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The existence of self-similar solutions is discussed in symmetric teleparallel fðQÞ theory for a
Friedmann-Lemaître-Robertson-Walker background geometry with zero and nonzero spatial curvature. For
the four distinct families of connections that describe the specific cosmology in symmetric teleparallel
gravity, the functional form of fðQÞ is reconstructed. Finally, to see if the analogy with GR holds, we
discuss the relation of the self-similar solutions with the asymptotic behavior of more general fðQÞ
functions.
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I. INTRODUCTION

With the term of self-similar solutions, we refer to a
family of solutions with the characteristic to map to itself
after an appropriate scale of the dependent or independent
variables. In gravitational physics, self-similar solutions of
the Einstein field equations are mainly related with the
similarity solutions provided by the existence of a proper
homothetic vector field for the physical space [1,2]. With
the homothetic symmetry, we refer to the generator of the
infinitesimal transformation in the physical space, which
preserves the angles between the lines but not the scale.
Previous studies on exact solutions on homogeneous and
inhomogeneous spacetimes indicate that self-similar sol-
utions correspond to asymptotic limits of more general
solutions [3–7]. Recall that self-similar spacetimes cannot
describe asymptotically flat or asymptotically spatially
compact geometries [8].
Because of the importance of the self-similar solutions,

there is a plethora of studies in the literature where the
existence of a proper homothetic vector field is investigated
in various geometries. The conformal symmetries for the
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
times are investigated in [9], where it is found that for a
power-law scale factor, a proper homothetic vector field

exists. Indeed, the exact solutions of an ideal gas for a
spatially flat FLRW geometry or the Milne Universe, admit
a proper homothetic symmetry. The existence of homo-
thetic vector field for a Bianchi I geometry was studied in
[10]. It was found that the Kasner solution as also the
Kasner-like solutions are self-similar solutions. An analysis
of the homothetic vector field in Bianchi III and Bianchi V
can be found in [11], while the four-dimensional stationary
axisymmetric vacuum spacetimes with a homothetic vector
field were investigated in detail in [12]. On the other hand,
anisotropic and homogeneous self-similar exact solutions
for Bianchi VIII, Bianchi IX, and Bianchi VI0 geometries
with tilted perfect fluid were studied in [13–15], while
Bianchi class B spacetimes with a homothetic vector field
was the subject of study in [16,17]. Some inhomogeneous
self-similar solutions are presented in [18].
The fundamental invariant of Einstein’s general relativity

(GR) is the Ricci scalar R defined by the symmetric Levi-
Civita. Nevertheless, more general connections from that of
the Levi-Civita have been used in gravitational physics.
Indeed, in teleparallelism, the torsion scalar T defined by
the curvatureless Weitzenböck connection [19] is the geo-
metric object which has been used to define gravity, leading
to the teleparallel equivalent of general relativity (TEGR)
[20,21]. Furthermore, from the nonmetricity components
of a general connection, the scalar Q can be defined, where
in the case of a torsion-free and flat connection, we end up
with the symmetric teleparallel equivalent of general
relativity (STEG) [22]. Scalars R, T, and Q form the so-
called geometrical trinity of gravity [23]. The gravitational
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Lagrangians, which are linear in each element of the trinity,
lead to the same gravitational theory. The latter equivalence
is violated when nonlinear terms of the geometric scalars
are introduced in the gravitational Lagrangian.
The modification of the Einstein-Hilbert action integral

is the simplest geometric mechanism for the introduction of
new degrees of freedom in order to explain the observa-
tional phenomena [24,25]. There exist a family of modified
theories of gravity known as fðXÞ theory, where the
gravitational Lagrangian is a function f of the geometric
scalar X. Usually, X is one element of the geometric trinity,
such that when f is a linear function, GR (or TEGR or
STEG) is recovered (respectively); of course, more com-
plicated configurations can be constructed as well involv-
ing combinations of scalars [26]. The fðRÞ theory of
gravity introduced in [27] is a fourth-order theory of
gravity, which can be written in a dynamical equivalent
form of the Brans-Dicke scalar field with zero Brans-Dicke
parameter. Thus, the fðRÞ theory is equivalent with a
minimally coupled scalar field under a conformal trans-
formation [28]. fðRÞ theory has been used to describe
various epochs of the cosmological history, such as the
inflation [29] or the late time acceleration [30]. Similarly,
the fðTÞ teleparallel theory of gravity introduced as a
geometric dark energy model [31], while it has been widely
applied in various gravitational configurations [32], for
more details and applications of fðTÞ theory, we refer the
reader to the recent review [33]. Only recently, the fðQÞ-
symmetric teleparallel theory [34] has drawn the attention
of the scientific society [35–54].
In fðQÞ theory, we make use of a flat connection

pertaining to the existence of affine coordinates in which
all its components vanish, that is, turning covariant deriv-
atives into partial (coincident gauge). Consequently, in
this theory, it is possible to separate the inertial effects
from gravity. Thus, the coincident gauge is always achiev-
able through an appropriate coordinate transformation.
Recently, in [55], the effects of the use of different
connections for the definition of the scalar Q in the
dynamics of FLRW cosmology in fðQÞ theory was the
subject of study. For the FLRW spacetimes, there exist four
distinct families of connections, compatible with the iso-
metries of the FLRW metric [56,57], three for the spatially
flat case and one when the spatial curvature is present; for
these connections, exact solutions were derived. In a later
study, the effects of the different connections were inves-
tigated in the case of static spherical symmetric space-
times [58].
In this work, we are interested in the existence of self-

similar solutions in fðQÞ theory and on the effects of the
different connections on the existence of the homothetic
symmetry vector for the case of a FLRW background
geometry. Self-similar solutions were investigated before in
fðRÞ theory [59,60] and in the fðTÞ-teleparallel theory of
gravity [61].

