
Modeling intrinsic galaxy alignment in the MICE simulation

Kai Hoffmann ,1,2,* Lucas F. Secco,3 Jonathan Blazek,4 Martin Crocce,1,5 Pau Tallada-Crespí,6,7 Simon Samuroff,4

Judit Prat,3,8 Jorge Carretero,9,7 Pablo Fosalba,1,5 Enrique Gaztañaga,1,5 and Francisco J. Castander1,5

(DES Collaboration)
1Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain

2Institute for Computational Science, University of Zurich, Winterthurerstr. 190, 8057 Zürich, Switzerland
3Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA

4Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
5Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain

6Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT),
Avenida Complutense 40, 28040 Madrid, Spain

7Port d’Informació Científica (PIC), Campus UAB, C. Albareda s/n, 08193 Barcelona (Barcelona), Spain
8Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA
9Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology,

Campus UAB, 08193 Barcelona, Spain

(Received 29 June 2022; accepted 18 October 2022; published 21 December 2022)

The intrinsic alignment (IA) of galaxies is potentially a major limitation in deriving cosmological
constraints from weak lensing surveys. In order to investigate this effect, we assign intrinsic shapes and
orientations to galaxies in the light-cone output of the MICE simulation, spanning ∼5000 deg2 and
reaching redshift z ¼ 1.4. This assignment is based on a semianalytic IA model that uses photometric
properties of galaxies as well as the spin and shape of their host halos. Advancing on previous work, we
include more realistic distributions of galaxy shapes and a luminosity-dependent galaxy-halo alignment.
The IA model parameters are calibrated against COSMOS and BOSS LOWZ observations. The null
detection of IA in observations of blue galaxies is accounted for by setting random orientations for these
objects. We compare the two-point alignment statistics measured in the simulation against predictions from
the analytical IA models NLA and TATTover a wide range of scales, redshifts, and luminosities for red and
blue galaxies separately. We find that both models fit the measurements well at scales above 8 h−1 Mpc,
while TATT outperforms NLA at smaller scales. The IA parameters derived from our fits are in broad
agreement with various observational constraints from red galaxies. Lastly, we build a realistic source
sample, mimicking DES Year 3 observations and use it to predict the IA contamination to the observed
shear statistics. We find this prediction to be within the measurement uncertainty, which might be a
consequence of the random alignment of blue galaxies in the simulation.
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I. INTRODUCTION

Weak gravitational lensing, able to directly probe dark-
matter-dominated large-scale structures in the Universe,
has become a core cosmological probe [1–3]. In the coming
years, next-generation experiments, including Euclid, the
Vera C. Rubin Observatory, and the Nancy Grace Roman
Space Telescope, will rely on weak lensing to provide a
substantial part of their overall constraining power.
However, weak lensing analyses bring several challenges,
including both measurement methodology and understand-
ing complex astrophysical effects. One of the main astro-
physical effects is the intrinsic alignment (hereafter also

referred as IA) of source galaxies [e.g., [4–7]], which
contaminates the alignment signal induced by gravitational
lensing. Understanding how IA affects the observed weak
lensing statistics is becoming increasingly important as the
statistical errors are decreasing strongly with the larger
volumes probed by modern surveys. It has been shown that
ignoring IA can bias the constraints on cosmological
parameters from these lensing surveys significantly [8].
The IA contribution therefore needs to be included in the
modeling of the observed data when deriving cosmological
constraints from weak lensing observations.
Analytic IA models [e.g., [9–13]] are typically used to

mitigate the impact of IA on lensing measurements.
However, it is not yet known which IA models are
sufficiently accurate to avoid biasing cosmological*kai.d.hoffmann@gmail.com
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parameter inference. Alternatively, employing overly com-
plex modeling can remove cosmological constraining
power and might introduce parameter degeneracy. It is
thus important to test if current IA models satisfy the
accuracy requirements for the upcoming observations. One
possibility to do so is provided by direct measurements of
IA in spectroscopic surveys, as these surveys enable a clear
separation between foreground and background galaxies.
Such a separation is not possible with the less accurate
photometric redshift estimates that are used in weak lensing
surveys. Direct measurements of IA have been made in
several spectroscopic surveys, including SDSS, WiggleZ,
BOSS, KiDSþ GAMA, and PAU [14–22], and revealed
inaccuracies of the analytic IA models, in particular at small
scales. These direct observations further showed that the IA
signal depends strongly on the luminosity and color range
probed by a given galaxy sample, indicating that the shapes
and orientations of galaxies are affected by the same
evolutionary processes (e.g., merging and cold gas accre-
tion) that determine the photometric properties of galaxies.
This conclusion lines up with results from hydrodynamic
simulations [e.g., [23]]. The alignment contributions to the
lensing signal are therefore expected to depend strongly on
the photometric properties as well as on the redshift of the
source samples used in weak lensing analysis. An assess-
ment of how strongly inaccuracies of analytical IA models
may bias the cosmological constraints derived from lensing
surveys can therefore not be derived from the current
spectroscopic IA observations, which are focused mainly
on red galaxies at relatively low redshifts (z≲ 0.5).
This lack of observational IA constraints may be filled by

cosmological simulations, which can provide insights into
IA behavior and allow for testing of modeling and analysis
methods in a realistic setting. Cosmological hydrodynamic
simulations of galaxy formation can predict the alignment
of galaxies as a function of color and luminosity up to high
redshifts [24–28]. However, their relatively low resolution
as well as the assumptions involved in the implementations
of galaxy formation processes may impose a bias on the IA
constraints derived from these simulations, which has not
been investigated so far. In addition, the volumes covered
by these simulations are several orders of magnitudes
below those probed by lensing surveys due to computa-
tional limitations, which inhibits investigations at the large
scales probed in observations.
The need for simulating IA in large cosmological

volumes promoted the development of models, which
assign intrinsic shapes and orientations to galaxies that
were placed in dark-matter-only simulations using approxi-
mate methods. These models (hereafter referred to as
semianalytic IA models) are based on the assumption that
each galaxy can be described either as a disc or as an
elliptical object. Discs are thereby commonly assumed to be
perfectly circular and oriented perpendicular to their host
halos’ angular momentum, while ellipticals are assumed to

have the same projected 2D shape and orientation as their
host halo [29,30].While assuming that all galaxies are discs,
[31] added more realism to the IA modeling by introducing
a disc thickness as well as a misalignment between the disc
and their host halos’ angular momentum, as suggested by
hydrodynamic simulations [32]. This misalignment
strongly reduced the predicted amplitude of the IA two-
point statistics, bringing it in agreement with COSMOS-17
observations. Heymans et al. [33] further advanced the
semianalytic IA modeling by considering mixed popula-
tions of discs and ellipticals in their simulation, while
applying a galaxy-halo misalignment only to the disc
population. Okumura and Jing [34], Okumura et al. [35]
found that a misalignment between ellipticals and their host
halo is needed in order to reproduce the observed alignment
signal of luminous red galaxies (hereafter referred to as
LRGs) in the Sloan digital sky survey (hereafter referred to
as SDSS). These different semianalytic IA models only
considered central galaxies, for which information on halo
shape and angular momenta could be obtained from the
underlying dark matter simulation. Joachimi et al. [[36,37]
hereafter jointly referred to as J13] were the first to add
satellite galaxies to the semianalytic IA modeling, using
constraints on the radial alignment of satellites with respect
to their host halos center from a hydrodynamic simulation
[38]. Considering both, elliptical as well as disc galaxies,
J13 applied their IA model on galaxies from a semianalytic
model of galaxy formation imposed on the Millennium
Simulation, which exceeded theN-body simulations used in
previous works in resolution and volume. They showed that
variations of the model parameters controlling the disc
thickness and the galaxy-halo misalignment have a signifi-
cant impact on the predicted IA contamination in the lensing
signal. These authors further pointed out that the ellipticity
distribution for late-type galaxies in their simulation does
not reproduce the observed lack of circular face-on disc
galaxies. A more detailed overview on semianalytic IA
models can be found in [5]. More recently, [39] applied the
model of J13 on a catalog of galaxies from a semianalytic
model of galaxy formation that was run on a simulation
from the Elucid project, which matched the millennium
simulation in volume but exceeds its resolution signifi-
cantly. In contrast to previous works, this IA simulation
included not only intrinsic galaxy ellipticities, but in
addition, gravitational shear derived from ray tracing, which
allowed for direct predictions of the IA contributions to the
lensing signal from the Kilo-Degree Survey (KiDS) and the
Deep Lens Survey.
Overall, these different works predicted small but sig-

nificant contributions of the IA to future lensing surveys.
However, these predictions may be affected by different
shortcomings in the IA implementation, which we aim to
address in this work with the following three steps: (1) We
use a new model for the intrinsic galaxy shapes, which
reproduces the observed galaxy axis ratio distribution from
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the COSMOS survey over wide ranges of redshifts, galaxy
luminosities, and colors, accounting for the lack of circular
objects; (2) we calibrate the semianalytic IA model for the
first time against observational constraints from the BOSS
LOWZ survey, provided by Singh and Mandelbaum [[21]
hereafter referred to as SM16], taking into account the
luminosity dependence of the observed signal by introduc-
ing a luminosity dependence in the galaxy-halo misalign-
ment for satellite galaxies; (3) we run this new IA model on
the light-cone output of the MICE Grand Challenge
simulation [40–42], which provides lensing information
together with mock galaxies generated with a hybrid
approach of halo occupation distribution modeling and
halo abundance matching that was calibrated to match
observational constraints on galaxy luminosity and color
distributions as well as the galaxy clustering. The MICE
light-cone covers one octant of the sky and reaches up to
redshift z ¼ 1.4, which allows us to create the largest IA
simulation produced so far.
We use this simulation for a detailed investigation of the

accuracy of two analytical IA models that are applied in
current cosmological weak lensing analyses: the nonlinear
alignment (NLA) model [10,13,15,43] and the tidal align-
ment and tidal torquing (TATT) model [9]. We therefore
compare these models with measurements in MICE over
wide ranges of scales, redshifts, galaxy luminosities, and
colors. We further compare constraints on the model
parameters derived from the simulation against observa-
tional constraints in luminosity and redshift ranges in which
the simulation was not calibrated. Lastly, we construct a
mock sample resembling Metacalibration [44], the sample
used in the analysis of the first three years of data from the
Dark Energy Survey (DES), in order to predict the IA
contamination in current observations.
The paper is organized as follows. In Sec. II, we

introduce the different two-point statistics used in this
work together with the two analytical IA models, NLA and
TATT. Section III describes the MICE simulation, the
spectroscopic mock BOSS LOWZ, and the photometric
DES-like samples constructed from the MICE galaxy
catalog as well as the COSMOS data that was used in
the calibration of the galaxy shapes in MICE. Our method
for modeling these shapes is described and validated in
Sec. IV, while the modeling of galaxy orientations is
described and validated in Sec. V. In Sec. VI, we compare
IA two-point statistics measured in MICE using true
redshifts against predictions from the NLA and TATT
models. In Sec. VII we study the IA contribution to the
weak lensing signal in a DES-like photometric sample, as
predicted by our simulation. We finally summarize and
discuss our findings in Sec. VIII.

II. CORRELATION FUNCTIONS

The two-point correlation function of the galaxy shear is
the main probe of lensing surveys and has further been used

for the direct detection of IA in spectroscopic data sets. We
therefore focus on this type of statistic for the calibration of
the IA signal in MICE and for deriving predictions for the
IA contamination in weak lensing observations from the
simulation.
Before introducing the specific shear correlations used in

this work, let us define the shear itself. In weak lensing
studies, galaxies are approximated as 2D ellipses. The
shapes and orientations of these ellipses are fully described
by the shear, which is commonly defined as a complex
spin-2 vector γ ¼ γ1 þ iγ2 ¼ ϵ expði2ϕÞ. The galaxy ellip-
ticity ϵ ¼ ð1 − q2DÞ=ð1þ q2DÞ is defined via the 2D axis
ratio q2D ¼ B2D=A2D, where A2D and B2D are the absolute
value of the major and minor axis vectors of the ellipse
respectively. The galaxy orientation angle ϕ is defined as
the angle between one of the two principle axis and an
arbitrary reference axis, as we will specify later on.

A. Definitions and estimators

1. Projected galaxy-galaxy, galaxy-shear, and
matter-shear correlations (wgg,wg+ ,wm+)

The projected galaxy-shear correlation is commonly used
for direct measurements of IA in spectroscopic surveys
as it provides a high signal-to-noise ratio compared to the
angular shear statistics that are commonly employed in
weak lensing cosmology, while being only weakly sensitive
to redshift space distortions [e.g., [6,45]]. In our work, we
use this statistic to calibrate the IA model in MICE against
observational constraints derived from the BOSS LOWZ
sample by SM16. In addition, we study the projected
galaxy-galaxy correlation to validate the mock BOSS
LOWZ samples constructed from MICE that are used for
the calibration. When measuring these correlations, we
follow SM16 by studying the cross-correlation between a
shape sample S, consisting of the galaxies whose IA signal
we want to measure and a density sample D, which is used
as a tracer for the underlying matter distribution.
The galaxy-galaxy cross-correlation function is defined

as ξggðrÞ≡ hδSgδDg iðrÞ, where δSg and δDg are the galaxy
density contrasts of the shape and density samples, respec-
tively, separated by the distance r, and h…i is the ensemble
average.
We measure this correlation from the data using the

estimator from Landy and Szalay [46],

ξ̂gg ¼
ðS − RSÞðD − RDÞ

RSRD
¼ SD −DRS − RDSþ RDRS

RSRD
:

ð1Þ

Each term in the numerator and denominator on the right-
hand side of this equation stands for the counts of galaxy
pairs that are separated by r. RS and RD are thereby samples
of random points that are constructed to follow the radial
probability distribution NðdÞ of the S and D samples,
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respectively, where d is the comoving distance from the
observer. We smooth theNðdÞ distribution over 20h−1 Mpc
with a top-hat window function to reduce the impact of
cosmic variance and tested that reducing the window size to
10h−1 Mpc has only a negligible impact on the signal
compared to the estimated errors on the signal.
Analogously to the galaxy-galaxy correlation, one can

define the galaxy-shear correlation as ξgþ=×ðrÞ ¼
hδDγþ=×iðrÞ. The shear is here defined specifically for
each δD—γ pair considered in the average h…i such that
the orientation angle is the angle between the galaxies’
major axis and the distance vector r; i.e., ϕ0 ¼ ϕ − ϕr. In
this coordinate system, the shear components are denoted
as γ ¼ γþ þ iγ×. Radial (ϕ0 ¼ 0) and tangential (ϕ0 ¼ π=2)
alignment then lead to γþ ¼ 1 and γþ ¼ −1, respectively,
with γ× ¼ 0. An alignment of ϕ0 ¼ π=4 and ϕ0 ¼ −π=4
lead to γ× ¼ 1 and γ× ¼ −1, respectively, with γþ ¼ 0.
Following SM16, we focus our analysis on ξgþ, which we
measure using a variation of Eq. (1) given by Mandelbaum
et al. [19],

ξ̂gþ ¼ SþðD − RDÞ
RSRD

¼ SþD − SþRD

RSRD
; ð2Þ

with

SþX ¼
X
i;j

γþðijjÞ; ð3Þ

where γþðijjÞ ¼ Re½γ expf−i2ϕij
r g� is the (þ) component

of the shear of a galaxy i in sample S, defined with respect
to the vector r pointing to position j in sample X, where
ϕij
r is the orientation angle of r at the position i and X refers

to either D or RD.
So far, we introduced ξgg and ξgþ (jointly referred to ξgx

in the following) as isotropic quantities that are averaged
over all orientations of r. In order to obtain the projected
correlations, we measure ξgx first as a two-dimensional
quantity by separating the distance vector r ¼ r2 − r1
between two points at position r1 and r2 into a line-of-
sight and a transverse (or projected) component. The line-
of-sight vector is thereby defined as n≡ ðr1 þ r2Þ=2. The
line-of-sight and transverse components are then obtained
as rΠ ¼ r · n̂ and rp ¼ ðr2Π − r2Þ1=2, respectively. For the
measurements, we follow SM16 by using 25 logarithmic
bins in the interval 0.1 < jrpj < 200 h−1 Mpc and 20
linear bins in the interval 0 < jΠj < 60 h−1 Mpc. The
projected correlation is then given by

wgxðrpÞ ¼
Z

Πmax

−Πmax

ξgxðrp;ΠÞdΠ; ð4Þ

where wgx stands for wgg and wgþ. Note that the projected
matter-shear correlation wmþ, which we investigate in
Sec. VI, is defined analogously to wgþ, while the density
sample in Eq. (2) is replaced by a random subsample of the
dark matter particle distribution in the simulation.

