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We extend the results obtained in previous works by Piattella and Park for gravitational lensing in the
McVittie metric by including the effect of the transition from the matter-dominated epoch of the Universe to
the Λ-dominated era. We derive a formula that agrees with the previous results for the McVittie metric at
lowest order and compare the lensing angle predictions obtained from the Schwarzschild approximation,
the McVittie model, and higher order corrections to the McVittie model. In doing this, we test if, beyond the
correction from the accelerated expansion of the Universe, there is a need for including the matter content
of the Universe in modeling lens systems at the redshifts observed in lens systems. We investigate if there is
a need for a modification of the lens equation from these corrections and, if so, to which order and whether
it is measurable. We find that, while the effect is of the same order as the one calculated previously, there is
no significant contribution to the bending angle, as the first order effect is already of order Oðθ4OÞ in the
observed angle.
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I. INTRODUCTION

The matter of whether the cosmological constant Λ has a
significant impact on gravitational lensing and how to
measure its effects has been a source of debate in the
literature [1–6]. The current understanding is that there is a
small effect due to Λ on the bending angle at the lens plane
[2,7–9], although it is too small to be detected in the lens
regimes so far observed [1,6], a correction of order
Oð10−11Þ in the mass estimate of the lens for a typical
lensing system [10,11]; though see Ref. [12] for views that
relate these detections to dark energy equations of state.
One of the main issues around the problem of assessing

the effects of Λ on the bending angle is how to model the
lens in an expanding spacetime and whether the spacetime
metric should incorporate the effects of the expansion of the
Universe, instead of these effects affecting lensing only
through its dependence on angular diameter distances
[3,8,13–15]. One of the paths to model these lenses already
within an expanding spacetime is through the use of the
McVittie metric [7,16].
In [1] theMcVittie metric is used to model the embedding

of the lens in an expanding spacetime. It was shown that, at

the zeroth order, the Hubble flow does not modify the
expression for the bending angle. At first order, however,
there is an effect, with contributions proportional to the
redshifts of the lens and the source. The physical explanation
for this is that the light rays emitted by the source are spread
by the Hubble flow, requiring thus some more convergence,
hence a larger deflection angle, in order to reach the observer.
In [1] this first order correction is computed assuming a de
Sitter space, hence a constant Hubble flow. In this paper, we
extend this calculation by admitting a more realistic cos-
mological model, in whichmatter is present and in which the
Hubble factor grows with the redshift.
The first order corrections to the bending angle (the

leading order being proportional to the compactness of the
lens) computed in [1,10] depend on the assumption of a
constant Hubble factor H0, which accounts for the current
accelerated phase of expansion of the Universe due to a
cosmological constant Λ [17] and is a good approximation
at low redshifts z≲ 0.3 [10]. Current observations of
lensing systems are capable of detecting lens-source sys-
tems where the redshifts involved are of order Oð1Þ [18].
For instance, some lenses have redshifts z > 0.3, which are
outside the regime of validity of this approximation, as well
as lenses at redshifts z > 1 [19], which are well outside
the Λ-dominated era, considering the transition redshift
(from the matter-dominated epoch to the Λ-dominated one)
being given by zΛ ¼ ð2ΩΛ=ΩmÞ1=3 − 1 ≈ 0.67 for the
approximated values Ωm ≈ 0.3 and ΩΛ ≈ 0.7.
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With this in mind, we are motivated to test the impact of
including the effect of matter domination on the deflection
angle calculated from the McVittie metric [1]. This is
already accounted for in the angular diameter distance in
the lens equation [20]; however, as stated previously, when
one goes beyond the low redshift approximation, there are
correction terms in the bending angle.
Here we obtain an explicit, analytic formula for the

angular diameter distance D in a matter þ Λ universe, and
invert this relation in order to calculate the full bending
angle, to order OðD3Þ. We compare our results to the
standard one based on the Schwarzschild metric and to
the first order for the McVittie metric. We also extend
the results obtained in [7], where the higher order correc-
tions were calculated for the first time in the McVittie
metric.
At the end, we find that, while the bending angle is

modified by the higher order terms related to the matter-
dominated epoch, the corrections are of the same order as
the ones previously found by including the effect of the
cosmological constant, which are of small order and should
not modify the standard lensing formalism, thus corrobo-
rating the current consensus on the effect of Λ on
gravitational lensing.