The structure of the paper is as follows: In Sec. II,
we present the basic geometric elements of the fðQÞ-
symmetric teleparallel theory and the different connections
for the FLRW spacetime with or without spatial curvature.
In Sec. III, we consider the spatially flat case, and we
reconstruct closed-form expressions for the fðQÞ function,
where self-similar solutions exist. The analysis for a non-
zero spatial curvature is presented in Sec. IV. Finally, in
Sec. V, we summarize our results and draw our conclusions.

II. SYMMETRIC TELEPARALLEL THEORY

The metric gμν and the connection Γκ
μν are the basic

dynamical objects in metric-affine gravitational theories.
We define the following fundamental tensors: the curvature
Rκ

λμν, the torsion Tλ
μν, and the nonmetricity Qλμν,

Rκ
λμν ¼

∂Γκ
λν

∂xμ
−
∂Γκ

λμ

∂xν
þ Γσ

λνΓκ
μσ − Γσ

λμΓκ
μσ ð1Þ

Tλ
μν ¼ Γλ

μν − Γλ
νμ ð2Þ

Qλμν ¼ ∇λgμν ¼
∂gμν
∂xλ

− Γσ
λμgσν − Γσ

λνgμσ: ð3Þ

In the latter expressions, the symbol ∇μ means covariant
derivative with respect to the affine connection Γκ

μν. For
a symmetric connection, as the one we consider in this
work, the torsion tensor vanishes, Tλ

μν ¼ 0. Moreover, in
symmetric teleparallelism, the curvature tensor is also
zero, that is Rκ

λμν ¼ 0, while for the nonmetricity part,
we have Qλμν ≠ 0.
The fundamental nonmetricity scalarQ of the symmetric

teleparallel theory is defined as

Q ¼ QλμνPλμν; ð4Þ

where Pλ
μν is the nonmetricity conjugate tensor expressed as

Pλ
μν ¼ −

1

4
Qλ

μν þ
1

2
QðμλνÞ þ

1

4
ðQλ − Q̄λÞgμν −

1

4
δλðμQνÞ;

ð5Þ

in which the contractions Qλ ¼ Qλμ
μ, Q̄λ ¼ Qμ

λμ are
introduced.

A. f ðQÞ theory
In fðQÞ theory, the gravitational Lagrangian density is

defined by a generally nonlinear function fðQÞ namely
[62],

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðQÞ þ

Z
d4x

ffiffiffiffiffiffi
−g

p
LM

þ λκ
λμνRκ

λμν þ τλ
μνTλ

μν; ð6Þ
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where, g ¼ detðgμνÞ, LM is the matter fields’ Lagrangian
density, and λκ

λμν, τλμν are Lagrange multipliers, whose
variation impose the conditions Rκ

λμν ¼ 0 and Tλ
μν ¼ 0.

The gravitational field equations of the fðQÞ theory, for
the metric gμν, are

2ffiffiffiffiffiffi−gp ∇λð
ffiffiffiffiffiffi
−g

p
f0ðQÞPλ

μνÞ −
1

2
fðQÞgμν

þ f0ðQÞðPμρσQν
ρσ − 2QρσμPρσ

νÞ ¼ Tμν; ð7Þ

where now a prime denotes total derivative with respect to

the variable Q, that is, f0ðQÞ¼ df
dQ and Tμν¼− 2ffiffiffiffi−gp ∂ð ffiffiffiffi−gp

LMÞ
∂gμν

is the energy-momentum tensor, which describes the matter
components of the gravitational fluid.
An equivalent way to write the field equations (7) is with

the use of the Einstein-tensor Gμν such that [62],

f0ðQÞGμν þ
1

2
gμνðf0ðQÞQ − fðQÞÞ

þ 2f00ðQÞð∇λQÞPλ
μν ¼ Tμν; ð8Þ

where Gμν ¼ R̃μν − 1
2
gμνR̃, with R̃μν and R̃ being the

Riemannian Ricci tensor and scalar, respectively, which
are constructed from the Levi-Civita connection. A direct
comparison with general relativity can be perceived as the
effect of an effective energy momentum tensor,

T μν ¼ −
1

f0ðQÞ
�
1

2
gμνðf0ðQÞQ − fðQÞÞ

þ 2f00ðQÞð∇λQÞPλ
μν

�
: ð9Þ

With the help of (9), the resulting field equations can be
written in the simple form,

Gμν ¼ T μν þ
1

f0ðQÞTμν: ð10Þ

In addition, the variation of the action integral (6) with
respect to the connection gives the field equations,

∇μ∇νð
ffiffiffiffiffiffi
−g

p
f0ðQÞPμν

σÞ ¼ 0: ð11Þ

From the definition of the effective energy momentum
tensor, T μν, we observe that, if fðQÞ ∝ Q, the limit of
general relativity is recovered since T μν ¼ 0. Moreover,
when Q ¼ const, Eq. (11) leads to solutions of general
relativity with a cosmological constant Λ.
The basic objects in the theory are the metric gμν and the

connection Γλ
μν, for which, Eqs. (7) and (11) have to be

solved, respectively. Note also that these equations incor-
porate the effect of the variation of the Lagrange multi-
pliers. Therefore, for whatever connection is obtained

through the field equations, there can always be found a
coordinate transformation x ↦ x̃, under whose effect, the
transformed connection becomes zero,

Γ̄λ
μνðx̃Þ ¼

∂x̃λ

∂xρ
∂xη

∂x̃μ
∂xσ

∂x̃ν
Γρ

ησðxÞ −
∂xρ

∂x̃ν
∂xσ

∂x̃μ
∂
2x̃λ

∂xρ∂xσ
¼ 0: ð12Þ

This stems from the two basic properties of Tλ
μν, being both

symmetric and flat, Rκ
λμν ¼ 0 [63,64].

