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We use the quantum unimodular theory of gravity to relate the value of the cosmological constant,Λ, and
the energy scale for the emergence of cosmological classicality. The fact that Λ and unimodular time are
complementary quantum variables implies a perennially quantum Universe should Λ be zero (or, indeed,
fixed at any value). Likewise, the smallness of Λ puts an upper bound on its uncertainty, and thus a lower
bound on the unimodular clock’s uncertainty or the cosmic time for the emergence of classicality. Far from
being the Planck scale, classicality arises at around 7 × 1011 GeV for the observed Λ, and taking the region
of classicality to be our Hubble volume. We confirm this argument with a direct evaluation of the wave
function of the Universe in the connection representation for unimodular theory. Our argument is robust,
with the only leeway being in the comoving volume of our cosmological classical patch, which should be
bigger than that of the observed last scattering surface. Should it be taken to be the whole of a closed
Universe, then the constraint depends weakly on Ωk: for −Ωk < 10−3, classicality is reached at
> 4 × 1012 GeV. If it is infinite, then this energy scale is infinite, and the Universe is always classical
within the minisuperspace approximation. It is a remarkable coincidence that the only way to render the
Universe classical just below the Planck scale is to define the size of the classical patch as the scale of
nonlinearity for a red spectrum with the observed spectral index ns ¼ 0.967ð4Þ (about 1011 times the size of
the current Hubble volume). In the context of holographic cosmology, we may interpret this size as the
scale of confinement in the dual 3D quantum field theory, which may be probed (directly or indirectly) with
future cosmological surveys.

DOI: 10.1103/PhysRevD.106.123518

I. INTRODUCTION

It is usually asserted that the Universe becomes
quantum at the Planck time, but the arguments behind
this are often nothing more than flimsy dimensional
analysis. A closer examination shows that the issue
depends on the concrete quantum gravity theory, and
even then it may hinge on nongeneric details (such as the
choice of state or wave function). In this paper, we show
that this is certainly the case in quantum unimodular

theory [1–5], where the cosmological constant and
unimodular (or four-volume) time appear as quantum
complementaries, subject to an uncertainty relation. This
implies a relation between the nonzero value of the
cosmological constant, Λ, and the emergence of large-
scale classicality in the early Universe.
Within such a theory, if Λ were zero (or any fixed value),

then the clock uncertainty would be infinite, and the
Universe would be perennially quantum. More generally,
stating thatΛ is small only makes sense if the uncertainty in
Λ is smaller than its central value. This places a lower
bound on the clock’s uncertainty and on the time for the
emergence of classicality in a unimodular theory. Thus, a
lower bound in Λ translates into an upper bound on the
temperature at the emergence of classicality, during the
cosmological radiation-dominated era, which is parametri-
cally smaller than the Planck temperature. In this paper, we
will find that for the observed values of Λ and our
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comoving volume, the Universe becomes classical only for
temperatures lower than about 1012 GeV.
The argument presented here is very generic and robust,

as we show in progressively greater technical detail,
starting in Secs. II and III (basic argument), and closing
in Secs. IV and V (refinements). Indeed, the Λ used for
defining a unimodular clock does not even need to be the
observed Λ, should there be radiative corrections, as we
show at the end of Sec. V. This decouples our argument
from some formulations of the cosmological constant
problem [6,7] (as well as from some of the corresponding
solutions [8], which can be formulated as additions to the
basic model used here [9]).
The only leeway is in the volume of the cosmological

patch where we require classical behavior. It must be larger
than the current observable Universe, but how close to this
we do not know. If the Universe were closed or finite, its
classical size would provide an upper bound on how large
this patch is, but it could be much smaller. Conversely, in an
infinite Universe, the energy scale of classicality would be
infinite if classicality were required over an infinite patch
(and there would be no quantum epoch, the Universe
remaining classical within the minisuperspace approxima-
tion). This is because the commutation relations between
Λ and its clock involve the inverse of the comoving volume
of this patch.
Given the need for apparent fine-tuning for anything

between the current Hubble scale and infinity (and so
requiring an energy scale for classicality of 1012 GeV
and infinity), in Sec. VI we make a surprising discovery:
The only way to render the Universe classical at the Planck
scale is to define the size of the classical patch as the scale of
nonlinearity for a red spectrum coincidingwith the observed
spectral index ns ¼ 0.967ð4Þ. This length scale is huge but
not infinite: about 1011 times the size of the current Hubble
volume. We further discuss the interpretation of this finding
in the context of holographic cosmology.
Finally, Sec. VII summarizes our results and outlines

future steps, including possible observational tests for the
two very distinct quantum cosmologies that emerge from
our analysis.
Throughout this paper, we use natural units ℏ ¼ c ¼ 1

(with some exceptions, where explicit ℏ is noted for clarity)
and the definition of reduced Planck length: lP ≡ ffiffiffiffiffiffiffiffiffi

8πG
p

≃
ð2.44 × 1018 GeVÞ−1.