Errors on the measurements of wgg, wgþ, and wmþ are
estimated using jackknife resampling. The MICE octant is
therefore split intoNJK ¼ 88 angular subregions, which are
defined as healpix pixels with Nside ¼ 8 (see Fig. 26). The
covariance is then estimated as

CJK
ij ¼ ðNJK − 1ÞhΔiΔji; ð5Þ

with Δi ¼ wJK
i − wi, where wi is the projected correlation

measured in the rp bin i on the full area, wJK
i is the same

measurement but neglecting one jackknife subregion, and
h…i is the average over the NJK measurements of Δi.
When measuring the projected correlations, we use the
same healpix subregions to organize the data in a one-
dimensional tree structure in order to accelerate the search
of galaxy pairs that enter the estimators in Eqs. (1) and (2).
We have verified that the angular correlations measured by
our code match corresponding measurements from the
public code TreeCorr1 [47].

2. Angular shear-shear correlation

The real-space angular shear-shear cross-correlation
between galaxy samples in different redshift bins A and
B is one of the main observables used for weak lensing
tomography in current surveys such as the DES. The shear
field gives rise to a pair of two-point correlations that
preserve parity invariance, defined as ξABþ ≡ hγAγ�Bi and
ξAB− ≡ hγAγBi, where h…i is the average over the products
of all galaxy pairs that are separated by an angle θ. With the
(þ=×) decomposition of the complex shear, these corre-
lations can be written as

ξAB� ¼ hγ̃Aþγ̃Bþi � hγ̃A×γ̃B×i: ð6Þ

We define γ̃ ≡ −γ, following the literature convention in
weak lensing cosmology, according to which γ̃þ (often
denoted as γt) ¼ 1 indicates perfect tangential alignment
(see Kiessling et al. [5] for a discussion of differences
between shear definitions in weak lensing and IA studies).
We further follow literature conventions for the notations of
the correlations ξAB� and ξgþ. Note here that the subscript þ
has different meanings in both cases. For ξAB� , the þ refers
to the addition of the × term in Eq. (6), whereas for ξgþ, it
refers to the radial shear γþ.
We measure ξAB� in our mock DES-like source sample

using a similar estimator as in the analysis of DES Y3 data
[e.g., [48]] but with significant simplifications, which can
be made because of the absence of observational effects in
MICE. In detail, the response factor and weight associated
to each galaxy’s shear are set to unity, while the mean shear
of each sample is negligible. This simplified estimator can
be written as

1https://github.com/rmjarvis/TreeCorr.
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ξ̂AB� ðθÞ ¼ SAþSBþ � SA×SB×
SASB

; ð7Þ

with

SAþSBþ ¼
X
i≠j

γAþðijjÞγBþðjjiÞ: ð8Þ

SA×SB× is defined analogously, and SASB is the number of
galaxy pairs between the sample A and B that are separated
by θ. Note that this estimator does not use pair counts
between random samples in the denominator in contrast
to the ξgþ estimators. The sums are taken over pairs for
which the angular separation is in the range jθ − Δθj
and jθþ Δθj. Both ξABþ and ξAB− are measured using 20
logarithmically spaced angular bins between 2.50 and 2500,
using TreeCorr. The data covariance matrix estimate and
cosmology inference are described in Sec. VII C.

B. Analytical modeling

1. NLA and TATT models for IA

In weak lensing analyses, the observed shear is described
as the superposition of a component induced by gravita-
tional lensing (γG) and a component related to the galaxies
intrinsic ellipticity (γI); i.e., γ ¼ γG þ γI . The contribution
of the intrinsic shear to the observed shear correlations
is most commonly described analytically using the NLA
model [13,43] and the more recent TATT model [9].
Both models are based on the assumption that the galaxy
alignment is induced by the tidal tensor of the large-scale
matter distribution,

sijðkÞ ¼
�
k̂ik̂j þ

1

3
δij

�
δðkÞ: ð9Þ

The TATT model uses a perturbative approach in which the
intrinsic galaxy shear is expressed via the tidal tensor as

γ̄Iij ≃ A1sij þ A1δδsij þ A2sikskj: ð10Þ

The free parameters of the model, A1, A2, and A1δ, are
effective parameters that capture the total response of galaxy
shape to the corresponding combination of cosmic tidal
and density fields. In this framework, A1 and A2 capture
the direct impact of tidal alignment and tidal torquing,
respectively, as well as contributions from any small-scale
astrophysical effects that produce the corresponding
response. Similarly, A1δ includes the impact of density
weighting-the fact that we observe IA only at the location of
galaxies-as well as other potential effects that can change its
value from what we would expect if only density weighting
contributed. All three of these IA parameters can depend on
galaxy redshift, luminosity, and potentially other properties.
The NLA model corresponds to the TATT model without

contributions from tidal torquing; i.e., ðA2; A1δÞ ¼ ð0; 0Þ.
Finally, because we always use the galaxies shape sample,
the TATT model can be applied to describe measurements
of wmþ, even though this statistic correlates with the
unbiased matter density field. We note that this statistic
would not capture the impact of higher-order biasing and
correlations of these bias terms with IA. However, these
contributions are expected to be small and are currently not
included in TATT implementations applied to weak lensing
data (e.g., [1]).

2. Prediction for wm+

One goal of our work is to obtain predictions for the
IA model parameters by fitting a model for the projected
matter-intrinsic shear correlation wmþ against measure-
ments in the MICE simulation. By studying the matter-
shear instead of the galaxy shear correlation, we circumvent
the modeling of galaxy bias, which would add uncertainties
to our analysis. Besides the bias, the gravitational shear γG

can also thereby be neglected since we can separate it out in
the simulation signal. In any case, its effect on wmþ would
be negligible by construction since the correlations are
studied for pairs with line-of-sight distances jrΠj <
60h−1 Mpc over which gravitational lensing contributions
should be weak.
We model wmþ using a Hankel transformation of the

position-intrinsic galaxy shear power spectrum and the
Limber approximation

wmþ ¼ −
Z

∞

0

dk⊥k⊥
2π

J2ðk⊥rpÞPmIðk⊥rpÞ; ð11Þ

where J2 is the second-order Bessel function of the first
kind. We compute this transformation by using the code
Fast-PT2 [49,50]. The matter position-intrinsic galaxy shear
power spectrum PmI ¼ hδmγIi is thereby set by the intrinsic
alignment parameters as detailed in Blazek et al. [9].

3. Prediction for ξ�
The modeling of the ξ� measurements in our mock DES-

like catalog in MICE is more complex than in the case of
wmþ since we now need to take into account the gravita-
tional as well as the intrinsic component for the observed
shear, which are superposed as γobs ¼ γG þ γI. Inserting
this superposition into the definition of the shear-shear
correlation between two redshift bins A and B leads to the
emergence of several terms in ξ�,

ξABobs ¼ ξABGG þ ξABGI þ ξABIG þ ξABII : ð12Þ

Observationally, these terms cannot be separated from each
other, and hence, they need to be modeled when extracting

2https://github.com/JoeMcEwen/FAST-PT.
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cosmological information from the measurements.
However, the MICE simulation allows us to measure each
of these terms separately to investigate their contribution to
the observed signal in mock surveys constructed from the
simulation.
In general, the predictions for the different terms of the

angular shear correlation are obtained by

ξAB� ðθÞ ¼
X
l

2lþ 1

2πl2ðlþ 1Þ2 ½G
þ
l;2ðcos θÞ

�G−
l;2ðcos θÞ�CABðlÞ; ð13Þ

where G�
l ðxÞ are related to Legendre polynomials PlðxÞ

and averaged over angular bins (see, for instance, Krause
et al. [51]). The GG, II, GI, and IG terms from Eq. (12)
enter via the 2D convergence power spectrum,
CAB ¼ CAB

GG þ CAB
GI þ CAB

IG þ CAB
II , and are obtained from

the 3D power spectra P again under the Limber approxi-
mation as

CAB
GGðlÞ¼

Z
χH

0

dχ
WAðχÞWBðχÞ

χ2
Pδδ

�
lþ1=2

χ
;zðχÞ

�
; ð14Þ

CAB
GI ðlÞ¼

Z
χH

0

dχ
WAðχÞnBðχÞ

χ2
PδI

�
lþ1=2

χ
;zðχÞ

�
; ð15Þ

and

CAB
II ðlÞ ¼

Z
χH

0

dχ
nAðχÞnBðχÞ

χ2
PII

�
lþ 1=2

χ
; zðχÞ

�
; ð16Þ

where Pδδ ≡ hδδi is the matter-matter power spectrum,
PδI ≡ hδγIi is the same matter-intrinsic shear power spec-
trum that enters the wmþ prediction in Eq. (11), and PII ≡
hγIγIi is the intrinsic shear-intrinsic shear power spectrum.
Both, PδI and PII are obtained from the NLA and the
TATT model, as detailed in [9]. Additionally, nA=B is the
normalized source galaxy redshift distribution in redshift
bins A or B,

WA=BðχÞ¼3H2
0Ωm

2c2
χ

aðχÞ
Z

χH

χ
dχ0nA=Bðzðχ0ÞÞ dz

dχ0
χ0−χ

χ0
ð17Þ

is the lensing efficiency kernel, χ is the comovingdistance, χH
is the comoving distance at the horizon, a is the scale factor,
H0 is the Hubble constant, and Ωm is the matter density.

III. DATA

A. COSMOS

We use observed galaxy magnitudes, redshifts, and
shapes from the COSMOS survey to calibrate the color
cut and the parameters of the galaxy axes ratio distribution
in our IA model. These galaxy properties are obtained from

two public catalogs, the COSMOS20153 [52] and the
Advanced Camera for Surveys General Catalog
[ACS-GC,4 [53]]. In the following, we briefly described
the main properties of these data sets. Details on quality
cuts and the matching between both catalogs are described
in [54]. The COSMOS2015 catalog comprises photometry
in 30 bands and provides redshift estimates, which were
derived by fitting templates of spectral energy distributions
to the photometric data [55,56]. We discard objects which
are classified as (i) residing in regions flagged as “bad”
(ii) saturated, and (iii) not classified as galaxies. After
these cuts, the sample contains 521,935 objects, which
are used to calibrate the color cut employed in our
IA model.
In order to constrain the galaxy shape parameters as a

function of redshift, we further impose the recommended
cuts on the 3σ limiting AB magnitudes in the near-infrared
Ks-band of 24.0 and 24.7 in the deep and ultradeep fields,
respectively [52]. The ACS-GC is based on Hubble Space
Telescope (HST) imaging in the optical red IAB broad band
filter F814W. The absence of atmospheric distortions
allows for an excellent image resolution, which is mainly
limited by the width of the HST point spread function (PSF)
of 0.085” in the F814W filter and the pixel scale of 0.03”.
Sources were detected using the GALAPAGOS software [57].
Galaxy shapes are described by the two-dimensional major
over minor axes ratios q2D, which are derived from fits of
a single Sérsic model and corrected for PSF distortions.
We select objects from the catalog that were classified as
galaxies with good fits to the Sérsic profile. After applying
the quality cuts, the two catalogs are matched based
on galaxy positions and magnitudes as described in
Hoffmann et al. [54]. The final matched catalog contains
98,604 objects.

B. MICE

TheMICEGrandChallenge (MICE-GC)simulation [42] is
a largeN-body run that evolved40963 particles in avolumeof
ð3072h−1 MpcÞ3 using the GADGET-2 code [58]. It assumes a
flat ΛCDM cosmology with Ωm ¼ 0.25, ΩΛ ¼ 0.75,
Ωb ¼ 0.044, ns ¼ 0.95, σ8 ¼ 0.8, and h ¼ 0.7. This results
in a particle mass of 2.93 × 1010h−1 M⊙. The initial con-
ditions were generated at zi ¼ 100 using the Zel’dovich
approximation and a linear power spectrum generated
with CAMB.5

The dark-matter light-cone is decomposed into a set
of concentric all-sky spherical shells of a given width Δr
around the observer, following the approach introduced
in Fosalba et al. [59] [see also [41]]. Given the size of the
simulation box, the resulting light-cone outputs show

3https://www.eso.org/qi/.
4vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/ApJS/200/9/

acs-gc.
5http://camb.info.
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negligible repetition along any line of sight up to z ¼ 1.4.
A set of 265 maps of the projected mass density field with
Δr ¼ 35 megayears in look-back time, and angular healpix
resolutionNside ¼ 8192 (i.e., 0.43 arcmin pixels) were used
to discretize the light-cone volume. These maps were then
used to derive the all-sky convergence field κ in the Born
approximation by integrating them along the line of sight
weighted by the appropriate lensing kernel (see [59] for
details). The convergence was transformed to harmonic
space, where a simple relation to the shear field holds (for
which the B mode exactly vanishes), and transformed back
to angular space to obtain the ðγ1; γ2Þ components of the
shear field. In this way, discretized 3D lensing properties
(kappa and shear) were produced across the 3D volume
covered by the light cone.
Halos in the light-cone were identified using the friends-

of-friends (FoF) algorithm with linking length b ¼ 0.2
down to the limit of two particles per halo [40]. Following
Carretero et al. [60], a combination of halo occupation
distribution (HOD) and subhalo abundance matching
(SHAM) techniques were then implemented to populate
halos with galaxies in one octant of the light cone, covering
5156.6 deg2. Galaxy positions, velocities, luminosities,
and colors were thereby assigned, such that the catalog
reproduces SDSS observations of the luminosity function,
the color-magnitude distribution, and the clustering as a
function of color and luminosity [61,62]. Spectral energy
distributions (SEDs) were then assigned to the galaxies
resampling from the COSMOS catalog of [56] galaxies
with compatible luminosity and (g-r) color at the given
redshift. Once the SEDs are assigned, magnitudes can be
computed in any desired filter. In particular, DES griz
magnitudes are generated by convolving the SEDs with the
DES pass bands.
In order to reproduce with high fidelity the distribution of

colors and magnitudes of the DES Year 3 (hereafter Y3)
data, we remap the MICE photometry into the observed
photometry using an N-dimensional probability density
transfer method [63], which preserves the correlation
among colors. Once we have remapped the photometry
(i.e., distributions of magnitudes and colors) to the one of
DES Y3, we compute photometric redshift estimates using
the directional neighborhood fitting [DNF, [64]] training-
based algorithm. DNF is one of the algorithms used to
compute photometric redshifts in DES, albeit not the
default one for the source sample. As a training sample
for DNF, we consider the same sample used to run DNF on
the Y3 data, which is a compilation of spectra from
spectroscopic surveys that overlap with the DES footprint
(see [65] for details). We will use the remapped photometry
and the DNF photometric redshifts in Sec. III E.

1. Halo orientations and angular momenta

The orientations and angular momenta of the FoF halos
are main components of our IA model. The orientations

are obtained from the eigenvectors of the reduced moment
of inertia

Ii;j ¼
1

Np

XNp

n

rn;irn;j
r2n

; ð18Þ

where Np is the number of FoF particles, rn;i are the
components of the 3D position vector of the nth particle
with respect to the FoF center of mass, and rn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2n;1 þ r2n;2 þ r2n;3

q
is the particle distance to that center.