II. DISTANCES IN A UNIVERSE WITH MATTER
AND A COSMOLOGICAL CONSTANT

One can model the dynamics of the large scale expansion
of the Universe with a flat Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetime,

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð1Þ

and a matter content given by a pressureless matter fluid
and a cosmological constant Λ. The dynamics is given by
the Friedmann equation,

H2 ¼ H0½Ωmð1þ zÞ3 þ ΩΛ�; ð2Þ

whereH0 is the Hubble constant and theΩ’s are the density
parameters of pressureless matter and the cosmological
constant.
The McVittie metric in flat spacetime is given by

ds2 ¼ ð1 − μðtÞÞ2
ð1þ μðtÞÞ2 dt

2 þ ð1þ μðtÞÞ4a2ðtÞδijdxidxj; ð3Þ

where μðtÞ≡M=aðtÞρ;M is the mass of the pointlike mass
particle in the spacetime, ρ is the radial coordinate, and aðtÞ
is the scale factor, the same as given in (1).
Following [1], the McVittie metric can be regarded,

sufficiently far from the pointlike object, as a perturbed
FLRW-like metric in the Newtonian gauge,

ds2 ¼ −ð1 − 4μÞdt2 þ ð1þ 4μÞaðtÞ2γijdxidxj; ð4Þ

where the gravitational potential 2μ is given by
2μ ¼ M=aðtÞρ, so it is not an actual perturbative degree
of freedom, as in standard cosmological perturbation
theory. We shall use the form (4) of the metric when
referring to the McVittie metric throughout this paper.

A. Comoving and angular-diameter distances

Using dimensionful quantities, the cosmological distan-
ces of the order cH−1

0 , measured for observers far from the
source object surroundings, described by the metric (4),
should not be affected by the local effects of the mass, as we
should not expect a measurable gravitational interaction
between source and observer at these scales. Thus, there is
no issue in using the metric (1) in place of (4) for far away
observers.
From this assumption, for the derivation of the bending

angle, one needs the angular-diameter distances between
observer O, source S, and lens L. In a universe with matter
and cosmological constant, using Eq. (2), the comoving
distance between S and O, defined as ηSO, is

ηSO ¼
Z

tS

tO

dt0

aðt0Þ ¼
Z

zO

zS

dz0

Hðz0Þ

¼ 1

H0

Z
zS

zO

dz0

½Ωmð1þ z0Þ3 þ ΩΛ�1=2
: ð5Þ

The angular-diameter distance DSO between S and O is
then given by

DSO ¼ 1

ð1þ zSÞ
1

H0

Z
zS

zO

dz0

½Ωmð1þ z0Þ3 þ ΩΛ�1=2
: ð6Þ

This integral can be written as a Gaussian hypergeometric
function, inside the interval defined by jΩm=ΩΛð1þ zÞ3j
≤ 1 [21],

H0DSO ¼ 1

Ω1=2
Λ

2F1

�
1

3
;
1

2
;
4

3
;−

Ωm

ΩΛ
ð1þ zÞ3

�����S
O
: ð7Þ

Since Reðc − b − aÞ ¼ 4=3 − 1=2 − 1=3 ¼ 1=2 > 0, one
can write the hypergeometric function as the so-called
Gauss series [21], and we can then finally write the
comoving and angular-diameter distances as

H0ηSO ¼ ð1þ zÞ
Ω1=2

Λ

Γð4
3
Þ

Γð1
2
ÞΓð1

3
Þ

×
X∞
n¼0

Γð1
2
þ nÞΓð1

3
þ nÞ

Γð4
3
þ nÞn!

�
−
Ωm

ΩΛ
ð1þ zÞ3

�
n
����S
O
;

ð8Þ
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H0DSO ¼ 1

Ω1=2
Λ

Γð4
3
Þ
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ÞΓð1
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Þ
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Γð1
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3
þ nÞn!

�
−
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�
n
����S
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For Ωm ¼ 0 (hence, ΩΛ ¼ 1) and zO ¼ 0, one can check
that

H0ηSO ¼ zS; ð10Þ

which is the result expected for a Λ-dominated (de Sitter)
universe and the comoving distance used in [10].
This general expression is valid up to values z ≈ 1.3 of

the redshift, due to the analytical properties of the series (8).
This makes the expression valid for many of the lens
systems detected so far, as one can check in the surveys
[18,19,22,23].

