
Cosmic strings from pure Yang–Mills theory

Masaki Yamada 1,2 and Kazuya Yonekura 1

1Department of Physics, Tohoku University, Sendai 980-8578, Japan
2FRIS, Tohoku University, Sendai, Miyagi 980-8578, Japan

(Received 9 May 2022; accepted 17 November 2022; published 21 December 2022)

We discuss the formation of cosmic strings or macroscopic color flux tubes at the phase transition from
the deconfinement to confinement phase in pure Yang–Mills (YM) theory, such as SUðNÞ, SpðNÞ, SOðNÞ,
and SpinðNÞ, based on the current understanding of theoretical physics. According to the holographic dual
descriptions, the cosmic strings are dual to fundamental strings or wrapped D-branes in the gravity side
depending on the structure of the gauge group, and the reconnection probability is suppressed by OðN−2Þ
and e−OðNÞ, respectively. The pure YM theory thus provides a simple realization of cosmic F- and D-strings
without the need for a brane-inflationary scenario or extra dimension. We also review the stability of cosmic
strings based on the concept of 1-form symmetry, which further implies the existence of a baryon vertex in
some YM theory. We calculate the gravitational wave spectrum that is emitted from the cosmic strings
based on an extended velocity-dependent one-scale model and discuss its detectability based on ongoing
and planned gravitational-wave experiments. In particular, the SKA and LISA can observe gravitational
signals if the confinement scale is higher thanOð1012Þ GeV andOð1010Þ GeV for SUðNÞ with N ¼ Oð1Þ,
respectively.
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I. INTRODUCTION

The strong dynamics of gauge theory is an important
topic in theoretical physics; it helps understand the nature
of mesons and baryons in QCD. The Universe is charac-
terized as a unique application domain or system because it
is cooled down from a very high temperature wherein the
gauge theory is weakly coupled. The deconfinement/
confinement phase transition should have occurred at a
certain period of time in the cosmological history, which
provides a rich phenomenology in cosmology. For instance,
even an SUðNÞ Yang–Mills (YM) theory with or without
a quark that is heavier than the confinement scale is
extensively considered in the literature [1–4]. Further,
glueballs are formed at the deconfinement/confinement
phase transition [5–7]. The glueballs can be dark matter
(DM) if their lifetime is sufficiently long [8–17]. They can
also be self-interacting DM that may address the pro-
blems of small-scale structure in cosmology [18,19]. The
overproduction problem and decay of glueballs are con-
sidered in Refs. [20–23]. The gravitational wave (GW)
signals from the first-order phase transition has also been
investigated [24].

In this paper, we demonstrate that cosmic strings or
macroscopic color flux tubes form at the phase transition of
pure YM theory from the deconfinement to the confine-
ment phase. We explain the generalized symmetry or
higher-form symmetry [25] that ensures the stability of
topological objects, including the cosmic strings in the
pure YM theory. This concept is a generalization of
ordinal (0-form) symmetry that ensures the stability of a
(0-dimensional) particle. One-form symmetry ensures the
stability of cosmic strings that are one-dimensional objects.
For example, the pure SUðNÞ gauge theory has discrete

one-form symmetry, which is referred to as Z½1�
N . This

implies the existence of one-dimensional objects charged

under Z½1�
N . It is further identified as the color flux tube in

the confinement phase. Such color flux tubes should form
at the deconfinement/confinement phase transition with a
cosmological scale, and they can be regarded as cosmic

strings.1 Z½1�
N symmetry implies that N strings can joined at

a vertex, referred to as a baryon vertex. This is similar to the
ZN-string, which is considered in field-theory models [29].
However, our cosmic strings are qualitatively different from
those produced in weakly coupled field-theory models, and
we will provide a detailed explanation in the forthcoming
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1Stability of color flux tubes owing to a center symmetry are
discussed by ’t Hooft [26,27], and its implications for cosmic
strings are also considered in Ref. [28] before generalized
symmetry was discovered.
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sections. In some gauge groups, such as SpðNÞ, the one-

form symmetry is Z½1�
2 for any N and the baryon vertex,

even if it exists, does not play a significant role in
cosmology.
We also discuss some other properties of cosmic strings

in pure YM theory according to electric–magnetic duality,
large N limit, and holographic dual descriptions. The
electric–magnetic duality implies that the confinement is
dual to Higgsing [30], such that the cosmic strings should
form at the phase transition similar to the case where a U(1)
symmetry is spontaneously broken in weakly coupled field-
theory models. The reconnection probability of cosmic
strings can be estimated in the large N limit such as 1=N2

for SUðNÞ [31] (see Ref. [32] for a review). According to
the holographic dual descriptions, the cosmic strings are
dual to a fundamental string or a wrapped D-brane in the
gravity side depending on the structure of the gauge group
(see, e.g., Refs. [33–37]). We refer to these as F-string and
D-string, respectively. The reconnection probability scales
as 1=N2 for F-strings and e−Oð1Þ for D-strings, which is
consistent with the argument of the large N limit. The
suppressed reconnection probability is similar to that of the
cosmic superstrings that form after the brane inflationary
scenario [38,39]. In our case, however, the brane inflation is
not required. The pure YM theory provides a cosmic string
with a small reconnection probability using a simple setup.
Cosmic strings can be indirectly detected by observing

GWs emitted from stochastic dynamics [40,41]. We cal-
culate the GW spectrum that is emitted from string loops
with a small reconnection (or intercommutation) proba-
bility. The cosmic string network can be described by
extending the velocity-dependent one-scale (VOS) model
[42–45] to consider the small intercommutation probability.
The extended VOS model was originally proposed in
Ref. [46], where they also confirm its consistency with
numerical simulations. The resulting GW signal can be
within the reach of the future sensitivity of the Square
Kilometer Array (SKA) [47] and LISA [48] if the confine-
ment scale Λ is higher than Oð1012Þ and Oð1010Þ,
respectively. We can determine the N and the confinement
scale Λ by observing the GW spectrum.
The rest of this paper is organized as follows. In Sec. II,

we review the idea of 1-form symmetries. This topic has
attracted significant attention in theoretical physics and is
also important for particle cosmology that treats topological
defects and (pseudo-) NG modes (see, e.g., Refs. [49–57]).
We particularly show that the pure SUðNÞ gauge theory has
a 1-form Z½1�

N symmetry under which the color flux tube or
cosmic string is charged. In Sec. III, we use other
theoretical tools to demonstrate the properties of cosmic
strings in the pure YM theory. Based on the electric–
magnetic duality, we expect that the cosmic strings form at
the deconfinement/confinement phase transition, similar to
the formation of cosmic strings in ordinal field-theory
models with a spontaneously broken U(1) symmetry. In the

large N limit, we explain that the intercommutation
probability should scale as 1=N2 for SUðNÞ. Such a small
intercommutation probability is consistent with the holo-
graphic dual descriptions because cosmic strings can be
identified as fundamental strings in the gravity side. We
also discuss the differences for other gauge groups, such as
SpðNÞ, SOðNÞ, and SpinðNÞ. In Sec. IV, we first summa-
rize the properties of strings and qualitatively discuss the
phenomenological consequence. We then solve the dynam-
ics of long strings based on the extended VOS model. In
Sec. V, we calculate the GW spectrum that is emitted from
cosmic string loops. The resulting spectrum is shown with
the future sensitivity curves, including SKA and LISA.
Section VI comprises the discussion and conclusions of
the paper.

II. COSMIC STRINGS AND 1-FORM SYMMETRIES

The stability of a particle can be guaranteed by consid-
ering the specific symmetry under which the particle is
charged. For example, the stability of dark matter candi-
dates can be ensured by introducing (global or gauge)
symmetries such as ZN or U(1). In the same way, the
stability of a (cosmic) string can be ensured by 1-form
symmetries [25]. We review this concept in this section. In
the next section, we discuss some qualitative properties of
color flux tubes in gauge theories. If the reader is interested
only in the phenomenology of cosmic strings in the pure
YM theory, she/he may skip the next two sections and
directly refer to Sec. IV.

A. 1-form symmetries and operators

In this section, we review the concept of 1-form
symmetries in the operator formalism with a fixed time
direction. We particularly consider operators that act on the
Hilbert space. The study in [25] provides the general
spacetime descriptions with time-ordered operators or in
the Euclidean signature spacetime wherein the time direc-
tion need not be assumed. In the following discussions, we
do not consider time ordering unless otherwise stated.
First, we recall how an ordinary U(1) symmetry can be

described. We have the corresponding conserved Noether
current Jμ. Through the integration of this term, we obtain a
conserved charge operator

QðΣÞ ¼
Z
Σ
dΣμJμ; ð2:1Þ

where Σ is a 3-dimensional surface inside the 4-dimensional
spacetime such as the constant time slice Σ ¼ ft ¼ constg,
and dΣμ is set such that its length is the volume element of
Σ and its direction is orthogonal to the surface Σ. The
conservation equation ∇μJμ ¼ 0 ensures that the charge
operator QðΣÞ depends only on the topology of Σ, and
thus, it is invariant under a continuous change in Σ. This
topological invariance is the abstract description of the
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usual charge conservation. For example, the topological
invariance states that when we take two time slices Σ1 ¼
ft ¼ t1g and Σ2 ¼ ft ¼ t2g, we obtain QðΣ1Þ ¼ QðΣ2Þ
with the assumption that there is no flux of charge at spatial
infinity.
Using the charge operator QðΣÞ, we can construct a

unitary operator UðΣ; αÞ as

UðΣ; αÞ ¼ exp½iαQðΣÞ�; ð2:2Þ

where α is an arbitrary parameter. This operator induces the
symmetry transformation as follows. If OðxÞ is an operator
whose charge is q under the U(1), and if Σ is topologicaly
equivalent to a time slice Σ ¼ ft ¼ constg, then we get

UðΣ; αÞOðxÞUðΣ; αÞ† ¼ eiqαOðxÞ: ð2:3Þ

When the symmetry is not U(1) but a discrete group such as
ZN , the current Jμ and the charge QðΣÞ are not conserved.
However, the unitary operator UðΣ; αÞ still persists, and it
possesses the desired topological invariance related to Σ
provided that the parameter α is considered as α ¼ 2πk=N,
where k ∈ ZN . Thus, we can characterize the symmetry
using such operators UðΣ; αÞ. (See [25] for a complete
description.)
Now, we can extend the aforementioned discussions to

1-form symmetries. First, let us consider a 1-form U(1)
symmetry, which may be denoted as Uð1Þ½1�. This sym-
metry is characterized by a current operator Jμν, which is
antisymmetric Jμν ¼ −Jνμ; it is conserved in the sense that
∇μJμν ¼ 0. We will discuss an explicit example later. The
charge QðΣÞ is defined as

QðΣÞ ¼
Z
Σ

1

2
dΣμνJμν; ð2:4Þ

where Σ is now a 2-dimensional surface, and dΣμν is
such that it is antisymmetric dΣμν ¼ −dΣνμ, its lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
dΣμνdΣμν

q
is the volume element of Σ, and its directions

are orthogonal to Σ. (We conveniently define a 2-form J ¼
1
22
ϵμνρσJμνdxρ ∧ dxσ using differential forms, and then

QðΣÞ ¼ R
Σ J.) Based on the conservation equation

∇μJμν ¼ 0 (or dJ ¼ 0 in the differential form notation),
this operator depends only on the topology of Σ. More
precisely, if we have two surfaces Σ1 and Σ2 such that there
exists a 3-dimensional surface Γ whose boundary is
∂Γ ¼ Σ1 − Σ2, we obtain QðΣ1Þ ¼ QðΣ2Þ (since QðΣ1Þ −
QðΣ2Þ ¼

R
Γ dJ ¼ 0 using the Stokes theorem and the

conservation equation dJ ¼ 0). In particular, QðΣÞ is
invariant under the continuous change of Σ.
We can also defineUðΣ; αÞ ¼ exp½iαQðΣÞ� similar to the

case of ordinary symmetries. Now, in the case of ordinary
symmetries, point operators such as OðxÞ are charged
under UðΣ; αÞ as expressed in (2.3). In the case of 1-form

symmetries, loop operators are charged under it. Here, loop
operators OðCÞ are defined on 1-dimensional loops C. An
example which is relevant for our later purposes is the
Wilson loop operator in gauge theories,

WRðCÞ ¼ trRP exp

�
i
Z
C
Aμdxμ

�
; ð2:5Þ

where Aμ is the gauge field, P is the path ordering, and the
trace trR is taken in a representation R. These kinds of
operators are referred to as loop operators because they are
supported on a loop C rather than a point x as OðxÞ.
Now, what corresponds to (2.3) is the following. For

simplicity, we suppose that both C and Σ are contained in a
fixed time slice, say, t ¼ 0. Let hC;Σi be the number
of intersections between C and Σ (including the sign)
within that time slice. For example, let us take C to be a
straight line in the x1 direction as C ¼ fðx1; x2; x3Þjx2 ¼
x3 ¼ 0g with some orientation, and take Σ to be a sur-
face at x1 ¼ 0 as Σ ¼ fðx1; x2; x3Þjx1 ¼ 0g with some
orientation. In this case, they intersect at the single point
ðx1; x2; x3Þ ¼ ð0; 0; 0Þ, and thus, we obtain hC;Σi ¼ �1,
where the sign depends on the orientation of C and Σ.
Using the intersection number hC;Σi, we obtain

UðΣ; αÞOðCÞUðΣ; αÞ† ¼ eiqαhC;ΣiOðCÞ: ð2:6Þ

This represents the generalization of (2.3) to 1-form
symmetries.2

Similar to the case of ordinary symmetries, we can
consider not only Uð1Þ½1� but also discrete 1-form sym-

metries Z½1�
N . This represents the 1-form symmetry corre-

sponding to the group ZN . For this group, we restrict α to
be of the form α ¼ 2πk=N.