The angular momentum vectors are given by

J ¼
XNp

n

rn × vn; ð19Þ

where vn is the 3D velocity vector of the nth particle,
defined with respect to the average velocity vector of all
halo particles.
The orientations and angular momenta where measured

for FoF groups with down to 10 particles. Using such low
numbers of particles can be problematic since noise in the
measurements could decrease the halo alignment to a degree
that inhibits the induction of a galaxy alignment signal that
is sufficiently high to match observational constraints. We
therefore investigate the impact of noise on the alignment of
halo orientations and angular momenta in Appendix A. For
that purpose, we compute these quantities from subsets of
random particles of massive halos in MICE and measure a
3D alignment statistics for different subset sizes. We find
that even with 10 particles, we are still able to detect a clear
signal, although with a significantly decreased amplitude.
The dependence of noise in the halo orientations and
angular momenta on the number of halo particles will
affect the mass dependence of the halo alignment and
therefore potentially also the luminosity dependence of the
galaxy alignment in the simulation. However, in Sec. V, we
argue that we can compensate for such systematic effects
when calibrating the galaxy-halo misalignment as a func-
tion of galaxy luminosity.
Note further that the FoF particle positions have not been

stored in MICE for halos with less than 10 particles, while
the HOD model uses halos containing as few as two
particles. The 10 particle limit therefore imposes a lumi-
nosity cut in the simulation, which we discuss in
Appendix B.
A common alternative to the reduced moment of inertia

is the standard moment of inertia, which is defined as in
Eq. (18), but with rn ¼ 1 in the denominator. By using the
reduced instead of the standard moment of inertia, we
hence assign more weight to the inner regions of the halos
when measuring their orientations. This choice is motivated
by the assumption that the central galaxy orientation should
be more closely related to the orientation of the host halo
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center than to the orientation of the host halos’ outer
regions. Furthermore, FoF particles in the outer regions are
more likely to be spuriously linked by the FoF algorithm
[e.g., [66]], which may bias the measured orientations. The
halo properties measured for this work are part of a public
halo catalog that has been presented by Gonzalez
et al. [67].

C. Color cuts

Observations have shown that the shapes as well as the
intrinsic alignment signal depend strongly on galaxy color
[e.g., [4,68]].We incorporate such a color dependence in our
model by using different model parameters for red and blue
galaxies. The color type is set by a cut in the u − r≡Mu −
Mr color index, whereMu andMr refer to the absolute rest
frame magnitudes in the CFHT u-band and the Subaru r-
band, respectively. We infer the value of this cut by
comparing the u − r distributions from MICE and
COSMOS in Fig. 1, focusing on galaxies within the redshift
and apparent i-band magnitude range covered by MICE;
i.e., 0.1 < z < 1.4 and mi < 24.6 We find that a cut at
u − r ¼ 1.2, shown as horizontal solid line in the left panel
of Fig. 1, separates the red and the blue sequences in
COSMOS reasonably well at all considered redshifts. The
global fraction of blue galaxies in COSMOS defined by
this cut is fblue ¼ 0.69. We adjust this cut in the MICE
simulation to u − r ¼ 0.94 to obtain the same global
fraction of blue galaxies, as shown in the right panel of
Fig. 1. The red dots indicate the color cut that would
reproduce the exact fraction of blue galaxies from

COSMOS in different redshift bins. We find that these
redshift dependent cuts lie close to the globally defined cut,
which confirms that using a redshift independent cut in
MICE is an appropriate choice. As an additional validation,
we compare the fractions of blue galaxies in the redshift bins
to results in COSMOS in Fig. 2. The blue fractions in MICE
lie within 5% of the COSMOS results, except for the lowest
redshift bins at z ≃ 0.2, where we find a ≃10% deviation.
Note here that a simple color cut does not separate

morphological types very well, in particular, because a
significant fraction of disc galaxies is red due to dust
extinction when seen edge on [e.g., [54,69]]. A more robust
selection of morphological types based on photometric
properties could be done using a color-color cut, based on
two different color indices [e.g., [37]]. However, it is less
obvious how to adjust such a color-color selection in the
simulation to match the relative abundance of the different
morphological types in an observational reference sample.
For the sake of simplicity, we therefore proceed using a
simple color-cut, leaving more sophisticated cuts as
improvements for future updates of our model.

D. Mock BOSS LOWZ samples

For the calibration of our IA model against observed IA
statistics ofLRGs from theBOSSLOWZsurvey fromSM16,
we construct a mock LOWZ catalog from the MICE simu-
lation.We therefore select galaxies fromMICE in the redshift
range analyzed by SM16 (0.16 < z < 0.36) and apply the
LOWZ selection in color-magnitude space, given by

mr < 13.5þ ck=0.3þ Δmr

16.0 < mr < 19.6þ Δmr

jc⊥j < 0.2

0.16 < z < 0.36; ð20Þ

FIG. 1. Absolute rest frame color index versus redshift for
galaxies with mi < 24 in COSMOS and MICE. Horizontal solid
lines mark the redshift independent cuts used for selecting red and
blue subsamples. Dots in the right panel indicate the color cuts in
MICE that would reproduce the fraction of red and blue galaxies
in COSMOS in different redshift bins.

FIG. 2. Fraction of blue galaxies in MICE and COSMOS,
selected by the redshift independent color cuts, shown in Fig. 1.
The dashed lines mark �5% deviations from the COSMOS data.

6The fluctuations in the redshift distribution, noticeable as
vertical stripes in Fig. 1, result from cosmic variance. This
variance is expected to be high since the data used for this figure
was sampled in narrow light cones of a few square degree in
COSMOS as well as in MICE.

KAI HOFFMANN et al. PHYS. REV. D 106, 123510 (2022)

123510-8



where

ck ¼ 0.7ðmg −mrÞ þ 1.2½ðmr −miÞ − 0.18�
c⊥ ¼ ðmr −miÞ − ðmg −mrÞ=4.0 − 0.18; ð21Þ

and mg, mr, mi are the apparent magnitudes in the corre-
sponding SDSS broad-band filters.7

Δmr is a constant that is zero in the observational LOWZ
selection and adjusted to a value of 0.085 in MICE to obtain
the observed galaxy number density of the LOWZ sample.
In order to study the luminosity dependence of the IA

signal, we follow SM16 by splitting the mock LOWZ
sample into four luminosity subsamples, called L1-L4
(from bright to dim), which are selected as quantiles of
the absolute SDSS r-band magnitude distribution, contain-
ing 20%, 20%, 20%, and 40% of the objects, respectively.
The number of galaxies in each subsample is given in
Table I together with the corresponding magnitude ranges,
mean magnitudes, and mean redshifts. More details on the
selection of the MICE LOWZ sample and its luminosity
subsamples are given in Appendix B.
We validate our sample selection by comparing the wgg

autocorrelation of the full MICE LOWZ sample and its
cross-correlation with the subsamples L1-L4 to the corre-
sponding measurements in BOSS observations from SM16
in Fig. 3. We find that the simulation reproduces the overall
scale dependence of the observed wgg signal as well as the
relatively weak dependence on luminosity. At scales
between 20 < rp < 40 h−1 Mpc, the amplitudes for the
simulated and the observed samples are in good agreement
as well with deviations of ≲10%. At smaller and larger
scales, the wgg measurements in MICE are up to ∼60% and
∼90% below the observations, respectively. For scales

rp ≳ 10 h−1 Mpc, the deviation between observation and
simulations are consistent with the 1σ error estimates, while
the deviations at small scales are highly significant as the
errors are smaller. These small scale deviations are similar
for the samples L1-L3, and highest for the dimmest sample
L4, which could be related to the overdensity artifact at
z ≃ 0.25 that is discussed in Appendix B.
When interpreting these deviations, it is important to

keep in mind that the MICE HOD-SHAM model has been
calibrated against the clustering statistics of the SDSS main
sample, which covers lower redshifts and dimmer magni-
tudes than those probed by the BOSS LOWZ survey [60].
Deviations of the galaxy clustering statistics in our mock
LOWZ samples from observational results are therefore
not unexpected. Furthermore, the cosmological parameters
used to simulate the matter distribution in MICE differ
significantly from recent constraints, while we expect these
deviations to have a weak effect on the clustering compared
to the HOD-SHAM parameters. However, given the impli-
cations of these deviations on the IA model calibration that
we discuss in Sec. V B, it might be worth trying a more
sophisticated mock construction by adjusting the LOWZ
cuts in MICE, such that the mock samples match the
observed clustering instead of the observed number density.

E. DES-like source sample

In order to predict the IA signal for a galaxy population
that approximates a realistic weak lensing sample, we
construct a mock tomographic catalog utilizing photo-
metric redshift estimates in MICE. The mock sample
resembles the one used in the DES Y3 analysis
[METACALIBRATION, [44]] in its overall magnitude and
redshift distribution, as well as in constraining power in the
cosmological parameter space as described below.
Firstly, we verify in Appendix B that the (nontomo-

graphic) magnitude distributions in the r, i, and z DES
broad bands from the Y3 data are in good agreement with
the distributions of remapped magnitudes in MICE
(described in Sec. III B). The resulting MICE DES-like
mock contains over 130 million galaxies, which is slightly
more than the 100 million galaxies in the DES Y3 catalog
but is roughly consistent in number density given the∼25%
greater area of the MICE octant compared to DES.
Additionally, where cosmology inference is carried out,
we adapt the per-galaxy shape noise in order to match the
DES Y3 small-scales covariance (see Sec. VII C).
Secondly, we split our mock sample into tomographic

bins along the line of sight using photometric redshifts
estimated for MICE galaxies with the DNF algorithm
described in Sec. III B. We sort galaxies into four bins
defined by hard nominal edges that match DES Y1: [0.2,
0.43, 0.63, 0.90, 1.30] [71]. While this procedure is
different than the methodology employed in DES Y3,
based on self-organizing maps (SOMPZ) [72], it suffices
for our goal to create a set of realistic redshift distributions

TABLE I. Characteristics of the luminosity subsample from the
mock LOWZ catalog constructed from MICE. The columns
(from second left to right) show the minimum, maximum, and
mean values of the absolute rest-frame SDSS r-band magnitude
(Mr), the mean redshifts, and the number of galaxies for each
subsample.

Sample Mmin
r Mmax

r hMri hzi Ng

L1 −23.61 −22.21 −22.43 0.29 30924
L2 −22.21 −21.98 −22.08 0.28 30923
L3 −21.98 −21.76 −21.87 0.27 30923
L4 −21.76 −19.53 −21.41 0.24 61847

7Note that the BOSS target selection is based on model
magnitudes [70], while MICE magnitudes were assigned to
match the Blanton et al. [61] SDSS luminosity function derived
from Petrosian magnitudes. However, the latter authors find only
a weak change of the luminosity function when using model
magnitudes. We therefore do not expect the differences in the
magnitude definition to be relevant for the construction of the
mock BOSS LOWZ samples.
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that approximate a DES selection. We show histograms of
the true redshifts of the galaxies binned via DNF point-
estimates in Fig. 4, with an overall mean redshift of
z ¼ 0.6, along with the binned DES Y3 distributions
[72] for a visual comparison. We note that the MICE
redshift distributions are generally narrower and peak
higher redshifts than their DES Y3 counterparts. The
methodological differences between MICE and DES Y3
redshifts exist for practical purposes and imply that the
testing presented here should be taken as an additional
piece of evidence that the IA modeling in DES Y3 is sound,
though not as a final proof.

We find that a significant fraction of central galaxies are
defined as blue by the color cut used in our modeling (see
Table II). Since the orientations of blue galaxies are highly
randomized in our model (see Sec. V), we can already
expect from this finding that the IA signal in the DES-like
samples predicted by our model will be weak, which is
indeed the case (see Sec. VII). A more detailed discussion
on the galaxy color distribution in the DES-like samples
can be found in Appendix B.

F. Volume limited samples

We construct two sets of volume-limited color samples.
The first set is used to derive predictions for the two-point
IA statistics up to high redshifts where observational
constraints are currently not available. It covers three
redshift bins that are centered around z ¼ 0.2, z ¼ 0.4,
and z ¼ 0.6 and have a width ofΔz ¼ 0.2. Galaxies in each
redshift bin are separated into six bins by their absolute rest
frame SDSS r-band magnitude (Mr), which have a width
of ΔMr ¼ 1.0. The faint limit of these magnitude samples
is set to Mr < −20 to ensure that host halo shape

FIG. 4. Arbitrarily normalized redshift distribution of the DES-
like MICE source sample (solid histograms) and real DES Y3
data (black lines). Redshift point estimates in MICE are obtained
with DNF and qualitatively resemble the nðzÞ distributions in
DES Y3 (see text for further details).

TABLE II. Fraction of blue galaxies in the DES-like from
MICE samples, defined by our u − r ¼ 0.94 color cut.

z bin Centrals Satellites Centrals þ Satellites

1 0.526 0.386 0.467
2 0.583 0.332 0.467
3 0.589 0.298 0.488
4 0.667 0.358 0.594

FIG. 3. Top: Projected galaxy correlation functions from the BOSS LOWZ survey (SM16) and a mock catalog constructed from the
MICE simulation (black dots and red open circles, respectively). The left panel shows the autocorrelation measured in the full LOWZ
sample, and the panels on the right show the cross-correlation between the full LOWZ sample and four luminosity subsamples L1-L4
(from bright to dim; see Sec. III D for details on the sample selection). Error bars show estimates of the 1σ uncertainty on the
measurements. The dashed-dotted black lines shows the same 200 r−1p power law in all panels as a visual guidance for comparing the
variation in the amplitude across different samples. Bottom: Relative deviations between measurements in observations and in MICE.
The gray shaded areas indicate the 1σ errors on the observations.
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measurements are available for all central galaxies in the
sample (see Appendix B). Each of the resulting volume
limited samples is further split into a red and a blue
subsample at the same u − r ¼ 0.94 color cut, which we
use in our IA model (Sec. III C). The selection of the
resulting 36 samples is illustrated Fig. 25.
A second set of volume-limited color samples is con-

structed to calibrate the parameters of our shape model
against COSMOS observations. Each of these samples has
a width of Δz ¼ 0.2 and ΔMr ¼ 1 in redshift and absolute
Subaru r-band magnitude, respectively. The samples are
equally spaced on a regular grid in the z −Mr space with
an overlap of Δz=2 and ΔMr=2. This overlap allows for an
increased sampling resolution while keeping the number of
galaxies per sample large enough to allow for statistically
meaningful measurement of the 2D axis ratio distribution
over a wide range in magnitude and redshift. We discard
samples that contain less than 100 galaxies, which leads to
115 and 196 samples for red and blue galaxies, respec-
tively. The positions of these samples in magnitude-
redshift space are shown as dots in the right panels of
Fig. 5, where each dot’s color indicates the number of
galaxies in the corresponding sample. We use 10 samples
from the second set as examples to validate if the
distribution of galaxy axis ratios in the final MICE IA
simulation matches the reference observations from
COSMOS. The areas spanned in the magnitude-redshift
space by these example samples are shown in Fig. 24. Note
that red and blue subsamples are selected in MICE by the
same cut at u − r ¼ 0.94 used in the first set of samples,
while we cut the COSMOS samples at u − r ¼ 1.2 as
explained in Sec. III C.