III. LENSING ANGLE FOR HIGHER REDSHIFTS

The derivation of the bending angle for the McVittie
metric follows the calculations in [1,10], and the lensing
configuration is illustrated in Fig. 1.
We define the radial distance to the lens xL as a

characteristic length scale to which we normalize all the
other distances. So, the equation describing the trajectory of
the light ray from the source to the observer can be written
as follows [1]:

d2Y
dX2

¼ −α
Y

aðXÞ½ðX − 1Þ2 þ Y2�3=2 ; ð11Þ

where Y ≡ y=xL, X ≡ x=xL, and α≡ 2M=xL.
Since we keep the leading order in α, we need just to put

the zero order solution for Y on the right-hand side. That is,
Y ¼ YS. Note that α ¼ Oð10−11Þ, so the approximation
employed is fair. Indeed, as we shall see, corrections due to
a higher Hubble flow at large redshift are way larger than
the contribution of α2. Recall that yS ¼ θSxS, as in figure,
and this is the zero order solution.

For small angles, one can approximate tan θ ≈ θ, and
from the definition of the lensing angle, which is related to
the slope of the radial photons as dy=dx ≈ tan θ for small
angles, Eq. (11) becomes

dθ
dX

¼ −α
YS

aðXÞ½ðX − 1Þ2 þ Y2
S�3=2

: ð12Þ

The bending angle is then defined as

δ ¼
Z

0

XS

dθ
dX

: ð13Þ

In Ref. [1], this equation is solved at zeroth order, which
amounts to the standard result for the deflection by a point
mass [20] and in the first order approximation in α, which
gives the correction due to the embedding of the observer-
lens-source system in a de Sitter space, for which HðzÞ ¼
H0 is constant.
The assumption of a constant Hubble factor means that

we have a Λ-dominated universe throughout the entire
redshift range. This assumption breaks down for redshifts
z > 0.3 in [10], since there is significant contribution of the
matter density to the cosmological distances involved in the
lensing angle.
Lensing systems detected by modern surveys have lenses

with redshifts z > 0.4 and sources with redshifts z > 1
[18], the former well outside the Λ-dominated approxima-
tion, and the latter well outside the matter-Λ transition
redshift, which is constrained at zΛ ≈ 0.6 both from early-
and late-time cosmology [24].
This leads one to ask if the resulting correction to the

lensing angle obtained, for instance, in Eq. (60) of [1], when
calculated for lensing systems at higher redshifts, is sig-
nificantly underestimated due to a failure of the low redshift
approximation. In the following subsection, we obtain
an analytic expression for zðXÞ and integrate the resulting
righ-hand side of (12) to obtain an expression for the
bending angle including the effects of the matter phase.

A. General expression for the bending angle

In Eq. (12) we must make the dependence aðXÞ explicit.
In order to achieve this, we first change to the redshift, since
aðXÞ ¼ 1=½1þ zðXÞ�, then we expand the inverse function
XðzÞ in a series of powers of z. Since XðzÞ is a monoton-
ically increasing function of the redshift, it is invertible.
One can then obtain an inverse function from the

coefficients of the series (8) or by the inverse power series
of (7). This is best done through computational methods,
such as using Mathematica.
We truncate the inverse power series to third order and

obtain explicitly

FIG. 1. Lensing configuration. The comoving distance to the
lens L is taken as a characteristic scale. The actual position of the
source S is yS.
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XðzÞ≡ ηðzÞ
xL

↔ zðH0xLXÞ ¼ X−1ðzÞ;

⇒ zðXÞ ¼ H0xLX þ a1ðH0xLXÞ2 þ a2ðH0xLXÞ3; ð14Þ

where the numerical values of the coefficients a1 and a2 can
be found in the Appendix.
Using this approximation for the redshift, Eq. (12) then

becomes

dθ
dX

¼ −α
YS½1þH0xLX þ a1ðH0xLXÞ2 þ a2ðH0xLXÞ3�

½ðX − 1Þ2 þ Y2
S�3=2

:

ð15Þ

One can check that Eq. (15) reduces at first order in X to
Eq. (53) of Ref. [1].