B. Dynamical charged objects

An ordinary symmetry is either unbroken or sponta-
neously broken. When it is unbroken, the vacuum expect-
ation values hΩjOðxÞjΩi of all charged operators are zero.
The action of the operator OðxÞ to the vacuum state jΩi
creates a particle (or particles) whose (total) charge is the
same as that of OðxÞ. Intuitively, when the particle has a
mass m and OðxÞ creates a single particle, Oðt; x⃗ÞÞjΩi
describes a single particle state that is localized near the
point x⃗ at the time t, with the uncertainty of the position that

2For a clear understanding of the same in the spacetime
formulation, we may place the operators UðΣ; αÞ;OðCÞ;
UðΣ; αÞ† at t ¼ t2; t1; t0 with t2 > t1 > t0, respectively. Because
of the topological invariance regarding Σ, we can arrange
operators in such a time-ordered manner. In this case, the
intersection number hC;Σi in 3-dimensional space is equal to
the linking number between ft2g × Σ − ft0g × Σ and C in
4-dimensional spacetime. This is similar to the formulation
discussed in [25].
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is given by the Compton wavelengthm−1. By considering a
sufficiently heavy (i.e., nonrelativistic) particle, we can
regard it to be localized at x⃗ when the time is t. See the left
side of Fig. 1.
Similarly, a 1-form symmetry is either unbroken or

spontaneously broken. The question of spontaneous
breaking is subtle, and for concreteness, we consider the
case where the space is not R3 but S1 ×R2, where S1 is
the x1 direction with the periodic boundary condition
x1 ∼ x1 þ L. We expect to recover the results on R3 in
the limit L → ∞. Let us consider a loop

C ¼ fðx0; x1; x2; x3Þjx0 ¼ 0; x2 ¼ 0; x3 ¼ 0g. ð2:7Þ

It is wrapped on the S1. We take Σ to be transverse to C
within t ¼ 0 as

Σ ¼ fðx0; x1; x2; x3Þjx0 ¼ 0; x1 ¼ 0g: ð2:8Þ

However, it should be noted that UðΣ; αÞ only depends on
the topology of Σ. When the 1-form symmetry is unbroken
(or more exactly, when the symmetry described by UðΣ; αÞ
for our choice of Σ is unbroken), all vacuum expectation
values of loop operators hΩjOðCÞjΩi are zero. The action
of the operatorOðCÞ on the vacuum state jΩi now creates a
stringlike object, which is wrapped on S1. This string (or
strings) has the same (total) charge under UðΣ; αÞ as that of
the operator OðCÞ, as seen from (2.6) and the condition of
unbroken symmetry UðΣ; αÞjΩi ¼ jΩi. Assuming that
OðCÞ creates a single string, and that the tension of the
string is sufficiently large, the state OðCÞjΩi descries a
string that is localized near C. See the right side of Fig. 1.
When we consider more general C, the string created by

OðCÞ can disappear if and only if C is topologically trivial.
For example, we may consider

C0 ¼ fðx0; x⃗Þjx0 ¼ 0; jx⃗j2 ¼ R2g; ð2:9Þ

where R is a constant parameter. In this case, a string is
created by the action ofOðC0Þ to the vacuum state, and it is
initially localized near C0. After some time, the string can

shrink to zero size and eventually disappear. From the
point of view of the 1-form symmetry, this process is
possible because such a topologically trivial C has the
trivial intersection number hC;Σi ¼ 0 irrespective of Σ.
However, the 1-form symmetry guarantees that there is no
local mechanism that makes the string unstable. When the
symmetry is explicitly broken, the string can decay even if
it is wrapped on a topologically nontrivial cycle, such as S1

mentioned earlier. We will discuss this decay process later.

C. Examples

Here, we discuss two examples of 1-form symmetries. For
concreteness, we impose the periodic boundary condition
x1 ∼ x1 þ L with a sufficiently large L as mentioned earlier,
which ensures that the space is S1 ×R2 rather than R3.
For the first example, we consider a U(1) gauge theory,

which is coupled to a scalar field ϕðxÞ with charge 1 under
the gauge U(1) symmetry. This theory has a 1-form Uð1Þ½1�
symmetry with the conserved current

Jμν ¼ 1

4π
Fρσϵ

ρσμν: ð2:10Þ

This is conserved ∇μJμν ¼ 0 because of the Bianchi
identity ϵρσμν∇μFρσ ¼ 0.
The operator which is charged under this 1-form sym-

metry is known as the ’t Hooft operator HðCÞ [26], and
because it is defined in an abstract way, we do not try to
explain it. However, the string that is created by the ’t Hooft
operator is well-known. Suppose that the U(1) gauge
symmetry is spontaneously broken by a vacuum expectation
value of ϕ. For example, we can assume the potential to be
VðϕÞ ¼ −μ2jϕj2 þ λjϕj4 although its details are not impor-
tant for our discussions of the 1-form symmetry Uð1Þ½1�.
Then, we obtain the usual vortex string. For concreteness, we
assume that the string is stretched in the direction x1, and it is
localized at x2 ¼ x3 ¼ 0. Then, using the polar coordinates
x2 þ ix3 ¼ reiθ, we can consider a vortex configuration
ϕðxÞ → veikθ at r → ∞, where v is the vacuum expectation
value of ϕ, and k ∈ Z is some integer. To minimize the
energy coming from the kinetic term Dθϕ ¼ ð∂θ − iAθÞϕ,
we set the θ-component of the gauge field to be Aθ → k at
r → ∞. Now, let C̃ be a large loop C̃ ¼ fðx1; x2; x3Þjx1 ¼
0; jx2j2 þ jx3j2 ¼ a2g for some large constant a which we
take to be infinity a → ∞. Moreover, let Σ be the disk filling
C̃, i.e., Σ ¼ fðx1; x2; x3Þjx1 ¼ 0; jx2j2 þ jx3j2 ≤ a2g with
a → ∞. From the definition of the charge QðΣÞ given in
(2.4), we obtain

QðΣÞ ¼
Z
Σ
dx2dx3J01 ¼ 1

2π

Z
Σ
dx2dx3F23 ¼

1

2π

Z
C̃
Aμdxμ

¼ 1

2π

Z
C̃
Aθdθ ¼ k: ð2:11Þ

FIG. 1. Left: creation of a particle from the vacuum jΩi by a
point operatorOðt; x⃗Þ. Right: creation of a string from the vacuum
jΩi by a loop operator OðCÞ.
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Thus, the aforementioned vortex configuration has a charge k
under QðΣÞ.
We conclude that in the Higgs phase, the dynamical

object charged under the 1-form Uð1Þ½1� symmetry is the
usual vortex string. Conversely, when the U(1) gauge
symmetry is not spontaneously broken, it is known that
’t Hooft operators HðCÞ have nonzero expectation values
hΩjHðCÞjΩi ≠ 0. Then, the 1-form symmetry Uð1Þ½1� is
spontaneously broken, and no clear dynamical objects are
charged under it.
The Uð1Þ½1� symmetry can be explicitly broken if a

magnetic monopole is introduced in the theory. In this
case, the Bianchi identity ϵρσμν∇μFρσ ¼ 0 is no longer true,
and thus, Jμν is not conserved. In fact, if the monopole
has the unit magnetic charge, the vortex string can end
on a monopole or antimonopole. Thus, the string can
decay through the pair creation of a monopole and an
antimonopole, and thus, it is not conserved. However, if the

monopole charge is N > 1, then the Z½1�
N subgroup of

Uð1Þ½1� remains unbroken, and the string is still stable.
The next example, which is the main subject of interest

in this paper, is the YM theory with gauge groupG. We can
also add matter fields provided they transform trivially
under the center of the gauge group, such as the adjoint
representation. For concreteness, we mainly discuss the
case G ¼ SUðNÞ. However, the generalizations to other
groups are also straightforward.

The theory with the group SUðNÞ has a 1-form Z½1�
N

symmetry, called the center symmetry. The operator
UðΣ; αÞ should be defined in an abstract manner. We do
not explain the details (see [25] for modern descriptions of
center symmetries), but we briefly discuss it in the operator
formalism within a fixed time, or in the “Schrödinger
picture” at (say) t ¼ 0. We take a 2-dimensional surface Σ
as in the previous section. Whenever we cross this surface
within the 3-dimensional space (at t ¼ 0), we perform a
transformation by a center e�2πik=NIN ∈ SUðNÞ, where
the sign in the exponent depends on the orientation of
Σ. This gauge transformation at Σ is the definition of
UðΣ; αÞ with α ¼ 2πk=N.
For example, suppose that the surface is given by

Σ ¼ fðx1; x2; x3Þjx1 ¼ 0g. For a field in the fundamental
representation ϕ, we impose ϕðx1 ¼ þϵ; x2; x3Þ ¼
e2πik=Nϕðx1 ¼ −ϵ; x2; x3Þ for an infinitesimally small ϵ.
This jump by the gauge transformation e2πik=NIN is the
definition of UðΣ; αÞ with α ¼ 2πk=N.3

We assumed that the theory has no dynamical field that
transforms nontrivially under the center e2πik=NIN ∈SUðNÞ.
Then, the presence of the jump by e2πik=NIN does not have

any effect on the local dynamics of the fields that transform
trivially under e2πik=NIN ∈ SUðNÞ. However, its existence
has a global effect on the gauge field configuration [26,27]
(see also [58,59] for additional explanations), and thus, this
operator is not completely trivial. For example, with the
aforementioned choice of Σ, the holonomies (Wilson lines)
of the gauge field around the S1 direction of x1 receive an
additional contribution given by the center e2πik=N after the
action of UðΣ; αÞ. The fact that the jump has no effect on
local dynamics indicates that it has the topological invari-
ance under continuous deformation of Σ. This topological
invariance is the desired property for UðΣ; αÞ as mentioned
previously.
Now, we consider a 1-dimensional loop C and we take

the Wilson loop operator WRðCÞ as in (2.5). At the
intersection ofC and Σ, the Wilson loop yields an additional
phase factor because of the cut by e2πik=NIN ∈ SUðNÞ, and
hence, we obtain

UðΣ; αÞWRðCÞUðΣ; αÞ† ¼ eiqRαhC;ΣiWRðCÞ; ð2:12Þ

where the value of the integer qR is such that the center
e2πik=NIN ∈ SUðNÞ acts in the representationR as e2πikqR=N .4

For the fundamental representation F, we have qF ¼ 1.
We have discussed the presence of the 1-form symmetry

Z½1�
N , which is referred to as the center symmetry, and found

loop operators WR that are charged under it. We should
check if they are spontaneously broken. When the theory is
weakly coupled, it is usually spontaneously broken, mainly
because of the following reason.5 At the leading order of
perturbation theory, the gauge field is approximately zero if
Aμ ¼ 0 is (one of) the leading saddle point of the path
integral. Then, the Wilson loop operator is WRðCÞ ∼
trR1þ � � � where the ellipses are higher order terms in
perturbation theory. Therefore, its vacuum expectation
value hΩjWRðCÞjΩi is nonzero and the center symmetry
is spontaneously broken.
Conversely, the vanishing expectation values of WRðCÞ

[for topologically nontrivialC such as the loop (2.7)] serves
as the condition for confinement. The definition of confine-
ment in the language of 1-form symmetry is that the theory
is confined if the 1-form center symmetry is not sponta-
neously broken. In this case, we obtain a string-like
dynamical object when we act WRðCÞ on the vacuum state
jΩi as discussed before. What is it?

3In the spacetime formulation, we impose this discontinuity in
the time region t < t0, where t0 is the time at which the operator is
inserted. In general, we obtain the phase e2πik=N whenever we go
along a small loop around the codimension-2 surface Σ.

4In the spacetime formulation, this equation can be easily
interpreted if the operators UðΣ; αÞ; WRðCÞ; UðΣ; αÞ† are placed
at t ¼ t2; t1; t0 with t2 > t1 > t0, respectively. Because of the
topological invariance about Σ, we can arrange operators in this
time-ordered manner. Then, the branch cut that is mentioned in
the previous footnote produces the phase eiqRαhC;Σi.

5The following argument is not always true when spacetime is
compactified. It is possible to consider a setup wherein the theory
is weakly coupled but the center symmetry is unbroken. For a
recent review, see [60].
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The string that is charged under the 1-form center
symmetry is the color flux tube of the confining SUðNÞ
gauge theory. The color flux tube is often described as a
tube between a fundamental quark and an antiquark. In the
current theory, we assumed that the center of SUðNÞ acts
trivially on dynamical fields, and thus, there is no dynami-
cal fundamental quark. However, a Wilson loop operator is
interpreted as the worldline of an “external” quark. We
recall that our string is produced by Wilson loops, as shown
in the right side of Fig. 1. This means that if we actWFðCÞ
(where we have taken the fundamental representation F) on
jΩi, we create a string localized at C at a given time. In the
spacetime picture, this means that the string worldsheet
ends on the loop C, and this loop was interpreted as the
worldline of an external quark. Therefore, our string ends
on a quark (or antiquark) and can thus be interpreted as the
color flux tube. This color flux tube is stable because of the

1-form symmetry Z½1�
N . The stable color flux tube was

discussed by ’t Hooft [26,27] even before the formulation
of the concept of 1-form symmetries, but the modern
formulation in terms of the 1-form symmetry may give a
clearer perspective of its stability.
If we introduce matter fields in the fundamental repre-

sentation, the 1-form center symmetry is explicitly broken. In
the presence of such matter fields, the aforementioned
operator UðΣ; αÞ has a considerable impact on the local
dynamics of fields, and thus, it is no longer topologically
invariant under deformations of Σ. Color flux tubes can end
on dynamical quarks, and thus, they can decay via a pair
creation of a quark and an antiquark. This is the usual case in
QCD. However, if the fundamental quark mass is signifi-
cantly larger than the dynamical scale of the SUðNÞ gauge
field, we obtain an approximate 1-form symmetry in low
energy, and the color flux tubes are metastable.
We recall a rough estimate of its decay rate [61]. The

1-form symmetries are explicitly broken when there exists a
particle on which dynamical strings can end. In the case of
a U(1) gauge theory with a Higgs field ϕ, the relevant
particle is a magnetic monopole. In the case of a SUðNÞ
gauge theory, the relevant particle is a fundamental quark.
We denote the string tension as μ and the particle mass as
m, and assume thatm ≫ ffiffiffi

μ
p

. We then consider a Euclidean
spacetime configuration that represents the decay of a
string.
Without decay, we assume that the string is located at

x2 ¼ x3 ¼ 0. It is extended in the directions x0, x1, where
x0 means the Wick rotated Euclidean time direction.
Now, the decay is realized through a bubble that is

created by a particle. We consider the case that this bubble
is created at zero temperature. Similar to the thin wall
approximation of the vacuum decay rate, we consider the
following configuration.
(1) In the region jx0j2 þ jx1j2 < r2, where r is a constant

parameter, there is no string. This corresponds to a
true vacuum.

