MPBH½M⊙� ≲ 100), and the region shaded in blue (1.5 × 1013 ≲ k ½Mpc−1� ≲ 1.5 × 1014) is the same as the red band but
corresponds to asteroid-mass PBHs (10−16 ≲MPBH½M⊙� ≲ 10−12). Right part. We plot the power spectrum of scalar perturbations
PRðkÞ as a function of the comoving wave number k. The plot is rotated in such a way as to share the same y-axis with the left part of the
figure. We plot the region excluded by CMB anisotropy measurements, Ref. [1], the FIRAS bound on CMB spectral distortions,
Ref. [29] and the bound obtained from Lyman-α forest data [30]. If PRðkÞ≳ 10−2 the abundance of PBHs overcloses the Universe (that
is, their abundance would be larger than the cold dark matter density of the Universe). The black dashed line is the typical prediction of
slow-roll inflationary models. The solid black line, on the contrary, is characterized by the presence of an USR phase [concretely, it
corresponds to model (1) in Sec. II and Ref. [31]].
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the latter has a mass of the order of the asteroid mass
(the horizontal blue band in the left panel of Fig. 1).
This is to generate a sizable abundance of asteroid-
mass PBHs.

(iii) We take the amplitude of the plateau to be as close
as possible to the allowed upper limit, PRðkÞ ¼
Oð10−2Þ. This is to generate an abundance of
asteroid-mass PBHs compatible with the observed
dark matter (DM) content of the Universe.

As well known, an interesting byproduct of (ii) and (iii) is
the possibility to generate a stochastic signal of gravita-
tional waves (GWs) that are induced, as a second-order
effect, by curvature perturbations [15–20] (see Ref. [21]
for a recent review). The frequency f is related to the
comoving wave number k by the relation k ≃ 7 × 1014

ðf=HzÞ Mpc−1 so that the two sides of the plateau in
Fig. 1 correspond to f ¼ Oð0.1Þ Hz (the typical target of
future space-based GW interferometers like LISA [22–24])
and f ¼ Oð10−9Þ Hz (the typical target of Pulsar Timing
Array (PTA) experiments). Interestingly, the NANOGrav
Collaboration has recently published an analysis of 12.5 yrs
of pulsar timing data reporting a strong evidence for a
stochastic common process, potentially induced by a
SGWB, at a frequency of Oð10−9 HzÞ [25] (also inde-
pendently supported other by PTA experiments [26–28]).
The presence of the plateau in the power spectrum opens

the possibility to connect all the above observables even
if characterized by widely different scales. In Ref. [32]
it was indeed shown that a broad power spectrum in the
form of a simple double-Heaviside theta function PRðkÞ ¼
AΘðk − kminÞΘðkmax − kÞ with endpoints kmin ≃ 10−9kmax

and kmax ≃ 1015 Mpc−1 and amplitude A ¼ 5.8 × 10−3 has
the chance to produce the observed abundance of DM in
the form of PBHs and, at the same time, generate a GW
signal compatible (in frequency and amplitude) with the
NANOGrav signal. In this paper, we will explicitly derive
the inflationary dynamics required to realize an analogous
power spectrum, revealing the much richer phenomenology
associated with this scenario.
To be more specific, the solid black line in the right panel

of Fig. 1 corresponds to one of the USR models recently
constructed in Ref. [31]. The analysis of Ref. [31] is based
on what is called a “reverse engineering approach” (see
Refs. [33–36] for a similar viewpoint). The idea that lies at
the heart of this approach is that the starting point of the
analysis is not the inflaton potential but rather the infla-
tionary dynamics. Let us motivate this change of perspec-
tive. As mentioned above, the presence of an USR phase in
the inflationary dynamics can be obtained is one takes a
scalar potential that features an approximate stationary
inflection point. The latter is usually controlled by a
number of free parameters that need to be fine-tuned up
to very special values in order to guarantee the desired
enhancement in the power spectrum of curvature perturba-
tions [37–49]. At the technical level, this operation is not

very transparent in the sense that it is typically difficult to
isolate which parameters in the scalar potential control
some specific feature of the power spectrum. In the
approach of Ref. [31] the scalar potential is nothing but
an outcome of the analysis which, on the contrary, puts in
the foreground the inflationary dynamics starting from an
analytical ansatz for the Hubble parameter η. As a result, the
construction of inflationary models that give curvature
power spectra with features compatible with the phenom-
enological requirements enumerated above becomes, at the
technical level, far way accessible and, from the point of
view of the physics involved, more transparent.
Let us stress the following important conceptual point.

Applying the reverse engineering approach of Ref. [31]
would be almost meaningless if one were only interested in
the part of the power spectrum constrained by CMB
observations. The reason is that, as mentioned at the very
beginning of this introductory discussion, at CMB scales
the experimental constraints are so tight that they almost
completely nail down, at the corresponding field values, the
form of the inflationary potential and a detailed analysis of
specific models is possible. This is not true, however, if one
is interested in the behavior of the power spectrum at much
smaller scales where, as illustrated in Fig. 1, observational
constraints are weaker and deviations from the slow-roll
paradigm possible. In this case, contrary to what happens in
the reverse engineering approach of Ref. [31], there is no
clear mapping between the free parameters of the scalar
potential and the phenomenological implications that the
presence of an USR phase may have.
The purpose of this work is to deepen the analysis

presented in Ref. [31], and we organize our material as
follows. In Sec. II we clarify the details of the reverse
engineering approach by carefully describing the steps used
to compute the spectrum of perturbations starting from the
inflationary dynamics with a special emphasis on explain-
ing with analytical arguments the mechanism that generates
the plateau in the power spectrum as well as the physical
meaning of the free parameters describing the inflationary
dynamics. In Sec. III we review the computation of the
PBH abundance. In Sec. IV we discuss the implications
for the scalar-induced GW signal. In Sec. V we give more
details about the profile of the reconstructed inflationary
potential and its theoretical interpretation. Finally, we
conclude in Sec. VI.
Throughout this paper, we use natural units and set the

reduced Planck mass to unity.

II. BACKGROUND EVOLUTION AND SPECTRUM
OF CURVATURE PERTURBATIONS

In this section we introduce the bases of our reverse
engineering approach. We start with a parametrized back-
ground Hubble evolution, followed by the computation of
curvature perturbations and an in-depth discussion of the
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characteristic features leading to the important phenom-
enological signatures presented in the following sections.

A. Background evolution

The inflationary background can be described by mod-
elling the evolution of the Hubble rate H. This is dictated
by dynamical equations relating H to the Hubble param-
eters, which are

ϵ≡ −
_H
H2

; η≡ −
Ḧ

2H _H
¼ ϵ −

1

2

d log ϵ
dN

; ð1Þ

where _H ¼ dH=dt is the cosmic-time derivative ofH while
N, defined such as dN ¼ Hdt, is the number of e-folds.
One can notice that, if we assume ϵ to be small and η
constant, Eq. (1) admits the solution ϵðNÞ ∝ e−2ηN . As we
will see in the following, this behavior leads to an
exponential enhancement of the amplitude of perturbations
when the dynamics is characterized by large and positive η,
as it is the case in an USR phase.
We base our construction on an analytical ansatz for the

time evolution of η of the form

ηðNÞ ¼ 1

2

��
ηI − ηII þ ðηII − ηIÞ tanh

�
N − NI

δNI

��

þ
�
ηII þ ηIII þ ðηIII − ηIIÞ tanh

�
N − NII

δNII

��

þ
�
ηIV − ηIII þ ðηIV − ηIIIÞ tanh

�
N − NIII

δNIII

���
:

ð2Þ

The consequent behavior of ϵðNÞ that follows from such
ansatz is derived by directly integrating the differential
Eq. (1). The reasons that leads to the specific ansatz
presented in Eq. (2) will become clear in the following.
The inflationary dynamics can be divided into four sub-
sequent stages, as we also show in Fig. 2:

(i) We fix the initial time at Nref and an initial small
value of ϵI. As long as the number of e-folds falls
within the interval N ∈ ½Nref ; NI�, the ansatz forces
ηI to remain constant and negative; the solution of
Eq. (2), predicting a scaling of the form ϵðNÞ ∝
e−2ηN , give rise to an exponential variation of ϵ
during this phase. However, as the value of ηI is
taken to be small (with the aim of reproducing the
conventional slow-roll dynamics), the evolution of ϵ
is tamed.

(ii) Within the subsequent interval N ∈ ½NI; NII� we
impose ηII > ð3þ ϵÞ=2 ≃ 3=2. A negative value of
η is associated to a period of negative friction, and
the Hubble parameter ϵ is forced to decrease abruptly
down to values Oð≪ ϵIÞ. This phase realist the
ultraslow-roll (USR) evolution typically advocated

to generate enhanced spectra at small scales, within
single field models of inflation.

(iii) Subsequently, when the number of e-folds falls
within N ∈ ½NII; NIII�, impose ηIII ¼ 0. This forces
ϵ to remain constant at the tiny value reached at the
end of the negative friction phase.

(iv) The final phase is characterized by ηIV < 0, which is
a necessary requirement to bring ϵ back to Oð1Þ
values and cause the end of inflation.

The sharpness of the transition between each phase is
controlled by the parameters δNI;II;III. In the limit of
vanishing δN → 0, one obtains step transitions which
are, however, unphysical. The expectations about the time
evolution of ϵ qualitatively described above are confirmed
by solving numerically Eq. (1), adopting the parametriza-
tion of ηðNÞ and using the initial condition ϵðNrefÞ ¼ ϵI
imposed at the initial reference time Nref . The solution is
shown in Fig. 2 assuming the parameters reported in
Table I. As we will see in the following, the free parameters
entering in the ansatz (2) will have a clear and direct
connection to physical observables (as highlighted in
Table I below) and can be adjusted to devise consistent
inflationary dynamics producing interesting late time sig-
natures. We will come back to this point later on.

B. Model parameters

In the following, we shall discuss in detail the free
parameters entering in Eq. (2), whose interpretation is
summarized in Table I.