Since trivializing the connection is a matter of a
coordinate transformation, a possible strategy is to enforce
a priori Γλ

μν ¼ 0 into the field equations; this is referred in
the literature as the adoption of the coincident gauge.
However, special care is needed when also making some
particular ansatz for the metric. Assuming a specific type
of gμν already consists a partial gauge fixing. So, it may
happen that Γλ

μν ¼ 0, together with the ansatz for gμν, over-
restrict the system. An example of this can be seen in the
simple case of a spatially flat FLRW space-time. If you
write the metric in spherical coordinates, then the condition
Γλ

μν ¼ 0 in the equations is no longer a gauge choice, but
rather a restriction [62]. The problem is resolved if instead
you consider the FLRW metric in Cartesian coordinates,
which are compatible with having Γλ

μν ¼ 0.
In this work, we do not assume blindly the coincident

gauge. We rather explore the different possibilities that
exist and which are compatible with the system of
equations for a given form of the metric.
For the matter energy-momentum tensor, the constraint

Tμ
ν;μ ¼ 0 is still valid, which is the conservation law of

mass. With “;” we denote the covariant derivative with
respect to the Christoffel symbols. Thus, the T μ

ν;μ ¼ 0

relation resulting of the Eq. (11) for the connection, can be
considered as a conservation law for the theory [65].

B. FLRW background geometry

The FLRW line element in spherical coordinates reads

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð13Þ

where k is the spatial curvature, k ¼ 0 describes a spatially
flat universe, k ¼ 1 describes a closed universe and k ¼ −1
denotes an open universe. Moreover, function aðtÞ is the
scale factor describes the radius of the universe and NðtÞ
is the lapse function. Without loss of generality, we
assume that NðtÞ ¼ 1. The FLRW spacetimes admit a six-
dimensional symmetry group with generators,

ζ1 ¼ sinϕ∂θ þ
cosϕ
tan θ

∂ϕ; ζ2 ¼ − cosϕ∂θ þ
sinϕ
tan θ

∂ϕ;

ζ3 ¼ −∂ϕ ð14Þ
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and

ξ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
sin θ cosϕ∂r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
cos θ cosϕ∂θ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
sinϕ
sin θ

∂ϕ

ξ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
sin θ sinϕ∂r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
cos θ sinϕ∂θ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
cosϕ
sin θ

∂ϕ

ξ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
cos θ∂r −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
sin θ∂ϕ: ð15Þ

In two independent recent studies, Hohmann [56] and
D’Ambrosio et al. [57] derived the general form of all
compatible connections for the line element (13) for the
symmetric teleparallel theory by enforcing on a generic
connection the six Killing symmetries and the requirement
Rκ

λμν ¼ 0. In what follows, we briefly summarize the
results.
For the spatially flat spacetime, i.e., k ¼ 0, there are three

compatible connections. The common nonzero compo-
nents of all three are

Γr
θθ ¼ −r; Γr

ϕϕ ¼ −rsin2θ;

Γθ
rθ ¼ Γθ

θr ¼ Γϕ
rϕ ¼ Γϕ

ϕr ¼
1

r
;

Γθ
ϕϕ ¼ − sin θ cos θ; Γϕ

θϕ ¼ Γϕ
ϕθ ¼ cot θ: ð16Þ

However, they do differ in the way a free function of time
enters in some of their other components. The first
connection, named hereafter Γ1, has only one additional
nonzero component,

Γt
tt ¼ γðtÞ; ð17Þ

where γðtÞ is a function of the time variable t.
The second connection, Γ2, possesses the—additional to

(16)—nonzero components,

Γt
tt ¼

_γðtÞ
γðtÞ þ γðtÞ;

Γr
tr ¼ Γr

rt ¼ Γθ
tθ ¼ Γθ

θt ¼ Γϕ
tϕ ¼ Γϕ

ϕt ¼ γðtÞ; ð18Þ

where the dot denotes differentiation with respect to t.
Finally, the third connection, Γ3, is characterized by the

extra nonzero components,

Γt
tt ¼ −

_γðtÞ
γðtÞ ; Γt

rr ¼ γðtÞ; Γt
θθ ¼ γðtÞr2;

Γt
ϕϕ ¼ γðtÞr2sin2θ: ð19Þ

In the case where k ≠ 0, there exist only one compatible
connection with nonzero coefficients,

Γt
tt ¼ −

kþ _γðtÞ
γðtÞ ; Γt

rr ¼
γðtÞ

1 − kr2
Γt

θθ ¼ γðtÞr2; Γt
ϕϕ ¼ γðtÞr2sin2ðθÞ

Γr
tr ¼ Γr

rt ¼ Γθ
tθ ¼ Γθ

θt ¼ Γϕ
tϕ ¼ Γϕ

ϕt ¼ −
k

γðtÞ ; Γr
rr ¼

kr
1 − kr2

;

Γr
θθ ¼ −rð1 − kr2Þ; Γr

ϕϕ ¼ −rsin2ðθÞð1 − kr2Þ; Γθ
rθ ¼ Γθ

θr ¼ Γϕ
rϕ ¼ Γϕ

ϕr ¼
1

r
;

Γθ
ϕϕ ¼ − sin θ cos θ; Γϕ

θϕ ¼ Γϕ
ϕθ ¼ cot θ: ð20Þ

Wewill refer to this last connection as ΓðkÞ. We observe that
when k ¼ 0, the latter connection reduces to the third
connection of the flat case, that is Γð0Þ ¼ Γ3.