(2) On the circle jx0j2 þ jx1j2 ¼ r2, we have a virtual
particle loop. This corresponds to a thin wall.

(3) In the region jx0j2 þ jx1j2 > r2, we have the string.
This corresponds to a metastable vacuum.

By translation symmetry, we also obtain configurations
whose center is at an arbitrary point on the string. The
Euclidean action of this configuration relative to the action
without the bubble is given as a function of r by SðrÞ ¼
−πμr2 þ 2πmr. It has an unstable saddle point at r ¼ r� ≔
m=μ, and the value of the action is Sðr�Þ ¼ −π m2

μ .
Therefore, the decay rate of the string per volume at zero
temperature is estimated as

Γ ∼ μ̃ exp

�
−π

m2

μ

�
; ð2:13Þ

where μ̃ is a typical mass squared scale related to the string
and the particle.
The thin wall approximation is valid provided that r� is

significantly larger than the typical size of the particle 1=m
and the typical size of the string 1=

ffiffiffi
μ

p
. This condition is

satisfied in the parameter regionm ≫ ffiffiffi
μ

p
. The decay rate is

well suppressed in this parameter region.
Next, we analyze the case of a finite temperature. We

denote the inverse temperature as β. The Euclidean time
direction x0 has the periodicity x0 ∼ x0 þ β, and hence, it is
a circle S1β. When r� ≪ β, the aforementioned estimate is
still valid. Conversely, when r� ≫ β, we expect that a
particle and an antiparticle move around the circle S1β in
almost straight lines. In this case, we cannot find a desired
unstable saddle point using the aforementioned semiclass-
ical method. The action increases monotonically as the
distance between the particle and the antiparticle becomes
smaller. However, we expect that a contribution 2mβ ¼
mβ þmβ can be obtained in the action, and this would
come from the particle loop and the antiparticle loop
around S1β. If the order of the action is not significantly
different, we may have

Γ ∼ μ̃ðβÞ exp ð−cmβÞ; ð2:14Þ

where c is an order 1 constant, and μ̃ðβÞ is a mass-squared
scale, which is now also a function of β. Assuming that the
β dependence of μ̃ðβÞ is not significant, the decay rate is
the largest at the highest possible temperature. The highest
temperature is the critical temperature for the phase
transition between the Higgs and Coulomb phases in the
case of the U(1) gauge theory, and the confinement phase
and the deconfinement phase in the case of the SUðNÞ
theory. Let β� be the critical value. The decay rate at this
temperature is given by μ̃ðβ�Þ exp ð−cmβ�Þ. It is suppressed
if m ≫ ðβ�Þ−1.
In the case of the SUðNÞ gauge theory, both

ffiffiffi
μ

p
and

ðβ�Þ−1 are of the order of the dynamical scale Λ of the
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gauge theory. Thus, the decay rate can be sufficiently
suppressed if we have m ≫ Λ.

III. OTHER PICTURES AND SOME
PROPERTIES OF STRINGS

Even though direct computations are difficult in strongly
coupled gauge theories, some properties are understood
well for YM theories. In this section, we would like to
briefly recall them.

A. Electric–magnetic duality

The YM theory in the confining phase is a strongly
coupled theory, and it is not immediately obvious what
intuition we should have for the creation of cosmic strings
in the phase transition from the deconfinement phase
at high temperatures to the confinement phase at low
temperatures. Thus, it is helpful to consider other theories
that are qualitatively the same as YM theory but are more
calculable.
As mentioned previously, we can add matter fields to the

theory provided they transform trivially under the center of
SUðNÞ. (If matter fields that transform nontrivially under
the center exist, we assume that their mass is much larger
than the dynamical scale such that they are decoupled at the
critical temperature of phase transition.) Assuming that the
theory still confines, the qualitative behavior is similar to
the pure YM as far as the color flux tube is concerned. If we
add some appropriate matter fields, there is electric–
magnetic dual description wherein the theory is weakly
coupled and Higgsed.
One such example is given by mass-deformed N ¼ 2

supersymmetric YM theory. For concreteness, we consider
the case that the gauge group is SU(2). The theory contains
some scalar fields and fermions in the adjoint representa-
tion of the gauge group to ensure that their dimensionless
interactions preserve N ¼ 2 supersymmetry. We can add
supersymmetry-breaking mass terms. This theory has a
dual description in low energy by a U(1) gauge theory with
a Higgs field ϕ [30]. This U(1) is the electric–magnetic dual
of the Cartan subgroup Uð1Þ ⊂ SUð2Þ of the original gauge
group. The Higgs field in the dual theory is a magnetic
monopole of the original SU(2) theory, and the confine-
ment is dual to the Higgsing. The color flux tube of the SU
(2) gauge theory is dual to the vortex string of the dual U(1)
theory. The U(1) theory with only the Higgs field has a 1-
form Uð1Þ½1� symmetry, as discussed before. However, it
also contains a heavy magnetic monopole with a magnetic
charge of 2. This monopole is aW-boson of the original SU
(2) theory and it explicitly breaks the 1-form symmetry

from Uð1Þ½1� to Z½1�
2 . This duality suggests that we can

qualitatively intuit similarly for the color flux tube string as
the usual vortex string in the U(1) Higgs phase. Some
differences at the quantitative level are discussed later in
the paper.

Another (but related) example of a duality is as follows.
We consider the mass-deformed N ¼ 4 supersymmetric
SUðNÞ YM theory, which contains some scalars and
fermions in the adjoint representation. This theory is almost
self-dual. The dual theory has exactly the same matter
content as that in the original one; the Lagrangians are also
qualitatively the same with some different parameters.
However, the gauge group topology is SUðNÞ=ZN rather
than SUðNÞ. The confining vacuum of the original theory is
dual to the Higgs vacuum of the dual theory [34,62]. These
vacua are described as follows. There are three complex
scalar fields Φi (i ¼ 1, 2, 3) in the adjoint representation,
and we regard them as N × N traceless matrices. The
potential energy is given by

VðΦÞ ¼
����mΦi þ

i
2
gϵijk½Φj;Φk�

����2; ð3:1Þ

where ϵijkði; j; k ¼ 1; 2; 3Þ is the totally antisymmetric
tensor, m is the mass parameter that breaks some of
supersymmetry, and g is a dimensionless coupling (which
is actually the same as the gauge coupling inN ¼ 4 Super-
YM). One of the minima of the potential is Φi ¼ 0. At this
point, the matter fields are massive, the gauge group is
unbroken, and the theory is confined. This is the confining
vacuum. Another vacuum is described as follows. We take
Φi to be Φi ¼ ðm=gÞti, where ti (i ¼ 1, 2, 3) are the
generators of the SU(2) Lie algebra in the irreducible
N-dimensional [i.e., “spin” 1

2
ðN − 1Þ] representation. In

particular, they satisfy the matrix commutation relation
½ti; tj� ¼ iϵijktk. It can be inferred that the aforemen-
tioned potential is minimized. At this vacuum, the gauge
group SUðNÞ=ZN is completely Higgsed.6 In the Higgs
phase, a string is associated to the homotopy group
π1ðSUðNÞ=ZNÞ ¼ ZN in a similar way in which the
stability of the vortex string in the U(1) Abelian-Higgs
model is related to π1ðUð1ÞÞ ¼ Z. This string is dual to
the color flux tube in the confining vacuum. It should be
noted that the stability of the string in the Higgs phase is
determined using π1ðSUðNÞ=ZNÞ ¼ ZN . This can also

be understood as a magnetic 1-form symmetry Z½1�
N for

SUðNÞ=ZN , which is similar to the U(1) case with
Jμν ¼ 1

4πFρσϵ
ρσμν; however, we do not review it here.

From these dualities, we expect that cosmic strings are
produced in the thermal phase transition from the decon-
finement phase at high temperatures to the confinement
phase at low temperatures even though direct computations
in strongly coupled theories are difficult. We believe that
this qualitative conclusion is valid for theories that do not

6For N > 2, there are various other vacua that are a mixture of
confinement and Higgsing, by taking ti to be in some reducible
representation of SU(2) algebra. We do not discuss them because
we are interested in the confinement phase of the original theory
(Φi ¼ 0) and the Higgs phase of the dual theory (Φi ¼ ðm=gÞti).
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have explicit dual descriptions, such as the pure non-
supersymmetric YM theory. The reason is as follows. For
theories which have the explicit electric-magnetic dual, the
dual theory at low temperatures is in the Higgs phase for
which the usual Kibble-Zurek argument may apply. Now in
the original theory, we change the mass terms of the
additional matter fields to be very large. The theory reduces
to the pure YM. If we change the mass parameters of the
original theory, some parameters of the dual theory are also
changed. However, the Kibble-Zurek argument does not
rely on the details of parameters as far as infinitely long
strings are concerned. Thus we expect that infinitely long
cosmic strings are produced in the phase transition. It
would be interesting if this expectation from the electric-
magnetic duality could be confirmed more directly by
simulations of pure YM.

B. Large N limit

When two strings collide transversely, there is a pos-
sibility of reconnection with some probability. This is
determined using the string coupling gs, which is estimated
as follows.
We consider a situation where each of the two strings in

the initial state is in the form of a circle S1. Suppose that
these strings collide at a single point, and they reconnect
thereafter. In the final state, we have one string in the form
of a circle S1. See the left side of Fig. 2. This is a process
whose initial state consists of two circles and the final state
is one circle. The 1þ 1-dimensional worldsheet of the string
in spacetime is topologically a sphere with three holes.
In the theory of large N counting, the behavior of the

amplitude in the large N limit is well known [31]. (See [32]
for a detailed review.) For this purpose, we may regard each
of the three holes to be an external quark loop. Indeed, we
have argued that a string is created by the action of a Wilson
loop operator WFðCÞ on the vacuum, and this Wilson loop
can be regarded as an external quark loop. The bulk of the
string consists of various gluon propagators. In the large N
limit, the amplitude of a general process, whose two dimen-
sional surface has the Euler number χ, is known to behave as
Nχ . The Euler number is given by χ ¼ 2 − g − h, where g is

the genus of the surface without considering the holes, and h
is the number of holes. In the process of the left of Fig. 2, we
obtain g ¼ 0 (for the sphere) and h ¼ 3 (for the three holes).
Thus, this value is proportional to N−1.
From the locality, we expect that only the region near

the colliding point is relevant for the amplitude if the strings
are sufficiently large compared to the inverse of the dyna-
mical scale Λ−1 of the theory. Except N and the relative
velocity and angle of the initial strings, there are no
dimensionless parameters in the pure SUðNÞ YM theory.
Thus, we conclude that the amplitude for the reconnection
is proportional to gs ∼ N−1. The detailed computations of
the amplitude in the case of cosmic superstrings can be
found in [63]. If N is large, the probability P for recon-
nection is roughly P ∼ N−2. This is different from the
usual weakly coupled vortex string in the U(1) Abelian
Higgs model.
We can also find the large N behavior of the binding

energy of two or more strings.7 The interactions of two
string worldsheets proceed through the diagram of the form
shown in the right of Fig. 2, wherein two worldsheets are
connected by a tubelike region, which is referred to as a
handle in mathematics. Compared to the diagram without
interactions (i.e., two independent worldsheets), the handle
increases the genus g by one unit, and thus, the process is
suppressed by N−2. This implies that the bound state of k
strings (if it exists as a stable object) has a tension μk, which
is given by

μk ¼ kμþOðN−2Þ; ð3:2Þ

where the first term on the right-hand side is obtained from
the sum of the tensions of k strings, and the second term is
the effect of interactions. This is the tension of the string

with Z½1�
N charge k (if the binding energy is negative and the

bound state exists). For example, in some gauge theory
models [64–67], the tension is approximately given by

μk ¼ μ ·
sin k

N

sin 1
N

¼ kμ −
ðk3 − 1Þ
6N2

μþ � � � ð1 ≤ k ≤ N − 1Þ;

ð3:3Þ
which is consistent with the above large N argument.
The implication of the binding energy is as follows. If we

consider a configuration for which the charge of the center

symmetry Z½1�
N is given by k where k ¼ 1; 2;…; N − 1,

there are several possibilities for the lowest energy con-
figuration. One possibility is to have k separated strings

each of which has Z½1�
N charge 1. Another possibility is to

have a single bound state withZ½1�
N charge k. If (3.3) is valid,FIG. 2. Left: Two strings colliding at a single point to form a

single string. The worldsheet of this process in spacetime is
topologically a sphere with three holes. Right: Interactions of two
string worldsheets via the tubelike region (handle), which
smoothly connects two worldsheets.