(i) The values of the parameters ϵI, ηI, and Vref are fixed
by requiring consistency with large scale CMB
observations. In our model, this constraint is simply
fulfilled by the dynamics of the first phase before
Nref extending backwards up to CMB scales. We
define kref ¼ 0.05 Mpc−1 as the scale that exits the
Hubble horizon at time Nref , that is the CMB pivot
scale [1], and use the slow-roll relations

FIG. 2. Schematic evolution of ηðNÞ and ϵðNÞ. The former is
given by our analyticalansatz in Eq. (2); the latter follows from
Eq. (1). We label the USR phase characterized by a negative
friction and the plateau in ϵ in the phase of vanishing ηIII.
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ηI ¼ ðns − 1þ 4ϵIÞ=2 and ϵI ¼ r=16; ð3Þ

linking the Hubble parameters at the pivot scale with
the scalar spectral index ns and the tensor-to-scalar
ratio r. In other words, we anchor the initial values ηI
and ϵI to CMB observables. Moreover, the ampli-
tude of the power spectrum at the pivot scale, As, is
related (via H2) to Vref by means of the Friedmann
equation. We find

Vref ¼ 24π2ϵIð1 − ϵI=3ÞAs: ð4Þ

We fix ns, As, and r consistently with observations at
CMB scales (with the value of rwithin reach in next-
generation CMB measurements). This, in turn, will
directly nail down the fundamental parameters ϵI, ηI,
and Vref of our phenomenological model [50]. For
definiteness, we take ns ¼ 0.965, r ¼ 0.005 and
As ¼ 2.1 × 10−9 [1].

(ii) The value of NI sets the beginning of the USR phase
and controls the comoving wave number at which
the power spectrum of curvature perturbations starts
increasing with respect to its slow-roll value. In
order to reproduce the results of Ref. [32], we need
an early growth of the power spectrum at scales set
by the value of kmin. As a rule of thumb, we estimate
the corresponding value of NI by means of the
logarithmic scaling

NI ≃ log

�
kmin

k⋆

�
: ð5Þ

The above estimate represents a first guess for NI
around which we tune its final value by the accurate
solving of the Mukhanov-Sasaki (MS) equation.

(iii) The values of ηII and ΔNUSR ≡ NII − NI control the
height of the plateau in the power spectrum. These
values are tuned in order to get the right abundance
of dark matter in the form of PBHs.

(iv) We set ηIII ¼ 0 in order to generate a plateau in the
power spectrum.

(v) The e-fold interval ΔNplateau ≡ NIII − NII controls
the broadness of the plateau. In order to reproduce
the results of Ref. [32] we need a broad plateau that
covers approximately the range of comoving wave
numbers kmax=kmin ≈ 109. As a rule of thumb, we
estimate the corresponding value of ΔNplateau by
means of the logarithmic scaling

ΔNplateau ≡ NIII − NII ≃ log

�
kmax

kmin

�
: ð6Þ

The above estimate represents a first guess for
ΔNplateau around which we tune its final value by
the accurate solving of the MS equation.

(vi) We fix NIV ¼ 55 in order to get a long enough
inflationary phase to solve the horizon and flatness
problems. Consequently, the value of ηIV is tuned in
order to get ϵ ¼ 1 at NIV ¼ 55.

(vii) The parameters δNI;II;III control the sharpness of the
transitions in the evolution of ηðNÞ at e-fold times,
respectively, NI, NII, and NIII. The limit δN → 0
corresponds to a step transition. In short, these para-
meters control the bumplike features that are present
in the power spectrum at the two edges of the plateau
region (see the detailed discussion in Sec. II E).
These parameters, therefore, play a very special role
in our analysis. This is because the computation of
the PBH abundance is exponentially sensitive to the
shape of the power spectrum, and small variations
are capable of producing very sizable effects.

TABLE I. Free parameters of our model together with their numerical benchmark values. We define ΔNUSR ≡ NII − NI and
ΔNplateau ≡ NIII − NII. Dimensionful quantities are written in units of the reduced Planck mass. δNI ¼ 0.50 is kept fixed.

Model parameter Model (1) Model (2) Model (3) Spectral feature Phenomenology

ϵI 3.125 × 10−4 Tilt of PR at CMB scales ns, r
ηI −1.68 × 10−2

Vref 1.55 × 10−10 Amplitude of PR at CMB scales As
Nref 0 Pivot scale k⋆ CMB

NI 15.5 Large-scale edge of the plateau kmin Solar-mass PBHs
δNII 0.50 0.46 0.60 Bump at kmin Peak of solar-mass PBHs
ηII 2.709 2.710 2.735 Height of the plateau PBH ¼ DM: fPBH¼! 1
ΔNUSR 2.9
ηIII 0 Plateau Multi-scales ΩGWðfÞ signal
ΔNplateau 16.6 Small-scale edge of the plateau kmax Asteroid-mass PBHs
δNIII 0.50 0.50 1.31 Bump at kmax Peak of asteroid-mass PBHs

NIV 55 Drop-off End of inflation
ηIV −0.554 −0.554 −0.560
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C. Curvature perturbations

Once the background evolution is specified, one can
compute the spectrum of gauge-invariant comoving curva-
ture perturbation generated during inflation and transferred
to the radiation fluid after reheating. As long as the slow-
roll approximation is valid, this can be computed as

PRðkÞ ¼
H2

8π2ϵ
; ð7Þ

where the Hubble parameters are evaluated at horizon
crossing of modes k. To get an expectation of what
spectrum of curvature perturbations would result from
Eq. (2), one could naively reverse the evolution of ϵ shown
in Fig. 2, that clearly features an exponential growth
followed by a plateau region inherited from the term 1=ϵ.
In order to confirm this intuition beyond the slow-roll

approximation, we compute PRðkÞ by solving the MS
equation [51,52]

d2uk
dN2

þ ð1 − ϵÞ duk
dN

þ
�

k2

ðaHÞ2 þ ð1þ ϵ − ηÞðη − 2Þ

−
d
dN

ðϵ − ηÞ
�
uk ¼ 0; ð8Þ

which was shown to describe the properties of perturba-
tions at the linear level even with the inclusion of quantum
diffusion effects [53]; it should be noted, however, that
stochastic effects may become relevant, beyond the linear
order, during the USR phase [54–58]. We remark that we
do not include in our analysis any nonlinear effects related
to the dynamics of curvature perturbations (e.g., [59–63]).
Non-Gaussian effects, for a given mode k, are mostly
controlled by the value of η after the mode settles to its final
conserved value [64–66]. Modes that contribute to the
plateau become constant during phase (iii) with ηIII ¼ 0
and, therefore, should have negligible non-Gaussianity.
Modes that contribute to the right-side edge and the
subsequent fall-off of the power spectrum, settle to their
final constant value during phase (iv) with ηIV nonzero and
negative. However, in all realizations of our model we
consider in this work (see Table I) the actual value of jηIVj is
small, and we do not expect large corrections [67] (reab-
sorbable by a small retuning of ηII). Furthermore, we model
the transitions at the beginning and end of the USR phase in
a smooth way, and this has the effect of further suppress
local non-Gaussianity [61,62]. Finally, assessing the impact
of nonlinear stochastic effects on our model deserves a
separate analysis beyond the scope of this work.
We solve the MS equation with subhorizon Bunch-

Davies initial conditions at N ≪ Nk, where Nk indicates
the horizon crossing time for the mode k, that is the time at
which we have k ¼ aðNkÞHðNkÞ. This is implemented as

ukðN ≪ NkÞ ¼
1ffiffiffiffiffi
2k

p ;

and
dukðN ≪ NkÞ

dN
¼ −

kffiffiffi
2

p
aðNÞHðNÞ ; ð9Þ

where, without loss of generality, we choose the phase of uk
such that it is real initially. We then compute the power
spectrum PRðkÞ of the gauge-invariant comoving curvature
perturbation R given by

PRðkÞ ¼
k3

2π2

				 ukðNÞ
zðNÞ

				
2

N>NFðkÞ
;

with RkðNÞ ¼ −
ukðNÞ
zðNÞ ;

and zðNÞ ¼ aðNÞ dϕðNÞ
dN

: ð10Þ

In Eqs. (8) and (10) RkðNÞ and ukðNÞ are time-dependent
Fourier mode corresponding to a fixed comoving wave-
number k≡ jk⃗j. The power spectrum PRðkÞ does not
depend on time because the meaning of Eq. (10) is that
PRðkÞ must be evaluated after the time NFðkÞ at which the
mode jukðNÞ=zðNÞj freezes to the constant value that is
conserved until its horizon reentry. We then have

NFðkÞ≡maxfNk; NIIg: ð11Þ

Modes that exit the horizon before the timeNII (that is modes
such that Nk < NII) are not conserved (even though super-
horizon) because they experience afterward the negative
friction phase. Consequently, for these modes their contri-
bution to Eq. (10) must be evaluated at any time N > NII >
Nk after the negative friction phase ends. Contrariwise,
modes that exit the horizon after the time NII (that is modes
such that Nk > NII) freeze to their constant value after they
become superhorizon. Consequently, as customary, the con-
tribution of these modes to Eq. (10) must be evaluated at any
time N > Nk > NII.
It is sometime useful to rewrite the MS equation in the

form

d2Rk

dN2
þ ð3þ ϵ − 2ηÞ dRk

dN
þ k2

ðaHÞ2 Rk ¼ 0: ð12Þ

Assuming ϵ ≈ 0, constant η and constant H, this equation
admits the solution

RkðNÞ ∝ e−ð32−ηÞN
�
c1J3

2
−η

�
k
k⋆

e−N
�
Γ
�
5

2
− η

�

þ c2J−3
2
þη

�
k
k⋆

e−N
�
Γ
�
−
1

2
þ η

��
; ð13Þ

where JαðxÞ are Bessel functions of the first kind and ΓðxÞ
is the Euler gamma function. We are interested in the

GABRIELE FRANCIOLINI and ALFREDO URBANO PHYS. REV. D 106, 123519 (2022)

123519-6



sub-Hubble regime, meaning that in the argument of the
Bessel function ke−N=k⋆ ≫ 1. In this limit the asymptotic
behavior of the Bessel function is controlled, at the first
order, by the scaling JαðxÞ ∼ 1=

ffiffiffi
x

p
.

We show the numerical result of this procedure in Fig. 3.
During the transition from the initial slow-roll phase to the
plateau, we note that our model gives the steepest growth
∼k4 [68]. The numerical solution of the MS equation in
Fig. 3 shows that the USR dynamics encoded in Eq. (2)
correctly gives a plateau in the power spectrum of curvature
perturbations that is compatible with the result of Ref. [32].
The numerical values of the parameters used in Fig. 3 are
summarized in Table I (second row).
Two aspects of our approach are truly remarkable. First,

all free parameters entering in Eq. (2) have a neat and
simple relation to a physical observable; this is summarized
in the last two columns of Table I, and discussed in full
detail in the following sections. This is contrary to what
usually happens if one takes the conventional route of
starting from the potential and then studying the dynamics.
The free parameters entering the scalar potential usually
give very little intuition about the physics of PBH for-
mation. Second, our analysis is not just a mere rewording of
what done in Ref. [32]; on the contrary, our approach
discloses a much richer phenomenology that we shall now
discuss. Furthermore, it will allow us to derive the infla-
tionary potential that realise such scenario.

D. On the formation of a raised plateau
in the power spectrum

The modes that form the plateau are those that exit the
horizon during the phase NII < N < NIII with η ¼ 0. We
show in Fig. 4 the time evolution of three representative

modes of this kind for which NII < Nk < NIII. We shall
analyze the dynamics in three subsequent steps, and arrive
at a simple analytical understanding of the plateau’s
formation.