II. BACKGROUND

We work within the Henneaux and Teitelboim formu-
lation of unimodular gravity [4], where full diffeomorphism
invariance is preserved, but one adds to the base action S0
(here standard general relativity) an additional term:

S0 → S ¼ S0 − γ

Z
d4xΛð∂μTμÞ ð1Þ

(where γ is an arbitrary normalization factor inserted for
later convenience). In this expression, Tμ is a density, and
so the added term is diffeomorphism invariant while not
requiring the use of the metric or the connection. Since Tμ

does not appear in S0, we have

δS
δTμ ¼ 0 ⇒ ∂μΛ ¼ −

1

γ

δS0
δTμ ¼ 0; ð2Þ

i.e., on-shell constancy of Λ. The other equation of
motion is

δS
δΛ

¼ 0 ⇒ ∂μTμ ¼ 1

γ

δS0
δΛ

¼ −
ffiffiffiffiffiffi−gp

8πGNγ
; ð3Þ

(where GN is Newton’s constant), and so T0 is proportional
to a well-known candidate for relational time: four-volume
time [4,10,11] (a 4D generalization of the earlier Misner’s
3D volume time [12]). Since the metric and connection do
not appear in the new term, the Einstein equations (and
other field equations) are left unchanged. Thus, classically
nothing changes, except that Λ becomes a constant of
motion instead of a parameter in the Lagrangian.
However, the quantum theory is radically different.

Performing a 3þ 1 split of the new term, we find that Λ
is now a variable conjugate to the relational time T. Upon
quantization, they become duals satisfying commutation
relations. If qA represents the other degrees of freedom
of matter and geometry (metric or connection), the
Hamiltonian constraint can be written either in terms of
Λ [resulting in the standard Wheeler-DeWitt equation
for timeless ψ sðqA;ΛÞ] or in terms of its conjugate time
T [leading to a Schrödinger-like equation for ψðqA; TÞ]
[13–15]. The general solution takes the form

ψðqA; TÞ ¼
Z

dΛAðΛÞ exp
�
−
i
h
ΛT

�
ψ sðqA;ΛÞ: ð4Þ

This is only a slight generalization of Eq. (70) in Smolin’s
groundbreaking paper [11], with qA taken to be the
Ashtekar connection, and ψ s the Chern-Simons state. To
the best of our knowledge, this is the earliest appearance of
this solution in the literature.
In what follows, unless noted otherwise, we consider a

cosmological minisuperspace reduction. Then the base
action (before the addition of radiation and dust matter)
becomes

S0 ¼
3Vc

8πG

Z
dt

�
_ba2 − Na

�
−ðb2 þ kÞ þ Λa2

3

��
; ð5Þ

where N is the lapse function, a is the expansion factor, b is
the connection variable (on-shell b ¼ N _a), k is the curva-
ture (taken to be 1 later in the paper), and Vc is the
comoving volume of the spatial region under study. It is
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convenient to choose γ ¼ 3=ð8πGNÞ in Eq. (1) so that the
Poisson brackets of Λ and T mimic those of b and a2:

fb; a2g ¼ fΛ; Tg ¼ 8πG
3Vc

: ð6Þ

Then, classically (on-shell), we have

_T ¼ fT;Hg ¼ −
Na3

3
⇒ T ¼ −

1

3

Z
dtNa3: ð7Þ

Quantum mechanically, we have commutation relations:

½Λ; T� ¼ ih ≔
8πiGℏ
3Vc

¼ i
l2P
3Vc

; ð8Þ

and the general solutions in Eq. (4) have a reduced form in
the connection representation:

ψðb; TÞ ¼
Z

dΛAðΛÞ exp
�
−
i
h
ΛT

�
ψ sðb;ΛÞ: ð9Þ

An advantage of the unimodular extension is that it
suggests a natural inner product [15,16]:

hψ1jψ2i ¼
Z

dΛA⋆
1ðΛÞA2ðΛÞ: ð10Þ

This is automatically conserved, so that the theory is
unitary. It allows for the construction of normalizable wave
packets, whereas the original fixed-Λ solutions, just like
any plane wave, are non-normalizable. It also implies a
definition of probability and a measure in b space (as we
spell out in Sec. IV; see Refs. [15–17]).
In closing, we note that we could subject this con-

struction to a canonical transformation Λ → ϕðΛÞ and
T → Tϕ ¼ T=ϕ0ðΛÞ, for a generic function ϕ. All such
theories are classically equivalent (and equivalent to GR),
but their quantum mechanics is different. Their solutions
[Eq. (4)] are different: a Gaussian inΛ is not a Gaussian in a
generic ϕðΛÞ; the frequency ΛT is not invariant under the
canonical transformation. The natural unimodular inner
product [Eq. (10)] is also not invariant [15,16]. Although all
these quantum theories are different, for a generic ϕ chosen
within reason, their border with the semiclassical limit is
the same, as we will comment in more detail later.

III. GENERIC ARGUMENT

We first propose a generic argument that does not depend
on the detailed dynamics (although it does rely on the inner
product [Eq. (10)], and it may be argued that the inner
product choice already prefigures knowledge of the dy-
namics [15,16]). The fact that Λ and T satisfy commutation
relations [Eq. (8)], that they are Hermitian under Eq. (10),
and that physical states are normalizable under this product,
implies a Heisenberg uncertainty relation:

σðΛÞσðTÞ ≥ h
2
¼ l2P

6Vc
ð11Þ

(which can be intuitively depicted in the top panel of
Fig. 1). The inequality is saturated when AðΛÞ is a
Gaussian:

AðΛÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðΛ0; σΛÞ

p
¼

exp
h
− ðΛ−Λ0Þ2

4σ2Λ

i
ð2πσ2ΛÞ1=4

; ð12Þ

so that for these states a given σΛ translates into the minimal
σðTÞ ¼ σT ¼ h=ð2σΛÞ, which, we stress, is constant in
time. This is enough to derive a generic lower bound on Λ
from the fact that the early Universe should be (semi)
classical for times T > T⋆, for a given time T⋆. In the next
section, we will derive explicit solutions from the dynam-
ics, showing that such a σT translates into a σðbÞ implying
the same border between classical and quantum regimes,
but the generic argument in this section may be enough for
most tastes.

FIG. 1. Top: Analogy between the quantum creation of a
photon (from Bohr’s hydrogen atom) and that of the Universe
(from Lemaître’s primeval atom), implying uncertainties for the
energy and cosmological constant, respectively. Bottom: The
conformal diagram of the big bang spacetime, indicating the past
light cone, and the classical primeval patch.
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A physical analogue is the broadening of the atomic
emission lines (Fig. 1, top panel), which is described by a
Lorentzian profile:

AðΛÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
2πσðTÞ

s
×

1

Λ − Λ0 þ ih
2σðTÞ

; ð13Þ

PðΛÞ ¼ h
2πσðTÞ ×

1

ðΛ − Λ0Þ2 þ h2

4σðTÞ2
: ð14Þ

In this case, in contrast to the Gaussian wave function in
Eq. (12), the variance of Λ is divergent, but the 68% con-
fidence region is σ68%ðΛÞ ≃ 0.9h=σðTÞ.
The main point is that in quantum unimodular theory,

even when Λ is subdominant, it supplies a quantum clock
for the Universe via its conjugate.1 For the Universe to be
classical at time T, the clock’s uncertainty σT should be
negligible for the relevant timing purposes: i.e., σT ≪ T.
Hence, the classicality of the early Universe imposes a
lower bound on Λ. If Λwere zero, then σðΛÞ ¼ 0, implying
via Eq. (11) that σT ¼ ∞, and indicating a permanently
quantum gravitational Universe. Generally, stating that Λ is
“small” only makes sense if σðΛÞ is “smaller” than its
central value Λ0: σðΛÞ ≪ Λ0. This implies a lower bound
on σT , and therefore also on the time T⋆ when σT ∼ T (so
that classicality occurs for T > T⋆).
Since we do not know how much smaller than Λ0 the

σðΛÞ actually is, we parametrize σðΛÞ ¼ ϵΛ0 with ϵ < 1.
Saturation of Eq. (11) then produces

σðTÞ ¼ σT ¼ l2P
6VcΛ0ϵ

>
l2P

6VcΛ0

: ð15Þ

This implies a Universe in the realm of quantum cosmology
at times T such that σðTÞ=T > 1—that is, for T < T⋆ ¼ σT.
Hence, we can only ignore quantum gravity at time T if

T > T⋆ ¼ l2P
6VcΛ0ϵ

>
l2P

6VcΛ0

: ð16Þ

As in any quantum cosmology argument based on minis-
uperspace, the question arises as to what Vc should be. We
offer three possibilities:
(1) Vc ≃ ð4π=3Þðπ=H0Þ3—that is, the comoving vol-

ume corresponding to the present observable Uni-
verse. The rationale behind this is that we do not
know if the Universe is classical or quantum on a
larger scale.