7This paragraph discusses only the interactions caused by
the strong dynamics. Other interactions such as gravity are
negligible.
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the second one gives the lowest energy configuration.
However, the binding energy is suppressed by N−2 if
k ¼ Oð1Þ. Thus, if we consider the large N limit, we expect
(and assume in this paper) that the effect of the binding is
not so significant for the cosmological evolution of string
networks.

C. Holographic dual descriptions

We discuss the results of large N from another related
perspective. For some SUðNÞ gauge theories that are
qualitatively similar to the pure SUðNÞ YM such as the
mass-deformed N ¼ 4 Super-YM discussed previously,
holographic dual descriptions are available. See, e.g.,
Refs. [33–37]. The color flux tube in gauge theories is
dual to the fundamental string (or some object that has
the charge of the fundamental string such as a wrapped
D3-brane with a flux) in the gravity side. The coupling gs
is then literally the string coupling in the sense of the
superstring theory. In the holographic dual, we fix the ’t
Hooft coupling Ngs in the large N limit. Then, gs scales as
1=N in the large N limit.
The diagrams such as the ones shown in Fig. 2 are more

intuitively understood in the holographic dual because they
represent the basic string interactions. Thus, many quali-
tative properties, which hold true in cosmic superstrings are
also expected to hold true for color flux tubes.
There are also some differences from cosmic super-

strings. One difference is the effect of finite (rather than
infinite) N. For instance, there can be bound states as
argued around (3.3), although the binding energy goes to
zero whenN → ∞. The regimeN → ∞ is more close to the
case of cosmic superstrings in a weakly coupled, large
volume limit. Another difference is about what types of
stable strings exist. In cosmic superstring scenarios, we
usually have F-strings, D-strings, and their composite
ðp; qÞ strings. However, in YM theories, the types of stable
strings depend on the gauge group, and also the details of
matter contents if we consider nonpure YM. For instance,
Klebanov and Strassler constructed a very explicit dual
between a certain gauge theory and a gravity theory [35].
Their gauge theory describes some warped throat region of
string theory [68]. Both F- and D-strings are present in their
model. But the D-string may be associated in the gauge
theory side to the spontaneous breaking of a U(1) global
symmetry [69,70] which is not present in the pure SUðNÞ
YM. Thus we do not expect D-strings in the pure SUðNÞ
YM.8 However, we will discuss in the next subsection that
there are strings which can be qualitatively regarded as
D-strings if we consider the gauge group SOðNÞ [or its
universal cover SpinðNÞ]. The classification of stable

strings is different from cosmic superstrings and is dis-
cussed in the next subsection.

D. Other gauge groups

Until now, we have mainly discussed SUðNÞ gauge
group. We now discuss some other gauge groups.
For other gauge groups such as SOðNÞ or SpðNÞ, the

center symmetry is different. In general, the center CG of a
groupG is the subgroup CG ⊂ G whose elements commute
with any element ofG. For example, the center of SUðNÞ is
given by

CSUðNÞ ¼ fe2πik=NIN jk ∈ ZNg; ð3:4Þ

which we have used in the previous section. The centers of
SUðNÞ, SpinðNÞ (which is the simply connected double
cover of SOðNÞ ¼ SpinðNÞ=Z2) and SpðNÞ are given by

SUðNÞ ⊃ ZN; SpinðNÞ ⊃

8>><
>>:

Z2 × Z2 ðN ¼ 4KÞ
Z4 ðN ¼ 4K þ 2Þ
Z2 ðN ¼ 2K þ 1Þ

;

SpðNÞ ⊃ Z2: ð3:5Þ

The 1-form center symmetry of the pure G theory for the
simply connected G (i.e., π1ðGÞ ¼ 0) is determined in

terms of the center CG, which we may denote as C½1�
G .

More explicitly, these centers are described as follows.
(i) SpðNÞ: The SpðNÞ consists of 2N × 2N unitary

matrices A satisfying ATJA ¼ J, where J is the
invariant tensor of SpðNÞ given by

J ¼
�

0 IN
−IN 0

�
: ð3:6Þ

This group has the center given by CSpðNÞ ¼
f�I2Ng ≅ Z2. Thus, the 1-form center symmetry

is Z½1�
2 , and there is only one type of string, which is

charged nontrivially under Z½1�
2 . This is created by

the Wilson loop operator WF in the fundamental
2N-dimensional representation F of SpðNÞ.

(ii) SpinðNÞ with N ¼ 4K: The SpinðNÞ for N ¼ even
has two spinor representations, which we denote as
S1 and S2. The center CSpinð4KÞ ¼ Z2 × Z2 is given
as follows. We denote the two Z2’s as Z2ð1Þ and
Z2ð2Þ. The nontrivial element of Z2ð1Þ acts on S1 as
(−1), whereas it acts trivially on S2 as (þ1).
Similarly, the nontrivial element of Z2ð2Þ acts on
S2 as (−1), whereas it acts trivially on S1 as (þ1).
Both the Z2ð1Þ and Z2ð2Þ act as (−1) on the
fundamental N-dimensional representation F of
SpinðNÞ because F is contained in the tensor
product S1 ⊗ S2. The stable strings are classified

8However, a string with a large Z½1�
N charge k ∼OðNÞ may be

regarded as a D-string, or more precisely a D-brane wrapped on
the internal manifold [66]. We do not consider such large k in this
paper.
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by the charges under Z½1�
2 × Z½1�

2 , and we may denote
the charge as ðk1; k2Þ, where k1 ¼ 0, 1 and k2 ¼ 0, 1
are integers modulo 2. The string with a charge (1,0)
is created by the Wilson loop operatorWS1, whereas
the string with charge (0,1) is created by WS2. The
string with charge (1,1) is created byWF. The strings
(1,0) and (0,1) are related by a symmetry (which is
the outer automorphism of SpinðNÞ for N ¼ even),
and they have the same tension. The tension is of
order NΛ2, as we discuss below. The string (1,1)
may be regarded as a bound state of (1,0) and (0,1),
and its tension is of order Λ2. If N ≫ 1, the binding
energy is negative, which indicates the presence of
the bound state.9

(iii) SpinðNÞ with N ¼ 4K þ 2: The two spinor repre-
sentations S1 and S2 are complex conjugate repre-
sentations of each other for N ¼ 4K þ 2. The
generator of the center CSpinð4Kþ2Þ ¼ Z4 acts as

ðþiÞ ¼ ffiffiffiffiffiffi
−1

p
on S1, and (−i) on S2. It acts on the

N-dimensional fundamental representation F as (−1)
because F is contained in S1 ⊗ S1 or S2 ⊗ S2. The

stable string is classified by theZ½1�
4 charge k ¼ 0, 1, 2,

3, which is an integer modulo 4. The string with
charge k ¼ 1 is created by WS1, whereas the string
with charge k ¼ 3 is created byWS2. The string with
charge k ¼ 2 is created byWF. The tensions of strings
with k ¼ 1 and k ¼ 3 are the same because of the
symmetry (outer automorphism), and are of order
NΛ2, while the tension of the string with k ¼ 2 is of
order Λ2. The string with k ¼ 2may be a bound state
of two k ¼ 1 strings, and the binding energy is
negative if N ≫ 1.10

(iv) SpinðNÞ with N ¼ 2K þ 1: There is only one spinor
representation S for N ¼ odd. The generator of the
center CSpinð2Kþ1Þ ¼ Z2 acts on S as (−1), but it acts
trivially on F as (þ1). Only one kind of stable string

charged is present under Z½1�
2 , and it is created by

WS; it has the tension of order NΛ2.11 However, we
will later argue that there may be a metastable string
created by WF.

For the strings created by WF, the large N behavior is
similar to that of SUðNÞ. Their tensions are of order μ ∼ Λ2,

and string couplings are of order gs ∼ 1=N. We refer to
them as fundamental strings or F-strings.
However, the strings created by the spinor representa-

tions of SpinðNÞ show significantly different N behavior,
and we refer to them as D-strings. For concreteness, we
discuss the case of Spinð2K þ 1Þ although the cases of
SpinðNÞ for N ¼ even are similar.
For a clearer understanding, we focus on the subgroup

SUðKÞ ⊂ SOð2KÞ ⊂ SOð2K þ 1Þ ¼ Spinð2K þ 1Þ=Z2.
We can capture the qualitative behavior of the large N (or
large K) limit by considering only this subgroup SUðKÞ.
The spinor representation S of Spinð2K þ 1Þ decomposes
under SUðKÞ as

S → ⨁
K

n¼0

∧n F; ð3:7Þ

where ∧n F is the nth antisymmetric representation of
SUðKÞ. It contains representations with large SUðKÞ
charges n ∼OðKÞ. Thus, it possesses qualitatively similar
properties as “baryons” of SUðKÞ in the sense that it
consists of the antisymmetrization of large numbers of
fundamental representations. The tension of the string
associated with S behaves as

μ ∼ NΛ2 ð3:8Þ

because it contains order N ∼ K fundamental strings of
SUðKÞ. This phenomenon is confirmed in a holographic
dual description [71]. In the dual side, the color flux
associated with S is given by a (wrapped) D-brane, whose
tension is proportional to g−1s ∼ N.
Such “baryonic” objects might have an exponentially

suppressed reconnection probability when the relative
velocity of the string v is not significantly small,

P ∼ e−cN; ð3:9Þ

where c is expected to be Oð1Þ if v is not small. Such an
exponential suppression was discussed in the case of
baryon particles for SUðNÞ gauge theories in Sec. 8.3 of
Ref. [72]. We have further mentioned that the color flux
tube is given by a (wrapped) D-brane in the holographic
dual.12 An exponential suppression e−c=gs was found for the
case of D1-brane [63]. The coefficient c was also deter-
mined as a function of the velocity v and the angle θ for the
case of the D1-brane; however, we are unsure of the
universality of this explicit functional form. We believe
that this would be an interesting research topic.

9Here we comment on the case with a small values of N. For
N ¼ 4, which is the smallest value of the form N ¼ 4K, we
obtain Spinð4Þ ¼ SUð2Þ × SUð2Þ, and (1,0), and (0,1) comes
from independent gauge groups; their bound state does not exist.
For Spinð8Þ, the outer automorphism group is enhanced to the
symmetric group S3, which permutes the three representations S1,
S2 and F. Thus, the tensions of (1,0), (0,1), and (1,1) are the same.

10It should be noted that Spinð6Þ ¼ SUð4Þ. If the formula (3.3)
holds true, the bound state exists.

11It should be noted that Spinð3Þ ¼ SUð2Þ ¼ Spð1Þ and
Spinð5Þ ¼ Spð2Þ.

12Baryons (if present) are also some wrapped D-branes. If D-
branes possess some universal features in the large N limit
irrespective of their dimension, shape, etc., that universal feature
is expected to hold true both for the baryons and strings created
by the spinor representation.
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There may be another reason to expect the behavior
(3.9). If we consider the effective action of the string, we
expect that there is an overall factor of N owing to the
aforementioned reason. Thus, the effective action (with
only minimal degrees of freedom on the string worldsheet)
may be

Seff ¼ −
N
4π

�Z ffiffiffiffiffiffi
−γ

p �
μ̂þ c

2
Rþ � � �

�
d2σ

�
; ð3:10Þ

where μ̂ is a constant of order OðΛ2Þ, c is a constant of
order Oð1Þ, and R is the Ricci scalar of the string
worldsheet. The first term proportional to μ̂ is the
Nambu-Goto action which is a “cosmological constant
term” on the worldsheet, and the second term proportional
to R is the “Einstein-Hilbert term” on the worldsheet.13 We
also expect higher order terms, but we assume that they do
not dramatically change the following argument. If the
aforementioned action is qualitatively valid, the Einstein-
Hilbert term gives expðcNχ=2Þ, where χ ¼ 1

4π

R ffiffiffiffiffiffi−γp
R is

the Euler number of the worldsheet. Thus, the string
coupling may be e−cN=2, and the reconnection probability
may behave as P ∼ e−cN . This result is obtained based on
the assumption that there are only minimal degrees of
freedom on the worldsheet. This, however, may be changed
if we also include other degrees of freedom. For example,
the D-branes in superstring theory contain several degrees
of freedom other than the motion of the string. Some
degrees of freedom are caused by the supersymmetry,
which is absent in color flux tubes of YM theories.
Provided that the effects of those possible degrees freedom
and the higher order terms are not too significant, this result
is expected to be qualitatively valid.

E. Baryon vertex and other dynamical objects

We discuss another property of YM theories. The 1-form

center symmetry of SUðNÞ is Z½1�
N , and this suggests that if

there are N strings, they can end on a single vertex, as seen
in the left side of Fig. 3. Such a vertex is referred to as a
baryon vertex, and it should not be confused with a baryon
particle. This is a vertex where N strings can end. Its
existence is explicitly seen in some holographic dual
descriptions of gauge theories [71].
This property of baryon vertex is special to the gauge

group SUðNÞ. For other gauge groups such as SOðNÞ or
SpðNÞ, the center symmetry is quite different as we have
seen earlier, and we do not have a baryon vertex that
connects order N strings.
It should also be noted that there are baryon par-

ticles in Spinð2KÞ or SOð2KÞ theories, and these are

constructed using the totally antisymmetric tensor
ϵi1���i2K of SOð2KÞ. For instance, we have gauge invariant
operators

ϵi1���i2KF
i1i2
μ1μ2 � � �Fi2K−1i2K

μ2K−1μ2K ; ð3:11Þ

where iK’s are gauge indices and μk’s are spacetime indices.
The corresponding particle is the baryon particle, which is
constructed purely from gluons.
In the Spinð2K þ 1Þ theory, only one stable string is

associated to the spinor representation S. However, in
addition to the stable string, a metastable string may also
be associated to the fundamental representation F. It should
be noted that there is a colored baryon in the fundamental
representation of the gauge group, which may be created by
an operator

Bi;μ1���μ2K ¼ ϵii1���i2KF
i1i2
μ1μ2 � � �Fi2K−1i2K

μ2K−1μ2K : ð3:12Þ

It has the color index i, and thus, the color flux tube
associated to the fundamental representation can end on it
and decay via the pair productions. However, the mass of
baryons are of order NΛ [72], and thus, the decay is
suppressed; this color flux tube is metastable.