(i) N < NI. The modes are sub-Hubble (k ≫ aH). The
modulus of the function k3=2jukðNÞ=zðNÞj exponen-
tially decays while its real and imaginary parts
oscillate. For different k, the modes decay equally
fast (see left panel of Fig. 4). Using Eq. (13) and
neglecting η since jηIj ≪ 1, we simply have
k3=2jukðNÞ=zðNÞj ∼ e−N . This time dependence is
confirmed numerically in Fig. 4.
The difference in normalization—the function

k3=2jukðNÞ=zðNÞj is bigger for larger k, see left
panel of Fig. 4—can be traced back to the Bunch-
Davies initial condition. Deep in the sub-Hubble
regime, we have

k3=2
				 ukðNÞ
zðNÞ

				 ∼ k3=2 ×
1ffiffiffi
k

p ¼ k: ð14Þ

Since the subsequent time evolution is universal,
we conclude that the difference between two modes
with comoving wave numbers k1 and k2 < k1 is
simply given by k1=k2 as a consequence of Eq. (14).
This is confirmed numerically if we compare the
modes with k1;2;3 (that differ between each other by
one order of magnitude) displayed in the left panel
of Fig. 4.

(ii) NI < N < NII.
The modes enter in the negative-friction phase, and

they are now exponentially enhanced. The key point
is that modes with different k experience, during this
phase, the same amount of exponential growth. The
latter is fixed by the value of ηII and the duration of
the negative-friction phase ΔNUSR ¼ NII − NI [47].
This is again a consequence of Eq. (13); since
ηII > 3=2, the factor e−ð3=2−ηÞN gives an exponential
growth that is bigger for longer ΔNUSR. Conse-
quently, at the end of the negative-friction phase
modes with different k1 and k2 < k1 will still differ
between each other by the factor k1=k2. This is
confirmed numerically if we compare at N ¼ NII
the modes with k1;2;3 in the left panel of Fig. 4.

(iii) NII < N < NIII.
The modes exit from the negative friction phase.

The function k3=2jukðNÞ=zðNÞj decays exponen-
tially fast in the sub-Hubble regime until the time
N ¼ Nk at which the mode crosses the Hubble
horizon and settles to its final constant value. During
this phase the time-dependence is again given by

k3=2
				 ukðNÞ
zðNÞ

				 ∼ e−N: ð15Þ

FIG. 3. Power spectrum (solid green) corresponding to the
model described in the second column of Table I. The region
shaded in gray corresponds to the region constrained by CMB
spectral distortions [29]. To guide the eye, we indicate in red the
frequency range 2.5 × 10−9 < f ½Hz� < 1.2 × 10−8 characteris-
ing the NANOGrav signal and in blue the mass range
10−16 < MPBH½M⊙� < 10−12 in which PBHs may comprise the
totality of DM.
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This follows from the time dependence of Eq. (13)
with ηIII ¼ 0. The key point is that now the value
of Nk is larger for increasing k since we have
Nk ¼ logðk=k⋆Þ. This means that modes with differ-
ent k1 and k2 < k1 will experience, before horizon
crossing, a different amount of exponential suppres-
sion; the mode with k1 > k2 will exit the horizon
after the k2 mode. Consequently, the k1 mode will
get, compared to the k2 mode, an extra suppression
given by the factor

e− logðk1=k2Þ ¼ k2
k1

: ð16Þ

This extra suppression will precisely cancel the
initial enhancement of the k1 mode compared to
the k2 mode, as discussed below Eq. (14), so that
they eventually settle precisely on the same value.
This compensating mechanism produces the plateau.
It should be stressed that this exact compensation is
possible because we set ηIII ¼ 0 [otherwise the
scaling in Eq. (15) would have been different]. In
the left panel of Fig. 4 the time evolution of the three
modes with k1;2;3 clearly shows how the initial
mismatch during N < NI gets precisely reabsorbed
during the phase NII < N < NIII with η ¼ 0.

In conclusion, the formation of the plateau follows from
the same mechanism that originates a scale-invariant power
spectrum in the slow-roll limit when both ϵ → 0 and
jηj → 0. Modes k3=2jukðNÞ=zðNÞj with larger k starts from
larger values in the Bunch-Davies vacuum but exponen-
tially decay for longer time before horizon crossing. In our
model the presence of negative friction introduces an
intermediate phase of exponential growth which however

affects all modes in the same way; the net effect is that of an
exponential enhancement of the plateau value compared to
the case in which the negative friction phase was absent.
This is evident from the evolution of the modes shown in
the left panel of Fig. 4. All in all, the mechanism that
generates the plateau in our model is not fundamentally
different compared to what discussed in Ref. [69] (often
dubbed Wands duality, see Ref. [70]). However, the
discussion presented here in terms of the evolution of
individual modes gives a particularly limpid interpretation
of the mechanism.
As a final remark, we reiterate the importance of solving

numerically the MS equation for the computation of the
power spectrum. In the right panel of Fig. 4 we show the
comparison with the slow-roll approximation in Eq. (7).
The slow-roll approximation captures well the overall
features of the power spectrum but it misses the right
modeling of the transition regions at the two edges of the
plateau. These two parts of the power spectrum, as we shall
discuss next, are of crucial importance for the phenom-
enology of PBHs.

E. Features at the edges of the plateau

Let us discuss here the role of δNI;II;III previously
anticipated. First, we take δNI ¼ δNIII ¼ 0.50 fixed,
and consider a variation of δNII with respect to the value
δNII ¼ 0.50 (that is the one used in the benchmark model
corresponding to the first column in Table I). We show our
result in the left panel of Fig. 5. We note that δNII controls
the shape of the power spectrum at the left-side edge of the
plateau. In particular, a sharper transition (smaller δNII)
results in the formation of a bumplike feature at kmin; on the
contrary, a wider transition (larger δNII) smooths out
the bump.

FIG. 4. Time evolution (in terms of the e-fold number) of k3=2jukðNÞ=zðNÞj for three different modes with k1;2;3 ¼ 1010;9;8 Mpc−1

obtained by numerically solving the MS equation (solid lines). The dashed lines correspond to the absence of the USR phase. The
vertical lines labeled with Nk mark the e-fold time of horizon crossing for the mode with comoving wave number k. As shown in the
right panel (colored dots, one for each k1;2;3), these modes contribute to the plateau of the power spectrum. In this plot we also show the
power spectrum corresponding to the absence of the USR phase (dotted) and the one computed by means of the slow-roll approximation
(dashed).
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Second, we take δNI ¼ δNII ¼ 0.50 fixed, and consider
a variation of δNIII with respect to the value δNIII ¼ 0.50.
We show our result in the right panel of Fig. 5. We note that
δNIII controls the shape of the power spectrum at the right-
side edge of the plateau. In particular, a sharper transition
(smaller δNIII) results in the formation of a bump-like
feature at kmax; on the contrary, a wider transition (larger
δNIII) smooths out the bump.
Let us give a closer look at the last point. As discussed in

the main text, the dependence on the parameters δNII and
δNIII is an important result from a phenomenological point
of view since the bumps at the left- and right-side edges of
the plateau directly control the abundance of, respectively,
solar- and asteroid-mass PBHs. It is, therefore, natural to
ask what is the physical origin of the effect that we

described in Fig. 5. To answer this question, it is instructive
to consider the dynamics of individual modes.

1. Variation of δNII

We focus on the left panel of Fig. 5, and—for definiteness
—consider the evolution of the mode with k ¼ 8 × 106

Mpc−1 (black arrow). The contribution of this mode to the
power spectrum, as shown in the left panel of Fig. 5, is
enhanced (suppressed) for a sharper (smoother) transition at
N ¼ NII. We show the time evolution of this mode, both for
δNII ¼ 0.2 and δNII ¼ 0.8, in the left panel of Fig. 6 (left-
side of the plot, lines in red). We superimpose the time
evolution of the Hubble parameter ηðNÞ (right-side of the
plot, lines in blue). We note that this mode (as well as the
other modes that form the left-side edge of the plateau)

FIG. 5. Power spectrum for different choices of δNII (left panel) and δNIII (right panel). All other parameters are fixed according to the
first column in Table I. We zoom in the transition regions at the two edges of the plateau.

FIG. 6. Left panel. We plot the time evolution of the quantity k3=2juk=zj for k ¼ 8 × 106 Mpc−1 for two different values of δNII (left-
side y-axis, lines in red). All other free parameters are fixed to the values collected in the second column of Table I. We superimpose the
time evolution of the Hubble parameter η for the same two values of δNII (right-side y-axis, lines in blue). The vertical dashed line marks
the horizon crossing time while (from Table I) we have NII ¼ NI þ ΔNUSR ¼ 17.9. In the region shaded in blue we have that ηðNÞ for
δNII ¼ 0.2 is larger than ηðNÞ for δNII ¼ 0.8. This region highlights the difference between the two choices of δNII in terms of the
evolution of ηðNÞ; the USR phase lasts for a slightly longer time if we consider smaller δNII (that is a sharper transition at NII). Right
panel. Same as in the left panel but for k ¼ 1.75 × 1014 Mpc−1 and for two different values of δNIII (with all other free parameters kept
fixed according to the second column of Table I). In the region shaded in blue we have that ηðNÞ for δNIII ¼ 0.1 is larger than ηðNÞ for
δNIII ¼ 1.2. This region highlights the difference between the two choices of δNIII in terms of the evolution of ηðNÞ; the mode
experiences, before horizon crossing, a stronger exponential suppression for increasing δNIII, as discussed in Eq. (19).
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crosses the Hubble horizon right after the end of the USR
phase. As explained in the previous section, during the USR
phase the mode gets exponentially enhanced. The key point
is that the amount of USR depends on the sharpness of
the transition at N ¼ NII. As evident in the left panel
of Fig. 5, a very sharp transition (like in the case with
δNII ¼ 0.2) gives to the same mode more time to exponen-
tially grow. This is highlighted by the region shaded in blue
in the left panel of Fig. 5. In the case with δNII ¼ 0.2 the
mode has more time to grow before horizon crossing and, if
compared with the evolution of the same mode but in the
case of a smoother transition (δNII ¼ 0.8), it settles to a
higher final value. This is the reason why the bump at the
left-side edge of the plateau stands out more and more as
one takes decreasing values of δNII.
Before proceeding, there is one more point that is worth

discussing. As evident from the left panel of Fig. 6, the
bump only concerns modes that cross the horizon right after
the transition time NII. Plateau modes, that is modes that
cross the horizon deeper during the ηIII ¼ 0 phase, are not
sensitive on the specific value of δNII. The reason is
illustrated in the left panel of Fig. 7. In this figure we plot
the dynamics of one of the modes that contribute to the
plateau. For definiteness, we take k ¼ 108 Mpc−1. This
mode crosses the horizon at time Nk > NII when the value
of η, for both choices δNII ¼ 0.2 and δNII ¼ 0.8, even-
tually settled to the value ηIII ¼ 0. After the end of the USR
phase and before crossing the horizon at time Nk, the mode
exponentially decays according to the scaling

k3=2
				 ukðNÞ
zðNÞ

				 ∼ e−ð1−ηIIIÞN: ð17Þ

What happens is that if we take the case of a smooth
transition the value of ηIII is not exactly equal to zero after
N > NII but, since the tanh function has a sizable width, it
transits through a phase in which ηIII > 0. Consequently,
the mode has a slower exponential decay compared to the
case of a sharp transition in which we have, from Eq. (17),
the scaling e−N immediately after NII. Because of the
symmetry of the tanh function, the slower exponential
decay for N > NII precisely compensate the exponential
growth forN < NII so that, independently on δNII, the final
value of the mode after its horizon crossing will be the
same. This compensation is evident in the numerical result
displayed in the left panel of Fig. 7. Importantly, this
compensation works only for modes that exit the horizon at
timesNk after that the transition from ηII to ηIII is completed
(so that they can experience while subhorizon both sides of
the tanh transition at NII).

