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A near-future detection of the 21-cm signal from the epoch of reionization will provide unique
opportunities to probe the underlying cosmology, provided that such cosmological information can be
extracted with precision. To this end, we further develop effective field theory (EFT) inspired techniques for
the 21-cm brightness temperature field during the epoch of reionization, incorporating renormalized bias
and a treatment of redshift space distortions. Notably, we confirm that in redshift space, measures of the
21-cm brightness, e.g., the power spectrum, should have irreducible contributions that lack a bias
coefficient and therefore contain direct, astrophysics-free information about the cosmological density field;
in this work, we study this effect beyond linear order. To validate our theoretical treatment, we fit the
predicted EFT Fourier-space shapes to the THESAN suite of hydrodynamical simulations of reionization
at the field level, where the considerable number of modes prevents overfitting. We find agreement at the
level of a few percent between the 21-cm power spectrum from the EFT fits and simulations over the wave
number range k ≲ 0.8 h=Mpc and neutral fraction xHI ≳ 0.4, which is imminently measurable by the
Hydrogen Epoch of Reionization Array and future experiments. The ability of the EFT to describe the 21-
cm signal extends to simulations that have different astrophysical prescriptions for reionization as well as
simulations with interacting dark matter.

DOI: 10.1103/PhysRevD.106.123506

I. INTRODUCTION

The 21-cm transition of neutral hydrogen provides a
promising avenue for mapping out large scale structure
(LSS) and testing cosmological theories at redshifts where
there are few or no other detectable luminous tracers of the
underlying matter field. Most empirical cosmological
information either comes from measurements of the cosmic
microwave background (CMB), which was emitted around
the time of recombination z ≈ 1100, or from surveys of
tracers like galaxies at lower redshifts. To better understand
how structure in our universe evolved at intermediate
redshifts, we need observations of the diffuse neutral
hydrogen gas from immediately after recombination
through to the epoch of reionization (EoR).
Several experiments are already actively attempting to

map the cosmological 21-cm signal from the EoR, both at
the level of the global signal (monopole) using experiments
like EDGES [1], LEDA [2], PRIZM [3], and SARAS [4],
as well as the fluctuations in the 21-cm signal using

interferometric experiements like PAPER [5], the MWA
[6,7], LOFAR [8], Hydrogen Epoch of Reionization Array
(HERA) [9], and the upcoming Square Kilometre Array
(SKA) [10]; there are also a number of post-reionization
intensity mapping efforts such as CHIME [11], HIRAX
[12], and CHORD [13]. There has already been a tentative
detection of the global signal from cosmic dawn in the form
of a deep absorption trough at z ∼ 17 made by the EDGES
Collaboration [14], although this interpretation is in strong
tension with observations from SARAS 3 [15]. Further
study of this feature is a major goal of 21-cm experiments
moving forward, while at the same time there is a push
towards measuring the 21-cm power spectrum from the
EoR and eventually performing full tomographic mapping.
One complication of measuring the 21-cm power spec-

trum is redshift space distortions (RSDs), which are
contributions to the observed redshift that arise due to
the peculiar velocities of neutral hydrogen rather than
Hubble expansion. In other words, using the redshift of
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an observed line emission to infer a distance without
accounting for line-of-sight peculiar velocities will yield
the wrong distance. One can only directly measure dis-
tances in this illusory “redshift space” since there is no
other independent way of inferring the peculiar velocity of
the gas; thus, we are faced with the problem of extracting
information about real space cosmology from redshift
space observables. This is particularly relevant for inter-
ferometric measurements of the 21-cm EoR signal, since
substantial foregrounds that contaminate the signal lie
in a “wedge” in kk vs k⊥, where kk and k⊥ denote the
line-of-sight and transverse components of Fourier modes,
respectively. Modes with even moderate projections onto
the k⊥ direction will be within the foreground wedge
whereas modes with larger projections onto the line-of-
sight direction will be less contaminated by foregrounds
[16–30]. In addition to evading foregrounds, from an
instrumental perspective the high-k modes that are nearly
parallel to the line of sight are more readily observable due
to the ease of attaining high spectral resolution as opposed
to angular resolution. Experiments like HERA [9] therefore
predominantly observe modes that are nearly parallel to the
line of sight, and these are precisely the modes that will be
most affected by RSDs [31]. For useful reviews on 21-cm
foreground mitigation, see Refs. [32,33].
In this paper, we parametrize the effects of RSDs on the

21-cm field using techniques inspired by effective field
theory (EFT) [34,35]. In recent years, EFT techniques
have become a powerful tool for studying large scale
structure [36–47]. As structure formation progresses, non-
linear effects at a given scale become increasingly impor-
tant; in other words, while density perturbations in the
recombination epoch can be accurately described purely by
linear theory, perturbations in the EoR cannot. With EFT
techniques, one can systematically treat mildly nonlinear
effects to increasingly high accuracy, up to some cutoff
scale where structure formation becomes fully nonlinear.
More specifically, we use EFT-inspired methods to treat
the feedback of small-scale nonlinear effects on the
larger scales of interest; this procedure is analogous to
renormalization [48].
The application of EFT-inspired techniques to the EoR