(2) The whole of a spherical Universe—i.e., k ¼ 1,
Vc ¼ 2π2 if we set a ¼ 1 when the Universe has
unit radius. If we set a ¼ 1 today, then the 3D
volume of the Universe is V3 ¼ 2π2a3k−3=2 ¼
2π2a3H−3

0 ð−ΩkÞ−3=2, so

Vc ¼ 2π2H−3
0 ð−ΩkÞ−3=2: ð17Þ

This introduces a free parameter, Ωk, in our
prediction.

(3) There is an intrinsic infrared cutoff for the size of the
classical primeval patch. We can parametrize

Vc ¼
α

H3
0

; ð18Þ

with α > 1 varying from model to model.
We combine all of this into

σðTÞ ¼ σT ¼ l2P
6H−3

0 Λ0αϵ
¼ l5P

ffiffiffiffiffiffi
Λ0

p

18αϵ
ffiffiffiffiffiffiffiffiffi
3Ω3

Λ

p ; ð19Þ

where α > 1 and ϵ < 1 pull in opposite directions
and ΩΛ ≃ 0.69. We can also obtain Eq. (17) by set-
ting α ¼ 2π2ð−ΩkÞ−3=2.
We can now relate unimodular time and redshift via a

change of variables,

−TðzÞ ¼ 1

3

Z
∞

z

dz̃
ð1þ z̃Þ4Hðz̃Þ ; ð20Þ

and use the Friedmann equation to find

TðzÞ ¼ −
1

15H0

ffiffiffiffiffiffiffi
Ωm

p z5ffiffiffiffiffiffizeq
p : ð21Þ

We can also use, under the assumption of adiabatic
expansion,

H2ðzÞ ¼ π2

90
l2PgðzÞθðzÞ4; ð22Þ

gðzÞθðzÞ3ð1þ zÞ−3 ¼ g0θ3CMB; ð23Þ

g0 ¼ 3.91; θCMB ¼ 2.73 K ¼ 9.65 × 10−32l−1P ; ð24Þ

to obtain

−TðzÞ ≃
ffiffiffiffiffi
10

p
g0θ3CMB

5πlPgðzÞ3=2θðzÞ5
; ð25Þ

σðTÞ
jTj ¼ 5πlPgðzÞ3=2θðzÞ5σTffiffiffiffiffi

10
p

g0θ3CMB

; ð26Þ

1In standard unimodular theory, this is the only quantum clock.
In other theories, one could consider multiple clocks at different
epochs of the Universe [13–17], or even at the same epoch [18].
The constraints on each of these different theories are specific to
each of them.

NIAYESH AFSHORDI and JOÃO MAGUEIJO PHYS. REV. D 106, 123518 (2022)

123518-4



where we have used the fact that σðTÞ ¼ σT does not
change with time. Inserting Eq. (19), we arrive at

σðTÞ
jTj ¼

ffiffiffi
5

p
πgðzÞ3=2

18αg0
ffiffiffiffiffiffiffiffiffi
6Ω3

Λ

p ×
l3Pθ

5
ffiffiffiffiffiffi
Λ0

p
θ3CMB

; ð27Þ

so that the Universe can only be classical at the relevant
large scales for

θ < θ⋆ ≃
�
18αg0

ffiffiffiffiffiffiffiffiffi
6Ω3

Λ

p
ffiffiffi
5

p
πg3=2⋆

×
θ3CMB

l3P
ffiffiffiffiffiffi
Λ0

p
�1=5

: ð28Þ

For a whole closed Universe, this becomes

θ < θ⋆ ≃
�
36πg0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð−ΩΛ=ΩkÞ3

p
ffiffiffi
5

p
g3=2⋆

×
θ3CMB

l3P
ffiffiffiffiffiffi
Λ0

p
�1=5

: ð29Þ

For g⋆ ¼ 107 (for the ultrarelativistic Standard Model) and
Λ0 ≃ 7.3 × 10−121l−2P , these imply