IV. DYNAMICS OF COSMIC
STRING NETWORK

A. Properties of cosmic strings

From the discussion in Sec. III, cosmic strings should be
formed at the phase transition from the deconfinement
phase to the confinment phase in the pure SUðNÞ (as well
as other) YM theory. Depending on the structure of gauge
group, there are two types of cosmic strings: the one being
dual to a fundamental string and the one being dual to a
wrapped D-brane in the gravity side by the holographic
dual descriptions. We refer to them as a F-string and a
D-string, respectively. There are only F-strings in SUðNÞ
and SpðNÞ, whereas there are both F-strings and D-strings

FIG. 3. Left: N strings in SUðNÞ YM can end on a single
vertex. In this figure, we have taken N ¼ 6. This vertex is called
the baryon vertex. Right: metastable color flux tube associated to
the fundamental representation of SOð2K þ 1Þ can end on a
colored baryon, which is a kind of baryon vertex with only a
single string attached to it.

13The factor of 1=4π in front of the action is put so that it
is consistent with the naive dimensional analysis of strong
dynamics.
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in SpinðNÞ and SOðNÞ (¼ SpinðNÞ=Z2).
14 For the case of

Spinð2K þ 1Þ and SOð2K þ 1Þ, the F-string is metastable.
Here, we summarize the properties of those cosmic strings
and phenomenological implications to their dynamics.

(i) Naturally small tension
The string tension μ is given by the confinement

scale of YM theory Λ such as

μ ∼
�
Λ2 for F-string

NΛ2 for D-string
: ð4:1Þ

In particular, for the case of SUðNÞ, the numerical
factor is determined using the lattice simulations
as [73]

Λffiffiffi
μ

p ¼ 0.5055ð7Þ½250� þ 0.306ð12Þ
N2

; ð4:2Þ

where the round (square) brackets represent statis-
tical (systematic) errors. Here, the dynamical scale is
determined using the renormalization group such as

Λ ¼ μ0e−8π
2=ðbg2

0
Þ; ð4:3Þ

where b (¼ 11N=3 for SUðNÞ) is the one-loop
coefficient of the beta function and μ0 is a renorm-
alization scale. The scale of Λ is exponentially
sensitive to the fundamental gauge coupling g0,
and thus, it can be naturally small and does not
require fine-tuning mainly because of the dimen-
sional transmutation. This is in contrast to cosmic
strings in weakly coupled field-theory models,
where the string tension is determined using a
Higgs scale that cannot be naturally small at least
in nonsupersymmetric models.
If two F-strings connect and form a bound state

with k ¼ 2 winding number, its tension should scale
as 2μð1þOð1=N2ÞÞ [see Eq. (3.2)]. This is con-
sistent with the lattice result [73]. We can thus
neglect the formation of bound state with a winding
number larger than unity for a sufficiently large N.

(ii) Small intercommutation probability
From the discussion of large N limit and holo-

graphic dual descriptions, the intercommutation (or
reconnection) probability of strings is not Oð1Þ but
scales as

P ∼
�
N−2 for F-string

expð−cNÞ for D-string
; ð4:4Þ

for a large N. Here, c ¼ Oð1Þ when the relative
velocity of the string is not small. This is a unique
property of our cosmic string contrary to weakly
coupled field-theory cosmic strings, wherein the
strings almost always reconnect after the intersec-
tion. A small intercommutation probability is also
realized for F- and D-strings that are formed after
D-brane inflation [63,74,75]. Our cosmic string,
namely the color flux tube in gauge theories, is
dual to the F- and D-strings in the gravity side
according to the holographic dual descriptions.

The impact of exponentially suppressed inter-
commutation probability for D-strings is quite non-
trivial because the exponential factor c depends on
not only N but also the relative velocity and the
relative angle of strings. Because we are interested in
the statistical properties of string network, we
consider an average over the relative velocity and
relative angle. As a result, the intercommutation
probability may not be significantly suppressed like
the above exponential form. Because the factor of c
cannot be determined in the current understanding of
strong dynamics, we do not discuss the form of
intercommutation probability further. In the sub-
sequent analysis, we consider P as a free parameter
to calculate the GW signals from cosmic strings.

Even if we take P as a free parameter, the
consequence of small intercommutation probability
is nontrivial because of a small wiggly structure of
cosmic strings. Let us consider an intersection event
of two long strings. The small wiggles on the strings
move as fast as 1=

ffiffiffi
2

p
, whereas the relative velocity

between the long strings is not that fast according to
numerical simulations [46,76]. This results in many
intersections of small wiggles within the time-
scale of collision of long strings. As a result, the
intercommutation probability between long strings
is effectively enhanced by a factor ofNscat ∼ 10 [46].
Denoting the intercommutation probability of (ideal
straight) strings as P, we obtain the effective
intercommutation probability of (realistic) wiggly
strings such as

Peff ¼ 1 − ð1 − PÞNscat : ð4:5Þ

This gives Peff ∼ 10=N2 for a sufficiently largeN for
an F-string.

Both F-strings and D-strings exist in SOðNÞ and
SpinðNÞ, and in this case, the bound state may form
after the collision of two different types of strings.
This process can be interpreted as the transition from
a closed F-string to open F-strings connected by
D-strings. The probability of this process is expected
to be N−1. In those models, the number of bound
state is finite because of the discrete 1-form symmetry.

14For small N, the distinction between F-strings and D-strings
is ambiguous. For example, the stable string of the SU(2) YM is
regarded as an F-string if the gauge group is regarded as SUðNÞ
with N ¼ 2, but it is also regarded as a D-string from the point of
view of Spinð4Þ ¼ SUð2Þ × SUð2Þ.
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This is in contrast to the cosmic superstrings that
form after brane inflation [38,39]. In the brane-
inflationary scenarios, D-strings (1-dimensional
Dirichlet branes) [38,39,77–81] as well as F-strings
[38,39] form, which results in a complicated string
network with infinite number of bound states with
different tensions [82–88]. In this paper, we focus on
the case with a single type of cosmic strings.
The intercommutation probabilities of D- and

F-strings are additionally suppressed using a volume
factor if they move in a higher-dimensional space
[63,80,87]. This factor does not appear in our model
because we consider 3þ 1 dimensional spacetime.

(iii) Baryon vertex
Depending on the gauge theories, baryon vertex

may or may not be present. For instance, SUðNÞ
gauge theory has the 1-form Z½1�

N symmetry, which
the cosmic string is charged under. In this case, a
cosmic string with kþ N winding number has the
same tension as that with k winding number. This
specifically indicates that N cosmic strings can end
on a single baryon vertex as seen in the left side
of Fig. 3. This is similar to the case with so-called
ZN string, where a field theory with the symmetry
breaking pattern of SUðNÞ → ZN by N adjoint
Higgs fields is considered [29,89]. It should be
noted that this property is different from that of
non-Abelian strings considered in Refs. [85,90,91],
where there are many different strings that cannot
pass through or reconnect with each other. In this
case, the string network is frustrated and its energy
density dominates the Universe.
The dynamics of string network should be quali-

tatively different for the cases of Z½1�
2 , Z½1�

3 , and Z½1�
N

with N > 3.

(i) Case with Z½1�
2 : there may be a baryon vertex

that connects two cosmic strings with opposite
fluxes. A similar network is considered in weakly
coupled field-theory models with monopoles and
cosmic strings, which is referred to as a necklace
[92–94]. Based on the numerical simulations in
the weakly coupled models, the energy density of
baryon vertex (which is called beads in the literature)
becomes negligible compared to that of cosmic
strings [94]. This implies that the effect of baryon
vertex to the network evolution is negligible at a later
time even if the baryon vertex exists. This is the case
for SU(2), SpðNÞ, SOð2K þ 1Þ, and Spinð2K þ 1Þ.
Here, we discuss the case of SOð4KÞ and

Spinð4KÞ, where the one-form center symmetry is

Z½1�
2 × Z½1�

2 . For K ¼ 1, we have two independent

Z½1�
2 charged strings (see footnote 9). For K ≥ 2,

there are two D-strings and one bound state (that
corresponds to an F-string). In particular, for K ¼ 2,
all three strings have the same tensions because of

the outer automorphism. We leave these cases for a
future work [95].

(ii) Case with Z½1�
3 : a baryon vertex connects three

cosmic strings with the same tensions. A similar
network was considered in the context of hadronic
string of QCD theory [96] though they consider
unstable strings with light quarks. The dynamics of
cosmic strings with the same tensions [97,98] or with
different tensions [99] are considered in the literature.
An extended version of VOS model was also pro-
posed [83,85], and it explains the results of numerical
simulations. In this case, a baryon vertex can be
formedby the intersection of two strings even at a later
time.According to numerical simulations, the network
reaches the scaling solution. We expect that there are
Oð1Þ baryon vertices within a Hubble horizon.

(iii) Case with Z½1�
N>3: a baryon vertex connects N

cosmic strings with k ¼ 1 winding number. In this
case, it is difficult to produce thebaryonvertex after the
phase transition. The formation of baryon vertex
requires that N strings meet within a distance of order
the string width. Such an event is negligible during the
dynamics of the string network for the case of N > 3.
Even if such an event occurs, the probability of vertex
formation is additionally suppressed exponentially
through a tunneling factor for a large N like e−OðNÞ
[72]. We can thus neglect the late-time formation of
baryon vertex for the case N > 3.

However, the baryonvertices can format the confine-
ment/deconfinement phase transition even for N > 3.
This can be interpreted in a similar manner to the
monopole production in the electric–magnetic dual
description. For example, one can consider the sym-
metry breaking pattern of SUðNÞ=ZN → Uð1Þ → 1 in
a weakly couple field theory, which leads to the
formation of monopoles followed by that of cosmic
strings. In this case, Oð1Þ monopoles form within a
correlation volume at the first phase transition. Those
monopoles are attached by N cosmic strings at the
secondphase transition. This case should hold true even
if those phase transitions occur simultaneously at the
same energy scale. We thus expect that at least Oð1Þ
baryonvertices formwithin aHubblehorizon.Then, the
number of baryon vertices within a Hubble horizon
increases as theUniverse expands, provided that theydo
not annihilate. In other words, their number should be
reduced via the annihilation to reach the scaling regime.
This is possible because the baryon vertices are con-
nected by strings and are pulled toward each other by
their tensions.

Based on the aforementioned explanation, the net-
work reaches the scaling regime for the case ofN ¼ 3.
The main difference between N ¼ 3 and N > 3 is the
absence of formation of baryon vertex at a late time in
the latter case. This difference is not significant for
attaining the scaling regime, which requires a mecha-
nism to reduce the number of baryon vertices. We thus
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conclude that the network for the case withN > 3 also
reaches the scaling regime at a later time, where the
number of baryon vertex within a Hubble horizon is
constant in time. This is also expected in analogy to the
domain-wall and cosmic-string system that is exten-
sively studied in the context of QCD axion models.
According to field-theory simulations [100–103], even
if a single cosmic string is attached by multiple domain
walls, the system is not frustrated but it follows the
scaling solution wherein the numbers of domain walls
aswell as the cosmic strings areof order unitywithin the
horizon. The similarity of our system to this system can
be highlighted by reducing the dimension of the
topological defects, that is, by replacing the cosmic
strings by baryon vertices and the domain walls by
cosmic strings.
In the scaling regime, the number of baryon vertex

should be of order unity within the horizon if the
intercommutation probability is of the order of unity. If
the intercommutation probability is significantly less
than unity, the numbers of baryon vertex and cosmic
strings within the Hubble horizon may be larger, but
they should still be constant in time.We can only expect
that at leastOð1Þ baryonvertices andOð1Þ × N cosmic
strings survive within a Hubble horizon. This sets the
lower bound on the number density of long cosmic
strings.Wewill discuss the consequence of this effect in
detail in Sec. IVC.
In the numerical calculations, we neglect the impact

of baryon vertex, which is justified for a largeN or in a
theory without baryon vertex such as SpðNÞ.

(iv) Exponentially suppressed decay rate of cosmic string

In our model, the 1-formZ½1�
N symmetry is a global

symmetry. In a consistent theory of quantum gravity,
any global symmetries must be explicitly broken
[104] (see also e.g., Refs. [56,105–110] for general-
ized global symmetry). The 1-form symmetry Z½1�

N is
explicitly broken if one introduces quarks with
fundamental representation. The model still reduces
to our pure SUðNÞ YM theory if the mass of quarks
are much larger than the dynamical scale. The cosmic
string can decay if themass of quarks is of the order of
dynamical scale. The decay rate of the string per
volume at zero temperature is estimated as Eq. (2.13):

Γ ∝ exp

�
−π

m2

μ

�
; ð4:6Þ

where m is the quark mass. Recently, the decaying
cosmic strings have attracted significant attention
[111–113]. A similar scenario can be realized in
our model if there is a vector quark with mass of
order the confinement scale. It is possible to naturally
realize the parameter region like Oð1Þ · Λ≲m≲
Oð10Þ · Λ, if the number of quarks in the fundamental
representation is such that the UV gauge theory is in

the conformal window. Then, the confinement occurs
soon after the decoupling of the massive quarks. See,
e.g., Refs. [114–116] for a detailed discussion of such
scenarios in different contexts.