2. Variation of δNIII

We focus on the right panel of Fig. 5, and—for
definiteness—consider the evolution of the mode with k ¼
1.75 × 1014 Mpc−1 (black arrow). The contribution of this

mode to the power spectrum, as shown in the right panel of
Fig. 5, is enhanced (suppressed) for a sharper (smoother)
transition at N ¼ NIII. We show the time evolution of this
mode, both for δNIII ¼ 0.1 and δNIII ¼ 1.2, in the right
panel of Fig. 6 (left-side of the plot, lines in red). We
superimpose the time evolution of the Hubble parameter
ηðNÞ (right-side of the plot, lines in blue). We note that this
mode (as well as the other modes that form the right-side
edge of the plateau) crosses the Hubble horizon right after
the transition at time NIII. The key point is the following.
As discusses in the previous section, during its sub-Hubble
evolution at times N < Nk, the mode evolves as

k3=2
				 ukðNÞ
zðNÞ

				 ∼ e−ð1−ηIIIÞN; ð18Þ

which is the same time-dependence discussed in Eq. (15)
but with ηIII explicitly written. If we consider the case of a
very smooth transition, from the ηðNÞ evolution displayed
in right panel of Fig. 6 we see that the mode experiences a
nonzero value of ηIII < 0 already before the transition time
at NIII while in the case of a sharper transition stays closer
to ηIII ¼ 0 for longer time. This is highlighted by the region
shaded in blue in right panel of Fig. 6. Consequently, in the
case δNIII ¼ 1.2 (smoother transition) the mode, before
horizon crossing and for N < NIII, experiences a short
phase during which it evolves as

k3=2
				 ukðNÞ
zðNÞ

				 ∼ e−ð1þjηIIIjÞN; ð19Þ

with ηIII < 0 nonzero and negative because of the effect of
the transition region. The mode, therefore, undergoes a
phase of exponential suppression that is slightly faster
compared with the case of a sharper transition (for which
ηIII remains closer to zero until the actual transition at
N ¼ NIII). This is evident in right panel of Fig. 6; in the
case with δNIII ¼ 1.2 the mode is more suppressed and, if
compared with the evolution of the same mode but in the
case of a smoother transition (δNIII ¼ 0.1), it settles to a
lower final value. This is the reason why the bump at the
right-side edge of the plateau becomes smoother and
smoother as we increase the value of δNIII.
We note that this effect is again limited to those modes

that exit the horizon right after the transition at N ¼ NIII.
Modes that exit the horizon before the transition time NIII
(like the plateau modes) are already superhorizon, and,
therefore, conserved, at time NIII; modes that cross the
Hubble horizon well after the transition time NIII (more
specifically, after that η completed the transition from ηIII to
ηIV) experience a compensating effect that is completely
analogue to the one discussed before at time NII. This is
shown in the right panel of Fig. 7 for the mode with
k ¼ 2 × 1014 Mpc−1. Consider the smooth transition with
δNIII ¼ 0.8 (solid line). The faster exponential decrease
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right before N ¼ NIII is compensated by a slower expo-
nential decrease right after the transition so that the two
effects compensate at horizon crossing.

3. Variation of δNI

Before concluding this section, we quickly comment
about the dependence on the parameter δNI which controls
the sharpness of the first transition at N ¼ NI. The point we
want to make is that changing this parameter does not alter
neither the bumplike feature at the left-side edge of the
plateau nor the subsequent plateau. The reason is summa-
rized in Fig. 8. We fix δNII ¼ δNIII ¼ 0.5 and consider two
cases with δNI ¼ 0.2 and δNI ¼ 1. In the left panel, we plot
the time evolution of the mode with k ¼ 2 × 106 Mpc−1.
This mode crosses the Hubble horizon right after the end of
the USR phase, and contributes to the bump-like feature at
the left-edge of the plateau. Changing δNI does not alter the
final value of the mode because we observe, in the case of a
smoother transition (δNI ¼ 1, solid lines), a compensation
between a slower exponential decay right before NI and the
subsequent faster exponential growth right after NI. In the
right panel, we plot the time evolution of the plateau mode
with k ¼ 108 Mpc−1. In analogy to the previous discus-
sion, the compensation right before and after NI cancels out
any difference between the final conserved value of the
modes if δNI ¼ 0.2 and δNI ¼ 1 are compared. Motivated
by this analysis, in the explicit realizations of our model
(see Table I) we fix δNI ¼ 0.5.
In conclusion, we showed how the features at both ends

of the plateau of curvature perturbations are directly
controlled by δNII and δNIII and can be simply interpreted
in terms of the dynamics of the perturbation modes.

III. THE ABUNDANCE OF PBHS

In this section we review how one can compute the
abundance of PBHs. Here we adopt the formalism devel-
oped in Ref. [71] that include the dependence on the
equation of state, which deviates from perfect radiation
around the QCD epoch when PBHs of around the solar

mass are formed. We assume that the Universe was
dominated by relativistic particles at energies higher than
what currently included in the standard model of particle
physics, leading to a perfect radiation fluid dominating the
Universe above the electroweak scale. We mention, how-
ever, that a different equation of state may be possible,
implying modifications of the PBH formation [72–80] and
induced SGWB [81–85] discussed in the next section.
After matter-radiation equality the dark matter fraction

consisting of PBHs can be expressed as

ΩPBH ¼
Z

d log MH

�
Meq

MH

�
1=2

βðMHÞ;

fPBHðMPBHÞ ¼
1

ΩCDM

dΩPBH

d log MPBH
; ð20Þ

whereMH is the horizonmass at the time of horizon re-entry,
Meq ≃ 3 × 1017M⊙ the horizon mass at matter-radiation
equality, and ΩCDM is the cold dark matter density of the
Universe (ΩCDM ≃ 0.12h−2, with h ¼ 0.674 for the Hubble
parameter). The approximate relation between the horizon
mass MH and comoving wave number kH is given by

MH ≃ 17 ×

�
g�

10.75

�
−1=6

�
kH

106 Mpc−1

�
−2
M⊙; ð21Þ

where g� is the number of degrees of freedom of relativistic
particles with g� ¼ 106.75 deep in the radiation epoch.
We include the temperature dependence of g� following
Ref. [86].1 The mass of the resulting PBH is given by [87]

MPBH ¼ KMH

��
δL −

1

4Φ
δ2L

�
− δc

�
γ

: ð22Þ

Equation (22) automatically takes into account the nonlinear
relation between curvature perturbations and the density

FIG. 7. Left panel. Same as in the left panel of Fig. 6 but for the time evolution of the plateau mode with k ¼ 108 Mpc−1. Right panel.
Same as in the right panel of Fig. 6 but for the time evolution of the mode with k ¼ 2 × 1014 Mpc−1.

1We convert the temperature dependence into a functional
dependence on the horizon mass MH by means of the relation
MH ≃ 1.5 × 105ðg�=10.75Þ−1=2ðT=MeVÞ−2M⊙.
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contrast field δ [87,88]. More concretely, δL represents the
linear Gaussian component of the density contrast field
while δc is the threshold value for gravitational collapse that
refers to the full density contrast field. In full generality,
KðMHÞ, γðMHÞ, ΦðMHÞ and δcðMHÞ are functions of the
horizon mass. During the radiation epoch, K typically takes
a value between 3 and 5 for perturbations produced by a
nearly scale-invariant spectrum [89,90], γ ≃ 0.36, δc ≃ 0.56
and Φ ¼ 2=3 for a radiation fluid with equation of state
parameter ω ¼ p=ρ ¼ 1=3. In our analysis, we include the
full MH dependence of the above quantities following
Refs. [71,91]. This is an important point since the equation
of state parameter ω reduces by around 30% and the critical
threshold δc decreases by around 10% during the QCD
phase transition [91]. This leads to a boost in the PBH mass
distribution by at least two orders of magnitude compared to
a Universe in which the equation of state parameter remains
constantly equal to that of radiation, ω ¼ 1=3.
The expression for β in Eq. (20) accounts for the fraction

of each Hubble volume which collapses to form a PBH.
Assuming threshold statistics, we have

βðMHÞ ¼
Z

∞

δc

MPBH

MH
PðδÞdδ

¼ K
Z

δmax
L

δmin
L

�
δL −

1

4Φ
δ2L − δc

�
γ

PGðδLÞdδL; ð23Þ

PGðδLÞ ¼
1ffiffiffiffiffiffi

2π
p

σðRHÞ
e−δ

2
L=2σðRHÞ2 ; ð24Þ

where in Eq. (23) we changed variable from the full density
contrast to its linear (hence Gaussian) component. The
characteristic size of perturbations is identified by the scale
rm where the maximum of the mass excess (or compaction
function) is found [92] and it is larger then the inverse of the
comoving spectral number k. For nearly scale invariant
spectra, the two are related by the condition rmk≡ κ ≃ 4.49
[93]. The peak of the compaction function sets the

corresponding horizon crossing rm ¼ 1=aH ≡ RH, where
RH is the comoving Hubble radius; its relation withMH can
be read from Eq. (21) at the time of horizon reentry
kH ¼ 1=rm. The extrema of integrations in Eq. (23) are

δmin
L ¼ 2Φ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

δc
Φ

r �
; δmax

L ¼ 2Φ: ð25Þ

The variance that enters in Eq. (24) refers to the linear
component of the density contrast and can be computed by
integrating the power spectrum of curvature perturbations

σ2ðRHÞ¼
4

9
Φ2

Z
∞

0

ðkRHÞ4W2ðkRHÞT2ðkRHÞPRðkÞd logk:

ð26Þ

In Eq. (26) we include the Fourier transform of the top hat
window function in real spaceWðkRHÞ (used to smooth the
field over a finite volume) and the linear transfer function
TðkRHÞ (which describes the damping of perturbations on
subhorizon scales). We use2

WðyÞ ¼ 3

�
sinðyÞ − y cosðyÞ

y3

�
;

TðyÞ ¼ 3

�
sinðy= ffiffiffi

3
p Þ − ðy= ffiffiffi

3
p Þ cosðy= ffiffiffi

3
p Þ

ðy= ffiffiffi
3

p Þ3
�
: ð27Þ

Following Ref. [94], we make another change of variables
from δL toMPBH by inverting Eq. (22). We arrive at the final
formula3

FIG. 8. Same as in Fig. 6 but now with δNII ¼ δNIII ¼ 0.5 fixed while we vary δNI ¼ 0.2 (dot-dashed lines) and δNI ¼ 1 (solid lines).
Left panel. Time evolution of the mode with k ¼ 8 × 106 Mpc−1 (one of the modes that contribute to the bumplike feature at the left-side
edge of the plateau). Right panel. Time evolution of one of the plateau modes with k ¼ 108 Mpc−1.