θ⋆ ≃
2.8 × 10−7

lP

�
α

4π4=3

�
1=5

¼ 6.8 × 1011 GeV

�
α

4π4=3

�
1=5

; ð30Þ

or in a closed Universe,

θ⋆ ≃
7.7 × 10−7

lP

�
−Ωk

0.01

�
−3=10

¼ 1.9 × 1012 GeV

�
−Ωk

0.01

�
−3=10

; ð31Þ

which is shown in Fig. 2, and compared to the current
observational bounds on Ωk. As we see, rather than being
the Planck scale, the most natural scale for the emergence
of classicality in this theory is 1012 GeV.
This is the main conclusion in this paper, and the rest of

the paper is devoted to refining the argument and checking
how robust it might or might not be. This conclusion will be
reinforced and vindicated, until at the very end of this
paper, where a surprising discovery provides an interesting
exception to the rule.

IV. GAUSSIAN STATES IN MINISUPERSPACE

It is possible to confirm the argument in the last section
with explicit dynamical solutions. For a Universe with Λ,
matter and radiation, the ψ s in Eq. (4) must satisfy the
Hamiltonian constraint for

H ¼ Na

�
−ðb2 þ kÞ þ Λa2

3
þmm

a
þmr

a2

�
: ð32Þ

General solutions in the connection representation have
been found in Refs. [15–17]. They can be written as

ψ s ¼
1ffiffiffiffiffiffiffiffi
2πh

p e
i
hPðb;ϕÞ ð33Þ

for functions P which take the simple asymptotic forms

P ≈
3

Λ
LCS ≈

3

Λ
b3

3
ð34Þ

≈C1 −
2

9

Λm4
m

3

1

b9
ð35Þ

≈C2 −
1

5

Λm2
r

3

1

b5
ð36Þ

in the Λ, matter, and radiation epochs, respectively (we
have ignored the curvature k and highlighted the depend-
ence in Λ via 3=Λ). Here, C1 and C2 are constants which
are irrelevant for our purposes. Assuming a sharp Gaussian
for AðΛÞ, we can Taylor-expand P and explicitly evaluate
Eq. (4) as

ψðb; TÞ ¼ ψðb; T;Λ0Þ
ð2πσ2TÞ

1
4

exp

�
−
ðXeff − TÞ2

4σ2T

�
; ð37Þ

where

ψðb; T;Λ0Þ ¼ e
i
hðPðb;Λ0Þ−Λ0·TÞ ð38Þ

is the monochromatic partial wave for the central value
Λ ¼ Λ0 (which is a pure phase), where

FIG. 2. The relationship between the classicality temperature θ⋆
and the spatial curvatureΩk [Eq. (31)], or the volume parameter of
the classical primeval patch α [Eq. (30)]. Shaded areas show the
68% and 95% constraints on Ωk from Planck 2018, and the
Planck 2018þ lensingþ baryonic acoustic oscillations ðBAOÞ of
the BOSS DR12 galaxy survey [19] (which are clearly in tension
—e.g., Refs. [20,21]).

LOWER BOUND ON THE COSMOLOGICAL CONSTANT FROM THE … PHYS. REV. D 106, 123518 (2022)

123518-5



Xeff ¼ ∂P
∂Λ

����
Λ0

; ð39Þ

and where

σT ¼ h
2σΛ

¼ l2P
6VcσΛ

ð40Þ

indeed saturates the Heisenberg bound, and therefore is
constant, as assumed in the argument of the previous
section. For the three epochs of the Universe, we have

Xeff ≈ −
b3

Λ2
ð41Þ

≈ −
2

27

m4
m

b9
ð42Þ

≈ −
1

15

m2
r

b5
; ð43Þ

respectively, and it can be checked that _Xeff ¼ _T ¼
−Na3=3 represents the classical trajectory. This is followed
by the peak of the Gaussian, so the absence of quantum
behavior can be assessed from the induced

σðbÞ
b

≈
σðXeffÞ
bj ∂Xeff

∂b j ¼
σT

bj ∂Xeff

∂b j ð44Þ

following from error propagation and σðXeffÞ ¼ σT . Thus,

σðbÞ
b

≈
Λ2
0

3

σT
b3

ð45Þ

≈
3

2

σT
m4

m
b9 ∝ b9 ∝ z9=2 ð46Þ

≈
1

3

σT
m2

r
b5 ∝ b5 ∝ z5 ð47Þ

for the three epochs in the life of the Universe. Considering
that we are just entering the Lambda epoch (so that up to
factors of order 1, H2

0 ¼ b20 ∼ Λ0), this implies that up to
factors of order 1,

σðbÞ
b

≈
σT
H0

z5ffiffiffiffiffiffizeq
p ∼

σðTÞ
jTj ; ð48Þ

where we have used Eq. (21) in the last step.
Hence, not only do the explicit minisuperspace solutions

vindicate the essential assumption that σðTÞ is a constant
and that its effects translate into uncertainties in the cosmic
evolution (in terms of b), but they do not lead to significant
numerical corrections.