IV. MODELING GALAXY SHAPES

Our model for galaxy shapes is based on the assumption
that each galaxy’s shape can be approximated as a 3D
ellipsoid whose shape is fully described by two of the three
axis ratios

q3D ≡ B3D

A3D
; r3D ≡ C3D

B3D
; s3D ≡ C3D

A3D
; ð22Þ

where A3D, B3D, C3D are the 3D major, intermediate, and
minor axis, respectively. This modeling choice is motivated
by findings reported in the literature, which show that
randomly oriented populations of such 3D ellipsoids can
lead to distributions of projected 2D axes ratios,

q2D ≡ B2D=A2D; ð23Þ

which match those from observed ensembles of early- as
well as late-type galaxies with high accuracy [e.g., [73–77]].
In particular, this model describes successfully the lack of
circular face-on galaxies (i.e., q2D ≃ 1) found in observa-
tions. Achieving such a match was shown to be problematic
in previous work in which discs were modeled as flat
coinlike cylinders [36]. However, whether this lack is
physical, a result of observational limitations or both
remains an open question [e.g., [36,78–81]].
Besides the ellipsoidal model for each galaxy’s shape,

matching the observed 2D axis ratio distribution further
requires a model for the distribution of 3D axes ratios.
Several models of such distributions have been presented in
the literature [see [54], for an overview]. In this work, we
employ a simple Gaussian model,

FIG. 5. Left, central left, central panels: Interpolated distribution of the parameters in our Gaussian model for the 3D galaxy axis ratio
distribution, q0, r0, and σr, given in Eq. (24) as a function of galaxy redshift and absolute r-band magnitude for blue and red galaxies
(top and bottom panels respectively). The parameters were derived from the 2D galaxy axis ratio distributions, measured in overlapping
volume limited samples in the COSMOS survey (see Sec. IV for details). Central right panel: χ2 per degree of freedom (d.o.f.) of the fits
to the observed 2D axis ratio distribution for each volume limited sample. Right panel: Number of galaxies per volume limited sample.
The dots in the right panels are located at the mean redshifts and r-band magnitudes of the volume limited samples.
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P̃ðq3D; r3DÞ ¼ exp

�
−
1

2

��
q3D − q0

σqr

�
2

þ
�
r3D − r0

σqr

�
2
��

;

ð24Þ

where q0, r0, and σqr are the free model parameters. The
normalized truncated distribution is then given by

P ¼
�
P̃3D=N if q3D; r3D ∈ ð0; 1�
0 else

ð25Þ

with N ¼ R
1
0

R
1
0 P̃3Dðq3D; r3DÞdr3Ddq3D. This model is

motivated by the model proposed by Hoffmann et al.
[54], which we simplify by assuming the same width σqr
for q3D and r3D to reduce the numbers of free parameters in
our simulation.
To model the shape of a specific galaxy in the simulation,

we first draw the two 3D axis ratios q3D and r3D randomly
from the distribution in Eq. (25). The observed 2D axis
ratio is obtained later on by projecting the 3D ellipsoid on a
tangential plane that is oriented perpendicular to the
observers line of sight, following the methodology pre-
sented in J13. Note that this projection requires not only
the 3D axis ratios as input, but also each galaxy’s 3D
orientation. The modeling of the latter is described in
Sec. V. An important aspect for producing realistic mock
observations is to incorporate the dependence of the galaxy
shapes on photometric properties and redshift. We intro-
duce such a dependence in our model by adjusting the
parameter vector p≡ ðq0; r0; σqrÞ, according to each
galaxy’s redshift, absolute magnitude, and color before
drawing its 3D axes ratios.

A. Parameter calibration

We determine the dependence of the parameter vector p
on redshift and absolute r-band magnitude for a given color
(red or blue) from the observed distribution of 2D axes
ratios Pðq2DÞ in COSMOS. ThePðq2DÞ distribution is
therefore measured for red and blue galaxies (defined
via the u − r color index as detailed in Sec. III C) in the
volume limited COSMOS samples that are described as the
second set in Sec. III F. For each of these samples, we
determine the values of p for which the corresponding
Pðq2DÞ prediction fits the observations. We obtain this
prediction for a given candidate p by first generating a set
of N 3D ellipsoids, whose 3D axis ratios are drawn
randomly from the distribution in Eq. (25). For each 3D
ellipsoid in this set, we then compute q2D following J13
while assuming a random 3D orientation. ThePðq2DÞ
prediction is then measured from the resulting set of N
projected 2D axis ratios and compared to the reference
measurement from the observed sample. The observed as
well as the predicted distributions are thereby measured
using the same binning in q2D. The number of bins is
adjusted to the number of galaxies in each COSMOS

subsample, following the Freedman–Diaconis rule for
optimal binning [82]. We derive the best fit values p by
maximizing the likelihood which is computed from the χ2

deviation between the predicted and the observed Pðq2DÞ
distribution. For the measurements, we assume shot-noise
errors while neglecting errors on the predictions since those
are generated using much higher number of axis ratios (i.e.,
1000 points per bin on average). The posterior of the
parameter space is estimated using the Markow-Chain-
Monte-Carlo algorithm emcee8 [83] with flat priors in
the ranges 0.01 < q0 < 0.99, 0.01 < r0 < 0.99, and
0.01 < σqr < 0.35. The upper limit for σqr is set to an
arbitrary value that is chosen to be well above the typical
best fit values found for this parameter. We define the best
fit parameters as the position of the maxima of the
marginalized posterior distribution.
The distribution of the fitted p components (q0, r0, σqr)

in the redshift-magnitude plane, interpolated between the
positions of the volume limited samples, is shown for red
and blue galaxies in the three left panels Fig. 5. The second
panel from the right shows the corresponding χ2 per q2D
bin, which correlates with the number of galaxies per
sample, shown on the right of Fig. 5. This correlation
means that deviations between best fit model and reference
measurements become more significant as the shot-noise
errors on the measurements decrease. This indicates that
our shape model is too simple to capture the details of the
observed 2D shape distributions. An improvement on that
aspect might be possible by using more flexible extensions
for the 3D axis ratio distribution model [e.g., [54]].
However, such an extension would introduce additional
parameters in our modeling, while we find the model
employed here to be sufficiently accurate for the purpose of
this work, as detailed in the following.

B. Shape mock construction and validation

We assign 3D axes ratios to a given galaxy in the
simulation by linearly interpolating the constrained values
of q0, r0, and σqr for red and blue samples at the galaxy’s
position in the magnitude-redshift space. For galaxies in the
simulation that lie outside of the magnitude-redshift range
covered by the COSMOS data, we assign the average
values of the parameters over all volume limited subsam-
ples within each red and blue sample, shown as homo-
geneously colored areas in Fig. 5. Note that a more
sophisticated extrapolation of the observational constraints
is not trivial due to the complex dependence of the
parameters on magnitude and redshift. However, in prac-
tice, this problem is not relevant as most galaxies used in
our analysis lie within the magnitude and redshift ranges
covered by COSMOS.
We validate the performance of our model by comparing

the Pðq2DÞ distributions from MICE against measurements

8emcee.readthedocs.io.
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from COSMOS in Fig. 6 for the set of 10 volume limited
samples described in Sec. III F and displayed in Fig. 24. We
find an overall good agreement between the simulated an
observed data. Deviations are most noticeable for the
brightest sample of blue galaxies at z ≃ 1.1. They may
result from the shortcomings of the modeling that we
discussed in the previous subsection, from potential inac-
curacies in the linear interpolation of the model parameters
as well as from differences between the redshift-magnitude
distributions of observed and simulated galaxies within a
given sample. It is interesting to note that thePðq2DÞ

distributions for red and blue galaxies deviate significantly
from those expected for discy and elliptical galaxies,
respectively. The observed distributions for disc galaxies
show typically a plateau in the center (at q2D ≃ 0.5) with
two kneelike cutoffs on each side. Those for ellipticals have
typically the shape of a skew Gaussian distribution with a
maximum close to unity and a long tail toward low axis
ratios [e.g., [84]]. The reason that the axis ratio distributions
of our color subsamples do not follow this expectation may
result from the fact that a single color cut does not separate
different morphological types very well as detailed in
Sec. III C.

V. MODELING GALAXY ORIENTATIONS

We implement 3D galaxy orientations using methodol-
ogy from Joachimi et al. [37], with some modifications.
Galaxies are thereby separated into three groups: red
centrals, blue centrals, and satellites, where the latter
include red as well as blue objects. Red and blue galaxies
are selected as described in Sec. III C.
Red centrals have their 3D principle axes aligned with

those of their host halo; i.e., ðÂ3D; B̂3D; Ĉ3DÞgal ¼
ðÂ3D; B̂3D; Ĉ3DÞhalo. This alignment is based on the
assumption that all red galaxies are pressure supported
ellipticals whose shape and orientation is set by the same
tidal stretching that determines the shape and orientation of
the host halo.
Blue centrals are assumed to be rotationally supported

discs, whose minor axis is aligned with the angular
momentum vector of the host halo, i.e., Ĉgal

3D ¼ Ĵhalo3D , while
the major axis Â3D is oriented randomly on a plane that is
perpendicular to the minor axis.
Satellites Red and blue satellites are assumed to have

their major axes pointed toward the host halo center, while
the minor axis is oriented randomly on a plane that is
perpendicular to the major axis. This model assumption is
motivated by evidence for a preferred orientation toward
the center that has been found in observations as well as
simulation. An illustration of the model is shown in Fig. 7.
Within the framework of the analytical IA models
described in Sec. II, the alignment between central ellip-
ticals and their host halo can be associated with the tidal
alignment terms, while the alignment between central discs
and the host halo’s angular momentum can be associated to
the tidal torquing terms. The combined effects of tidal
alignment, tidal torquing, and the impact of galaxy density
weighting are captured by the parameters A1, A2, and A1δ.
Note here that our assumption that all blue galaxies are

discs and all red galaxies are ellipticals is motivated by the
observed correlation between morphological and photo-
metric galaxy properties. However, the simple color cut
used in this work may lead to an inaccurate discrimination
between the two morphological types, as we discuss in
Sec. III C. Future updates of our model may therefore
employ more complex photometric cuts to define discs and

FIG. 6. 2D galaxy axes ratios measured for red and blue
galaxies in different volume limited samples. The redshift and
absolute Subaru r-band limits of each sample are indicated on the
right. Red and black histograms show results from the MICE
simulation and COSMOS observations, respectively.
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ellipticals. For detailed discussions of how the different
model assumptions are motivated by observations, hydro-
dynamic simulations, and analytical models, we refer the
reader to the reviews of Joachimi et al. [4], Kiessling et al.
[5], Kirk et al. [6], and references therein.

A. Misalignment

Deviations from this simplistic model are accounted for
by randomizing the galaxy orientations in a subsequent
step. Such a randomization has been shown to be an
effective way to calibrate semianalytic IA simulations
against observed alignment statistics [e.g., [31,35,37]]. In
this work, we randomize the galaxy orientations in 3D
before projection along the observers line of sight. This
approach allows for extracting constraints on the 3D galaxy
alignment from calibrating the model against 2D observa-
tions. In addition, it opens up the possibility to calibrate the
model against 3D alignment statistics measured at high
redshifts in hydrodynamic simulations in future studies. For
the randomization, we draw misalignment angles θ from
the Misis-Fisher distribution,

PðcosðθÞÞ ¼ 1

2σ2mf sinhðσ−2mfÞ
exp

�
cosðθÞ
σ2mf

�
; ð26Þ

where thewidth σmf is a free parameter of ourmodel. Higher
values of σmf lead to a higher randomization of the original
orientation vector (see Fig. 8) and therefore to a lower
alignment signal. Bett [85] showed that in hydrodynamic
simulations, the distribution of misalignment angles
between the galaxy spin vector and the host halos minor
axis is well approximated by Eq. (26). It has therefore been
used by Joachimi et al. [37] to model the 3D misalignment
of the circular discs in their model. In our model, we use
Eq. (26) to model the 3D misalignment for all types of
galaxies (including discs, ellipticals, centrals, and satellites)
with respect to their initial orientations. Assuming that this
modeling is valid not only for discs, but also for ellipticals,
we are able to successfully reproduce observed alignment
statistics of LRG samples that consist mainly of ellipticals
(see Sec. V B). However, it would be worthwhile to validate
this assumption with measurements of galaxy-halo mis-
alignment of ellipticals from hydrodynamic simulations
[similar to those presented, for instance, by [27,86,87]].
Since we model all galaxies as 3D ellipsoids that are in

general rotationally asymmetric, we need to randomize
their orientations in two directions. We thereby start by
randomizing the orientation of the minor and major axes
A3D and C3D, using two misalignment angles θA and θC,
which are drawn from the Misis-Fisher distribution with the
same value of σmf for both angles. The randomized
orientation vectors Âr

3D and Ĉr;0
3D are constructed such that

Â3D · Âr
3D ¼ cosðθAÞ and Ĉ3D · Ĉr;0

3D ¼ cosðθCÞ. Ĉr;0
3D is

thereby a temporary vector that is in general not
perpendicular to Âr

3D. The final randomized minor axis
orientation is therefore obtained as Cr

3D ¼ ðÂr
3D × Ĉr;0

3DÞ ×
Âr

3D and is then normalized to Ĉr
3D ¼ Cr

3D=jCr
3Dj. In order

FIG. 7. 2D Illustration of the model used for assigning 3D
galaxy orientations in the MICE simulation for red and blue
galaxies (top and bottom subfigures, respectively). The major and
minor axes of red centrals are aligned with those of their host
halo. The minor axis of blue centrals is aligned with the angular
momentum vector of the host halo. The major axes of red and
blue satellites are pointed toward the halo center. In a subsequent
step of the modeling, the orientations are distorted by a random
angle θ that depends on galaxy type, magnitude, and color.

FIG. 8. Mises-Fisher distribution for different misalignment
parameters σmf . Points mark randomized orientations on the
surface of a unit sphere with respect of an input vector. The
Mises-Fisher distribution is used for randomizing galaxy ori-
entations in our IA model.
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to control the dependence of the alignment on galaxy
magnitude and color, we introduce simple dependencies of
σmf on these properties. We thereby assume a linear relation
between σmf and the absolute r-band magnitude Mr,

σmfðMrÞ ¼ aþ b

�
Mr

M0

− 1

�
; ð27Þ

where a and b are free model parameters, andM0 ¼ −22 is
an arbitrarily chosen normalization constant. The color
dependence of the alignment is introduced in the model by
using different values of a and b for red and blue galaxies,
where the colors are defined as described Sec. III C. When
adjusting these parameters, we further separate between
central and satellite galaxies, which provides control over
the scale-dependence of the IA signal in the simulation. The
parameters used in our model are summarized in Table III.
They are obtained from calibrating the model by hand, as
outlined in the next subsection. The final output of the IA
model are the two 3D axis ratios q3D and s3D as well as the
orientations of the three principle axes for each galaxy in
the simulation. In order to compare this output to obser-
vations, we project these ellipsoids along the observer’s line
of sight, who is located at z ¼ 0.0 in the MICE light cone,
and obtain the intrinsic shear components, as described
in Sec. IV.