We now use the series (8) to write xL explicitly as a
function of the lens redshift zL and denote by b2, b3 the first
coefficients of this expansion. Again, we keep the approxi-
mation to third order in the redshift of the lens. Our final
expression for dθ=dX is then

dθ
dX

¼ −αYS

½ðX − 1Þ2 þ Y2
S�3=2

½1þ ðzL þ b1z2L þ b2z3LÞX

þ ða1z2L þ 2a1b1z3LÞX2 þ a2ðzLXÞ3�: ð16Þ

Integrating this equation from the origin to the source, as
defined in Eq. (13), we obtain the bending angle. Here we
write the leading order contribution in zL as

δð3Þ ¼ αYS

"
−

2a1b1XSðY2
S − 1Þ

Y2
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
S − 2XS þ Y2

S þ 1
p −

2a1b1ðY2
S þ 1Þ

Y2
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
S − 2XS þ Y2

S þ 1
p þ 2a1b1 log

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
S − 2XS þ Y2

S þ 1

q
− XS þ 1

�

þ a2X2
Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
S − 2XS þ Y2

S þ 1
p þ a2XS

Y2
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
S − 2XS þ Y2

S þ 1
p −

5a2XSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
S − 2XS þ Y2

S þ 1
p þ 2a2ðY2

S þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
S − 2XS þ Y2

S þ 1
p

−
a2ðY2

S þ 1Þ
Y2
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
S − 2XS þ Y2

S þ 1
p þ 3a2 log

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
S − 2XS þ Y2

S þ 1

q
− XS þ 1

	

þ b2XS

Y2
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
S − 2XS þ Y2

S þ 1
p −

b2ðY2
S þ 1Þ

Y2
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
S − 2XS þ Y2

S þ 1
p

#
z3L þOðz2LÞ: ð17Þ

The final result for the third order correction to the observed
angle θO in terms of redshift of source and lens zS, zL, and
observed angle θO is obtained by using the thin lens
approximation ys ≈ θOxS and the distance relation (8)
H0xS ¼ zS þ b1z2S þ b2z3S. The full result is reported in
the Appendix.
In comparison to the recent paper on de Sitter and anti–

de Sitter spacetimes [9], where the correction to third order
is calculated in a strictly de Sitter background, the terms
where there is coupling to the cosmological constant
ΛOðθÞ are replaced by the series expansion coefficients
ai and bi, which, in turn, are functions of ΩΛ and Ωm, from
the relation (6).
One may note that for arbitrarily small YS the corrections

(see the Appendix) become unbounded. This is the case for
Einstein ring systems, where there is an idealized perfect
alignment between source and lens. In avoiding this, we
further make the approximation yS ≈ xLθO motivated by
the fact that the deflection happens almost completely, at
order OðαÞ, in the lens plane [1], and thus yS ≈ yL. This
avoids any type of divergence when treating small source
positions in relation to the lens.
In Fig. 2, we show the ratio δ=M as a function of zS, for

fixed lens redshift zL and an observed angle θO ¼ 0.5” of

the system. As the redshift of the lens increases, the
bending angle is bigger for the same source redshift.
The effect, however, gets smaller as the redshift of the
lens increases. For higher source redshifts, the correction
asymptotes to a constant value, as the higher order terms
become increasingly small. One can also see that, for

FIG. 2. Plots for the ratio δ=M for different values of the
observed angle θO, with the lens at fixed redshift zL.
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systems with a higher lens redshift, the correction changes
sign, as one would expect from the Hubble flow effect of
“unbending” the angle, as already mentioned in [1].
We note that, as the lens redshift approaches the source

redshift, zL=zS → 1, the higher order correction increases
in absolute value. This can be inferred analytically, from the
form of Eq. (16), where higher order corrections are of
order znL, but there is an overall factor zL=zS < 1. This ratio
is, of course, strictly increasing as zL increases. For
zS ¼ zL, the bending angle has a singular behavior, as
(13) is ill defined. Realistically, however, cosmological
strong lensing systems cannot be modeled for zL=zS ≈ 1, as
the thin lens approximation stops being valid.
One can see from Fig. 3 that the correction increases

significantly for higher values of zL, which is expected,
since the average redshift of lenses is higher than the
transition redshift zΛ [19].
It is clear from the plots that the higher order correction

δð3Þ is at most of the same order as the first order correction
found in Ref. [1]. Since this correction is already of order
Oð10−11Þ arc sec for typical lensing systems, we should not
expect that this new correction would be measurable by any
current observation, as there are already significant sys-
tematic errors from modeling the surface density profile of
the lens and its relation to the inferred mass from the
luminosity [19].
Nonetheless, if one is to include the effect of the

cosmological constant in the bending angle calculation

beyond the angular-diameter distance, there is a significant
contribution from the cosmological behavior around the
transition redshift zΛ, which shows that the inclusion of the
matter component in the calculation of the Hubble param-
eter becomes important for redshifts higher than this
transition epoch, which is usual for current observed
lensing systems.