V. ROBUSTNESS WITH REGARDS
TO THE CHOICE OF FUNCTION ϕðΛÞ

The choice of ϕðΛÞ (see the end of Sec. II) leads to
different quantum theories; indeed, the most natural one to
emerge from the dynamics is ϕ ¼ 3=Λ, the “wave number”
appearing in the Chern-Simons state [cf. Eq. (34); see also
Refs. [15,22,23]). However, unless ϕ is very contrived, this
does not affect the discussion in this paper, modulo factors
of order 1. For example, for any power-law ϕ ∝ Λn, if
σðΛÞ=Λ0 ¼ ϵ ≪ 1, then, from small-error propagation,

σðϕÞ
ϕ0

≈ jnj σðΛÞ
Λ0

¼ jnjϵ; ð49Þ

and nothing changes qualitatively in our arguments unless
jnj ≫ 1 or jnj ≪ 1 (i.e., making the results applicable to the
topical case ϕ ¼ 3=Λ). More generally, if a Gaussian is
sufficiently sharply peaked, then the distribution of any
function of its random variable is also approximately a
sharply peaked Gaussian with variance obtained by small-
error propagation σðϕÞ ≈ ϕ0σðΛÞ.
So all we need is for ϕ0Λ=ϕ to be order 1 at Λ0. The

arguments in Secs. III and IV then follow. A coherent state
in Λ is quasicoherent in any ϕ, and vice versa. The
arguments in Sec. III follow through, because

σðTϕÞ
Tϕ

¼ h
2σðϕÞTϕ

≈
h

2σðΛÞT ¼ σðTÞ
T

: ð50Þ

Likewise for the arguments in Sec. IV, since

Xeff
ϕ ¼ Xeff

ϕ0
0

;

so that the extra factor in Tϕ ¼ T=ϕ0 cancels throughout (in
the peak trajectory and in δb=b). Obviously, we can design
functions for which the argument fails because the small-
error propagation formula breaks down. Any power law
with very large or small n would do this. However, one
might argue that these are very contrived situations.
We can also consider Λtot ¼ Λþ Λ1—that is, two

cosmological constants entering the Hamiltonian con-
straint, but only one contributing to the unimodular clock.
This could be a case of radiative corrections according to
some authors [6,7]. In this case, our argument still does go
through. Although Λ does not need to be small (Λ and Λ1

have opposite signs), its variance must still be small
because

σðΛÞ ¼ σðΛtotÞ ¼ ϵΛtot 0 ≪ Λtot 0: ð51Þ

In other words, the variance in Λ would have to be small
with regards to the total Lambda for the cancellation to
leave Λtot with σðΛtotÞ ≪ Λtot 0. Hence, we obtain the same
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relation between the time of classicality T⋆ and the total
cosmological constant, Λtot.
The same is true in the sequester model [8,9], where one

removes the space-time average of the trace of the Einstein
equations, so that the unimodular Λ is not observable.
Although this is true classically, one can only do this within
σðΛÞ in the semiclassical theory, so that σðΛÞ propagates
into the observable Λobs defined in Refs. [8,9] [that is,
σðΛÞ ¼ σðΛobsÞ ¼ ϵΛobs 0 ≪ Λobs 0].

2 Again, the same rela-
tion is obtained between T⋆ and Λobs. The situation,
however, is complicated by the fact that in Ref. [9] there
are two clocks (a Ricci clock as well as a unimodular
clock), so that a new layer comes into the argument. We
defer a full analysis to a future publication.