B. Parameter calibration against observed IA statistics

We calibrate the parameters for controlling the randomi-
zation of galaxy orientations, a and b in Eq. (27), for red and
blue galaxies separately. For blue galaxies, including cen-
trals as well as satellites, we set ½a; b� ¼ ½2; 0� such that
σmf ¼ 2, independent of the galaxy magnitude. The ran-
domized orientations for blue galaxy are consequently close
to a uniform distribution on a sphere (see Fig. 8). This choice
is motivated by the nondetection of intrinsic alignment for
blue galaxies in the surveys WiggleZ, SDSS, DES, and
PAUS [17,18,20,88]. However, achieving such a nondetec-
tion in the simulation may also be possible with much lower
values of σmf, since the halos’ angular momentum align-
ment is relatively weak compared to the alignment of the
halos’ principle axes, as we show in Appendix A.
For red galaxies, we adjust a and b such that the

simulation reproduces the observed scale and magnitude
dependence of the alignment statistics, measured for LRGs

in the BOSS LOWZ sample by SM16. The alignment is
thereby quantified with the projected cross-correlation
between positions of galaxies in a density sample and
the intrinsic shear of galaxies in a shape sample, wgþ, as
detailed in Sec. II.
Before discussing the calibration in more detail, we show

in Fig. 9 how the IA correlation reacts to variations of σmf
for a test sample of galaxies that are brighter than Mr ¼
−21 in the redshift range 0.1 < z < 0.3. When computing
the IA correlation, we use the matter distribution of the
simulation as the density sample in order to minimize noise
on the measurement. The corresponding correlation is
hereafter referred to as wmþ. In this test case, we set the
same σmf for galaxies of all luminosities and all colors. We
find in Fig. 9 that the overall amplitude decreases by
roughly a constant factor when increasing the misalignment
by increasing σmf for satellites as well as for centrals
from 0.1 to 0.5 (comparing red and yellow lines). When
increasing only the misalignment of satellites, we find
the signal to decrease only at small scales (rp <
5h−1 Mpc), while it remains unaffected at large scales
(comparing red and blue lines). Increasing the misalignment
only for centrals on the other hand has an effect on all
scales, while the impact is stronger on scales larger than
rp > 5h−1 Mpc (comparing red and green lines). In prac-
tice, the fact that satellite alignment does not affect the
alignment statistics in the simulation at large scales

TABLE III. Parameters describing the magnitude dependence
of the misalignment parameter σmf in Eq. (27).

a b

Red centrals 0.65 0.0
Red satellites 0.7 −7.7
Blue centrals 2.0 0.0
Blue satellites 2.0 0.0

FIG. 9. Projected matter-intrinsic shear correlation wmþ for test
runs of the semianalytic IA model on a catalog of MICE galaxies
with 0.1 < z < 0.3 and Mr < −21, using one misalignment
parameter for all centrals (σcent) and one for all satellites (σsat),
independently from galaxy luminosity and color. Results are
shown for different values of σcent and σsat. Increasing σ decreases
the amplitude of wmþ. Misalignment of centrals affects the signal
at all scales, while the impact of satellite misalignment is limited
to rp ≲ 5 h−1 Mpc (vertical dashed line).
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simplifies the model calibration, as we can first calibrate
σmf for centrals focusing on the large scales before
calibrating the parameters for satellites focusing on small
scales.
In order to calibrate the parameters a and b in the σðMrÞ

relation from Eq. (27), we measure wgþ in our mock LOWZ
sample (described in Sec. III D), where we take the full
sample as density sample and the four luminosity sub-
samples L1 − L4 as shape samples, following SM16.9

As a first step in the calibration, we then set magnitude
independent values of σmf for centrals and satellites for
each LOWZ luminosity sample separately. These values are
chosen such that χ2 deviation between wgþ measurements
in MICE and the observational reference is minimized. We
thereby obtain a relation between σmf and the mean r-band
magnitude hMri of each sample, from which we can infer a
first guess of the parameters a and b. Starting from this first
guess, we then vary a and b by hand until the simulation
matches the observed wgþ measurements for the different
luminosity samples L1 − L4 simultaneously. Note that this
match is quantified purely by eye. In future work, we plan
to improve the calibration technique, using quantitative
measures for IA model performance and an automated
calibration pipeline. Figure 10 shows the comparison
between wgþ from the calibrated MICE simulation together
with the observational reference measurements from SM16.
The simulation reproduces the observed dependence of wgþ
on scale as well as on magnitude as the deviations from the

observations are consistent with the 1σ jackknife error
estimates. The errors on the MICE results are overall larger
than those on the observations, which can be expected from
the smaller area covered by the MICE octant. In addition,
differences in the errors can result from differences in the
size and geometry of the jackknife samples.
When calibrating σmf on the different LOWZ luminosity

samples, we compensate automatically for systematic
effects in the mass dependence of the host halo alignment
(see Appendix A), at least within the luminosity and
redshift ranges covered by the LOWZ sample. It is not
obvious that this compensation also works for magnitudes
and redshifts that are not considered in the calibration.
However, our results in Sec. VI indicate that this might be
the case since the IA amplitudes predicted by MICE for
luminosities and redshifts that are not covered by the
LOWZ sample are consistent with various observational
constraints.
A shortcoming in our calibration based on wgþ results

from the fact that this statistics is not only sensitive to the
alignment, but also to the clustering of galaxies. Since the
clustering, quantified by wgg for the MICE LOWZ samples,
is predicted to be ≲30% below the reference observations
from BOSS (Fig. 3), we are setting the IA signal in the
simulation too high when trying to match the observed wgþ
signal. However, we expect the error on the wgþ amplitude
to be significantly smaller than 30% based on the following
consideration. At large scales, we can approximate wgg ∝
b21 and wgþ ∝ b1, where b1 is the linear clustering bias.
Assuming that the difference in wgg between MICE and
BOSS is mainly driven by differences in b1, a 30%
inaccuracy in b21 would propagate into a 17% inaccuracy
on b1 and hence on wgþ. This inaccuracy is well below the
dependence of wmþ on luminosity, color, and redshift,
which we will study later on.

FIG. 10. Similar to Fig. 3, but for the projected galaxy-shear cross-correlation between a density sample and different shape samples.
The left panel shows results using the full LOWZ sample as shape as well as density sample. The panels on the right show results based
on shapes from the four luminosity subsamples L1-L4, while using the full LOWZ sample as density sample.

9Note that SM16 showed that different shape measurement
methods can lead to ∼σ variations of the observed signal, which
introduces additional uncertainties in our modeling. In this work.
we calibrate the simulation against their results based on
regaussianized shapes [89,90]. Further note that SM16 apply
cuts based on the quality galaxy shape measurements, which we
cannot mimic in the construction of mock catalogs from MICE.
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Another potential source of bias in our calibration may
result from the fact that the galaxy shapes in our simulation
are calibrated against observed axis ratio distributions that
were derived from Sérsic model fits (Sec. III A). Using a
reference distribution based on a different shape measure-
ment method may change the galaxy ellipticity distribution
and hence lead to a change in wgþ (e.g., SM16). However,
since in our simulation the orientations and shapes are
calibrated independently, a bias in the ellipticities can be
compensated by adjusting the galaxy misalignment, such
that wgþ still matches the observational constraints.

C. Distribution of misalignment angles

The distribution of misalignment angles between gal-
axies and their host halos has been investigated in several
previous studies. It therefore provides an opportunity to
validate our simulation in a way that is independent of
the wgþ comparison against the BOSS LOWZ constraints,
used for the calibration of the simulation parameters.
Observational constraints on the distribution of misalign-
ment angles of LRGs have been derived by Okumura and
Jing [34] and Okumura et al. [35] (jointly referred to as
OO9 in the following). Using a methodology similar to the
one presented in this work, these authors randomized the
orientations of dark matter halos from an N-body simu-
lation such that the simulation reproduces the observed
alignment statistics of LRGs in the SDSS. In contrast to our
approach of randomizing galaxy orientations in 3D before
projection, OO9 randomized the 2D orientations after
projection, assuming a Gaussian distribution of misalign-
ment angles with zero mean and a variance σϕ. In order to
compare their results to predictions for the LRGs in the
mock BOSS LOWZ sample from MICE, we compute the
2D misalignment angles as the difference between the 2D
orientation angles before and after randomizing the gal-
axies in the simulation. We find the variance of the
distribution of 2D misalignment angles in the LOWZ
sample to be σϕ ¼ 32.64°, which deviates by just ∼7%
from the ∼35° degree variance reported by OO9. This
finding is interesting, given that LRGs in SDSS and those
in the BOSS LOWZ sample probe different ranges in color,
luminosity, and redshift. Furthermore, the simulations
employed to interpret the observations are based on
N-body simulations, which differ in their resolution and
cosmology, the definition of halo shapes and orientations
as well as in the HOD model and the IA model used to
produce the mock catalogs that are compared to the
observations.
In addition to the constraints on the 2D misalignment,

the MICE simulation provides predictions for the distri-
bution of 3D misalignment angles. In Fig. 11, we show the
distribution of these misalignment angles, defined as the
angle between the 3D major axes A before and after
randomization for the mock samples of the BOSS LOWZ
and the DES surveys. The results for the LOWZ sample

demonstrate that our IA model implementation for red
galaxies works as expected. In our model, the misalignment
of red centrals is independent of the galaxy magnitude
(Table III), which leads to almost identical distributions of
misalignment angles for the different luminosity subsam-
ples. The misalignment angles for satellites are increasing
significantly for dimmer samples, as expected from the
modeling. Similar trends can be seen for the mock DES
samples, although less clearly since these samples consist
to ∼50% of blue galaxies (Table II), which are almost
completely randomized in our model. The distributions
of misalignment angles in the DES samples lie therefore
closer to a distribution expected for completely randomly
oriented objects (shown as dashed line in Fig. 11) than
the distributions of misalignment angles in the LOWZ
samples.
It is further interesting to note here that the 3D misalign-

ment angles that we obtain from calibrating the IA model in
MICE are significantly higher than those found for the
galaxy-halo misalignment in the MassiveBlack-II simula-
tion by Tenneti et al. [27]. These authors report an average
misalignment of ∼13 degree for galaxies in halos with
masses larger than 1013 h−1 M⊙. This prediction is signifi-
cantly below the values that we find in the MICE LOWZ
samples, which reside mostly in halos of that mass range.
One potential explanation could be that these authors study
the alignment of galaxies with respect to their host subhalo,
whereas our results refer to the alignment of galaxies with
respect to their host FOF group, which may present a
weaker alignment with the central galaxies.

FIG. 11. Distribution of misalignment angles between the 3D
major axis A of galaxies in MICE before and after randomization.
Results are shown for the different luminosity and redshift
subsamples in the mock BOSS LOWZ and DES catalogs,
respectively. The black dashed line shows the theoretical expect-
ation for completely randomized orientations.
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VI. PREDICTIONS FOR TWO-POINT IA
STATISTICS

After having validated that MICE is consistent with
observational IA constraints from LRGs in SDSS and
BOSS, we now proceed by using the simulation to derive
predictions at redshift and luminosity ranges that are not
covered by these surveys. We are thereby interested in the
following three questions. (1) How well do the analytical
IA models NLA and TATT fit the IA statistics measured in
MICE at the redshifts covered by current photometric weak
lensing surveys, such as DES? (2) How do the parameters
of these models depend on galaxy color, luminosity, and
redshift, and how well do these dependencies agree with
observational constraints from surveys other than BOSS, to
which the simulation has not been calibrated? (3) How
strong is the IA contribution to the observed shear statistics
predicted by the simulation in mock DES observations? We
address these questions in the following.

A. Dependence of wm+ on galaxy magnitude,
color, and redshift

In order to test the accuracy of the NLA and TATT
models, we fit corresponding predictions for the projected
matter-intrinsic shear cross-correlation, wmþ (introduced in
Sec. II A 1), to the measurements in MICE. Note that using
matter instead of galaxies as the density field facilitates the
interpretation of our results, as we do not need to take into
account inaccuracies of galaxy clustering bias models.
However, before discussing these fits, we would like to
point out some interesting aspects of the wmþ measure-
ments themselves. In Fig. 12, we show these measurements
for the 36 volume limited color samples described in
Sec. III F. We find that the measurements for samples of
blue galaxies are consistent with zero, which confirms that
the galaxy-halo misalignment set for these galaxies in the
simulation (see Table III) is high enough to eradicate a
statistically significant signal at all scales, magnitude, and
redshift ranges covered in our analysis. For the red galaxy
samples, the measured signal is clearly present, showing
dependencies on scale, magnitude, and redshift. At a given
redshift, the amplitude of wmþ increases with the brightness
of the sample. At small scales (rp ≲ 5 h−1 Mpc), such an
increase can be expected from our IA model, since the
misalignment of red satellites is set to decrease for brighter
magnitudes by the corresponding parameters in Table III.
At large scales (rp ≳ 5 h−1 Mpc), the wmþ alignment signal
is dominated by central galaxies (see Fig. 9) for which the
galaxy-halo misalignment is set to be independent of the
galaxy magnitude. The luminosity dependence of wmþ at
large scales is hence induced by a change of the host halo
alignment. According to the SHAM technique employed
for the production of the MICE galaxy catalog, the bright-
ness of central galaxies increases with the mass of their host
halos (see Sec. III B). The increase of the alignment of

central galaxies with luminosity is therefore induced by an
increase of the host halo alignment with halo mass, which
we study in Appendix A [see also [91]].
In addition to the magnitude dependence, we find in

Fig. 12 a decrease of the wmþ amplitude with redshift for
red galaxies within a fixed magnitude range. This redshift
dependence is most clearly apparent at large scales. Since
our model does not include a redshift dependence of the
galaxy-halo misalignment, the decrease of wmþ with red-
shift at large scales is presumably induced by the decrease
of the host halo alignment with redshift, which we find in
Appendix A. Furthermore, one could expect the wmþ signal
to decrease, even if halo alignment was redshift indepen-
dent, due to the decrease of the matter power spectrum
amplitude with redshift. We conclude that the interpretation
of the luminosity and redshift dependence of IA statistics in
terms of galaxy-halo misalignment relies on a detailed
understanding of the mass and redshift dependence of halo
alignment, which we investigate in Appendix A.
For the comparison between the theory predictions for

wmþ and the corresponding measurements, which we
discuss in the next section, it is interesting to inspect
how strongly measurements on different scales are corre-
lated with each other, which is described by the covariance
Cij. In Fig. 27, we show examples of the normalized
covariance for four of our 36 volume limited samples. We
find that the covariances are dominated by the diagonal
elements, indicating that the errors on wmþ are dominated
by noise that originates from the dispersion of intrinsic
galaxy ellipticities, which are spatially uncorrelated.