However, it is expected that the length of cosmic
strings cannot be sufficiently long but suppressed by
some power of number density of quarks if quarks
and antiquarks present in the thermal plasma at
the deconfinement/confinement phase transition. If
quarks are abundant in the thermal plasma at the time
of phase transition, cosmic strings tend to form such
that they connect the quarks and anti-quarks. This
results in the formation of relatively short cosmic
strings and we expect that the number of long
(superhorizon) cosmic strings is exponentially sup-
pressed. For long cosmic strings to form, the number
density of fermions must be significantly suppressed
in the thermal plasma.15 Therefore they should be
diluted by inflation for this scenario to work. In other
words, one has to consider the case wherein e.g., the
maximal temperature of the Universe is higher thanΛ
but is lower than m.

For pure SOð2K þ 1ÞYMtheory, there is a colored
baryon in the fundamental representation of the gauge
group with mass of order NΛ [see discussion around
Eq. (3.12)]. Those colored baryons are expected to
form at the deconfinement/confinement phase tran-
sition, inwhich case sufficiently long F-strings cannot
form. We therefore expect that only D-strings should
survive at a later epoch in pure SOð2K þ 1Þ YM
theory.

In this paper, we consider stable cosmic strings in
the pure YM theory.

(v) No new composite state of F- and D-strings
For cosmic superstrings in brane inflationary

scenarios, one usually has F-strings, D-strings,
and their composite ðp; qÞ strings. However, in
YM theories, the types of stable strings depend
on the gauge group. They also depend on the details
of matter contents if we consider nonpure YM. For
instance, we do not expect D-strings in the pure
SUðNÞ YM. In SOðNÞ and SpinðNÞ gauge theories,
there are both stable F- and D-strings for N ¼ 4K
and 4K þ 2. The bound state of those strings are not
similar to the cosmic superstrings. For the case of

N ¼ 4K, the center symmetry is Z½1�
2 × Z½1�

2 [see
Eq. (3.5)], which means that only three different
types of cosmic strings exist. The two of them,

whose charges are (1,0) and (0,1) under Z½1�
2 × Z½1�

2 ,
are identified as D-strings whereas the remaining
one, whose charge is (1,1), is an F-string. The latter
one can be created from the collision of (1,0) and

15See Ref. [117] for the evolution of short cosmic strings that
connect quarks and antiquarks.

MASAKI YAMADA and KAZUYA YONEKURA PHYS. REV. D 106, 123515 (2022)

123515-14



(0,1) D-strings. However, there is no new composite

state of F- and D-strings because the Z½1�
2 × Z½1�

2

symmetry implies for instance that the composite of
strings with charges (1,0) and (1,1) is just the string
with charge (0,1). One can consider a system of both
F- and D-strings in this gauge theory, but the whole
network is not as complicated as the cosmic super-
strings. A similar conclusion holds for the case of
N ¼ 4K þ 2, in which case the center symmetry is

Z½1�
4 and there again exist only one F-string and two

D-strings strings without a new composite state. The
system with both F- and D-strings can be described
by multiple VOS equations used in Refs. [85–87].
The interaction term between F- and D-strings may
be introduced, but we do not need the other
composite states.

B. Extended VOS model

It is known that the network of cosmic strings reaches a
scaling regime in a finite timescale. The statistical proper-
ties can be described by the VOS model [42–45], which is
supported by numerical simulations [118–122], and it is
used to calculate GW spectrum [88,123–126]. In this paper,
we use an extended VOS model to incorporate the effect of
the small intercommutation probability [46]. This extended
model is also supported by numerical simulations.
We focus on the dynamics of cosmic strings and omit the

existence of baryon vertex, which will be discussed below.
At a late time, the width of cosmic string is significantly
shorter than the curvature radius of strings. In addition, our
strings have no long-range interactions. We thus expect that
its dynamics can be described by the Nambu-Goto action.
This is also consistent with the fact that our string
corresponds to the fundamental string by the holographic
dual descriptions. The action is given by

S ¼ −μ
Z ffiffiffiffiffiffi

−γ
p

dσ2; ð4:7Þ

where σa is worldsheet coordinates and γab is the two-
dimensional string worldsheet metric.
We consider the dynamics of cosmic strings in the

Friedmann-Robertson-Walker Universe:

ds2 ¼ a2ðτÞðdτ2 − dx2Þ; ð4:8Þ

where τ is the conformal time and a is the scale factor. We
choose the gauge conditions of σ0 ¼ τ and _x · x0 ¼ 0,
where the dot and prime denote the derivatives with respect
to τ and σ1ð≡σÞ, respectively. The equation of motion for a
string is then given by

ẍþ 2aHð1 − _x2Þ_x ¼ 1

ϵ

�
x0

ϵ

�0
; ð4:9Þ

_ϵþ 2aH _x2ϵ ¼ 0; ð4:10Þ

where

ϵ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x02

1 − _x2

s
ð4:11Þ

represents the coordinate energy per unit length. Because
the theory is gapped and there is no massless particle in
the plasma, the strings do not interact with the ambient
plasma. Thus, we need not include the friction force in
Eq. (4.9) (that is, we can take the friction lengthscale
infinity, lf → ∞).
Because we are interested in the dynamics of string

network rather than that of individual strings, we take a
spatial average over a whole observable Universe and use
some statistical quantities to describe the network of
cosmic strings. We denote the correlation length of cosmic
strings as ξ, which is expected to be of order the Hubble
horizon length. This represents the distance beyond which
string directions are not correlated. The network of cosmic
strings consists of long and short strings. We define a long
string such that its length is longer than the correlation
length ξ. We further denote the typical inter string distance
of long strings as L, which is related to the energy density
of long strings as ρ∞ ¼ μ=L2.
For a standard cosmic string with Oð1Þ intercommuta-

tion probability, the inter string distance L and the
correlation length ξ are of the same order with each other.
However, this is not the case for a small effective inter-
commutation probability Peff (≪ 1). The number of colli-
sions between different long strings within one Hubble time
is reduced for Peff ≪ 1, which results in a large ρ∞ and
small L. On the contrary, the number of self-reconnection
for a single long string within one Hubble time is not that
reduced even for Peff ≪ 1. This is because the left and right
movers of string perturbations collide several times because
of their periodic motion, and they eventually reconnect
within a long timescale of order H−1. This effect makes the
correlation length of order the Hubble scale, ξ ¼ OðH−1Þ.
We thus need to use an extended version of VOS model
where ξ and L evolve differently.16

The energy density of the long strings and the average
root-mean-square string velocity are given by

16One may instead use the standard VOS model with a smaller
loop chopping efficiency parameter c̃ → Pγ

eff c̃ with γ ¼ 1=3. The
factor of γ ¼ 1=3 is conventionally used but is originally given by
ð0.6þ0.15

−0.12 Þ=2 from a numerical simulation [46]. The result of
numerical simulation is also reproduced using the extended VOS
model adopted in this paper, as discussed in Ref. [46] even if the
resulting power for a small Peff is 1=2 rather than 1=3.
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ρ∞ ¼ 1

V
μa

Z
ϵdσ; ð4:12Þ

v̄2 ≡
R
_x2ϵdσR
ϵdσ

; ð4:13Þ

where the integral is taken only for the long strings. Taking
the time derivative of these quantities, we obtain the
evolution equations such as

dρ∞
dt

¼ −ð2Hð1þ v̄2ÞÞρ∞ þ
�
dρ∞
dt

�
loop

; ð4:14Þ

dv̄
dt

¼ ð1 − v̄2Þ
�
kðv̄Þ
R

− 2Hv̄

�
; ð4:15Þ

where we include up to second order terms in Eq. (4.15).
The first term in the right-hand side of Eq. (4.14) is
obtained from the dilution and stretching of strings by
the Hubble expansion with the modulation by the redshift
of the string velocity. The last term represents the energy
loss via the loop production discussed below. The term with
kðv̄Þ=R in Eq. (4.15) is obtained from the acceleration due
to the curvature of string and the term with 2Hv̄ comes
from the damping due to the Hubble expansion. The
curvature radius R is defined using

a
R
û ¼ d2x

ds2
; ð4:16Þ

where s (ds ¼ jx0jdσ) is the physical length along the string
and û is the unit vector for the direction of d2x=ds2. We
assume that the curvature radius R is of the same order as
that of the correlation length ξ, whereas it is considered to
be equal to L in the standard VOS model. The momentum
parameter kðv̄Þ is related to the small scale structure on
strings and is given by

kðv̄Þ≡ hð_x · ûÞð1 − _x2Þi
v̄ð1 − v̄2Þ ð4:17Þ

¼ 2
ffiffiffi
2

p

π

1 − 8v̄6

1þ 8v̄6
; ð4:18Þ

where the second line is an analytic function that fits well
with the numerical simulations [45]. It should be noted that
kð1= ffiffiffi

2
p Þ ¼ 0 [44]. Because we do not have a friction force,

v̄ is usually in the relativistic regime.
According to numerical simulations of cosmic strings,

string loops are continuously generated from the recon-
nection of long strings. This results in the energy loss of
long loops. The distribution of length of loops is conven-
tionally described using a scale-invariant loop production
function fðli; tÞ, where fðli; tÞdli is the number of pro-
duced loops with length ∈ ðli; li þ dliÞ for each

intercommutation event. The energy-loss rate for a long
string is then proportional to

μ

Z
∞

0

lifðli; tÞdli ≡ c̃μξ; ð4:19Þ

where c̃ is called a loop chopping efficiency parameter.
Our definition of c̃ is identical to that of the conventional
model for the case with ξ ¼ L. As discussed previously,
string loops are produced through the self-intercommutation,
and thus, their typical length should be of order ξ rather
than L for the case of ξ ≠ L. In the scaling regime, we
expect that the loop production function fðli; tÞ scales as
fðli; tÞ ¼ t−1fðxÞ with x ¼ li=t, which implies that c̃ is
constant in time. According to the numerical simulations,
c̃ ¼ 0.23� 0.04 fits the numerical results in both the
radiation dominated era (RD) and the matter dominated
era (MD) [127] (see also Refs. [44,45,128,129]).
We should also estimate the number of intercommutation

events per unit time. The number density of long strings is
given by n ∼ ρ∞=ðμξÞ ¼ 1=ðL2ξÞ. Because a string sweeps
over one correlation length within the timescale of ξ=v̄, the
number of intersections for a given string per unit time is
proportional to nξ3ðv̄=ξÞ. Using Eq. (4.19), and consider-
ing the effective intercommutation probability Peff, we thus
find that the energy density of long strings decreases
because of the loop production:

�
dρ∞
dt

�
loop

¼ −Peffðc̃μξÞn
nξ3v̄
ξ

; ð4:20Þ

¼ −Peff c̃ v̄ ρ∞

�
ξ

L2

�
; ð4:21Þ

This can be reduced to the standard VOS equations
based on the assumption that ξ ¼ L and Peff ¼ 1.17

By combining Eqs. (4.14) and (4.20), and rewrite ρ∞ in
temrs of L, we obtain the evolution equations such as

2
dL
dt

¼ 2HLð1þ v̄2Þ þ Peff c̃ v̄

�
ξ

L

�
; ð4:22Þ

17In Ref. [130], it was highlighted that small loops can be
produced mainly by self-intercommutation for Peff ≪ 1. How-
ever, we consider that a wiggly structure that later results in self-
intercommutation mainly comes from the intercommulation
between different long strings. The production process of single
loop therefore proceeds based on the following steps: production
of wiggly structure from an intercommutation between different
strings, followed by the self-intercommutation of wiggly struc-
ture. The rate of the first step is estimated by Eq. (4.20), whereas
the second step is expected to be sufficiently efficient, as
discussed previously Eq. (4.12). We thus assume that the energy
loss is proportional to the rate of the first step, which is the
bottleneck process for loop production. Our result of ρ∞ ∝ P−1

eff is
consistent with the one obtained in Ref. [130].
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dv̄
dt

¼ ð1 − v̄2Þ
�
kðv̄Þ
ξ

− 2Hv̄
�
; ð4:23Þ

ξ ¼ cξt; ð4:24Þ

with cξ ¼ Oð1Þ that is specified below. Assuming thatH ¼
r=t and a ∝ tr, where r ¼ 1=2 in RD and r ¼ 2=3 in MD,
we obtain the scaling solution as follows:

Lasym ¼ cLt; ð4:25Þ

cL ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Peff c̃

kðv̄asymÞ
4rð1 − rð1þ v̄2asymÞÞ

s
; ð4:26Þ

v̄asym ¼ kðv̄asymÞ
2rcξ

: ð4:27Þ

The energy density of long strings is thus proportional to
P−1
eff in RD, MD, as well as in the flat spacetime (r ¼ 0).

This is consistent with the analytic argument and numerical
simulations in flat spacetime of Refs. [130,131]. Further,
the result of the extended VOS model well fits the
numerical simulations in RD and MD of Ref. [46], which
the conventional dependence ρ∞ ∝ P−2=3

eff used in the most
literature is based on (see, e.g., Refs. [87,132]). The
difference in power results from the limited range of
parameters in numerical simulations. In Ref. [46], it was
shown that the obtained numerical results can be fitted
better once they include only a logarithmic correction
to Peff . In our numerical calculations, we use both the
extended VOS model and the conventional one for the
purpose of comparison.
Here, we specify the Oð1Þ parameter cξ. We assume

cξ ¼ cLjPeff¼1;v̄asym¼v̄ðsVOSÞasym
¼

�
0.27 in RD

0.62 inMD;
ð4:28Þ

with

v̄ðsVOSÞasym ¼
�
0.66 in RD

0.58 inMD;
ð4:29Þ

to reproduce the standard results of the VOS model in the
scaling regime for the case of Peff ¼ 1. The extended VOS
model is thus a smooth extension of the VOS model with a
smaller Peff and L.
It should be noted that the survival probability of sting

loops (or the probability that a string loop does not intersect
with long strings) is almost unity for a small loop. Thus, we
can neglect the backreaction from the dynamics of string
loops for the above equations except for the loop chopping
efficiency parameter. The evolution equation for the energy

density of string loops can be solved after deriving the
solutions to the above equations.