VI. IN SEARCH OF A SUPERHORIZON
INFRARED SCALE

The only leeway we have in our results therefore relates
to Vc, the comoving volume of the classical primeval patch,
and obviously we would destroy our bound by letting
Vc → ∞, since then h → 0 and all uncertainties would go
to zero. There is, however, no reason for choosing this—
quite the contrary. Indeed, in this case the energy scale for
classicality would be infinite—that is, at least in the
minisuperspace limit, the Universe would not be subjected
to quantum gravity, even deep in the Planck epoch.
Nonetheless, we use this limit as inspiration for trying to

find a physically motivated context in which our bound
would emerge weakened, and instead seek a context within
which the Planck scale could be the scale of classicality for
these theories: θ⋆lP ∼ 1. Given that (at least for now) we
cannot see beyond the last scattering surface at 13 Gpc, the
scale that sets the size of the classical primeval patch only
has a firm lower limit. But how big can it really be?
Current observations indicate a red spectrum of primor-

dial scalar perturbations, implying that fluctuations become
more nonlinear on large superhorizon scales. Similar to
quantum chromodynamics (QCD), this may lead to a
strong coupling scale in the deep infrared. Following this
hypothesis, we will use the solution to the one-loop
renormalization group (RG) equation for a generic renor-
malizable theory (such as 4D Yang-Mills) to capture the
running of the scalar power spectrum:

PsðkÞ ¼
As

1 − ðns − 1Þ lnðk=k0Þ
; ð52Þ

where ns is the scalar spectral index, and k0 ¼
0.05 Mpc−1 ≃ 221H0 is the conventional pivot scale. We
can see that this power spectrum diverges at

k⋆ ¼ k0 exp

�
1

ns − 1

�
: ð53Þ

Notice that As does not appear in this expression because it
concerns a scale for a divergence, therefore erasing any
fine-tuning that might come from As ∼ 10−9. If we identify
this scale with the (inverse of the) size of the classical
primeval patch—i.e., k⋆∼V−1=3

c ¼H0=α1=3 [with α defined
in Eq. (18)]—combining Eqs. (28) and (53) yields

ns ¼ 1−
1

32.17þ lnðθ⋆lPÞ
≃ 0.9689þ 1.6× 10−4 lnðθ⋆lPÞ:

ð54Þ

Now, imagine we require classicality to emerge somewhere
within 0.1≲ θ⋆lP ≲ 10. This implies

0.965 < ns < 0.972; ð55Þ

which is consistent with the current combined Planck 2018
bound: ns ¼ 0.9665� 0.0038 [19].
This is a very surprising result, given that the two

numbers Λ and ns are a priori not related at all. The only
way to get the Planck scale as the scale of classicality in
this model is for the classical patch to be not infinite, but
about 1011 times the linear size of the current horizon—i.e.,
precisely the scale that becomes nonlinear given the
observed scalar spectral tilt of ns ¼ 0.967ð4Þ. This coinci-
dence is depicted in Fig. 3.
The qualitative connection between the RG flow of 3D

quantum field theories and the cosmological power
spectra can be made concrete in the context of

FIG. 3. Observed cosmological scalar power spectrum (blue
region), extrapolated to large scales (k ≪ H0), from the observ-
able range (gray range). Interestingly, the wave number range for
which P−1

s ðkÞ crosses zero [i.e., the scalar power spectrum
diverges, Eq. (53)] coincides with the size of the comoving
region that explains the observed cosmological constant in
unimodular gravity [Eq. (30)], assuming that a classical cosmos
emerges around Planck temperature, i.e., 0.1≲ θ⋆lP ≲ 10.

2Note that if σ2ðΛ1Þ > 0, it would only tighten the constraints
obtained here. We defer a full discussion to future work.
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McFadden & Skenderis’ Holographic Cosmology program
[24]. In particular, our surprising discovery of the con-
nection between Λ and ns through the Planck scale points
to renormalizable 3D quantum theories (which have log-
arithimc running), and it suggests that the cosmological
correlations may be fully described by a finite number of
couplings within these theories, which (broadly speaking)
includes Chern-Simons 3-form coupling, as well as Φ6 and
Yukawa couplings.3 To the best of our knowledge, deter-
mining the classes of these theories that lead to IR
confinement (as suggested by our observed value of Λ)
remains an open question.