B. NLA and TATT fits to wm+ measurement

In order to examine the accuracy of the NLA and TATT
models, we fit the corresponding predictions for wmþ
(Sec. II B 2) to the measurements in MICE (hereafter
referred to as the data vector d) by maximizing the posterior
probability PðθjdÞ for the parameter vector θ, given d,
where θ is given by A1 and ðA1; A2; A1δÞ in the case of the
NLA and the TATT model, respectively. PðθjdÞ is inferred
from the likelihood LðdjθÞ of measuring d given θ, using
Bayes’ theorem. We estimate the likelihood from the data,
assuming that it is well described by a multivariate normal
distribution; i.e.,

lnLðdjθÞ ¼ −
1

2
χ2ðdjθÞ þ const: ð28Þ

with

χ2ðdjθÞ ¼ ½d −mðθÞ�TC−1½d −mðθÞ�: ð29Þ

The model mðθÞ is the NLA or TATT prediction for wmþ
from Eq. (4) for a given θ. The covariance C is estimated
frommeasurements of wmþ in jackknife samples as detailed
in Sec. II A 1. The posterior is given by Bayes’ theorem as
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FIG. 12. Projected matter-intrinsic shear two-point correlation functions measured in the 18 volume limited samples shown in Fig. 25.
Each sample’s range in redshift and absolute r-band magnitude is indicated on the top and right, respectively. Red and blue symbols
show measurements in the MICE simulation for red and blue galaxies. Dashed-dotted and dashed lines show fits of the NLA and the
TATT model, respectively, where the line color is matched to the corresponding color sample. The lower limits of the fitting ranges are
shown for each model as vertical black lines in the corresponding line style. The upper limit is indicated by a vertical black solid line.
The dotted horizontal line at rpwmþ ¼ 1.0 facilitates the visual comparison of the amplitudes in different samples. Error bars indicate 1σ
uncertainties, which can be smaller than the symbol size. The significance of deviations between fits and measurements is shown for
various fitting ranges in Fig. 28. Note that results for blue galaxies with Mr < −22.5 and 0.1 < z < 0.3 (top left panel) are not shown
because the low number of objects did not allow for meaningful measurements. The absence of the small scale signal in the same
magnitude range at higher redshifts results from a lack of bright blue satellites in these samples (see Fig. 25). The short vertical solid
lines at rp ¼ 5 h−1 Mpc indicate the scale above which the correlation function is dominated by central galaxies (see Fig. 9).
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PðθjdÞ ∝ LðdjθÞΠðθÞ: ð30Þ

In our analysis, we set the prior ΠðθÞ flat to unity in the
interval ½−25; 25� and zero elsewhere for all parameters,
covering the range of parameter values expected from
observations with a high margin. We estimate PðθjdÞ by
sampling the parameter space with the Markov-Chain-
Monte-Carlo algorithm emcee (introduced in Sec. IVA).
For each posterior, we run 16 chains with 300 steps each.
The best fit parameters are defined as the sampling point
with the highest posterior probability. The confidence
intervals for each parameter are derived from the corre-
sponding marginalized posterior distribution.
We fit the NLA as well as the TATTmodel up to scales of

rp < 60h−1 Mpc, which corresponds to the projection
length Π, used for the wmþ measurements. Blazek et al.
[92] pointed out that the Limber approximation that enters
the wmþ prediction requires rp ≪ Π to be valid. However,
we do not find a significant change in our parameter
constraints when reducing the upper limit to rp <
30h−1 Mpc (see Appendix D), presumably because the
likelihood is dominated by small scales measurements, as
the measurement errors increase with scale. The lower scale
limit of the fitting range is set to 1 and 8 h−1 Mpc for the
TATT and the NLA model, respectively. The choice of
these lower limits is motivated in Appendix D. Since we
limit the NLA fits to large scales at which satellite galaxy
alignment does not affect the wmþ amplitude measured in
MICE (Fig. 9), we expect the A1 constrains from the NLA
fits to be set solely by the large-scale alignment of central
galaxies in the simulation.
We compare the best fits of the NLA and the TATT

predictions against wmþ measurements in Fig. 12 and find
that both models fit the data with similar ∼1σ accuracy at
scales above 8 h−1 Mpc. At smaller scales, the fit of the
TATT model stays within the 1σ uncertainties of the data
down to the lower limit of the fitting range of 1 h−1 Mpc.
The NLAmodel tends to lie above the measurements below
8 h−1 Mpc, which is also the case when reducing the lower
limit of the NLA fitting range (see Appendix D). These
results indicate that the TATT model provides accurate
predictions of galaxy alignment statistics over a wide range
of scales, redshifts, and luminosities.
We assess the fitting performance of the IA model

predictions for wmþ in a more quantitative way in
Fig. 13, where we show the minimum χ2 deviation between
measurements and predictions (corresponding to the maxi-
mum of the likelihood) per degrees of freedom versus the
smallest scale used in the fit. The degrees of freedom are
given by d:o:f: ¼ n −m, where n is the number of wmþ
bins within the fitting range, and m is the number of model
parameters (m ¼ 1, 3 for NLA, TATT, respectively). The
figure confirms the TATT model predictions fit the wmþ
measurements better than those based on the NLAmodel as
the χ2=d:o:f: values tend to be lower, in particular, at small

scales. We further find the fits to perform better at lower
redshifts, which could result from larger errors on the
measurements at low redshifts, due to the smaller volume
of the light cone (see Fig. 12). Interestingly, we do not find
a clear dependence of the fitting performance on the
magnitude range probed by the different samples and
hence, on the amplitude of wmþ. This finding might as
well be related to the fact that the different samples have
distinct errors, even if they cover the same redshift bin due
to their different number densities and noise properties.
Inspecting the absolute χ2min=d:o:f: values shown in Fig. 13,
we notice that various results are well below unity. This
finding could indicate overfitting of the data by the models.
However, the fact that these low values are also present for
the NLAmodel (which has only one free parameter) as well
as over a wide range of scales (i.e., different numbers of
scale bins m) could be an indication for shortcomings in
the χmin estimation. Such shortcomings may result from
the approximations implied in the jackknife method for
estimating the covariance, leading, for instance, to an
overestimation of the variance. Note that the noise in the

FIG. 13. χ2 deviation between the best fits of the NLA and
TATT model predictions for wmþ and the corresponding mea-
surements (as shown in Fig. 12), versus the smallest scale of the
fitting range. Results are shown for the 18 volume limited
samples of red galaxies in MICE.
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covariance estimates, which we see in the off-diagonal
elements in the examples shown in Fig. 27, is expected to
reduce the amplitude of the inverse covariance by ∼25% for
the number of bins and samples used on this analysis [93].
Correcting for this effect of noise would further reduce the
χ2 values by the same factor. When assessing the fitting
performance of the IA model predictions, one must further
bear in mind that the reference data from MICE is based on
a simple model for IA, which provides a good match with
the alignment signal of wgþ in BOSS LOWZ, but so far, has
not been validated against corresponding constraints from
other surveys covering different ranges in redshift, lumi-
nosity, and color ranges.

C. Dependence of IA model parameters on galaxy
magnitude, color, and redshift

We proceed by investigating the dependence of the NLA
and TATTmodel parameters on galaxy redshift, luminosity,
and color by comparing the posterior distributions that we
derived from the wmþ fits in the different volume limited
samples from MICE.
We start by inspecting the joint posterior distributions for

the TATT parameters (A1, A2, A1δ), derived from red and
blue subsamples at intermediate redshifts and magnitudes
(0.3 < z < 0.5, −21.5 < Mr < −21.0) in Fig. 14. We find
the constraints on the parameters for the blue subsample to
be consistent with ðA1, A2, A1δÞ ¼ ð0; 0; 0Þ at the 1σ level.
This is expected from the null detection of the wmþ (see
Fig. 12), which results from the highly randomized
orientations of blue galaxies in MICE. Since we find
similar results for all blue subsamples, we focus in the
following discussion on the parameter constraints from
samples of red galaxies. The parameters for the red
subsample, shown in Fig. 14, differ significantly from
zero, which lines up with the significant signal of the
corresponding wmþ measurements. We further find the
parameter A2 to correlate weakly with A1 and slightly
stronger with A1δ, while A1 and A1δ appear to be uncorre-
lated. The joint constraints on the TATT parameters from
the other volume limited samples (not shown) exhibit a
similar behaviour. The dependence of the NLA and TATT
parameter constraints on luminosity is shown for the red
subsamples in three redshift bins in Fig. 15. In that figure,
we display the marginalized posterior distributions as
violins at the logarithm of each samples luminosity L,
normalized by a pivot luminosity L0; i.e., log10ðL=L0Þ ¼
ðhMri −M0Þ=ð−2.5Þ, where hMri is each sample’s mean
SDSS r-band magnitude and M0 ¼ −22, according to
literature conventions. We find that the marginalized
posteriors of the A1 parameter in the TATT model are
mostly consistent with those from the NLA model, shown
as red and blue violins in the top panels of Fig. 15,
respectively. However, for certain samples, in particular, in
the central redshift bin (0.3 < z < 0.5), deviations between
the NLA and TATT constraints are significant, while the

general trends of how A1 changes with redshift and
luminosity are the same for both models. These deviations
remain significant when varying the scale range over which
the TATT model is fitted to wgþ (see Fig. 29). We further
note that the A1 constraints are tighter for the NLA than for
the TATT model, which can be expected from the higher
number of free parameters in TATT.
The A1 constraints from MICE are compared to obser-

vational constraints from various samples of red galaxies
from different spectroscopic surveys that were presented in
the literature (shown as black symbols in Fig. 15). These
observational constraints have been derived analogously to
those from MICE from fits of the NLA model to wgþ
measurements. Circles show results from Joachimi et al.
[16] for two luminosity samples (L3 and L4) of dim red
galaxies in the SDSS-Main sample, two redshift samples of
SDSS LRGs (with z ≶ 0.27), and the MegaZ-LRG sample.
Triangles show A1 constraints from Singh et al. [22] for
four luminosity subsamples of the BOSS LOWZ sample.10

Stars show results from Johnston et al. [17] for red galaxies
in the SDSS main sample and the high and low redshift
subsamples from the combined KiDSþ GAMA survey.
Diamonds show results from Fortuna et al. [14] from the
KiDS survey for dim and bright subsamples (denoted by
the authors as dense and luminous respectively) that cover
different ranges of redshifts. Note that the observational
results are displayed in Fig. 15 across the three redshift bins

FIG. 14. Posterior probability distribution of the TATT model
parameters, derived from fits to the wmþ measurements from red
and blue galaxies in a volume limited sample, selected by 0.3 <
z < 0.5 and −21.5 < Mr < −21.0 (shown in Fig. 12).

10These subsamples are similar, although somewhat brighter
than the luminosity subsamples from Singh and Mandelbaum
[21] to which we calibrate the MICE simulation.
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in which we analyzed the MICE simulation, according to
each samples mean redshift hzi.
We find in Fig. 15 that most observational constraints

on A1 are consistent with those derived from the volume
limited samples in MICE within the estimated errors. This
finding is remarkable, given that the MICE IA model
has been calibrated only against constraints from LRGs
in the BOSS LOWZ sample. Predictions beyond the
color-magnitude-redshift range covered by the LOWZ
sample rely on the simple assumptions of the IA model.
Furthermore, the observational constraints are based on
samples of red galaxies from various surveys and have
been selected with different cuts on color, magnitude,
and redshift. These differences in the selection may

contribute to the deviations between observations and
simulation as well as to the variation across the observa-
tional constraints. A more meaningful comparison
between observations and simulations would require
the construction of mock catalogs, which is beyond the
scope of this work.
In addition to the observational A1 constraints from

separate surveys, we compare in Fig. 15 the MICE results
with two power laws fitted to the combined observational
constraints on A1, provided by Fortuna et al. [14]. We find
that the MICE results roughly follow the single power law
fit in the lowest redshift bin over the full luminosity range.
At higher redshifts, the MICE constraints are still consistent
with the same single power law at low luminosities

FIG. 15. Marginalized posterior distributions of the NLA and TATT model parameters, derived from fits to wmþ measurements for red
galaxies in different volume limited samples of the MICE simulation, shown in Fig. 12. The posteriors are displayed at each samples
logarithmic mean r-band luminosity, normalized by a pivot luminosity L0 that corresponds to Mr ¼ −22. The top panel shows results
for the A1 parameter, derived from fits of the NLA and the TATT model together with constraints from fits of the NLA model to different
wgþ measurements in observational samples of red galaxies, provided in the literature (circles: Joachimi et al. [16], stars: Johnston et al.
[17], triangles: Singh et al. [22], diamonds: Fortuna et al. [14]). Dashed and solid lines show power law fits to the observed data from
Fortuna et al. [14]. The central and bottom panels show results for the parameters A2 and A1δ from the TATT model. The horizontal lines
at �2 facilitate the comparison of the parameter amplitudes by eye.

KAI HOFFMANN et al. PHYS. REV. D 106, 123510 (2022)

123510-22



(log10ðL=L0Þ < −0.25) but decrease with redshift for
brighter subsamples. This behavior is apparent in the A1

constraints from the TATT as well as from the NLA model.
Since the latter was fitted at (rp > 8 h−1 Mpc), we attribute
the magnitude and redshift dependence of A1 to be set by
the large-scale amplitude of wmþ. We argued previously
that the large-scale alignment signal is dominated by the
alignment of central galaxies (Fig. 9). Given that the
misalignment between central galaxies and their host halos
is modeled independently of redshift and luminosity, we
expect the dependence of A1 on these quantities to be
driven by the redshift and mass dependence of the host halo
alignment, which we discuss in Appendix A. Due to a lack
of observational constraints on A1 for luminous, high
redshift samples, it remains an open question if the redshift
evolution of A1 for red galaxies as predicted by MICE is
supported by observation. However, our results line up with
predictions from the Horizon AGN hydrodynamic simu-
lation, according to which, the alignment between massive
elliptical galaxies and their surrounding tidal field
decreases with redshift [94].
The central and bottom panels of Fig. 15 show the

marginalized posteriors for the parameters A2 and A1δ of the
TATT model. For dim samples (L < L0), we find both
parameters to be roughly constant, taking values of A2 ∼ 2
and A1δ ∼ −2. When approaching brighter luminosities, the
parameters switch their sign and reach higher amplitudes
for the samples at z > 0.3, while constraints at lower
redshifts are too noisy to reveal any trend. We further do
not find a clear dependence of the A2 and A1δ constraints on
redshift. Note here that A1δ in our modeling depends not
only on galaxy alignment but also on galaxy clustering, as
detailed in Sec. II.

VII. APPLICATION TO DES Y3

After having investigated the IA signal predicted by
MICE in volume limited samples, we now study how
strongly IA contaminates the lensing signal in the simulated
DES-like samples constructed from MICE (see Sec. III E).
This predicted contamination was used in the DES Y3
cosmic shear analysis to show that both the NLA and TATT
models recover the input cosmology in MICE within the 1σ
uncertainties of parameter posteriors. This process provides
a valuable test of the modeling since the simulated data is
not analytically generated with either model. Note that this
investigation becomes possible due to the large area and
redshift range covered by the MICE simulation without
repetition, while including both the lensing and the IA
signal, allowing for separate measurements of the GG, GI,
IG, and II terms introduced in Sec. II.

A. Projected matter-intrinsic shear correlation (wm+)

In order to compare the IA signal in the DES-like
samples with the signal in the volume limited samples,

we measure the wmþ statistics, focusing on the lowest two
of the four photometric redshift bins, which cover a similar
redshift range. The measurements are shown in Fig. 16 for
the full sample in each bin as well as for the red and blue
subsamples, which are defined by our u − r ¼ 0.94 color
cut, as shown in Fig. 23. We find the strongest signal for the
red subsample and no significant signal for the blue
subsample, while the signal for the full sample lies between
those of the two subsamples. The color dependence is
expected from our modeling as well as from the wmþ
measurements in the volume limited samples. The ampli-
tudes of the full samples and the red subsamples are
comparable to those derived from red galaxies in our
dimmest volume limited samples (Fig. 12), showing that
the IA contamination in our DES-like samples is relatively
weak. This finding is consistent with the large galaxy-halo
misalignment angles for the DES-like samples, shown
in Fig. 11.

FIG. 16. Projected matter-intrinsic shear correlation, measured
in the two lowest redshift bins of the DES-like sample con-
structed fromMICE. Results are shown for the full sample as well
as for subsamples of red and blue galaxies. The amplitudes are
comparable to those from our measurements in the dimmest
volume limited samples (i.e., rpwmþ ≲ 0.5 h−2 Mpc2; see
Fig. 12), showing that the IA contamination in the DES-like
samples is predicted to be weak. Symbols for the red and blue
subsamples are slightly shifted along the rp-axis for clarity.

MODELING INTRINSIC GALAXY ALIGNMENT IN THE MICE … PHYS. REV. D 106, 123510 (2022)

123510-23



B. Angular shear-shear correlation (ξ�)

We focus now on the angular shear-shear correlation ξ�,
which was introduced in Sec. II and used in the cosmo-
logical weak lensing analysis of the DES Y3 data release.
In Fig. 17, we show the ξ� measurements of the IA terms
that contribute to the cosmic shear signal, GIþ IG and II,
divided by the theoretical GG signal computed at the
cosmology and redshift distributions of the MICE mock.
Each panel corresponds to a different cross-correlation
between redshift bins, and the shaded bands correspond to
angular scales that are removed from the cosmic shear
cosmology inference, mainly due to the effect of baryonic
feedback (see [95], Secco and Samuroff et al., [48] for a
justification).
We find that the amplitudes of the IA signals compared

to GG is small and consistent overall with shape noise
fluctuations. This finding indicates that the alignment
signal, which we found to be weak but significantly above

the noise level in the wmþ measurements for the DES-like
samples in Fig. 16, falls below the noise level when probing
it in the same samples with angular statistics. We attribute
this decrease in signal-to-noise to the projection over large
line-of-sight distances that is implied in the definition of
angular correlations.