IV. CONCLUSION AND FINAL REMARKS

We have calculated the higher order corrections, due to
the presence of matter in the cosmological model, to the
bending angle α for a lens system, modeled as the pointlike
source in an expanding cosmological spacetime through the
McVittie metric. Previous results using the McVittie and
similar metrics [3,10] assumed a de Sitter universe with
constant Hubble parameter H0, which emulates the
late-time behavior of the Universe. To include the full
matter þ Λ behavior of the late Universe, however, one
must assume a nonconstant Hubble parameter HðzÞ, which
depends also on the matter content of the Universe.
We found that the inclusion of the full matter þ Λ energy

content of the Universe in the McVittie metric significantly
alters the corrections to the usual bending angle assuming a
Schwarzschild lens, with terms of the same order of
correction in the bending angle as the one found in [10],
expanded to third order in the lens redshift.
The first order correction, however, is small for usual

lens systems, of order Oð10−11Þ for an average lensed
quasar system. Thus, since the previous results of
[1,11,13,25] already stated that the correction should not
influence the results for the usual lensing formalism, the
result of this work strengthens this statement, showing that,
even beyond lensing order and with a full late-time
cosmological model, the corrections to the bending angle
are negligible.
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APPENDIX: FULL LENSING ANGLE TO THIRD
ORDER

For completeness, here we show the full bending angle
calculation for a lens system in the thin lens approxima-
tion, yS ≈ θOxL.

FIG. 3. Ratio of the full solutions to third and first order
corrections δð3Þ and δð1Þ. One can see that the correction is of the
same order of the first order approximation and increases for
higher values of zL, as expected. The correction increases
significantly as zS=zL → 1.
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δð3Þ ¼ α

θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzS þ b1z2S þ b2z3S − 1Þ2 þ θ2

q f1 − zS − b1z2s − b2z3S − ððzS þ b1z2s þ b2z3S − 1Þ − θ2ÞzL

þ ½a1ð1þ θ2 þ ðθ2 − 1ÞðzS þ b1z2s þ b2z3SÞ
− θ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzS þ b1z2s þ b2z3S − 1Þ2 þ θ2

q
ð− logð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzS þ b1z2s þ b2z3S − 1Þ2 þ θ2

q
− ðzS þ b1z2s þ b2z3S − 1ÞÞÞÞ

− b1ðb1z2s þ b2z3S − θ2 þ zS − 1Þ�z2L þ ½2a1b1ð1þ θ2 þ ðθ2 − 1ÞðzS þ b1z2s þ b2z3SÞ
− θ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzS þ b1z2s þ b2z3S − 1Þ2 þ θ2

q
ð− logð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzS þ b1z2s þ b2z3S − 1Þ2 þ θ2

q
− ðzS þ b1z2s þ b2z3S − 1ÞÞÞÞ

− b2ðb1z2s þ b2z3S − θ2 þ zS − 1Þ
− a2ðθ2ðzS þ b1z2s þ b2z3SÞ2 − 5θ2ðzS þ b1z2s þ b2z3SÞ þ zS þ b1z2s þ b2z3S þ 2θ4 þ θ2 − 1

þ 3θ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzS þ b1z2s þ b2z3S − 1Þ2 þ θ2

q
ð− logð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzS þ b1z2s þ b2z3S − 1Þ2 þ θ2

q
− ðzS þ b1z2s þ b2z3S − 1ÞÞÞÞ�z3Lgj0zS ; ðA1Þ

where the constants a1, a2, b1, and b2 are given by

a1 ¼ 0.225; a2 ¼ 0.15; b1 ¼ 0.225; b2 ¼ 0.04875: ðA2Þ
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