III. SPATIALLY FLAT CASE k = 0

Enforcing the homothetic restriction in the metric tensor
(13) for the spatially flat case, i.e., Lξgμν ¼ 2gμν, where L
stands for the Lie derivative, we conclude that

ξ ¼ t∂t þ ð1 − λÞr∂r ð21Þ

is a homothetic vector field, and the corresponding line
element reads

ds2 ¼ −dt2 þ t2λðdr2 þ r2ðdθ2 þ sin2 θdϕ2ÞÞ: ð22Þ

When λ ¼ 0, the flat space is recovered; thus, we exclude
this value from our considerations.
We proceed to investigate the fðQÞ theories that admit

such a line element as a solution for the different con-
nections we discussed in the previous section. Note that,
as previously stated, there exists a coordinate system,
where each of the connections becomes zero. However,

N. DIMAKIS et al. PHYS. REV. D 106, 123516 (2022)

123516-4



this coordinate system is different for each of the admitted
connections and—in most situations—leads to a trans-
formed metric that loses its obvious homogeneity and
isotropy. Of the various connections, only the Γ1 can be
made zero by going to Cartesian coordinates and by
adopting a simple time reparametrization, thus, maintaining
the line element in its commonly encountered form. Here,
we work in spherical coordinates, with the line element
given by (22) and consider the corresponding nonzero
connections compatible with this expression.

A. The first connection Γ1

For the first connection, the nonmetricity scalar is
derived

Q ¼ −6
�
_a
a

�
2

; ð23Þ

thus, for the line element (22), it follows

Q ¼ −
6c21
t2

: ð24Þ

Note that, with the definition (4) we used, the resultingQ in
the case of Γ1 results to be negative. This is purely a matter
of convention; in other works in the literature, the opposite
definition is sometimes adopted.
The equations of motion for the connection (11), are

identically satisfied. Thus, the connection Γ1 plays no role
in the dynamics. This corresponds to the usual case studied
in the literature; that of the spatially flat FLRW geometry,
with the metric taken in Cartesian coordinates and the
connection in the coincident gauge, Γκ

λμ ¼ 0.
It is easily seen that the gravitational field equations are

independent of the function γðtÞ, and they are

3λ2f0ðQÞ
t2

−
1

2
Qf0ðQÞ þ 1

2
fðQÞ ¼ ρ; ð25Þ

λð2 − 3λÞt−2f0ðQÞ − 2λt−1 _Qf00ðQÞ

þ 1

2
ðQf0ðQÞ − fðQÞÞ ¼ p; ð26Þ

where we have considered the tensor Tμ
ν ¼ diagð−ρðtÞ;

pðtÞ; pðtÞ; pðtÞÞ to describe the energy momentum tensor.
Assume now a perfect fluid with constant equation of

state parameter, that is, p ¼ wρ; thus, the equation of
motion for the matter fluid, Tμ

ν;μ ¼ 0, provides

t_ρþ 3λð1þ wÞρ ¼ 0; ð27Þ

with exact solution ρðtÞ ¼ ρ0t−3λð1þwÞ, where ρ0 is an
integration constant. Under the above substitutions, as well
as eliminating explicit time dependence through (24),
Eq. (25) is transcribed to the following form:

ρ0ð6λ2Þ
−3λðwþ1Þ

2 ð−QÞ32λðwþ1Þ −Qf0ðQÞ þ 1

2
fðQÞ ¼ 0: ð28Þ

The latter equation is a first-order ordinary differential
equation in the dependent variable fðQÞ, while Q is the
independent variable. The exact solution of equation (28) is
expressed as follows:

fðQÞ ¼ f0
ffiffiffiffiffiffiffi
−Q

p
þ f1ð−QÞ32λðwþ1Þ; ð29Þ

where f0 is an arbitrary constant, while f1 is defined as

f1 ¼
2λ−3λð1þwÞρ0

6
3
2
λðwþ1Þð1 − 3λð1þ wÞÞ : ð30Þ

The minus signs are placed in Eq. (29) in order to have a
real valued action for real constants of integration; remem-
ber that in our conventions we obtain Q < 0 in this section,
see Eq. (23).
We observe that, self-similarity in the case of Γ1, implies a

power-law type of fðQÞ theory where Q is raised to the
power 3

2
λðwþ 1Þ. The constant λ is the one appearing in the

line element (22), while w is the equation of state parameter.
If we consider the value which linearizes the relevant term in
(29), that is 3

2
λðwþ 1Þ ¼ 1, then we recover the solution of

general relativity with aðtÞ ¼ tλ ¼ t
2

3ð1þwÞ.
The extra

ffiffiffiffiffiffiffi
−Q

p
term that we see in (29) contributes just

as a surface term at the level of the action; see Eq. (23), theffiffiffiffiffiffiffi
−Q

p ¼ d
dt ð

ffiffiffi
6

p
ln aÞ is a total derivative of a function

involving the scale factor. In fact, if we consider the same
configuration in the absence of matter, ρ ¼ p ¼ 0, the only
solution which is obtained is fðQÞ ∼ ffiffiffiffiffiffiffi

−Q
p

, which is trivial
in the sense that, for Γ1, the fðQÞ ∼ ffiffiffiffiffiffiffi

−Q
p

theory admits all
metrics as solutions.
It is quite simple to repeat the above calculations for

different equations of state. If we consider a generic
barotropic equation p ¼ pðρÞ, then the continuity condi-
tion Tμ

ν;μ ¼ 0, results in

2Q
dρ
dQ

− 3λðpðρðQÞÞ þ ρðQÞÞ ¼ 0; ð31Þ

where we have used (24) to make the change of variables
t → Q. The latter can be integrated to give

Z
dρ

pðρÞ þ ρ
¼ 3λ

2
lnQ: ð32Þ

However, whether it will be possible to invert (32), in order
to obtain the ρðQÞ, which is to be used in (25) for the
derivation of a differential equation in the fðQÞ, depends on
the particular equation of state, pðρÞ, under consideration.
In any case, the (25) is going to produce a first order
ordinary differential equation, which is of the form,
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fðQÞ
2