VII. CONCLUSIONS

In summary, we have related the value of the cosmo-
logical constant and the energy scale for the emergence of
classicality in a unimodular Universe, a lower bound in the
former translating into an upper bound in the latter, and vice
versa. The argument is robust with respect to many
technicalities, with the exception of the choice of the
comoving volume taken for the “classical primeval patch”
of the Universe. If this is taken to be the current Hubble
volume or even the whole of a closed Universe with a small
but non-negligible Ωk, then this scale is naturally around
1012 GeV, and not the Planck scale. It would be interesting
to relate this number to the amplitude of the fluctuations in
inflationary models operating at this energy scale.
A second surprise found in this paper is obtained if

we allow ourselves latitude for a much larger patch of
classicality, Vc, specifically setting it to be the scale where
the primordial fluctuations become divergent for a red
spectrum. While this is not entirely model independent, it
suggests that a very large classical primeval patch can lift
the energy scale of classicality to the Planck scale for values
of ns close to the observed ones. Note that if the scale Vc
were to be infinite (i.e., if an infinite Universe were to be
globally classical), then the energy scale for classicality
would be infinite, and not the Planck energy either. Hence,
it is a remarkable coincidence that the observed values of
spectral tilt of ns ¼ 0.967ð4Þ and cosmological constant
Λ ≃ 7.0ð2Þ × 10−121l−2P [19] point to a value of Vc that set
the energy scale of classicality at the Planck energy. In the
context of holographic cosmology [24], this coincidence
suggests that the holographic 3D quantum field theory that
describes our cosmological observations must be a renor-
malizable theory with an IR confinement scale of 1011

times the current comoving Hubble radius.
So, what next?
On the theoretical front, a clearer understanding of

what may happen as we approach the scale of the classical
primeval patch is required. In the context of our first
scenario with θ⋆ ∼ 1012 GeV, one may be tempted to

entertain the rich zoology of eternally inflating models,
but intriguingly, a positive curvature with any appreciable
jΩkj > 10−4 (is believed to) rule them out entirely [25].
Qualitatively, it will be hard to reconcile a near-scale-
invariant spectrum (as observed) with a small scale of
nonlinearity comparable to Hubble radius in any model.
Nonetheless, interesting lessons may be learnt from 3D
lattice simulations [26] in the context of super-renormalizble
holographic dual theories (e.g., Refs. [24,27,28]). A less
charted, but potentially more fertile territory may be a
systematic study of the RG flows in renormalizable 3D
quantum field theories that manifest confinement in the IR,
and connects to our second scenario with θ⋆lP ∼ 1. At a
more foundational level, one may wonder whether there
exists a holographic interpretation of the unimodular gravity.
On the observational front, there will be “dragons” (or

other new physics) beyond the cosmological horizon.
Indeed, in the first scenario, the quantum cosmology
dragons should be in our face and right around the corner.
Maybe an explanation for the infamous CMB anomalies
[29] such as “The axis of evil” [30], “Planck Evidence for a
closed Universe” [20,21] (Fig. 2), or rather more subtle
“cosmological zero modes” [31] could be their tail? The
fingerprints of the second scenario will be more subtle,
but also more robust. For example, Eq. (52) predicts the
running of the spectral index to be dns

d ln k ¼ ðns − 1Þ2, setting
a clear target for the next generation of cosmological
surveys (e.g., Ref. [32]). Furthermore, we expect the same
IR strong coupling scale, k⋆ [Eq. (53)] for both scalar and
tensor modes. Therefore, using the same functional form as
Eq. (52) for tensors, we further can predict the tilt for
tensors nt ¼ ns − 1 (should they ever be detected).
The two scenarios are certainly distinguishable and

falsifiable separately. For example, the observation of
topological defects left over from a phase transition at an
energy scale above 1012 GeV would kill the first scenario
(but we are not holding our breath). Furthermore, given that
such a low scale of classicality only allows for low-scale
inflation, inflationary modes should be unobservable.4

There are also other intriguing but very model-dependent
possibilities for the first scenario, for example regarding the
amplitude of scalar fluctuations. The ratio between θ⋆ and
the Planck scale is then 10−7, not too different from 10−5.
Could the value of Λ and that of the amplitude of the
primordial fluctuations be related?
We closewith general comments regarding other work on

the cosmological constant. We note that the argument we
presented here gives a (minimal) width for the distribution of
Λ, and not its central value, solving what Weinberg referred
to as the “new cosmological constant problem” [33]. The
“old cosmological problem” of why Λ ¼ 0 is contained
within (or at the center) of this distribution may find a
solution through the nonperturbative structure of quantum

3K. Skenderis, private communication. 4We thank Tony Padilla for pointing this out.
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gravity (e.g., Refs. [34–37]). We note also that the scale Vc
could appear in the variance σðΛÞ itself, as happens in causal
set models [38–40], where Λ is a Poissonian process. This
does not affect our argument, since the point made here is
that σðΛÞ must be smaller than the central value Λ0 on
whatever scale of classicality, Vc, we have defined.
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