2It should the noted that the transfer function in Eq. (27) is
strictly valid in a radiation-dominated phase.

3It should be noted that Ref. [32] computes the abundance of
PBHs in the gaussian approximation, and includes the effect of
nonlinearities by means of a final rescaling of the amplitude of the
power spectrum by a factor of 2 (following the prescription given
in Refs. [87,88]).

GABRIELE FRANCIOLINI and ALFREDO URBANO PHYS. REV. D 106, 123519 (2022)

123519-12



fPBHðMPBHÞ ¼
1

ΩCDM

Z
∞

Mmin
H

�
Meq

MH

�
1=2 e

− 8

9σðRH Þ2½1−
ffiffiffi
Λ

p �2

ffiffiffiffiffiffi
2π

p
σðRHÞΛ1=2

×

�
MPBH

γMH

��
MPBH

KMH

�
1=γ

d logMH; ð28Þ

where we conveniently defined

Λ≡ 1 −
δc
Φ

−
1

Φ

�
MPBH

KMH

�
1=γ

ð29Þ

in which the right-hand side can be integrated numerically
to give fðMPBHÞ for each value of the PBHmass. The lower
limit of integration follows from the condition Λ > 0

[notice this must be the case due to the term
ffiffiffiffi
Λ

p
appearing

in Eq. (28)]. As far as the numerical value of δc is
concerned, it takes the value of δc ¼ 0.56 in a radiation-
dominated universe in the case of a broad power spectrum
of curvature perturbations and including the nonlinear
relation between curvature perturbations and the density
contrast field.4 It is additionally reduced and modulated
when MH ≈M⊙ when the collapse takes place across the
QCD epoch [91].
The parameters of the dynamics are chosen in such a way

that the integral

fPBH ≡ ΩPBH

ΩCDM
¼

Z
fPBHðMPBHÞd logMPBH ≈ 1; ð30Þ

which means that we get ≈100% of DM in the form of
PBHs. In Fig. 9 we show the following constraints (see
Ref. [95] for a review and [96]). Envelope of evaporation
constraints (see also [97–99]): EDGES [100], CMB [101],
INTEGRAL [102,103], 511 keV [104], Voyager [105],
EGRB [106]; microlensing constraints from the Hyper-
Supreme Cam (HSC), Ref. [107]; microlensing constraints
from EROS, Ref. [108]; microlensing constraints from
OGLE, Ref. [109]; Icarus microlensing event, Ref. [110];
constraints from modification of the CMB spectrum due to
accreting PBHs, Ref. [111]; direct constraints on PBH-
PBH mergers with LIGO, Refs. [112,113] (see also
[114–117]).
Recently, it was suggested that observations of Sun-like

stars in dwarf galaxies may constrain the PBH abundance
to be below fPBH ≲ 0.3 in part of the asteroidal mass
window [119], i.e., for masses MPBH ≲ 10−12M⊙. Similar
constraints were set in the past by studying neutron stars
and white dwarfs in DM-rich environments like dwarf
galaxies [120–122] (see Ref. [123] for a discussion on their
validity), for which no direct observations exist to date. On
the contrary, Ref. [119] focuses on main sequence stars.
The newly derived bound, however, requires assuming a

maximum allowed fraction ξ of disrupted stars that can
be compatible with current observations, given the lack of
precise modeling of the initial number.Oð1Þ differences on
ξ may completely relax this bound [119]. Therefore, we
decided not to report it in Fig. 9. We conclude by pointing
out that, even taking at face value the bound that follows
from the assumptions made in Ref. [119], it would still be
possible to tune the asteroidal mass peak in Fig. 9 in order
to evade the constraint with small modifications of the
parameters reported in Table I.
The resulting mass distribution is shown in Fig. 9 for

three benchmark realizations of our model, all of which are
chosen to reproduce all the DM in the form of PBHs

(fPBH¼! 1). The values of the parameters are collected
in Table I.
The first noticeable feature of the resulting mass dis-

tribution fPBHðMPBHÞ is the characteristic scaling ∝ M−1=2
PBH

for masses produced by modes in the enhanced plateau (see
Fig. 9). This is because nearly scale invariant power spectra
induce the formation of PBHs of various masses with equal
probability βðMHÞ [124,125], but smaller PBHs form
earlier and their abundance is redshifted compared to
heavier ones. This naturally induces a more prominent
contribution to the DM from the light portion of the mass
spectrum. Additionally, the smoothness of the transition
between phases II → III and III → IV, controlled by the
parameters δNII and δNIII respectively, determines the
spectral features at the sides of the enhanced plateau,
which are magnified in the PBH abundance due to its
exponential dependence on PRðkÞ. In particular, as already
discussed in the previous section, a sharper transition

FIG. 9. Fraction of DM in the form of PBHs with mass MPBH.
We plot the most stringent constraints (meshed regions, cf. the
SM) and the mass function resulting from three benchmark
realizations of our model [labeled as (1), (2), (3), see Table I]. The
yellow band corresponds to the allowed region for a PBH mass
function ∝ M−0.5

PBH consistent with the Subaru Hyper Suprime-Cam
(HSC) microlensing candidate event [107] (see also [118]). The
gray line indicates the minimum PBH abundance required to have
at least one PBH merger event per year at the Einstein Telescope
(ET) experiment, see Ref. [13].

4Reference [32] takes the value δc ¼ 0.51 which is the value
that corresponds to the gaussian approximation, see Ref. [89].
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produces a more prominent oscillatory feature (see e.g.,
[36,126,127]), whose main peak greatly enhances the
relative PBH abundance at the corresponding mass.
Focusing on the first transition, which corresponds to the

formation of heavier (solar mass) PBHs, δNII allows to
boost fPBH [on top of the softening of the QCD equation of
state, whose only impact on the enhancement of the mass
function can be measured by looking at case (3) in Fig. 9],
to a much larger value which may potentially produce
observable PBH mergers at current and future ground-
based GW experiments [13,14,71,117,128–130]. On the
other hand, a smaller δNIII would induce a peak at small
masses. In the absence of a bump at asteroidal masses [i.e.,
case (3)], fPBHðMPBHÞ would be compatible with the HSC
detection of a candidate lens [107] (indicated in Fig. 9 with
a yellow band). On the other hand, for fixed abundance
fPBH ¼ 1, a more pronounced peak [i.e., (1) and (2)] would
decrease the amplitude of the whole tail ∝ M−1=2

PBH , poten-
tially evading future HSC constraints [118].

A. On the maximum mass of PBHs in USR scenarios

We now discuss the maximum mass of PBHs that can be
generated within our model. This is a delicate issue which
is mostly related to the shape of the power spectrum at the
left-side edge of the plateau. To make this point more clear,
we start from some preliminary considerations.
In the left panel of Fig. 10 we zoom in on this part of the

power spectrum. For definiteness, we consider the model
dubbed (1) in Table I. Some comments are in order. First,
the region shaded in magenta represents the interval of
comoving wave number k such that the horizon crossing
condition k ¼ aðNkÞHðNkÞ falls inside the time interval
NI ≤ Nk ≤ NII. Second, we highlight in red the part of
the power spectrum that features the power-law growth
PRðkÞ ∼ k4. We note that this part of the power spectrum
lies immediately before the region shaded in magenta; this
suggests that the modes that contribute to the ∼k4 growth
are those for which the horizon crossing condition happens
right before the beginning of the USR phase. On the other
hand, as already discussed at length in the previous section,
the bumplike feature (highlighted with a black arrow in the
left panel of Fig. 10) lies immediately after the magenta
region, consistently with the fact that the modes that
contribute to the bump at small k are those for which
the horizon crossing condition takes place right after the
USR phase. We now focus on the transition region that
connects the ∼k4 growth to the bump at the left-side edge of
the plateau. This part of the power spectrum is formed by
those modes for which horizon crossing takes place during
the USR phase. In this region the slope of the power
spectrum gradually decreases from ∼k4 to ∼k0.7 (regions
highlighted first in blue, then in green in the left panel of
Fig. 10). In order to make more explicit the interplay
between the horizon crossing condition and the USR phase,

in the right panel of Fig. 10 we show the time evolution of
the individual modes that contribute to the red, blue and
green part of the power spectrum; we superimpose the time
evolution of η, and the vertical lines mark the horizon
crossing time for each mode. This plot confirms what
already realized before at the level of the power spectrum;
the red (blue and green) modes cross the horizon right
before (during) the USR phase.
Bearing in mind the above discussion, we now come

back to the issue of the maximum PBH mass. In Fig. 9, the
solar-mass bump in the distribution fPBHðMPBHÞ is gen-
erated, at the level of the power spectrum, by the bump at
the left-side edge of the plateau. Consequently, the rule
of thumb is very simple; if we move the bump in PRðkÞ
towards smaller k we will get heavier PBHs since the solar-
mass peak will shift toward increasing values of MPBH. In
our model, we point out two ways to accomplish this
change.