−Qf0ðQÞ ¼ ρðQÞ; ð33Þ

solved by

fðQÞ ¼
ffiffiffiffiffiffiffi
−Q

p Z
ρðQÞ
ð−QÞ32 dQ: ð34Þ

For the case of the linear equation of state p ¼ wρ, relation
(32) leads to ρ ∼ ð−QÞ32λðwþ1Þ, and subsequently, through
(34) to the theory we obtained in (29).
We can now easily generalize solution (29) by consid-

ering an arbitrary number of perfect fluids with different
equations of state, pi ¼ wiρi. If we assume the sufficient
(but not necessary) condition that each fluid separately
satisfies a continuity equation, so that ρi ¼ Cið−QÞ32λðwiþ1Þ,
then, due to ρðQÞ in (34) being ρðQÞ ¼ P

n
i¼1 ρi, we obtain

a theory of the form,

fðQÞ ¼ f0
ffiffiffiffiffiffiffi
−Q

p
þ 2

Xn
i¼1

Cið−QÞ32λðwiþ1Þ

1 − 3λð1þ wÞ ; n ∈ Zþ;

ð35Þ

where the Ci correspond to constants of integration. We
have thus obtained a series, comprised of terms involving
the nonmetricity scalar Q, raised in powers associated with
the equation of state parameter wi of each fluid.

B. The second connection Γ2

For the second connection, the nonmetricity scalar is
obtained as

Q ¼ −
6_a2

a2
þ 9γ

_a
a
þ 3_γ ð36Þ

where it is clear that function γðtÞ is involved. The field
equations in the case of vacuum are

3_a2f0ðQÞ
a2

þ 1

2
ðfðQÞ −Qf0ðQÞÞ þ 3γ _Qf00ðQÞ

2
¼ 0; ð37aÞ

− 2
d
dt

�
f0ðQÞ _a

a

�
−
3_a2

a2
f0ðQÞ − 1

2
ðfðQÞ −Qf0ðQÞÞ

þ 3γ _Qf00ðQÞ
2

¼ 0; ð37bÞ

while the one for the connection yields

_Q2f000ðQÞ þ
�
Q̈þ _Q

�
3_a
a

��
f00ðQÞ ¼ 0: ð38Þ

Note that, unlike what we saw in the previous section for
connection Γ1, here the vacuum case is not trivial.

For the line element (22), the scalar (36) becomes

Q ¼ −
6λ2

t2
þ 9λγ

t
þ 3_γ: ð39Þ

The equations of motion for the connection (11) reads

3λ _Qf00ðQÞ þ t _Q2f000ðQÞ þ tQ̈ðtÞf00ðQÞ ¼ 0; ð40Þ

and the gravitational field equations reduce to

�
6λ2

t2
−Q

�
f0ðQÞ þ 3γ _Qf00ðQÞ þ fðQÞ ¼ 0 ð41Þ

ð−6λ2 þ 4λþ t2QÞf0ðQÞ þ tð3tγðtÞ − 4λÞ _Qf00ðQÞ
− t2fðQÞ ¼ 0: ð42Þ

By solving (41) and (42) algebraically with respect to γ
and f00ðQÞ, we find

γ ¼ 2λðð6λ2 − t2QÞf0ðQÞ þ t2fðQÞÞ
3tðð2λð3λ − 1Þ − t2QÞf0ðQÞ þ t2fðQÞÞ ð43aÞ

f00ðQÞ ¼ ð2λð1 − 3λÞ þ t2QÞf0ðQÞ − t2fðQÞ
2λt _Q

: ð43bÞ

Taking the time derivative of (43), solving it for f000ðQÞ
and substituting it together with (43) in (40), we arrive at
the integrability condition,

ð4λþ t2QÞfðQÞ −Qðt2Q − 6ðλ − 1ÞλÞf0ðQÞ ¼ 0: ð44Þ

This relation provides a relation for the first derivative of
fðQÞ as long as t2Q − 6ðλ − 1Þλ ≠ 0. But let us first
examine the special case, where t2Q − 6ðλ − 1Þλ ¼ 0.

1. Special case

If we require t2Q − 6ðλ − 1Þλ ¼ 0, then, as long as
fðQÞ ≠ 0, Eq. (44) implies 4λþ t2Q ¼ 0. These two
conditions for Q combined lead to the algebraic condition
ð1 − 3λÞλ ¼ 0, that is, λ ¼ 0 or λ ¼ 1

3
. The case λ ¼ 0

corresponds to the flat space and leads to Q ¼ 0, so we
concentrate our attention at the value λ ¼ 1

3
. For this λ, we

have

Q ¼ −
4

3t2
: ð45Þ

By calculating _Q and Q̈ and by inverting (45) to substitute
t → Q inside (40), we arrive to a differential equation
for fðQÞ,

Qf000ðQÞ þ f00ðQÞ ¼ 0: ð46Þ
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Its solution is fðQÞ ¼ f1Qþ f2Q lnð−QÞ þ f3, with the
f1, f2, and f3 being constants of integration. In addition,
since we know Q from (45), we can use it in (39) and
integrate the latter to obtain the function which enters the
connection Γ2. Thus, we derive

γ ¼ C
t
−

2

9t
ln t; ð47Þ

where C is a constant of integration. The above relations
(45), (47), with the derived expression for fðQÞ satisfy the
field equations under the following conditions for the
constants of integration:

f3 ¼ 0 and C ¼ f1 þ f2ð3þ lnð4
3
ÞÞ

9f2
: ð48Þ

Thus, the theory we obtain in this case is

fðQÞ ¼ f1Qþ f2Q ln ð−QÞ; ð49Þ

which introduces a logarithmic modification to GR,
fðQÞ ∼Q. Notice that the minus sign enters the logarithm
due to the Q of (45) being negative definite.