C. Effect of baryon vertex

We now consider the effect of baryon vertex, which may
or may not exist depending on the gauge theory. For
instance, this effect is apparent for the pure SUðNÞ gauge
theory.
If the baryon vertex exists, we expect that Oð1Þ baryon

vertices are produced within a correlation volume at the
confinement/deconfinement phase transition. If the baryon
vertices are not annihilated, the number of baryon vertices
within a Hubble horizon increases, and the Universe tends
to be dominated by cosmic strings that are attached to the
baryon vertices. However, as discussed in Sec. IVA, the
annihilation is efficient because of the string tension that
connects the baryon vertices. The network should reach the
scaling regime wherein the number of baryon vertices
within a Hubble horizon is constant in time. We thus expect
that the number of baryon vertex is at least of order unity
within the Hubble horizon. Because each baryon vertex
connects N cosmic strings, the energy density of those
cosmic strings must be larger than the order

ρmin ∼
NμH−1

H−3 ∼
Nμ

t2
: ð4:30Þ

This should be regarded as the lower bound on the energy
density of long cosmic strings. Because ρ∞ ∼ P−1

effμ=t
2 ∼

N2μ=t2 for Peff ≪ 1 in the extended VOS model, we obtain
ρmin ≪ ρ∞ for a sufficiently large N. This justifies the
aforementioned analysis of the extended VOS model.
Conversely, this suggests that the number of baryon vertex
may be of order N within the Hubble horizon because we
expect that almost all long cosmic strings are attached by
some baryon vertices.
If N is not sufficiently large and Peff is of the order unity,

ρmin may be comparable to ρ∞. Although the extended
VOS model is not justified in this case, we expect that it can
still help estimate the relevant quantities with a correction
of N dependence. The dynamics of this system should be
similar to the standard NG cosmic strings that can be
described by the standard VOS model, except for a
correction from the factor of N. In particular, for the case
of N ¼ 2, the effect of baryon vertex can be neglected, and
we can use the standard VOS model. The extended VOS
model is reduced to the standard VOS model for Peff ≃ 1,
and thus, we can use the extended VOS model in this case.
For a larger (but not too large)N, we use the same result but
with a correction to ρ∞ by a factor of N=2. This is mainly
because of the fact that the total length of cosmic strings
attached to a baryon vertex within a Hubble horizon scales
as N=2. This procedure can be used for the case of N ¼ 3,
4. In our numerical calculations, we omit this correction for

COSMIC STRINGS FROM PURE YANG–MILLS THEORY PHYS. REV. D 106, 123515 (2022)

123515-17



simplicity because it changes the result only by a factor of
the order unity.

V. GRAVITATIONAL WAVE SIGNALS

A. String loop density and GW spectrum

The gravitational waves are mainly emitted from the
string loops. Once we obtain the solution to LðtÞ and v̄ðtÞ,
we can derive the energy density of string loops by solving
the evolution equation of energy density of string loops.
The evolution equation can be read from Eqs. (4.14) and
(4.15) with R ≪ H−1 and kð1= ffiffiffi

2
p Þ ¼ 0 for small loops:

_ρloopðli; tÞ ¼ −3Hρloopðli; tÞ þ Peff
ρ∞ðtÞv̄∞ðtÞli

L2ðtÞ fðli; tÞ:

ð5:1Þ

This equation can be clearly explained from the fact that the
dynamics of small loops are decoupled from the Hubble
expansion except for the dilution of loop number density.
The second term in the right-hand side is the source term
from chopping the long strings. We thus obtain

ρloopðli; tÞ ¼ Peffμli

Z
t

ti

dt0
�
aðt0Þ
aðtÞ

�
3 v̄∞ðt0Þ
L4ðt0Þ fðli; t

0Þ: ð5:2Þ

To demonstrate our results, we numerically calculate this
equation without relying on the scaling assumption. For the
purpose of illustration, we also derive the scaling solutions,
where we expect that the loop production function fðli; t0Þ
scales as fðli; t0Þ ¼ t0−1fðxÞ with x0 ¼ li=t0. Then using
aðt0Þ=aðtÞ ¼ ðt0=tÞr, Lðt0Þ ¼ cLt0, and v̄∞ ¼ v̄asym, we can
rewrite the solution as

ρloopðli; tÞ ¼
Peffc4ξ
c4L

μν

t3rl3−3ri
; ð5:3Þ

ν ¼ v̄asymc−4ξ

Z
∞

0

x03ð1−rÞfðx0Þdx0; ð5:4Þ

in the scaling regime. Since cL ∝
ffiffiffiffiffiffiffiffi
Peff

p
, the energy density

of string loops is ∝ P−1
eff .

The string loopswith length l emit GWs in a discrete set of
frequencies fn ¼ 2n=l that are associated with harmonic
modes n (n ¼ 1; 2;…) on the string loop. The averaged
energy of GWs for a mode n emitted per unit time is given by

dEn

dt
¼ PnGμ2; ð5:5Þ

where the averaged power spectra is given by

Pn ¼
Γ

ξðqÞ n
−q; ð5:6Þ

Here, ξðqÞ is the zeta function and Γ ≈ 50 is a numerical
factor [41,121,133,134]. The spectral index q is given by
q ¼ 4=3; 5=3, 2 for GWs from cusps, kinks, and kink
collisions, respectively. Hereafter, we assume that the GWs
are dominantly produced by cusps and take q ¼ 4=3. The
loop length is thus reduced by emitting GWs such as

_l ¼ −ΓGμ: ð5:7Þ

The solution to this equation is l ¼ li − ΓGμðt − tiÞ, where li
is the length of loop produced at a time ti. By substituting this
into the solution of ρloop, we obtain the number density of
string loops nloop as follows:

nloopðl; tÞdl ¼
ρloopðli; tÞ

μli
dli; ð5:8Þ

¼ Peffc4ξ
c4L

ν

t3rðlþ ΓGμðt − tiÞÞ4−3r
dli; ð5:9Þ

where we use the scaling solution of Eq. (5.3) in the second
line. A similar result is obtained from the numerical simu-
lations in the standard NG strings [119,120].
Using the number density of cosmic string loops, we can

estimate the GW spectrum emitted from those cosmic
strings. The total energy density of GWs per unit physical
frequency f can be calculated using

dρGW
df

ðtÞ ¼
Z

t

ti

dt0
�
aðt0Þ
aðtÞ

�
3
Z

l

0

dl nloopðl; t0Þh
�
f
aðtÞ
aðt0Þ ; l

�
;

ð5:10Þ

where ti is the formation time of cosmic strings, i.e., the
time of the phase transition. The spectrum of GWs emitted
by a loop hðfÞ is given as

hðf; lÞ ¼ Gμ2
X∞
n¼1

Pnδðf − fnðlÞÞ; ð5:11Þ

from Eq. (5.5). The present GW spectrum is thus given by

ΩgwðfÞ≡ 8πG
3H2

0

dρGW
d ln f

ð5:12Þ

¼ 8πG2

3H2
0

μ2f
X∞
n¼1

cnðfÞPn; ð5:13Þ

with

cnðfÞ ¼
2n
f2

Z
zi

0

dz
HðzÞð1þ zÞ6 nloop

�
2n

ð1þ zÞf ; t
0ðzÞ

�
;

ð5:14Þ
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where H0 is the Hubble parameter at present and z
(¼ aðt0Þ=aðt0Þ − 1) is the redshift. The infinite sum-
mation in Eq. (5.12) is convergent but makes a logarithmic
contribution up to n ≈ 106 [125,126]. In our numerical
calculations, we directly evaluate the summation up to
n ¼ 102 and approximate the part of n > 102 by integral
with an interpolating function from n ¼ 102 to 1010.
Further, we need the explicit form of the loop production

function fðli=tÞ to calculate the number density of loops
from Eq. (5.1) (or to calculate νr from Eq. (5.4) in the
scaling regime). Based on the conventional practice in the
literature, we assume that the loop production function is
monocromatic function as

fðxÞ ¼ c̃
αL

δðx − αLcξÞ; ð5:15Þ

where x≡ li=t and the overall factor follows from
Eq. (4.19). We also define α≡ αLcξ. Moreover, we should
add a couple of phenomenological factors in the overall
factor. The string loops are produced using a nonzero
center-of-mass energy, which will decrease with the red-
shift. This reduces the total energy of string loops by a
factor of 1=

ffiffiffi
2

p
[135]. In addition, the monocromatic

function does not represent the actual distribution of string
loops. It is shown that the effect of its finite width can be
effectively incorporated by reducing the energy density by
a factor of F ¼ Oð0.1Þ [120,125]. We thus use

fðxÞ ¼ F
fr

c̃cξ
α

δðx − αÞ; ð5:16Þ

with fr ¼
ffiffiffi
2

p
. In the scaling regime, this gives

ν ¼ F
fr

c̃
c3ξ

v̄asymα2−3r; ð5:17Þ

from Eq. (5.4). We take F ¼ 0.1 in our numerical
calculation.
It can be considered that α is at most L=t (¼ cL ∝ P1=2

eff in
the scaling regime). This (or correspondingly α ∼ 0.3Pγ

eff )
is often assumed in the literature [88,132]. However, we
expect that α should scale such as ξ=t. As we previously
commented in the footnote 17, the loop production process
is implemented in two steps. The bottleneck process is
the creation of wiggly structure based on an intercommu-
tation between different strings. Because the correlation
length or a typical curvature of each long string is of the
order ξ, we expect that the loop size is proportional to ξ
rather than L even if the effective intercommutation
probability is significantly smaller than unity. The value
of α that we should consider is under debate even for the
simplest model of cosmic string. In this paper, we adopt
the common assumption of α ¼ 0.1, which is confirmed
by the Nambu-Goto simulations with Peff ¼ 1 [120].

The result of Eq. (5.8) is in good agreement with the
numerical simulations for Peff ¼ 1 with this choice [132].
To calculate the GW signals, we numerically solve

Eqs. (4.22), (4.23), (5.1), and (5.12) with

1

a
da
dt

¼ H0ðΩΛ þ Ωmð1þ zÞ3 þ ΩradGðzÞð1þ zÞ4Þ1=2;
ð5:18Þ

GðzÞ≡ g�ðzÞg4=3s ð0Þ
g�ð0Þg4=3s ðzÞ

; ð5:19Þ

where ΩΛ ¼ 0.685, Ωm ¼ 0.315 [136], and g�ðzÞ (gsðzÞ) is
the effective number of relativistic degrees of freedom for
the energy (entropy) density. The Oð1Þ parameter cξ is
given by Eq. (4.28) for r ¼ 1=2 (2=3) in RD (MD) with an
interpolating function in the period between them.
Before demonstrating our numerical results, we analyti-

cally calculate the amplitude of GW signals at a high
frequency. For a very high frequency, the GWs are mainly
emitted from string loops that are produced in the RD. The
GWamplitude in this regime can be analytically calculated
using the scaling solution. By changing the time variable
from t (or z) to x̃ ¼ lðtÞ=t with lðtÞ ¼ 2n=ð1þ zðtÞÞf,
we can rewrite dz=Hð1þ zÞ ¼ −dt ¼ 2lðxÞdx̃=x̃2. Based
on the scaling solution of Eq. (5.9) and ða=a0Þ ¼
ð2tH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðzÞΩrad

p Þ1=2 in the RD, we obtain

ðΩgwh2ðfÞÞðscalingÞ ≃
128π

9
Ωradh2gðfÞ

Peffc4ξν

c4L

ffiffiffiffiffiffiffi
Gμ
Γ

r
;

ð5:20Þ

≃5.5 × 10−11P−1
eff

ffiffiffi
α

p �
gðfÞ
0.39

��
Gμ
10−12

�
1=2

ð5:21Þ

for α ≫ ΓGμ and a large f (≫ feq), where h ¼
H0=ð100 km= sec =MpcÞ (≃0.674) is the reduced Hubble
parameter. Here, feq is defined by the frequency at which
the corresponding loop length l is equal to ΓGμt for the
mode n ¼ 1 at the matter-radiation equality:

feq ≡ 1

ΓGμteqð1þ zeqÞ
ð5:22Þ

≃ 3.7 × 10−6 Hz

�
Gμ
10−12

�
−1
; ð5:23Þ

where teq and zeq ¼ Ωm=Ωrad are the time and the redshift at
the matter-radiation equality, respectively. In Eq. (5.20), we
include a function gðfÞ that represents the effect of change
of relativistic degrees of freedom. This effect further
reduces the GW amplitude by a factor of
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gðfÞ ¼ G3=4ðzloopðfÞÞG1=4ðzGWðfÞÞ; ð5:24Þ

where zloop and zGW are determined by

tðzloopðfÞÞ ¼ teq
ΓGμ
α

�
f
feq

�
−2
; ð5:25Þ

tðzGWðfÞÞ ¼ teq

�
f
feq

�
−2
: ð5:26Þ

These times are related to the formation time of string loops
that mainly contribute the GW signal for a frequency f and
the time at the GWemission, respectively. The first factor in
Eq. (5.24) comes from the dilution of the number of string
loops by the entropy dilution from the relativistic degrees of
freedom in Eq. (5.3) [121]. The second factor is derived
from the redshift of GWs with the effect of the change of
the relativistic degrees of freedom [137].18 It can be inferred
that zloopðfÞ is before the big bang nucleosynthesis (BBN)
epoch and after the electroweak phase transition in some
parameters of interest.
The result of Eq. (5.20) is correct only for α ≫ ΓGμ,

which includes the case with α ¼ 0.1. The GW amplitude
during the scaling regime in RD becomes independent of α
for a smaller α than ΓGμ. Those behaviors are similar to the
case with P ¼ 1, which one can refer to, e.g., Ref. [132].