C. Results of likelihood analysis

In order to produce a likelihood analysis with the
measured data vector, we construct an analytic Gaussian
covariance using COSMOCOV

11 [96] for the present
DES-like MICE sample, matching the statistical power
of DES Y3 [see the description in Appendix A of [48]]. The
theory prediction in the likelihood evaluation is summa-
rized in Eq. (13) [with CðlÞ spectra containing IA

FIG. 17. Intrinsic alignment correlation functions as measured from combinations of the individual G and I ellipticities in MICE,
divided by the theory GG signal computed at the MICE cosmology and with the mock redshift distributions. Different panels show
cross-correlations of redshift bins in ξþ and ξ−, and shaded bands correspond to the scales that are removed from the inference of
cosmological and nuisance parameters. Error bars indicate the estimated 1σ shape noise uncertainties.

11https://github.com/CosmoLike/CosmoCov.
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contributions], and we ultimately infer the posteriors on
cosmological and nuisance parameters of the ξ�ðθÞ model.
For this inference, we sample the parameter space

utilizing POLYCHORD [97], with similar performance set-
tings as those used in the DES Y3 analyses. Our flatΛCDM
cosmology model has six free parameters: the matter
density Ωm, the baryon density Ωb, the primordial ampli-
tude As, the spectral index ns, the Hubble parameter h, and
the neutrino density Ωνh2. We additionally vary eight
calibration parameters (a shear multiplicative bias mi and
a photo-z shift parameter Δzi for each redshift bin i).
Freeing these nuisance parameters is not strictly required
in our present analysis, which does not include shear and
photo-z systematics but are important to guarantee a
roughly similar figure of merit between this exercise and
the actual DES Y3 analysis. In addition, we also vary two
IA parameters in the NLA model (A1 and its redshfit
evolution power-law η1) and five parameters for the TATT
model (both NLA parameters plus a galaxy bias parameter
bTA and the amplitude and redshift evolution of torquing
terms, A2 and η2). We note that this choice follows closely
the DES Y3 analysis: We explicitly parametrize the impact
of the linear bias of the source galaxies contributing to the
tidal signal as A1δ ¼ bTAA1, allowing for extra freedom in
the model. This fiducial setting thus includes 19 (22) free
parameters. The explicit priors on these cosmological and
nuisance parameters are generally uninformative and can be
found in, e.g., Secco and Samuroff et al., [48], Table I.
In addition to this fiducial setting, we also run inferences

with cosmological parameters fixed at the known MICE
truth values and shear and redshift calibration parameters
fixed at zero (thus freeing only the IA model parameters)
and a “baseline” analysis in which no IA signals are added,
in which case, we expect IA constraints to be compatible
with zero. In the baseline scenario, we find IA posteriors to
be consistent with zero, in line with our expectations:

A1 ¼ −0.32þ0.57
−0.25 ðTATT baselineÞ;

A2 ¼ −0.10þ0.74
−0.59 ðTATT baselineÞ;

where the central values are the maxima of the margin-
alized posterior distributions and the upper and lower
values are the distances to the bounds of the corresponding
68% confidence intervals.
The main IA constraints as probed by ξ� with this

DES-like source sample come from the simplified, fixed-
cosmology scenario. In this reduced parameter space, we
find, when fitting NLA:

A1 ¼ −0.11þ0.21
−0.27 ðNLA with fixed cosmologyÞ;

and similarly we find, for the TATT model:

A1 ¼ −0.30þ0.49
−0.51 ðTATT with fixed cosmologyÞ;

A2 ¼ 0.67þ1.23
−0.41 ðTATT with fixed cosmologyÞ:

In all of the cases above, we find A1 parameters that are
consistent with zero within one standard deviation and only
find a marginal preference for positive A2 in the case of
TATT at a fixed cosmology. These results are not unex-
pected given the overall small impact on the DES-like
source sample as a fraction of the GG signal, as seen in the
correlation functions shown in Fig. 17.
Finally, for the cases where we additionally vary cos-

mological and nuisance parameters, when fitting the data
vector with the NLA model, we find:

A1 ¼ −0.51þ0.62
−0.27 ðNLA with free cosmology& nuis:Þ;

and similarly when employing the TATT model:

A1 ¼ −0.55þ0.71
−0.33 ðTATT with free cosmology& nuis:Þ;

A2 ¼ −0.37þ1.68
−1.65 ðTATT with free cosmology& nuis:Þ:

These results are also in line with our expectations based on
Fig. 17: The overall IA amplitudes are consistent with zero
within a standard deviation, and the constraining power on
the individual 1D parameters is suppressed with respect to
the fixed cosmology analogs since there is a greater number
of parameters in the likelihood analysis, weakening those
constraints. Apart from IA, the cosmological parameters of
main importance for this type of analysis are the amplitude
S8 and the matter density Ωm, which are presented for this
simulated MICE sample in Secco and Samuroff et al., [[48]
Appendix A] and found to be unbiased with respect to the
MICE input cosmology.
In conclusion, utilizing a cosmic shear measurement

obtained from the DES-like simulated source sample, we
find that IA amplitudes are subdominant as a contributor to
the tomographic ξ�ðθÞ data vector and that, accordingly,
posterior distributions on IA parameters for both TATT and
NLA models are largely consistent with zero. In tandem,
the analysis presented in [48] also shows, using the same
simulated mock catalog, that inferring cosmological param-
eters with both IA models recovers the input MICE
simulation cosmology without biases.
We emphasize that these results are specific to our

simulation, which was calibrated to match the IA signal
of LRGs at relatively low redshifts, while assuming effec-
tively no alignment for blue galaxies, which constitute a
significant fraction of the DES-like samples (see Sec. III E).

VIII. SUMMARY AND CONCLUSIONS

We implemented intrinsic galaxy alignment (IA) in the
light-cone output of the cosmological simulation MICE to
study it as a contamination in measurements of two-point
correlation functions from weak lensing observations of the
cosmic large-scale structure. The simulation was thereby
used for two purposes: (a) to investigate the accuracy of
analytical models that describe the IA contamination at
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luminosities and redshifts for which observational con-
straints from spectrospcopic surveys are currently not
available and (b) to predict the IA contamination in the
weak lensing observations of the Dark Energy Survey
(DES). We thereby take advantage of the fact that MICE
provides both, the intrinsic as well as the gravitational shear
components. For the IA implementation, we use a semi-
analytic model to assign a shape and an orientation to each
galaxy of the HOD-SHAM catalog of the MICE simu-
lation, taking into account the galaxy’s brightness and color
as well as the orientation and angular momentum of its host
halo. Our model is inspired by semianalytic IA models
presented previously in the literature [e.g., [36,37]] but
includes substantial advancements in three aspects.

1. We developed a new method for assigning 3D
galaxy shapes, assuming a simple ellipsoidal mor-
phology for each object. The parameters of this
shape model were calibrated such that the distribu-
tion of projected 2D axis ratios matches observa-
tional constraints from the COSMOS survey for
different ranges of galaxy color, absolute magnitude,
and redshift (Sec. IV).

2. The misalignment between the orientations of gal-
axies and those of their host halos was calibrated
such that the projected galaxy-intrinsic shear corre-
lation (wgþ), measured in a mock BOSS LOWZ
sample of LRGs from MICE, matches direct IA
measurements in the corresponding observations
from Singh and Mandelbaum [21] in four different
magnitude bins over a large range of scales
(0.1 < rp < 200 h−1 Mpc; see Sec. V). We found
that the galaxy-halo misalignment for LRGs in
MICE is consistent with constraints derived by
Okumura et al. [35].

3. The MICE light cone covers one octant of the sky
(∼5000 deg2) and reaches up to redshift z ¼ 1.4.
The simulated IA catalog is therefore the largest
presented in the literature so far, which allows us to
construct realistic mock catalogs of current weak
lensing surveys and measure the IA signal with high
significance.

In our investigation of the accuracy of analytical IA
models, we focus on the NLA model and the TATT model.
We assess the models’ accuracy by comparing their pre-
dictions for the projected matter-intrinsic shear correlation
(wmþ) against corresponding measurements in MICE
(Sec. VI). The latter are derived for a set of volume limited
samples of red and blue galaxies that span over the redshift
range 0.1 < z < 0.7 and probe absolutemagnitudes down to
Mr ¼ −20. In contrast to observations, the simulation
allows us to access the matter field directly, which signifi-
cantly reduces the impact of galaxy bias on the IA statistics.
As discussed in Sec. II, we can therefore study the accuracy
of IA modeling with less sensitivity to the details of
nonlinear galaxy bias than when using the observable wgþ.

Our wmþ measurements in MICE show strong depend-
encies on galaxy color, magnitude, and redshift, which
allow one to test the analytical models in a wide range of
possible alignment scenarios (Fig. 12). We find that the
NLA and the TATT model fit the wmþ measurements with
similar accuracy when restricting the fit to scales larger than
8h−1 Mpc as deviations from the measurements are con-
sistent with the ∼1σ error estimates. When including
smaller scales, the NLA model breaks down, while the
TATT model retains a ∼2σ accuracy down to the smallest
scale considered of 1h−1 Mpc (Fig. 28). It is important to
keep here in mind that the IA signal predicted in MICE is
based on assumptions employed in the HOD and semi-
analytic IA modeling, which might be too simplistic.
However, the fact that the wgþ signal in MICE matches
the BOSS observations, even in the one-halo regime below
1h−1 Mpc, is an indication that these simplistic assump-
tions provide reasonably effective descriptions of the true
galaxy alignment.
As an additional validation of the simulation, we

compare the constraints on the NLA and TATT parameter
A1, which is sensitive to the IA signal at large scales, to
constraints from the literature that were derived from
various observed samples of red galaxies to which the
MICE simulation has not been calibrated (Fig. 15). We find
that the A1 constraints from MICE are in broad agreement
with the observations, given the large error bars and taking
into account that the selection of the volume limited
samples in MICE differs significantly from the selection
of the observed samples. At low redshifts (z ≤ 0.3), the
luminosity dependence of the A1 parameters in MICE is
consistent with a single power law, which was derived from
fits to observational A1 constraints for red galaxies by [14],
while the broken power law proposed by these authors
shows clear deviations from our results. At higher redshifts
(z > 0.3), the luminosity dependence of A1 for red galaxies
in MICE decreases, which is mainly driven by a decrease of
the alignment amplitude for LRGs. As for low redshifts,
this luminosity dependence seems to be better described by
a single, rather than a broken power law. Verifying the high
redshift predictions from MICE will be possible with IA
measurements in upcoming spectroscopic surveys, such as
DESI or PAU.
The alignment parameters for samples of blue galaxies in

the simulation are consistent with zero (Fig. 14). This result
is expected since central blue galaxies are oriented in our
model with the host halos’ angular momentum, for which
we find only a weak alignment signal in Appendix A.
Furthermore, we highly randomize the orientations of these
objects to ensure that the simulation reproduces the null
detection of IA for blue galaxies in current observations.
As a last step in our analysis, we investigate the

contribution of IA to the angular shear correlation ξ� in
mock samples of the DES survey, taking advantage of the
fact that the simulation allows us to measure the GG, II, and
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GI term separately from each other. Interestingly, the II and
the GI terms predicted for the DES samples by MICE are
consistent with zero (Fig. 17). We have validated that the
wmþ measurements for the same samples show a signal that
is significant with respect to the errors. However, the
amplitude of this signal is relatively low compared to
our measurements for red galaxies, which can be expected
from the ∼50% fraction of blue galaxies that the simulation
predicts for the DES-like samples (Table II). A possible
reason for the nondetection of the II and GI terms in MICE
could be that the angular shear statistics ξ� is less sensitive
to IA contaminations than the projected statistics wmþ, as it
probes the integrated IA signal over a wide range of
redshifts, including galaxy pairs with large physical sep-
arations that are only weakly intrinsically aligned. The
resulting decrease in the signal-to-noise ratio could lead to a
null detection for the IA terms in the angular statistics.
A weak IA signal in angular statistics lines up with

findings of Wei et al. [39], who study IA contaminations in
mock observations of the weak lensing surveys KiDS and
DLS using a semianalytic model to implement IA in the
Elucid simulation. In contrast to our results, these authors
find a weak but still significant IA contribution to the GG
signal. One potential reason for that difference may be the
use of constraints on galaxy-halo misalignment angles that
were derived from LRGs for the entire KiDS sample in that
work. This could result in an overly high signal, as LRGs
show the strongest alignment signal compared to other
galaxy populations (see, e.g., Fig. 15).
Another reason for the weak alignment in the DES-like

samples could be the fact that predictions for the alignment
of dim galaxies (which constitute a significant part of the
sample) are presumably affected by the relatively low mass
resolution, causing noise in the measured host halo
orientations and hence decreasing the predicted galaxy
alignment (see Appendix A). However, a weak contribution
of IA in DES-like samples lines up with recent findings
from Secco and Samuroff et al., [48], who derive con-
straints on IA model parameters from the cosmological
analysis of the cosmological weak lensing signal and find
those to be consistent with zero.
We stress here that the IA predictions from the MICE

simulation for DES-like samples need to be taken with
caution since the simulation has only been tested directly
against IA observations from red galaxies at redshift that
are well below those probed by DES. Furthermore, the DES
samples contain a high fraction of blue galaxies, in
particular, at high redshifts (Table II), for which the
simulation predicts no IA signal by construction. This lack
of alignment has been observed for blue galaxies at low
redshifts. However, the alignment of blue galaxies at high
redshifts remains unconstrained by observations.
Future improvements of the simulation could therefore

consist in taking into account IA observations at higher
redshifts from upcoming spectrosopic surveys. An

interesting extension of our work in that regard based on
current observations would be to reduce the misalignment
of blue galaxies, such that the simulation reproduces the
observed null detection for this type of galaxies (e.g., from
direct measurements in a SDSS sample [17] or indirect
measurements in DES Y1 data [88]) within the correspond-
ing errors. Such a decrease of misalignment may lead to
more significant IA contributions to the predicted DES Y3
lensing signal.
An additional improvement of our modeling could

consist in a more realistic selection of discs and ellipticals,
for instance using two different color indices as discussed
in Sec. III C. In our current implementation all galaxies
defined as red by a single color index cut are treated as
ellipticals and are therefore aligned with their host halos
principle axes. A more sophisticated color cut could
identify a fraction of red objects as discs and align them
with their host halo’s angular momentum vector, which
might change the predictions of our simulation. One
shortcoming which is harder to address is that a significant
fraction of galaxies have an irregular morphology, which
is currently not taken into account in the modeling.
Hydrodynamic simulations may help to find an effective
model that describes the intrinsic alignment of such
galaxies. More realism could further be added to the
simulation by introducing a dependence of satellite align-
ment on the distance to the host halo center, which has been
found in observations [98,99] as well as in hydrodynamic
simulations [100].
There are several potential applications of our IA

simulation not explored here, for instance, studies of IA
in third-order lensing correlations [101,102], in particular,
because such statistics have been detected at high signal-to-
noise in recent DES Y3 data [103]. Another application
would be to study priors on the IA modeling, in particular,
on TATT parameters that are poorly constrained otherwise.
We expect that the unique size and depth of the MICE IA

simulation presented here and the improvements in the IA
assignment model will play a central role in constraining
our understanding of the IA contribution in ongoing and
future weak lensing observations.