(i) The simplest option is to anticipate the beginning of
the USR phase. Technically, this means taking
smaller values of NI. This has the net effect of a
shape-invariant shift of the left-side edge of the
power spectrum towards smaller k. From the left
panel of Fig. 10, we see that this shift is possible
until the power spectrum (more precisely, the part of
it in between the red and blue region) clashes with
the FIRAS bound. We illustrate our findings in
Fig. 11. We consider model (1) (solid black lines in
Fig. 11) and take increasingly smaller values of NI.
As expected, the left-side edge of the plateau shifts
rigidly towards smaller k (left panel in Fig. 11). For
definiteness, we focus on two specific modifications
of model (1). First, consider the dashed black lines in
Fig. 11 that correspond toNI ¼ 14. In the right panel
of Fig. 11, we show the corresponding mass function
fPBHðMPBHÞ. The latter exhibits a characteristic
double-peak shape. This is because we are now
separating the peak due to the softer QCD equation
of state (that sits at around MPBH ¼ 1M⊙) from the
peak that is due to the bump at the left-side edge of
the power spectrum (that now shifted towards
smaller k thus largerMPBH). The height of the latter,
as explained in Sec. II E 1, is controlled by δNII, and
the model that corresponds to the dashed black lines
in Fig. 11 has δNII ¼ 0.46 thus slightly smaller than
the benchmark value δNII ¼ 0.5; this is because the
second peak is no longer boosted by the QCD phase
transition (which, as discussed, takes place at around
MPBH ¼ 1M⊙), and we compensate this effect with
a smaller δNII. In this configuration the model
produces a sizable abundance of PBHs with a mass
function peaked at aroundMPBH ≃ 20M⊙. As shown
in the right panel of Fig. 11, the upper bound on the
abundance of these PBHs is given by LIGO data.
This is an interesting point since it shows that a rigid
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shift of the USR dynamics presented in the main text
may generate a sufficiently abundant population of
PBHs within the so-called lower mass gap, that is in
the range ≈ ½2.2 ÷ 6�M⊙ (see e.g., [131,132]), if we
just take a value of NI slightly larger than the one
discussed above and in the so-called upper mass gap,
that is above ≈50M⊙, if we just take a value of NI
slightly smaller than the one discussed above. We
refer to [71] for a comprehensive discussion about
the role that these PBHs may have in the gravita-
tional-wave merger events detectable by the LVKC.
We now consider a second, much smaller value

for NI; the dot-dashed black lines in Fig. 11 corre-
spond to NI ¼ 12.85. From the plot of the power
spectrum in the left panel of Fig. 11 we see that this
value of NI almost saturates the region allowed by
the FIRAS bound. The corresponding mass distri-
bution of PBHs is shown in the right panel of
Fig. 11. The second peak is now very close to the

CMB bound, and corresponds to PBHs with mass
MPBH ≃ 102M⊙ or larger. However, we remark that
in this case the upper bound on the abundance of
these PBHs is given by the CMB constraint. In the
model that corresponds to the dot-dashed black lines
in Fig. 11 we take δNII ¼ 0.5; if we take smaller
values of δNII the second peak at large PBH mass
will be enhanced, in conflict with the CMB bound.

(ii) Consider again the power spectrum in the left panel
of Fig. 10. The idea is to alter the slope of the blue
and green region such to connect more directly the
red growth ∼k4 to the bump. Thanks to our pre-
liminary discussion, we have the right intuition
about how to achieve this goal: we just need to
shorten the duration of the USR phase and reach the
first peak earlier. As a simple consequence, the
interval of modes for which the horizon crossing
condition takes place within the USR phase will be
reduced. In the left panel of Fig. 12 we show the

FIG. 10. Left panel: Zoom in on the left-side edge of the plateau of the power spectrum in Fig. 3. We highlight in magenta the values of
k such that the horizon crossing condition k ¼ aðNkÞHðNkÞ is solved for NI ≤ Nk ≤ NII. Right panel: Dynamical evolution of the
perturbation modes with k in the red, blue and green part of power spectrum [cf. the use of different colors in the left panel: the red
(green) part of the power spectrum corresponds to the ∼k4 (∼k0.7) growth while the blue part lies in between]. The vertical lines mark the
horizon crossing time, and make clear that for the blue and green modes we have NI ≤ Nk ≤ NII.

FIG. 11. Left panel: Zoom in on the left-side edge of the plateau of the power spectrum in Fig. 3; we consider two variations of model
(1) that have different values of NI and δNII (cf. the plot legend for details). Right panel: Fraction of DM in the form of PBHs with mass
MPBH. We zoom in on the solar-mass range and show the abundance corresponding to the three models discussed in the left panel.
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power spectrum that we get if we modify model
(1) by taking a shorter USR phase. We consider
ΔNUSR ¼ 2.62 instead of the benchmark value
ΔNUSR ¼ 2.9.
Importantly, it should be noted that, in order to

maintain the same height of the plateau in the power
spectrum, decreasing the value of ΔNUSR should be
compensated by a larger value of ηII. This simply
follows from the exponential growth in front of
Eq. (13). In the left panel of Fig. 12, in fact, we are
forced to consider ηII ≃ 3 (instead of the benchmark
value ηII ≃ 2.7). This simple fact has a very profound
implication. Since during phase I we have ηI ≃ 0, a
Wands duality [70] is established between phase I
and phase II; phases with η and 3 − η (that is, in our
case, ηI ≃ 0 and ηII ≃ 3 ¼ 3 − ηI) are dual in the
sense that they give rise the same spectral slope. This
means that we expect a flattening of the power
spectrum during the USR phase.
The numerical analysis shown in the left panel of

Fig. 12 fully confirms our intuition. For complete-
ness, in the central panel of Fig. 12 we show the
time evolution of red, blue and green modes together
with their horizon crossing time (vertical lines). As
expected, at the left-side edge of the plateau the
power spectrum now has, as a consequence of the
duality, a flat region (instead of just a bumplike
feature) that is quickly connected to the ∼k4 growth.
From a phenomenological viewpoint, this simple
modification has a far-reaching implication since it
means that it will be possible to generate, at the level
of the distribution fPBHðMPBHÞ, not just a peak (as in
the case of the bumplike feature) but a broader mass
distribution in the LVKC detectable mass range, and
extending towards heavier PBHs well within the
upper mass gap. We illustrate this point in the right

panel of Fig. 12 in which we show the PBH mass
distribution of the benchmark model (1) (black
dashed line) compared with the one obtained for
ΔNUSR ¼ 2.62, ηII ¼ 3.014 and δNII ¼ 0.565.

Furthermore, from the left panel of Fig. 12, we
also see that, in principle, we have enough room to
combine (i) and (ii) and push the power spectrum
towards the FIRAS bound by taking smaller values
of NI. Interestingly, we find that if we combine (i)
and (ii) it is not possible to saturate the FIRAS
bound (the minimum allowed value of NI turns out
to be about 14.4). The reason is that, since we now
have a broader distribution in fPBHðMPBHÞ in the
solar-mass range instead of a narrow peak, before
saturating the FIRAS bound we would clash with
the CMB constraint on accreting PBHs, shown in
blue in Fig. 9. The black dot-dashed line in the right
panel of Fig. 12 corresponds to the same model that
gives the solid black line discussed before but with
an anticipated USR phase (NI ¼ 14.38 instead of
NI ¼ 15.5). The PBH mass distribution saturates
the CMB bound even though the left-side edge of
the plateau in the power spectrum is far from the
FIRAS bound (cf. the dot-dashed black line in the
left panel).

In conclusion, the USR dynamics studied in this paper may
easily accommodate a population of solar-mass PBHs with
a (potentially broad) mass distribution that extends up to
the constraint provided by the modification of the CMB
spectrum due to PBH accretion. A more quantitative and
detailed discussion will be presented in Ref. [71].
As a final remark, we would like to stress that the above

discussion shows very clearly the power of our approach.
Starting from a well-defined physical question (what is the
maximum mass of PBHs) we were able, in very few steps,
to pinpoint a neat connection with the underlying dynamics

FIG. 12. Left panel: The dashed black line is the power spectrum shown in the left panel of Fig. 10; the solid black line is the power
spectrum that is obtained taking ΔNUSR ¼ 2.62 (instead of the benchmark value ΔNUSR ¼ 2.9) and ηII ≃ 3 (instead of the benchmark
value ηII ≃ 2.7); the dot-dashed black line is the power spectrum obtained for the same parameters given above but with an anticipated
USR phase (NI ¼ 14.38 instead ofNI ¼ 15.5). The red part of the power spectrum corresponds to the ∼k4 growth while the green part is
approximately flat; the blue part lies in between. Central panel: Dynamical evolution of the perturbation modes with k in the red, blue
and green part of power spectrum discussed in the left panel. The vertical lines mark the horizon crossing time, and make clear that the
for blue and green modes we have NI ≤ Nk ≤ NII. Right panel. The dashed black line corresponds to the PBH mass distribution in
model (1). The solid black line is obtained taking a shorter URS phase with ΔNUSR ¼ 2.6, ηII ¼ 3.014 and δNII ¼ 0.565 [but with the
same NI ¼ 15.5 as in model (1)]. The dot-dashed black line corresponds to the same model that gives the solid black line but with an
anticipated USR phase, NI ¼ 14.38.
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that made extremely clear the correct way to get to the
desired answer.

IV. THE SCALAR-INDUCED GW SIGNAL

Next, we compute the second-order gravitational-wave
signal sourced by scalar perturbations [15–20] (see
Ref. [21] for a recent review). The current energy density
of gravitational waves as function of their frequency f is
given by

ΩGWðfÞ ¼
cgΩr

36

Z 1ffiffi
3

p

0

dt
Z

∞

1ffiffi
3

p
ds

�ðt2 − 1=3Þðs2 − 1=3Þ
t2 − s2

�
2

× ½Icðt; sÞ2 þ I sðt; sÞ2�PR

�
k

ffiffiffi
3

p

2
ðsþ tÞ

�

× PR

�
k

ffiffiffi
3

p

2
ðs − tÞ

�
; ð31Þ

where Ωr is the current energy density of radiation and Ic
and I s are two functions that can be computed analytically
(see, for instance, Refs. [133,134]). The parameter cg
defined as

cg ≡ g�ðMHÞ
g0�

�
g0�S

g�SðMHÞ
�

4=3

ð32Þ

accounts for the change of the effective degrees of freedom
of the thermal radiation g� and g�S (where the superscript 0

indicates the values today) during the evolution (assuming
Standard Model physics), and it is of order cg ¼ 0.4 for
modes related to the formation of asteroid-mass PBHs. The
frequency f is related to the comoving wave number k by
the relation

k ≃ 6.47 × 1014
�

f
Hz

�
Mpc−1; ð33Þ

so that the two sides of the flat power spectrum in Fig. 3
correspond to f ¼ Oð0.1Þ Hz (for kmax ≃ 1014 Mpc−1) and
f ¼ Oð10−9Þ Hz (for kmin ≃ 10−9kmax). These frequencies
are related to the formation of PBHs with asteroidal
[135–137] and solar masses [138], respectively (see Fig. 3).
A robust prediction of this scenario, as highlighted in

Ref. [32], is the generation of a nearly scale invariant
SGWB (shown in Fig. 13) crossing both PTA experiments
and LISA. Due the quadratic dependence of the SGWB
amplitude to the spectrum amplitude, one finds much
milder features mirroring the large enhancements observed
in the PBH mass distribution. However, it is interesting to
notice that δNII would potentially modify the spectral tilt
within the PTA frequency range, ranging from flat to
slightly red in scenarios (3) and (1), respectively. In all
cases, such spectrum has a frequency dependence in the

PTA range which is different from the one emitted by
massive BH binaries (e.g., [139]).
Before proceeding, let us comment on a number of

approximations that we have done in the computation of the
scalar-induced GW signal. First, we remark that Eq. (31)
and the value cg ¼ 0.4 are strictly valid only during the
radiation epoch with g� ¼ Oð100Þ. In principle, one should
modify Eq. (31) to include the effect of the QCD quark-
hadron phase transition (along the lines of what is done in
Ref. [144]). This is particularly relevant for the comparison
with experimental data in the low-frequency region of PTA
and NANOGrav. Future confirmation of the NANOGrav
signal with additional spectral information will make this
computation extremely relevant for an appropriate com-
parison between theoretical predictions and data. We leave
this analysis for future work. Second, as done throughout
this work, we neglect possible primordial non-Gaussian
corrections in the computation of the scalar-induced GW
signal. We refer to Refs. [145–148] for a discussion about
the impact of these effects.