B. Numerical results

We numerically solve the extended VOS equation and
calculate the GW spectrum without assuming scaling
solution. The result is shown in Fig. 4 for the case of
Gμ ¼ 10−12, 10−16, and 10−20 with N ¼ 2, 5, 10, and 20.
We assume F-strings with P ¼ 1=N2. We consider α ¼ 0.1
and Nscat ¼ 10. In particular, the case with N ¼ 2 corre-
sponds to Peff ≃ 0.94, which is very close to unity. This
reproduces the standard result for the case of Peff ¼ 1
within an Oð1Þ factor. The resulting spectrum is in good
agreement with the one shown in, e.g., Ref. [132].
The power-law-integrated sensitivity curves for ongoing

and planned GW experiments are plotted according to
Ref. [143], including SKA [47], LISA [48], DECIGO
[144,145], BBO [146], Einstein Telescope (ET) [147,148],
Cosmic Explorer (CE) [149], and aLIGOþ aVirgoþ
KAGRA (LVK) [150,151]. The current constraint from
Parkes Pulsar Timing Array (PPTA) [139] and aLIGO/
aVirgo’s third observing run (LV(O3)) [140] are indicated

by the dense green and red shaded regions, respectively.
The blue box near the bottom of the PPTA constraint
highlights the potential signals of pulsar timing array (PTA)
experiments, such as NANOGrav [141] and PPTA [142].
The GW spectrum shows a peak at a certain frequency,

and below this frequency, it scales as ΩGW ∝ f3=2. The
amplitude of GW and frequency at the peak are approx-
imately given by

ðΩGWh2ÞðpeakÞ ≃ 2.5 × 10−10 × P−1
eff

�
Gμ
10−12

�
1=2

; ð5:27Þ

fðpeakÞ ≃ 1.9 × 10−6 Hz ×

�
Gμ
10−12

�
−1
: ð5:28Þ

It is observed that the dependence on N and Λ (or Peff and
Gμ) is not degenerate around the peak, and thus, we can
determine both if we can observe the spectrum around the
peak. Fortunately, this is within the sensitivity curve for the
GW experiments, such as LISA, for the most parameter
region of interest. We have also shown that the result of
Eq. (5.20) agrees with our numerical results within a limit
of large f.
To compare the standard result for a small intercommu-

tation probability, we also solve the standard VOS model
(that is, ξ ¼ L) by replacing c̃ → c̃Pγ

eff with γ ¼ 1=3 and
with α ¼ 0.3Pγ

eff [132]. The resulting GW spectrum is
shown in Fig. 5 for the same parameters with Fig. 4. The
effect of small intercommutation probability is milder than
the case with the extended VOS model because in this case,
ðΩgwh2ÞðscalingÞ ∝ P−2γ

eff α
1=2 ∝ P−1=2

eff in the scaling regime.

FIG. 4. GW spectra from cosmic string loops calculated using
extended VOS model for the case of Gμ ¼ 10−12; 10−16; 10−20,
with N ¼ 2, 5, 10, 20. We use the relation P ¼ 1=N2 for F-
strings. Green and red shaded regions are excluded by PPTA
[139] and aLIGO/aVirgo [140], respectively. Dense blue region
highlights the potential signals by NANOGrav [141] and PPTA
[142]. The lightly shaded regions represent the future sensitivities
of GW experiments.

18Those contributions are highlighted and considered in the
literature [121,132,137,138] with some confusions or without
any specific clarity on the frequency dependence. In some
instances, gðfÞ ≃ G is used in the limit of large f. To consider
the observable effect of gðfÞ in the spectrum by new degrees of
freedom, the frequency dependence of Eq. (5.24) should be taken
into consideration, which does not seem to be fully discussed
analytically in the literature.
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We show the constraints and sensitivity curves in terms
of Gμ and P−1

eff in Fig. 6 using the extended VOS model.
Each curve represents the lower bound on the parameter
space wherein the predicted ΩGWh2 is greater than the
sensitivity curve at a specific frequency. The green and red
shaded regions are excluded by PPTA [139] and aLIGO/
aVirgo [140], respectively. The dense blue region high-
lights the potential signals by NANOGrav [141] and PPTA
[142]. The constraint on the string tension can be consid-
erably strong for a large P−1

eff by the ground-based GW
experiments, such as aLIGO, aVirgo, and KAGRA. These
experiments can search for GW signals from the scaling
regime in the RD, wherein the spectrum scales asΩGWh2 ∝ffiffiffiffiffiffiffi
Gμ

p
=Peff [see Eq. (5.20)]. On the contrary, the sensitivity

curves do not depend significantly on P−1
eff for other

experiments. This is because the peak frequency of the
GW spectrum is too high to be detected by the latter
experiments at a small Gμ, and in such cases, the GW

signals decrease as ΩGWh2 ∝ ðGμÞ2=Peff for f ≪ fðpeakÞ. If
we consider Peff ≲ 0.1, we can expect signals for aLIGO,
aVirgo, and KAGRA consistently with the constraint from
the PPTA. This is a unique feature of our model; the
amplitude of GW can be enhanced by P−1

eff without shifting
its peak frequency.
We rewrite the sensitivities for Gμ and P−1

eff in terms of Λ
and N by using the relations Eqs. (4.2), (4.4), and (4.5) for
F-strings. Here we take P ¼ 1=N2 though it has an Oð1Þ
uncertainty. The resulting sensitivity curves are shown in
Fig. 7. Here, we treat N as a continuous variable for the
purpose of representation, although it must be an integer.
We find that the present constraint puts an upper bound on
the confinement scale as Λ≲ 2 × 1013 GeV for N ¼ Oð1Þ.
The NANOGrav and PPTA hints favor the parameter
near the threshold of this constraint. There have been several
studies on the GW signals from cosmic strings in this context
[152–154]. We find that our cosmic strings could also explain
the PTA hints when Gμ ∼ 10−10−12 or Λ ∼ 1013−14 GeV for
N ¼ Oð1Þ. Here, it should be noted that

Gμ ≃ 2.8 × 10−14
�

Λ
1012 GeV

�
2

; ð5:29Þ

where we use the lattice result of μ ≃ 4Λ2 for SUðNÞ [73].
The ongoing and planned GW experiments can search

for the signals up to Λ≳Oð108Þ GeV. A large parameter
space, spanning over five orders of magnitude, can be
searched through the GW experiments. It can be inferred
that such an intermediate scale for Λ is naturally realized
mainly because of the dimensional transmutation in the
pure YM theory.
Finally, we discuss the constraint on cosmic strings from

the CMB temperature and polarization data. The energy
density of cosmic strings should be lower than the order 1%
for the total temperature anisotoropy. From the detailed

FIG. 5. Same as Fig. 4 but with the standard VOS model
(ξ ¼ L) and the replacement of c̃ → c̃Pγ

eff with γ ¼ 1=3 and
with α ¼ 0.3Pγ

eff .

FIG. 6. Exclusion plot and future sensitivity curves in Gμ-P−1
eff

plane for ongoing and planned GW experiments. Green and red
shaded regions are excluded by PPTA [139] and aLIGO/aVirgo
[140], respectively. Dense blue region highlights the potential
signals by NANOGrav [141] and PPTA [142].

FIG. 7. Same as Fig. 6 but in Λ-N plane for F-strings, wherein
we treat N as a continuous variable via the relation of Peff ¼
1 − ð1 − PÞNscat with P ¼ 1=N2 and Nscat ¼ 10, although it must
be an integer in a realistic model.
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numerical simulations, the Planck result puts an upper
bound on the string tension as Gμ < 1.1 × 10−7 for the
ordinary Nambu-Goto cosmic strings [155]. The constraint
should be stronger for strings with a small intercommuta-
tion probability because the energy density is ρ∞ ∝ P−1

eff .
However, even if we include this enhancement factor, the
constraint from CMB observations is much weaker than the
present constraint evaluated through the GW experiments.

VI. DISCUSSION AND CONCLUSIONS

We have discussed that cosmic strings or macroscopic
color flux tubes form at the deconfinement/confinement
phase transition in pure YM theory. Depending on the
structure of gauge group, these strings can be understood as
fundamental (F-) strings and wrapped D-brane (which are
referred to as D-strings) in the holographic dual descrip-
tions, and possess a small intercommutation probability of
1=N2 and e−OðNÞ, respectively. We have explained that the
cosmic strings have discrete 1-form symmetry, which
further ensures stability. The 1-form symmetry also implies
thatN cosmic strings can intersect at a baryon vertex for the
case of SUðNÞ. The network of the cosmic strings thus
possess rich properties in the pure YM theory even if we do
not assume brane inflationary scenario or extra dimensions.
We have further discussed the types of cosmic strings
formed in SUðNÞ, SpðNÞ, SOðNÞ, and SpinðNÞYM theory,
and we have explained the implications from electric–
magnetic duality, large N limit, as well as holographic dual
descriptions.
We have considered an extended VOS model to take

into account the small intercommutation probability and
calculate theGWspectrum emitted from cosmic string loops.
The GW signals can be observed through ongoing and
planned GW experiments. Particularly, the SKA and LISA
can observe GW signals if the confinement scale Λ is higher
thanOð1012Þ GeVandOð1010Þ GeV forN ¼ Oð1Þ, respec-
tively. The DECIGO, BBO, CE, and ET could observe
GW signals for Λ≳Oð108Þ GeV. The recently reported
NANOGrav and PPTA hints favor Λ ¼ Oð1013Þ GeV.
Some assumptions should be confirmed through numeri-

cal simulations. The effect of small intercommutation prob-
ability is based on a numerical simulation of Ref. [46].
Although a common procedure used in the literature is the
replacement of c̃ → c̃Pγ

eff with γ ¼ 1=3, the extended VOS
model used in this paper and the aforementioned paper fits in
well with the numerical result, and it seems to be physically
reasonable. These procedures cannot be distinguished by the
numerical results of the aforementioned paper, and thus, a
numerical calculation with a larger simulation box is neces-
sary. Moreover, as far as we know, there is no simulation for
the network with baryon (or monopole) vertices that connect
more than three cosmic strings. The formation of baryon
vertices at the phase transition should also be confirmed
through numerical simulations if the theories with the baryon

vertices, such asSUðNÞ, are considered.We expect that those
properties can be understood by field-theory numerical
simulations for a model of ZN strings, where SUðNÞ
symmetry is spontaneously broken to ZN symmetry by N
adjoint Higgs fields. Another field-theory model is given in
Eq. (3.1) based on the electric–magnetic duality.
These properties, namely the small intercommutation

probability and existence of baryon vertices, are also realized
byF-strings that form after theD-brane inflation. In the brane
inflationary scenarios, bulk modes like radions and dilatons
play essential roles and the extra dimensions are necessary.
Our work provides another motivation to study the conse-
quence of cosmic strings with the small intercommutation
probability in a much simpler but phenomenologically and
cosmologically interesting setup. Particularly, we do not
need to consider extra dimensions for the UV completion.
Moreover, the intercommutation probability is determined
by N in our case, and it is observed that the string tension is
naturally small and does not require fine tuning by the
dimensional transmutation. The GW signals are within the
scope of future GW observations, such as SKA and LISA.
Once the GW spectrum is observed, we can determine the
confinement scale Λ as well as N for the pure YM theory.
We consider the case wherein the deconfinement/con-

finement phase transition occurs after inflation. Through
lattice simulations of the SUðNÞ pure YM theory, the
confinement phase transition is a second-order phase
transition for N ¼ 2 and a first-order transition for N≥3
[156–160].19 The GWs can also be produced from the
collision of nucleated bubbled at the phase transition (see,
e.g., Ref. [24]). This is another source of GW signals in the
pure YM theory. However, the typical frequency is too high
to be detected by GW experiments when the confinement
scale is higher thanOð108Þ GeV. Thus, we can neglect it in
our parameters of interest. The glueballs are also produced
at the phase transition. Because the glueballs are singlet in
the low-energy effective field theory, they should decay
into other particles via higher-dimensional operators. In the
presence of a light modulus, the glueball decay rate is
estimated as Λ6=ð4πmgM4Þ, where mg (∼Λ) is the glueball
mass andM is a cutoff scale [22]. Because we focus on the
case with Λ≳ 108 GeV, the glueballs are expected to com-
pletely decay before the BBN epoch for M ¼ 1016 GeV.
The decay into axions is also efficient if the axion decay
constant is small and/or the glueball mass is large. A recent
work [23] discussed that the glueball can be long-lived in a
model of “thermal squeezeout” and it dilutes cosmological
relics, such as dark matter, by its late-time decay. The early

19The first order phase transition is also expected in the largeN
limit in holographic dualities [33]. (See also Refs. [161–163] for
large N QCD.) ’t Hooft anomaly matching also gives some
implications for the nature of phase transition for pure SU(2)
[164], SUðNÞ YM with adjoint fermions [165,166], and some
QCD-like theories (e.g., [167–169]).
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matter-dominated epoch by the glueball domination may
modify the GW spectrum at a high frequency even for a
large dynamical scale.
Finally, we comment on the reheating after inflation. The

phase transition need not necessarily occur after the
reheating completes. The GWs for most frequencies of
interest are emitted mainly from the string loops that
are generated after the electroweak phase transition. The
number density of string loops are determined using
the scaling solution, which lose information related to
the phase transition. Thus, our results can be applied for the
cases wherein the cosmic strings reaches the scaling
solution well before the electroweak phase transition. In
particular, the phase transition can happen before the
reheating is completed; for instance during the inflation-
oscillation dominated era. Our scenario can be applied to
the case where the maximal temperature of the Universe
(which is usually much higher than the reheating temper-
ature) and/or the Hubble parameter during inflation is
higher than the confinement scale Λ. It is also observed

that the scaling solution of cosmic strings is determined
using the Hubble parameter, and it is independent of the
temperature of the gauge sector (such as glueballs). Thus,
our results do not change even if the temperature of the
gauge sector is different from that of the SM sector.
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