2. General case

Leaving aside the above special case, if we now consider
t2Q − 6ðλ − 1Þλ ≠ 0, then Eq. (44) gives

f0ðQÞ ¼ ð4λþ t2QÞfðQÞ
Qðt2Q − 6ðλ − 1ÞλÞ : ð50Þ

We can take the time derivative of the above expression and
solve with respect to f00ðQÞ, then we substitute this relation
together with (50) inside (43) and its time derivative. By
substituting the latter two in (39), we arrive at a differential
equation for Q,

ð1 − 3λÞQþ t _Q ¼ 0; ð51Þ

which yields

Q ¼ q0t3ðλ−1Þ; ð52Þ

where q0 is a constant. With the use of the above expression
in (39), we can integrate the latter to obtain the correspond-
ing connection that results in

γ ¼ q0t3λ þ 12λ2t
6ð3λ − 1Þt2 þ Ct−3λ; ð53Þ

with C denoting once more a constant of integration. By
calculating the derivatives of (52) and by also inverting (52)
to obtain a mapping t → Q, we obtain from the connection
equation (40) the following condition on fðQÞ:

3ðλ − 1ÞQf000ðQÞ þ 2ð3λ − 2Þf00ðQÞ ¼ 0; ð54Þ

which is solved by

fðQÞ ¼ f1Qþ f2Q
2

3ð1−λÞ þ f3; ð55Þ

with f1, f2, and f3 denoting the integration constants.
However, we need to substitute the above acquired expres-
sions in the rest of the field equations (41) and (42). When
we do so, we observe that the following conditions must
be set:

C ¼ f3 ¼ 0 and f2 ¼ −6f1ðλ − 1Þλq
2

3ðλ−1Þ
0 ; ð56Þ

which results in a theory characterized by

fðQÞ ¼ f1
�
Q − 6ðλ − 1Þλq

2
3ðλ−1Þ
0 Q

2
3ð1−λÞ

�
: ð57Þ

Thus, in the generic case λ ≠ 1
3
, we get a theory which

involves a power-law modification to general relativity.
The case λ ¼ 1 corresponds to a GR solution and yields
Q ¼ const.

C. The third connection Γ3

The nonmetricity scalar is calculated

Q ¼ −
6_a2

a2
þ 3γ

a2
_a
a
þ 3_γ

a2
; ð58Þ

while the equations of motion for the metric in the case of
vacuum are

3_a2f0ðQÞ
a2

þ 1

2
ðfðQÞ −Qf0ðQÞÞ − 3γ _Qf00ðQÞ

2a2
¼ 0;

− 2
d
dt

�
f0ðQÞ _a

a

�
−
3_a2

a2
f0ðQÞ − 1

2
ðfðQÞ −Qf0ðQÞÞ

þ γ _Qf00ðQÞ
2a2

¼ 0 ð59Þ

and for the connection, we have

_Q2f000ðQÞ þ
�
Q̈þ _Q

�
_a
a
þ 2_γ

γ

��
f00ðQÞ ¼ 0: ð60Þ

For the self-similar line element (22), we calculate

QðtÞ ¼ t−2ðλþ1Þð−6λ2t2λ þ 3λtγ þ 3t2 _γÞ; ð61Þ

or equivalently,
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_γ ¼ 1

3
t2λQþ λð2λt2λ − tγÞ

t2
: ð62Þ

The field equations are written in the equivalent form,

�
6λ2

t2
−Q

�
f0ðQÞ − 3t−2λγQ0f00ðQÞ þ fðQÞ ¼ 0; ð63Þ

2

�
γ

4
− λt2λ−1

�
_Qf00ðQÞ − 1

2
t2λðfðQÞ −Qf0ðQÞÞ

− λð3λ − 2Þt2λ−2f0ðQÞ ¼ 0; ð64Þ

and

γðλ _Qf00ðQÞ þ tQ̈f00ðQÞ þ t _Q2f000ðQÞÞ þ 2t _Q _γ f00ðQÞ ¼ 0:

ð65Þ

We notice that if we divide the equation of motion for the
connection (65) with tγ _Qf00ðQÞ, we can infer an integral of
motion,

tλγ2 _Qf00ðQÞ ¼ m; ð66Þ

that is

f00ðQÞ ¼ mt−λ

γ2 _Q
; ð67Þ

where we assumem ≠ 0 to avoid the linear fðQÞ ∼Q case.
We replace (67) into (63), (64), and we find the following
relations:

f0ðQÞ ¼ t2ðγfðQÞ − 3mt−3λÞ
γðt2Q − 6λ2Þ ; ð68Þ

fðQÞ ¼mt−3λ−1ðt2Qð2λt2λþ tγÞ− 6λð2λ2t2λþðλ− 1ÞtγÞÞ
2λγ2

:

ð69Þ

If we take the first derivative with respect to the time (68)
and divide it by _Q, the result must be the same as in (69).
We thus end up with the equation,

ð6λ2 − t2QÞð6ð4λ3t4λ þ ðλ − 1Þt2γ2Þ
þ t2ðλþ1ÞQð4λt2λ þ tγÞÞ ¼ 0: ð70Þ

The above relation allows for an algebraic derivation of γðtÞ
with respect to t and Q. The subsequent derivation of QðtÞ
by integrating (61) is straightforward. However, the result-
ingQðtÞ relation cannot in general be inverted to obtain the
mapping t → Q, which would allow us to write a differ-
ential equation for fðQÞ from the field equations and thus

obtain the general family of theories allowing for self-
similar solutions.
In order to proceed and obtain an fðQÞ theory, given in

terms of elementary functions, at least as a partial solution,
we follow a different procedure. Specifically, we make use
of the existence of the homothetic vector field and use it to
set an additional restriction on the connection; in a sense,
demand self-similarity for the connection as well, not just
for the metric. Due to the fact that the connection is not a
tensor, we choose to set a “homothetic” condition over the
nonmetricity tensor and demand LξQλμν ¼ 2σQλμν, where
σ is a constant. Interestingly enough, this equation is solved
if the homothetic factor is the same as that of the metric,
i.e., σ ¼ 1, while γ satisfies the differential equation,