V. THE RECONSTRUCTED POTENTIAL

From ηðNÞ and ϵðNÞ, that capture the inflationary
dynamics and connects it to the various late time observ-
able, we can reconstruct the scalar potential VðϕÞ. This is
the final aim of the reverse engineer approach and one of
the main results of our paper.

A. From dynamics to the inflationary potential

Once the Hubble parameters are known, one can
compute the inflationary potential by means of

FIG. 13. Fraction of the energy density in GWs relative to the
critical energy density of the Universe as function of the
frequency. We show the power-law integrated sensitivity curves
[140] of future ground- and space-based GW experiments (as
derived in Appendix C of Ref. [141]) as well as previous Parkes
Pulsar Timing Array (PPTA) constraint [142], NANOGrav
putative band [25] and SKA projected sensitivity [143]. We plot
the signals predicted by our model in the three realizations
proposed in Table I.
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VðNÞ ¼ VðNrefÞ exp
�
−2

Z
N

Nref

dN0
�
ϵð3 − ηÞ
3 − ϵ

��
;

ϕðNÞ ¼ ϕðNrefÞ �
Z

N

Nref

dN0 ffiffiffiffiffi
2ϵ

p
; ð34Þ

where in the second equation we consider the minus sign
having in mind a large-field model in which the field value
decreases as inflation proceeds. Combining VðNÞ and
ϕðNÞ, we reconstruct the profile VðϕÞ of the inflationary
potential in field space [68]. We will discuss further details
of the reconstruction procedure and the interpretation of the
potential reminder of this section. We mention here that
Eq. (34) shows the convenience of modeling the infla-
tionary dynamics directly at the level of η instead of VðϕÞ.
This is because the Hubble parameters enters at the
exponent of the definition of VðNÞ, and thus allow for a
much finer control on power spectral features when
performing the reverse engineering procedure.
Using the reconstructed potential VðϕÞ, one can also

solve the inflaton equation of motion

d2ϕ
dN2

þ
�
3 −

1

2

�
dϕ
dN

�
2
��

dϕ
dN

þ d logVðϕÞ
dϕ

�
¼ 0; ð35Þ

and, in turn, compute the time evolution of the Hubble
parameters in Eq. (1) and the Hubble rate by means of the
relations

ϵ ¼ 1

2

�
dϕ
dN

�
2

; η ¼ 3 −
V 0ðϕÞ½−6þ ðdϕ=dNÞ2�

2VðϕÞðdϕ=dNÞ ;

ð3 − ϵÞH2 ¼ VðϕÞ: ð36Þ

As far as the Hubble parameters are concerned, these
equations are nothing but a rewriting of Eq. (1) in terms of
the classical field dynamics while the last equation is the
Friedmann equation. These equations are valid under the
assumption that the energy density of the inflating Universe
is given entirely by the scalar field ϕ. As a consistency
check, we correctly find the same functional dependence
illustrated in Fig. 2 (but now obtained as an output instead
of an input).
The presence of an USR phase is typically associated

with an (approximate) stationary inflection point in the
potential of the inflaton. This is what we obtain by
following the reconstruction procedure. In the left panel
of Fig. 14 we show the reconstructed potential that
corresponds to model (1) (cf. Table I). In the right panel
of the same figure, we plot the inflationary trajectory in the
phase space of the inflaton field. At first sight, the
reconstructed potential is characterized by a flattish region
at large field values (where we fit the CMB observables)
followed by a steeper decrease that ends inflation.
However, a closer look (see the inset plot in the left panel
of Fig. 14) reveals the presence of a transition region which
plays a crucial role for the manifestation of the USR
dynamics. During the time interval NI < N < NII the field
breaks its slow rolling and spends the next e-fold time
interval NII < N < NIII almost stuck in field space

FIG. 14. Left panel: Reconstructed potential for the model in the second column of Table I. In the inset plot, we zoom in the transition
region, and we indicate with different colors the various stages of the classical inflaton dynamics. It should be noted that during the time
interval NII < N < NIII (shown as dashed vertical line) the inflaton field has almost zero velocity and it remains approximatively stuck
in field space (with this part of the dynamics that lasts for about ΔNplateau ≃ 18 e-folds) before entering the last stage that ends inflation.
Right panel: Phase-space classical dynamics of the inflaton field. Different gradations of blue correspond, according to the inset legend,
to increasing e-fold timeN starting fromNref ¼ 0 (lighter) to the end of inflationNIV ¼ 55 (darker). The red dot corresponds toN ¼ 45.
On the y-axis, the field has units of reduced Planck mass and we use the notation ϕ0 ¼ dϕ=dN. In the inset plot, we plot the modulus of
the velocity in units of H=2π as function of N (with the corresponding field values on the top x-axis), and we focus on the USR phase
and the subsequent phase during which ηIII ¼ 0. We note that, in units of H=2π, we have jϕ0ðNÞj ≫ 1 during the whole dynamics with
jϕ0ðNÞj ¼ Oð10Þ during the phase with ηII ¼ 0.
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retaining just the right amount of inertia to cross the
transition region and ends inflation.
It is important to stress that the part of the dynamics that

corresponds to the formation of the plateau in the power
spectrum, that is the e-fold time interval NII < N < NIII
(cf. the schematic evolution in Fig. 2), is hidden within a
tiny region in field space (to the point of being just a
vertical line in the left panel of Fig. 14). The reverse
engineering approach proposes in this paper, therefore,
seems to be the right language to capture and describe such
a finely tuned part of the inflationary dynamics.

B. Interpretation within single-field models

Consider for instance the following potential

VnðϕÞ ¼
V0

ðn − 2Þ2
�
½−4c4ðn − 1Þ þ nðn − 1þ c3Þ�

×

�
ϕ

ϕ0

�
2

þ nð1 − c3Þ
�
ϕ

ϕ0

�
2n−2

− 4ðn − 1Þð1 − c4Þ
�
ϕ

ϕ0

�
n
�
: ð37Þ

This potential (of the type ϕ2 þ ϕ3 þ ϕ4 for n ¼ 3 and
ϕ2 þ ϕ4 þ ϕ6 for n ¼ 4), by construction, features at ϕ ¼
ϕ0 a stationary inflection point (i.e., V 0ðϕ0Þ ¼ V 00ðϕ0Þ ¼ 0)
if c3;4 ¼ 0. Values c3;4 ≠ 0 parametrize deviations from this
exact configuration (approximate stationary infection
point). By construction, V0 ≡ Vnðϕ0Þ.
For illustration, we compare in the left panel of Fig. 15

the functional form given by V4ðϕÞ with the reconstructed
potential. We take ϕ0 ¼ ϕII ≡ ϕðNIIÞ (that is the field value

at which for the reconstructed potential we have
V 0ðϕ0Þ ≈ V 00ðϕ0Þ ≈ 0). The comparison (see the caption
of Fig. 15 for details) suggests that the potential with an
approximate stationary infection point is not the best-suited
candidate to reproduce our numerical result.
For this reason, we explore an alternative route. We note

that during the first phase of the dynamics the potential can
be computed analytically solving the system in Eq. (34).
We find

VSRðϕÞ

¼ Vref

�
6 − 2ϵI − 2ηI

ffiffiffiffiffiffi
2ϵI

p ðϕ − ϕrefÞ − η2I ðϕ − ϕrefÞ2
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�
1− 3

ηI
;

ð38Þ

with the subscript SR that indicates that this potential
describes the initial slow-roll dynamics. In this analytical
derivation, we assumed the linear term in ϵ appearing in
Eq. (1) is negligible, which is justified during the initial slow-
roll phase. In addition, we consider the potential (with the
subscript BSR that generically indicates that this potential
describes the dynamics beyond the initial slow-roll phase)

VBSRðϕÞ ¼
3V0 − 4λð2þ c4Þ

3
þ 4λ

�
ϕ

ϕ0

�
2

×

�
1þ c4

�
ϕ

ϕ0

�
2

−
ð1þ 2c4Þ

3

�
ϕ

ϕ0

�
4
�
; ð39Þ

with, by construction, VBSRðϕ0Þ ¼ V0 and V 0
BSRðϕ0Þ ¼ 0.

FIG. 15. Left panel: We compare the reconstructed potential (solid black line) with a benchmark potential featuring an approximate
stationary inflection point (anchored to the field value at which V 0ðϕ0Þ ¼ V 00ðϕ0Þ ¼ 0 with ϕ0 chosen to be the field value at N ¼ NII).
The latter is given by Eq. (37) with n ¼ 4 and c3;4 ¼ 0 (solid red line). The region shaded in red is obtained for nonzero c3;4 at the
percent level. Right panel: We model the reconstructed potential (solid black line) with a combination of the potential in Eq. (38) (dashed
red, label VSR) and Eq. (39) (dashed green, label VBSR). For the potential VSRðϕÞ we use the values of the parameters given in Table I
(since this is the actual analytical solution of the system in Eq. (34) during the initial slow-roll phase). In the case of VBSRðϕÞ, we take
V0 ≃ 0.988, λ ≃ 0.714, c4 ≃ −0.748 and ϕ0 ≃ 3.054; we extract these values from a fit of the reconstructed potential considering the
region ϕ < ϕI ¼ ϕðNIÞ. In the reconstructed potential we take ϕref ¼ 3.5.
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C. Interpretation within multifield models

The reconstructed potential suggests that VðϕÞ could be
obtained by a combination of Eqs. (38) and (39). This is
shown in the right panel of Fig. 15. In the following, we
will make a few comments to motivate this intuition within
multifield models of inflation. We focus for simplicity on
two-field models.