IX. DATA AVAILABILITY

The MICE IA simulation presented in this work as well
as the halo catalog used in the modeling are publicly
available at CosmoHub12 [104,105]. A public version of
our IA simulation code is available on GitHub.13
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APPENDIX A: DARK MATTER HALO
ALIGNMENT

1. Effects of noise in halo orientations

We investigate here the impact of noise resulting from
low halo particle numbers on halo alignment statistics in
MICE. For that purpose, we select halos in the MICE light
cone with Np ≳ 320 particles (Mh ≳ 1012.97h−1 M⊙), then
select randomly a subset of Nrand particles from these halos
without replacement and measure the halo major axis and
angular momentum vectors (A and J, respectively) as
detailed in Sec. III B 1. Finally, we measure the 3D align-
ment statistics of these halos with the large-scale structure as

ηXðrÞ ¼ hjX̂1 · r̂jiðrÞ − 1=2; ðA1Þ

which is the inner product of the unit vectors X̂ and r̂, where
X refers to either A or J, r is a vector pointing to a
neighboring halo, and h…i denotes the average over all halo
pairs separated by the distance r. Relative orientations ofX
and r that are random, parallel, and perpendicular to each
other lead to ηX ¼ 0, > 0, and < 0, respectively. In Fig. 18,
we compare our measurements of ηA and ηJ for various
values of Nrand. We find a positive amplitude of ηA, which
indicates that the major axes tend to point toward neighbor-
ing halos. The amplitude starts to decrease significantly for
Nrand ≲ 80. At Nrand ¼ 10, the amplitude is decreased by
roughly 30%, while we still find a clear signal.
The amplitude of ηJ is mostly negative, indicating that

the halos’ angular momenta tend to be aligned
perpendicular to the vector pointing toward neighboring
halos. We see no clear dependence of ηJ on Nrand, as we
saw it for ηA. A potential explanation for hat finding could
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be that the dispersion of the particles’ angular momentum
directions is low for the halos used in our test, such that the
average does not vary much across different random
subsets of particles. Another interesting result is that the
absolute values of ηJ are significantly lower than those of
ηA. The lower amplitude of ηJ implies that blue galaxies,
which are aligned with J in our simulation, will always
show a significantly weaker IA signal than red galaxies,
which are aligned with A, unless we set a much stronger
misalignment for red than for blue galaxies.

2. Mass and redshifts dependence

We consolidate this last point by comparing the ampli-
tudes of ηJ with those of ηA as well as ηC for halos in four
mass samples at three different redshifts of the MICE light
cone in Fig. 19. For ηA, we find positive amplitudes for all
mass and redshift samples. The amplitudes are increasing
with the halo mass and decrease with redshift. Overall, the
redshift dependence is relatively weak compared to the
mass dependence, in particular, for low halo masses. This
finding explains why the large scale amplitudes of wgþ in
Fig. 10 and the corresponding A1 parameter in Fig. 15 are
decreasing more strongly with redshift for luminous than
for dim samples since the luminous galaxies reside in more
massive halos than dim galaxies. The fact that ηA increases
more strongly with halo mass than with redshifts may be
partially explained by the mass-dependent noise on the halo
orientations, causing a weaker alignment for lower halo
masses. However, the resolution effects on ηA that we show
in Fig. 18 are weaker than the mass dependence in Fig. 19.
The results for ηC are similar to those ηA, while the
amplitudes are negative since C⊥A.
The results for ηJ line up with the results from Fig. 18 as

the amplitude is weaker than for ηA and ηC for all redshift

and mass samples. A similar finding has been reported by
Forero-Romero et al. [106], who compare the alignment
amplitude of halo shapes and angular momenta with the
large-scale structure in a cosmological simulation. This
consolidates our expectation that blue galaxies in our
simulation would be weakly aligned compared to red
galaxies, even when setting a lower misalignment for blue
galaxies than used in our current model. It is further
interesting to note that ηJ shows a more complex depend-
ence on mass and scale than ηA and ηC. For massive objects,
we find the amplitude to switch from negative to positive for
increasing scales, indicating a change in the orientations of
J from perpendicular to parallel with respect to neighboring
halo directions. Another sign flip occurs at small scales
(r≲ 20h−1 Mpc) between low and high mass samples.
Such a flip has also been found in other simulation-based
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FIG. 19. 3D halo alignment statistics of the halo major axis,
minor axis, and angular momentum in the MICE simulation (top,
central, and bottom panels, respectively). Results are shown for
halos in the fourmass ranges that are indicatedon the top.The limits
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studies of halo spin alignment [e.g., [106–108]]. However, a
detailed discussion of these findings is beyond the scope of
this work.

APPENDIX B: COLOR, MAGNITUDE, AND
REDSHIFT DISTRIBUTIONS

1. BOSS LOWZ

In Fig. 20, we compare the distribution of mr, ck, and
c⊥[defined in Eq. (21)] of galaxies in MICE to observations
from the BOSS LOWZ Data Release 1114 in the combined
Southern and Northern Galactic Pole, focusing on the
SM16 redshift range. We find a reasonable agreement
between the observed and simulated distributions.
However, when applying the LOWZ cuts on MICE with
Δmr ¼ 0, we find a ∼16% lower number density than in
the observations. The latter is obtained from the number of
LOWZ Data Release 12 galaxies in the SM16 redshift
range, Ng ¼ 249938, and the corresponding effective area
of A ¼ 8; 579 deg2, given in Table II of Reid et al. [109],
which leads to ng ¼ Ng=Aeff ¼ 29.97. We therefore adjust
the cuts on mr in MICE Δmr ¼ 0.085, which results in a
∼0.2% agreement in the observed number density, with
154617 galaxies in the 5156.62 deg2 octant of the MICE
simulation.
Note that the LOWZ catalog used by SM16 is slightly

reduced in size and density compared to the original LOWZ
sample since only galaxies for which three different shape
measurements were available were used in that analysis. As
a result, dim objects were excluded from their analysis, and
the average brightness is increased to some degree. One can
therefore expect the clustering amplitude in the LOWZ
sample to be slightly increased. Including the exact same
selection effects in the mock construction is not feasible as
the MICE simulation does not include the relevant obser-
vational systematics. However, we do not expect these
effects to be critical, since the clustering amplitude in our
mock is in good agreement with the observations (Fig. 3).
The selection of luminosity subsamples in the mock

BOSS LOWZ sample from MICE is illustrated in the top
panel of Fig. 21, where we show the joint magnitude-
redshift distribution. The bottom panel of the same figure
compares the redshift distribution of the subsamples in
MICE LOWZ with the observed redshift distribution from
the BOSS DR11. We find that the redshift distribution of
the MICE subsamples L1-L3 are consistent with the
observations, while the dimmest subsample L4 has a strong
overabundance of galaxies around z ∼ 0.25. We have
validated that this overabundance is present at all angular
positions. It might thus result from an interplay of the
HOD-SHAM methodology used for assigning magnitudes
and colors to galaxies and the LOWZ sample selection,
leading to a preferred selection of objects at that redshift.

Further investigations are needed to fully understand this
effect. However, we do not expect this overabundance to
significantly affect our measurements of the projected
correlations wgg and wgþ since it is isotropic and therefore
taken into account in the random catalogs used in the
estimators (see Sec. II).

2. DES-like samples

We verify the selection of the DES-like catalog in MICE
by comparing the distributions of apparent magnitudes in
the r, i, and z DES broads from the DES Y3 data and the
remapped MICE photometry (described in Sec. III B) in
Fig. 22. We find a reasonable agreement between MICE
and DES Y3, with MICE containing a slightly longer tail
toward bright objects. The DES Y3 distributions in that
figure employ the fiducial quality cuts described in Gatti
and Sheldon et al., [44], plus an extra cut removing objects
in Metacalibration with magnitude i > 23 to enable a closer
comparison with the MICE photometry, which is limited at
that magnitude.15

In Fig. 23, we display the u − r color index (as defined
in Sec. III C) versus the absolute SDSS r-band magnitude
for the DES-like redshift samples from MICE, showing
how a significant fraction of central galaxies are defined as
blue according to the color cut used in our modeling

FIG. 20. LOWZ selection cuts in BOSS and MICE (left and
right, respectively) on the apparent SDSS r-band magnitude mr
and the color cuts c⊥ and ck, as defined in Eq. (20). The mr cut
for MICE is slightly shifted to dimmer magnitudes in order to
match the BOSS LOWZ number density, as indicated by the red
dotted line in the top right panel.

14https://data.sdss.org/sas/dr11/boss/lss/.

15Note that the i < 23 cut does not affect the comparison to
COSMOS data in Fig. 1 since this is based on MICE galaxies in
an area, which is complete down to i < 24.
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(see Table II). Figure 23 further reveals a lack of central
galaxies dimmer thanMr ∼ −19. This cutoff results from the
fact that we require halos to have at least 10 particles. This
condition imposes an absolute magnitude limit that affects
only central galaxies as a consequence of the HOD-SHAM
model with which galaxies are generated in MICE.16 Due to
the apparent magnitude limit in the DES-like samples of
i < 23, this artifact affects mainly centrals in the two lowest
redshift bins 1 and 2 of theDES-like samples. The i < 23 cut
on the other hand affects a significant fraction of centrals as
well as satellites in the two highest redshift bins 3 and 4.
Both the Mr ∼ −19 and the i ¼ 23 cuts can potentially

boost the IA amplitude, as they remove centrals in lowmass

FIG. 21. Top: Absolute SDSS r-band magnitude versus redshift
of galaxies in the mock BOSS LOWZ catalog. The LOWZ
sample is split into four luminosity subsamples (L1-L4, from
bright to faint) by quantiles, following SM16. The sample limits
in redshift and magnitude are shown as dashed vertical and
horizontal lines respectively. Bottom: Redshift distribution of the
MICE luminosity samples in the same color coding as in the top
panel. The black line shows the observed distribution of the entire
LOWZ sample from BOSS DR11.

FIG. 22. Comparison between magnitude distributions on the
DES Y3Metacalibration catalog and the MICE photometry in riz
bands. We introduce an extra apparent magnitude cut of i < 23
to METACALIBRATION in this comparison, matching MICE
specifications.

FIG. 23. Normalized distribution of the u − r rest frame color
index versus absolute r-band magnitude in four redshift bins of
the DES-like samples with i < 23. Red lines indicate the color cut
used to define red and blue galaxies in the IA modeling.

16Note here that this lack of galaxies in low mass halos only
affects the MICE IA catalog, not the full simulated catalog, for
which FoF halos down to two particles were populated with
galaxies.
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halos as well as faint satellites. Centrals in low mass halos
should be weakly aligned due to a decrease in halo
alignment with decreasing mass [91], and, moreover, the
noise in measured orientations increases as the number of
halo particles decreases. Satellites with faint absolute
magnitudes have more randomized orientations than bright
satellites, according to our semianalytic IA model (Sec. V).
Removing such highly randomized objects from the sample
could hence increase the amplitude of the IA statistics.
However, investigating the magnitude of such an increase
would require a higher resolution simulation that is
complete below to i ¼ 23. In this work, we therefore
regard the IA signal predicted by MICE for the DES-like
samples as an upper bound for an IA signal that we would
measure when including galaxies in halos with less than 10
particles and apparent magnitudes below i ¼ 23.

FIG. 24. Normalized distribution of absolute Subaru r-band
magnitudes in COSMOS and MICE for red and blue galaxies.
The set of volume limited subsamples used for comparing the
axis ratio distributions in Fig. 6 are marked by red rectangles. The
drop in the density for galaxies in MICE with Mr > −20 results
from a lack of host halos with less than 10 particles (see
discussion Sec. III E).

FIG. 25. Normalized distribution of the u − r rest frame color
index versus absolute r-band magnitude in three redshift bins of
the MICE simulation. Red dashed lines indicate the limits of the
color-redshift samples used for the measuring predictions for
wmþ (Fig. 12).

FIG. 26. Healpix regions (Nside ¼ 8) in the MICE octant, used
for the jackknife estimation of the covariance for wgþ and wmþ.

FIG. 27. Jack-knife estimates of the normalized covariance
matrix Ĉij ≡ Cij=ðσiσjÞ for wmþ measurements in the bins i and
j. Results are shown for red galaxies in four of our volume limited
samples.
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3. Volume limited sample selection

The selection of volume limited samples, used to
compare the galaxy axis ratio distributions in COSMOS

and MICE (Sec. IV), is illustrated in Fig. 24, separately for
red and blue galaxies. Figure 25 shows the selection of the
volume limited samples that are used to study the redshift,

FIG. 28. Significance of the deviations between the wmþ measurements, shown in Fig. 12, and fits to the NLA and the TATT model.
Results are shown for 16 volume limited samples whose redshift and magnitude ranges are indicated on the top and right, respectively.
Dashed, dashed-dotted, dashed-double dotted, and dotted lines are results derived for different lower limits of the fitting range, which are
set to rmin

p ¼ 1; 2; 4; 8 h−1 Mpc, respectively. These limits are indicated by the vertical lines in the corresponding line types. The upper
limit of the fitting range is set to rmax

p ¼ 60 h−1 Mpc.
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magnitude, and color dependence of the IA statistics in
MICE (Sec. VI A), separately for central and satellite
galaxies.

APPENDIX C: JACKKNIFE COVARIANCE

Our delete-one jackknife estimates of the covariance
matrix of the projected correlations, described in
Sec. II A 1, are derived from angular subsamples, which
are defined as healpix pixels with Nside ¼ 8. The area
covered by the different subsamples in the MICE octant is
shown in Fig. 26. In Fig. 27, we show examples of the
normalized covariance estimated for wmþ measurements in
four of our 16 volume limited samples. We find that all
covariances are dominated by the diagonal elements, while
the off-diagonal elements are noisy, which potentially
affects the fits of the NLA and the TATT model predictions
for wmþ to the measurements.

APPENDIX D: SCALE DEPENDENCE OF
TATT PARAMETERS

We investigate here how well the NLA and the TATT
model predictions for wmþ fit the measurements over
different ranges of the transverse distance scale rp. In
addition, we study how variations in the fitting range affect
the inferred model parameters. For that purpose, we perform

the Bayesian parameter inference, described in Sec. VI B,
for the lower limits of rmin

p ∈ ½1; 2; 4; 8�h−1Mpc and the
upper limits of rmax

p ∈ ½30; 60�h−1Mpc.
In Fig. 28, we show the significance of the deviations

between wmþðrpÞ measurements and fits, defined as the
absolute difference over the standard deviation, for differ-
ent rmin

p and a fixed value of rmax
p ¼ 60h−1 Mpc. Results are

shown for the same 16 volume limited sample of red
galaxies as in Fig. 12. Note that we do not investigate
results for blue samples since their alignment signal is
consistent with zero by construction. The results in Fig. 28
show that the fits of the TATT model do not deviate by
more than 2σ from the measurements within the scale range
over which the fit is performed. This is true even for
rmin
p ¼ 1 h−1 Mpc, which we therefore choose as lower
scale cut for the fits shown in Fig. 12. In addition, we find
that the fitting performance of the TATT model at large
scales (rp > 8 h−1 Mpc) is only weakly affected by the
small scale cut. The results for the TATT model are
contrasted by those for the NLA model. For this model,
we find strong deviations of more than 4σ when fitting
between 1 and 60h−1 Mpc. The fitting performance at large
scales is thereby strongly affected by the lower scale cut,
indicating a lack of flexibility in the model. However, when
restricting the lower scale cut to rmin

p ¼ 8 h−1 Mpc, we find
the NLA model to fit the measurements with a similar 2σ

FIG. 29. Marginalized posterior distributions of the TATT model parameters from fits to wmþ measurements in different volume
limited samples of red galaxies in MICE versus each sample’s logarithmic normalized mean r-band luminosity (analogous to Fig. 15).
Results are shown for different scale ranges used for the fits, as indicated in the top left panel in units of h−1 Mpc.
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uncertainty as the TATT model. This scale cut is therefore
chosen for the NLA fits shown in Fig. 12. It is further
interesting to note that there is no clear dependence of the
fitting performance on either magnitude or redshift and
hence on the amplitude of wmþ.
In Fig. 29, we show the parameters of the TATT model

versus the luminosity of the different volume limited

samples in three redshift bins. We find no significant
change of the parameters when changing the upper (lower)
limit of the fiducial fitting range of 1 < rmax

p ¼ 60h−1 Mpc
to 4 ð30Þ h−1 Mpc. This finding shows that the conclusions
drawn from Fig. 15 are robust toward moderate variations
of the chosen fitting range.
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