ð2λ − 1Þγ − t_γ ¼ 0; ð71Þ

that is, γ ¼ γ0t2λ−1. However, for the compatable connec-
tions that we consider in this work condition, LξQλμν ¼
2Qλμν is equivalent with the condition LξΓλ

μν ¼ 0. Thus,
we demand the autoparallels, that is, the equations of
motion for a test particle, to be invariant under the action of
the homothetic vector field as in the case of the Levi-Civita
connection.
With this γðtÞ, the nonmetricity scalar reads

QðtÞ ¼ −
3ð2λ2 − 3λγ0 þ γ0Þ

t2
: ð72Þ

The field equations are now written as

ð6λ2 − t2QÞf0ðQÞ − 3γ0t _Qf00 þ t2fðQÞ ¼ 0; ð73Þ

ð−6λ2 þ 4λþ t2QÞf0ðQÞ þ tðγ0 − λÞ _QðtÞf00 − t2fðQÞ ¼ 0;

ð74Þ

and

ðð5λ − 2Þ _Qf00ðQÞ þ tQ02f000ðQÞ þ tQ̈f00ðQÞÞ ¼ 0: ð75Þ

By using (72) to convert Eq. (75) into a differential
equation for fðQÞ, we obtain

5ðλ − 1Þf00ðQÞ − 2Qf000ðQÞ ¼ 0;

from where it follows

fðQÞ ¼ f1Q
5λ−1
2 þ f2Qþ f3; ð76Þ

with λ ≠ 1
5
and λ ≠ 3

5
.

If we replace (76) in the field equations, we find that
the flat spacetime is recovered, that is, λ ¼ 0, when
f3 ¼ f1 ¼ 0, which corresponds to GR since fðQÞ ∼Q.
On the other hand, for f2 ¼ f3 ¼ 0, i.e., a power-law fðQÞ,
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there exists an analytic solution with the constraint

γ0 ¼ 2λð2−5λÞ
5λ−3 . Finally, for λ ¼ 1

5
or λ ¼ 3

5
, there is not any

valid solution for a function γ obtained under the con-
dition (71).

IV. NONZERO SPATIAL CURVATURE k ≠ 0

Imposing the homothetic constraint, Lξgμν ¼ 2gμν, for
the case of nonzero spatial curvature, we end with the line
element,

ds2 ¼ −dt2 þ ða0tÞ2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð77Þ

where the homothetic vector field is ξ ¼ t∂t.
For a nonzero spatial curvature k, the nonmetricity scalar

becomes

Q ¼ −
6_a2

a2
þ 3γ

a2

�
_a
a

�
þ 3_γ

a2
þ k

�
6

a2
þ 3

γ

�
_γ

γ
−
3_a
a

��
: ð78Þ

The gravitational field equations in vacuum are

3_a2f0ðQÞ
a2

þ 1

2
ðfðQÞ −Qf0ðQÞÞ − 3γ _Qf00ðQÞ

2a2

þ 3k

�
f0ðQÞ
a2

−
_Qf00ðQÞ
2γ

�
¼ 0; ð79aÞ

− 2
d
dt

�
f0ðQÞ _a

a

�
−
3_a2

a2
f0ðQÞ − 1

2
ðfðQÞ −Qf0ðQÞÞ

þ γ _Qf00ðQÞ
2a2

− k

�
f0ðQÞ
a2

þ 3 _Qf00ðQÞ
2γ

�
¼ 0; ð79bÞ

and the equation of motion for the connection assumes the
form,

_Q2f000ðQÞ
�
1þ ka2

γ2

�
þ
�
Q̈

�
1þ ka2

γ2

�

þ _Q

��
1þ 3ka2

N2γ2

�
_a
a
þ 2_γ

γ

��
f00ðQÞ ¼ 0: ð80Þ

Once more, the problem is too complex to proceed
without setting some restriction on the function γðtÞ. We try
the same ansatz as in the k ¼ 0 case of Γ3 in the previous
section, LξQλμν ¼ 2Qλμν, which can be seen to be equiv-
alent to LξΓλ

μν ¼ 0. One of the nonzero independent terms
of LξΓλ

μν¼0 is γðtÞ− t_γðtÞ¼0. The solution is γðtÞ ¼ γ0t,
with γ0 ¼ const, which satisfies the entire homothetic
equation. Thus, by replacing it in (78), we find

QðtÞ ¼ −
6ða20 − γ0Þðγ0 þ kÞ

a20γ0t
2

: ð81Þ

The field equations are

γ0ð6ða20 þ kÞ − a20t
2QÞf0ðQÞ − 3tða20kþ γ20Þ _Qf00ðQÞ

þ a20γ0t
2fðQÞ ¼ 0; ð82Þ

tða20ð4γ0 þ 3kÞ − γ20Þ _Qf00ðQÞ þ γ0ð2ða20 þ kÞ
− a20t

2QÞf0ðQÞ þ a20γ0t
2fðQÞ ¼ 0; ð83Þ

and

3ða20kþ γ20Þðtf000ðQÞ _Q2 þ tQ̈f00ðQÞ þ 3 _Qf00ðQÞÞ ¼ 0:

ð84Þ

Hence, with the use of (81) in (84) and given Q ≠ 0, it
follows

ða20kþ γ20Þf000ðQÞ ¼ 0: ð85Þ

For ða20kþ γ20Þ ≠ 0, we find fðQÞ ¼ f1 þ f2Qþ f3Q2,
and by replacing it in the field equations, for arbitrary k,
we end up with the constraints f1¼f2¼0 and γ0 ¼ −3a20.
There is also the special case γ0 ¼ a20, which however leads
to Q ¼ 0. For a constant Q, the equation of the connection
is identically zero and sets no restriction in the functional
form of fðQÞ. Through the rest of the equations of motion,
we see that, the γ0 ¼ a20, Q ¼ 0 case allows for two
possibilities: either k ¼ −a20 ¼ −1 (Milne universe) or a0
arbitrary and k ¼ �1; the first requires fð0Þ ¼ 0, while the
second leads to the constraint fð0Þ ¼ f0ð0Þ ¼ 0.
On the other hand, for k ¼ −1 and γ0 ¼ �a0, from (81)

and (82), it follows that Q ¼ − 6ða0∓1Þ2
a2
0
t2 . From Eqs. (82) and

(83), we further obtain

fðQÞ ¼ q0Q
a0∓1

2a0 ; ð86Þ

where q0 is a constant and it is required that a0 ≠ �1. The
a0 ¼ ∓1 case leads to fðQÞ ∼Q, which leads to the
Milne universe solution with k ¼ −1.
We briefly summarize the results we obtained in this and

in the previous sections, for the various types of spatial
geometry and the corresponding connections, in Table I.