1. Two-field models: Classical dynamics

Consider a double inflation model with two scalar fields
ϕ1;2 and potential V ¼ Vðϕ1;ϕ2Þ. To fix ideas, we can think
about the full potential V as the sum of two independent
contributions, V ¼ Vðϕ1Þ þ Vðϕ2Þ (even though the follow-
ing discussion will be valid for a generic V). The classical
equations of motion and the Friedmann equation are (we
indicate with _ derivative with respect to the cosmic time t)

ϕ̈1 þ 3H _ϕ1 þ Vϕ1
¼ 0; ϕ̈2 þ 3H _ϕ2 þ Vϕ2

¼ 0;

H2 ¼ 1

3

�
1

2
_ϕ2
1 þ

1

2
_ϕ2
2 þ V

�
; ð40Þ

where we use the short-hand notation Vx ≡ ∂V=∂x. Inflation
proceeds along some trajectory σ in field space that we
describe by means of the velocity field

_σ ¼ _ϕ1 cos θ þ _ϕ2 sin θ. ð41Þ
For a schematic representation of the inflationary trajectory
and its velocity in the multi-field space, see Fig. 16. Since
there is no velocity in the transverse direction, we
also have _ϕ1 sin θ ¼ _ϕ2 cos θ; consequently, we find _σ2 ¼
_ϕ2
1 þ _ϕ2

2. It should be noted that, in general, the angle θ
depends on time. If we combine the time derivative of
Eq. (41) with the equations of motion for ϕ1;2 we find
σ̈ þ 3H _σ þ Vσ ¼ 0, where Vσ ¼ Vϕ1

cos θ þ Vϕ2
sin θ. All

in all, instead of the system in Eq. (40), it is possible to
describe the dynamics from the point of view of the effective
inflationary trajectory by means of the equations

H2 ¼ 1

3

�
1

2
_σ2 þ V

�
; σ̈ þ 3H _σ þ Vσ ¼ 0: ð42Þ

Given the above expression for H, we now compute the
Hubble parameters in Eq. (1). A simple computation shows
that (using the number of e-folds as time variable)

ϵ ¼ 1

2

�
dσ
dN

�
2

; η ¼ 3þ Vσ½6 − ðdσ=dNÞ2�
2Vðdσ=dNÞ : ð43Þ

We rewrite these equations in the form

dσ ¼ �
ffiffiffiffiffi
2ϵ

p
dN;

dV
V

¼
�
2ϵðη − 3Þ
3 − ϵ

�
dN: ð44Þ

We note that these equations retain precisely the same form
compared to Eq. (34). This means that the reverse engineer-
ing approach can be equally well applied to the case in which
ϕ represents the effective inflationary trajectory σ of a multi-
field model. In the latter case, the reconstructed potential will
be the potential felt by the effective inflationary trajectory.
From this perspective, it is therefore plausible that the
reconstructed potential features, as function of the effective
trajectory, a nontrivial profile like the one found in Fig. 15
since inflation could be mostly driven in the first stage by one
of the two fields [with potential, say, Vðϕ1Þ] and during a
subsequent phase by the other [with potential, say, Vðϕ2Þ].

2. Two-field models: Perturbations

The previous discussion was purely classical. However,
the reverse engineering approach requires the solution
of the MS equation on the reconstructed potential. What is
the analogue of this part of the analysis in the case of a
two-field model? To answer this question, we introduce
adiabatic (δσ) and entropy (δs) perturbations

δσ ¼ δϕ1 cos θ þ δϕ2 sin θ;

δs ¼ δϕ2 cos θ − δϕ1 sin θ: ð45Þ
The total comoving curvature perturbation R takes the
form [149]

R ¼ ψ −HV ¼ ψ þ H

ð _ϕ2
1 þ _ϕ2

2Þ
ð _ϕ1δϕ1 þ _ϕ2δϕ2Þ

¼ ψ þ H
_σ2
ð _σ cos θδϕ1 þ _σ sin θδϕ2Þ ¼ ψ þH

_σ
δσ; ð46Þ

where ψ is the gauge-dependent curvature perturbation and
V the total velocity perturbation [149]. We note that the
expression forR, written in terms of the field σ, is identical
to that for a single field. We now assume the absence of
entropy perturbations, δs ¼ 0. From Eq. (45), it follows
that δϕ2 cos θ ¼ δϕ1 sin θ; combined with the classical
relation _ϕ1 sinθ¼ _ϕ2cosθ, it gives the condition δϕ1= _ϕ1 ¼
δϕ2= _ϕ2. Under this assumption, it is possible to show
that the equation governing the evolution of adiabatic
perturbation is the same as that in the single field inflation
[149]; in Fourier space, it reads

FIG. 16. Schematic representation of the inflationary trajectory
in field space.
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u00k þ
�
k2 −

z00

z

�
uk ¼ 0; ð47Þ

where uk ¼ −zRk, z ¼ a _σ=H and 0 indicates derivative with
respect to the conformal time. Using the number of
e-folds as time variable, the previous equation takes pre-
cisely the same form of the MS equation in Eq. (8) but with
the Hubble parameters ϵ and η given in terms of the effective
inflationary trajectory as in Eq. (43). The power spectrum of
adiabatic perturbation is again given by Eq. (10).
The conclusion of this brief discussion is the following.

The reverse engineering approach implemented in the
context of single-field inflationary models could be also
applied in the case of two-field models under the assumption
of negligible entropy perturbations. The key difference is
that the role of the inflaton field ϕ is played by the effective
inflationary trajectory σ. In such a case, the reconstructed
potential corresponds to the potential along the trajectory σ;
the latter could be the result of a nontrivial combination of
different potentials along different directions in field space as
possibly suggested by our numerical result shown in Fig. 15.
It should be noted that, in general, entropy perturbations

are nonzero and act as an additional source term in the
equation of motion for the adiabatic field perturbation
[149]. However, there are cases in which their dynamics
decouples. The equation of motion of δs is indeed char-
acterized by an effective mass squared term that, if ≫ H2,
effectively decouples entropy from adiabatic perturbations
[149] (see also Ref. [150] for a recent discussion of PBH
formation in the context of multifield inflation with non-
minimal couplings). Moreover, if the trajectory in field
space is not strongly curved (that is, more specifically, if
_θ2 ≪ H2) entropy perturbations also decouple [149].
Needless to say, the above discussion about inflationary

models that fit our numerical results is anything but
comprehensive. On the one hand, keeping the discussion
at this level suits the spirit of this paper since the main point
of our analysis is precisely that of moving the attention
from the details of the inflationary potential to the under-
lying dynamics. On the other one, finding concrete and
motivated models that reproduce the reconstructed poten-
tial plays an important role in our understanding of PBH
formation. In this sense, our results could stimulate new
research in this direction since we are not aware of
consistent inflationary models that generate a plateau in
the power spectrum like the one found in our analysis.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have discussed the details of the reverse
engineering technique presented in Ref. [31] for studying
the consequences of an USR phase during the inflationary
dynamics. This approach models the time evolution of the
Hubble parameter η, Eq. (2), and gives as output the power
spectrum of curvature perturbation, Fig. 3. Our approach

makes intuitively clear all features of the power spectrum,
and offers a neat connection with a number of key
observables related to PBH physics.
For the first time, we have shown that an USR dynamics

consistent with CMB data may generate a raised plateau in
the power spectrum of curvature perturbation that can
provide a link between three observables; DM made of
asteroid-mass PBHs (Fig. 9), a detectable stochastic GW
signal (Fig. 13) and an observable fraction of solar-mass
mergers ascribable to PBHs (Fig. 9). We expect our results
to foster new research on consistent inflationary models
able to generate a raised plateau in the power spectrum,
like the one found in our analysis, giving rise to various
interconnected observational signatures of the physics of
the early Universe. In this respect, it will be important to
extend the discussion drafted in Sec. V with the goal of
finding motivated scalar field potentials that give the
dynamics envisaged by our reverse engineering approach.
In general, USR dynamics is expected to produce a dip

in the curvature spectrum, as the one observed in Fig. 3
around few × 103 Mpc−1. This dip may be a complemen-
tary probe of this scenario leaving detectable imprints in
CMB μ-space distortions [151] or 21 cm signals [152].
Furthermore, the population of PBHs generated within

our model may give rise to detectable events both in the
sub-solar range, which is a smoking-gun signature of
primordial origin [153], and in the purported lower mass
gap, predicting a dearth of events within ≈½2.2 ÷ 6�M⊙ (see
e.g., [131,132]). In particular, it may help explaining some
of the special events already observed, such as GW190814
[71] (see also [128]). Within our framework, it is also
possible to explain events in the upper mass gap, potentially
produced by stellar evolution above ≈50M⊙ [154–158],
such as GW190521 [159,160]; to this end, it is crucial
to understand how to properly shape the left-side edge of
the plateau in the power spectrum such as to populate the
higher-mass region without violating the FIRAS bound, see
Ref. [71] for more details. PBH mergers associated to the
bulk of the PBH mass distribution in the asteroidal mass
range would give rise to GWs at ultra-high frequencies,
which may be potentially observed at GW detectors (see
Ref. [161] and references therein).
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[78] A. Escrivà, C. Germani, and R. K. Sheth, J. Cosmol.

Astropart. Phys. 01 (2021) 030.
[79] E. de Jong, J. C. Aurrekoetxea, and E. A. Lim, J. Cosmol.

Astropart. Phys. 03 (2022) 029.
[80] V. De Luca, G. Franciolini, A. Kehagias, P. Pani, and A.

Riotto, Phys. Lett. B 832, 137265 (2022).
[81] K. Inomata, K. Kohri, T. Nakama, and T. Terada, Phys.

Rev. D 100, 043532 (2019).
[82] K. Inomata, K. Kohri, T. Nakama, and T. Terada,

J. Cosmol. Astropart. Phys. 10 (2019) 071.
[83] G. Domènech, Int. J. Mod. Phys. D 29, 2050028 (2020).
[84] G. Domènech, S. Pi, and M. Sasaki, J. Cosmol. Astropart.

Phys. 08 (2020) 017.
[85] A. Hook, G. Marques-Tavares, and D. Racco, J. High

Energy Phys. 02 (2021) 117.
[86] K. Saikawa and S. Shirai, J. Cosmol. Astropart. Phys. 05

(2018) 035.
[87] S. Young, I. Musco, and C. T. Byrnes, J. Cosmol. As-

tropart. Phys. 11 (2019) 012.
[88] V. De Luca, G. Franciolini, A. Kehagias, M. Peloso, A.

Riotto, and C. Ünal, J. Cosmol. Astropart. Phys. 07 (2019)
048.

[89] C. Germani and I. Musco, Phys. Rev. Lett. 122, 141302
(2019).
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