V. CONCLUSIONS

In this study we investigate the existence of self-similar
solutions in fðQÞ-symmetric teleparallel gravitational
theory for four distinct families of connections related
with a homogeneous and isotropic background geometry
described by the FLRW line element. Three of the distinct
connections describe spatially flat FLRW spacetimes, while
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the fourth connection corresponds to a nonzero spatial
FLRW geometry. For each family of connection, we
present the gravitational field equations and the equation
of motion for the connection. We assume that the back-
ground geometry admits an homothetic vector field such
that to be a self-similar spacetime. Hence, for the exact
functional form of the dynamical variables of the metric, we
solve the field equations in order to constraint the con-
nection and the fðQÞ function.
For the first connection, we observe that it is necessary to

introduce an external matter source such that the self-
similar solution to exist. The resulting fðQÞ function is of
power-law, and it can be extended into a series by adding
different fluids in the matter sector. For the second and third
families of connections, it is not necessary to introduce
an external matter source, and for power-law fðQÞ and
logarithmic modifications to GR, self-similar solutions
exist. Finally, for the fourth connection, which corresponds
to a universe with a nonzero spatial curvature, self-similar
solutions exist for fðQÞ ¼ Q2, when the curvature is
positive, or for a general power-law fðQÞ theory when
the space is hyperbolic. For the latter case, we also
demonstrated the consistency of the equations by obtaining
the Milne universe, when fðQÞ ∼Q.
As we know, the general relativistic limit in the case of

symmetric teleparallel gravity lies in the linear theory
fðQÞ ∼Q. If we purely concentrate on the form of the
action, most of the reconstructed fðQÞ theories, which are
seen in Table I, can approach this limit by constraining
appropriately the remaining free parameters. It is particu-
larly interesting the case of connection Γ2, where this limit
can be directly achieved by simply requiring f2 → 0. In the
rest of the cases, a constant which enters the space-time
metric (either λ or a0) needs to be constrained, but the limit
is still achievable.
The use of the different connections in this work reveals

additional applicable dynamics. We see how the same
gravitational field gμν is produced by different fðQÞ
theories depending on the type of connection you intro-
duce. However, the physical interpretation of the different
connections is not obvious, especially if you rely on
observed quantities whose value depends purely on the

metric, e.g., the Hubble function. Possible observable
effects owed to the nonmetricity have been explored in
[66] by considering matter which couples to the connection
(e.g., fermions). However, even in this setting, it has been
shown that the result depends on the level where you
introduce the non-Riemannian modification [67]. If you
start by modifying the Dirac equation, then the nonme-
tricity introduces an extra coupling among the fermions. On
the other hand, if you insert the modification at the level
of the action, the effect of the nonmetricity disappears from
the resulting field equation. In the first case, for a fixed
metric gμν, the differences owed to the distinct admissible
Γκ

λμ, characterized by the γðtÞ, could, in principle, be
quantified.
The importance of self-similar spacetimes is well estab-

lished in general relativity [68]. They form simple sol-
utions, which however play a significant role as asymptotic
limits of more complicated gravitational configurations; for
example, consider the role of the Kasner solution in the
application of the Belinski-Khalatnikov-Lifshitz (BKL)
conjecture [69]. At this point, it is difficult to evaluate if
self-similarity will prove as important and as general in
fðQÞ theory. But, given the fact that the field equations of
the theory can be formulated as that of an effective fluid in
general relativity, it is expected that, at least under specific
configurations, self-similarity will continue playing a role
in limiting cases. From the analysis performed in previous
works [38,55] in FLRW spacetimes and for the case of the
first connection we study here, it appears that self-similar
cosmological solutions do indeed describe the asymptotic
limits of more general solutions. A similar conclusion with
that of general relativity. For the rest of the connections and
for the function form of the nonmetricity scalar, we do the
hypothesis that a similar conclusion is valid. However, that
should be investigated further. Lastly, partial results from
ongoing work of ours show that the general connections,
compatible to the symmetries of a chosen background
geometry, can be retrieved by the mere knowledge of the
corresponding flat, self-similar connections.
In a future work, we plan to investigate if the latter

conclusion is valid in the case of anisotropic geometries by
investigating self-similar solutions in Bianchi spacetimes.

TABLE I. The functional form of the fðQÞ theory resulting in self-similar gravitation field for the various types of spatial geometry
and connections. We include in the table only the cases consisting of modifications of GR. Notice, that for the last three cases (Γ3 and the
two k ≠ 0), the fðQÞ function is derived under the extra condition of self-similarity over the nonmetricity tensor.

Spatial curvature k ¼ 0 k ¼ þ1 k ¼ −1

Connection Γ1 Γ2 Γ3 Γðþ1Þ Γð−1Þ

fðQÞ ∼jQj32λðwþ1Þ
f1Qþ f2Q ln jQj, λ ¼ 1

3
or

f1Qþ f2Q
2

3ð1−λÞ,
∼Q5λ−1

2 ∼Q2

∼Q2; ∀ a0 ∈ R�
or

∼Q
a0∓1

2a0

Matter content p ¼ wρ � � � � � � � � � � � �
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