21-cm intensity field has only been studied relatively
recently, as it was previously thought that the 21-cm signal
was nonperturbative in the wave number range probed by
telescopes due to the presence of large ionized structures.
To date, most of the theoretical analysis of the 21-cm signal
has been driven by computationally expensive radiative
transfer simulations [49–55], or by semi-analytic models
such as 21CMFAST [56,57] that can survey a wide range
of theories of reionization with Oð10%Þ level agreement
with simulation [58–60] (although the level of agreement
depends sensitively on the ability of simulations to resolve
self-shielded Lyman limit systems [61]). There have also
been studies using phenomenological models that model

the distribution of bubble sizes [62–64], parametrized
models tuned to radiative transfer simulations [65],
models that match to a given mass-weighted ionization
fraction [66], and hybrid numerical methods that simulate
the distribution of the first stars [67,68].
However, perturbative methods have gradually been

developed with increasing success to study the process
of reionization. Linear perturbation theory can qualitatively
reproduce many of the features of the EoR [69,70],
and theories including quadratic bias can match semi-
analytic models to the level of tens of percent on very large
scales [71]. Reference [72] pioneered the use of an effective
bias expansion together with large-scale reionization sim-
ulations to show that the signal is in fact only mildly
nonlinear on observable scales and that the field can be
described accurately in real space with a small number of
free parameters.
In this paper, we extend the perturbative description of the

21-cm signal to include RSDs, the effects of which have
previously been encapsulated in EFT treatments of the
density field and halos [73–75]. In particular, we find that
the RSDs give rise to terms that are not multiplied by any
bias coefficients; therefore, the contribution of these terms to
observable quantities is fixed and does not add any degrees
of freedom when fitting to measurements or simulations.
Previous works have studied these terms using linear theory,
and found that these terms can enhance the power spectrum
up to a factor of ∼2 [76] and that the size of the resulting
anisotropies varies with redshift [77]. Moreover, these
contributions contain information about the underlying
cosmological density field that is free from astrophysical
influence. We test the validity of our theoretical approach
using THESAN, a suite of state-of-the-art radiation hydro-
dynamic simulations [78–83]. Figure 1 shows example slices
from the simulations included in the suite.
All distances in this paper are reported in terms of

comoving units. Readers mainly interested in the results of
fitting the effective field theory expansion to simulations
may choose to skip Sec. II, which reviews perturbative
methods for studying cosmological density fields, includ-
ing standard perturbation theory (SPT), EFT, and the
renormalization of local composite operators that appear
in bias expansions. In Sec. III, we apply these perturbative
techniques to the 21-cm brightness temperature in redshift
space. In Sec. IV, we introduce the THESAN simulations and
describe our method for fitting the coefficients in the theory
expansion to the simulations, which is done at the level
of the cosmological fields, instead of directly to the
power spectrum to mitigate the possibility of overfitting.
Section V elaborates on the physical interpretation of the
bias parameters and compares the fit parameters for
simulations run with different physics, including a simu-
lation with interacting dark matter that exhibits strong dark
acoustic oscillations (sDAOs). Finally, we summarize our
findings and outline some future directions in Sec. VI.
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FIG. 1. Maps of the ionized bubble distribution in the different THESAN simulations, at xHI ∼ 0.7. The bubbles are projected from a
thick “slice” of the simulation spanning 8% of the box volume. THESAN-1 is the highest resolution simulation in the THESAN suite.
THESAN-2 is a medium resolution simulation that is otherwise the same as THESAN-1; THESAN-WC-2 has a slightly higher escape fraction
to compensate for the lower star formation in THESAN-2 compared to THESAN-1. THESAN-LOW-2 is the same as THESAN-2 except that only
halos below 1010M⊙ contribute to reionization, whereas in THESAN-HIGH-2, only halos above 1010M⊙ contribute. THESAN-SDAO-2 is the
same as THESAN-2 but uses a nonstandard dark matter model that effectively cuts off the linear matter power spectrum at small scales.
The inset plot shows the linear matter power spectrum for cold dark matter and the dark acoustic oscillation model. As expected,
THESAN-HIGH-2 exhibits the largest ionized bubbles. Small ionized bubbles are also less abundant in the THESAN-HIGH-2 and THESAN-
SDAO-2 simulations, compared to the others.

EFFECTIVE BIAS EXPANSION FOR 21-CM COSMOLOGY IN … PHYS. REV. D 106, 123506 (2022)

123506-3



II. REVIEW OF COSMOLOGICAL
PERTURBATION THEORIES

In this section, we review results from SPT and the
EFT of LSS, as well as effective renormalization in bias
expansions. We begin by deriving the equations of motion
for density and velocity perturbations and showing the
perturbative solutions in SPT. We then review some results
from EFT and introduce a diagrammatic language to help
organize calculations involving higher-order terms and
composite operators. See also Ref. [84] for a comprehen-
sive review of cosmological perturbation theory, particu-
larly in the context of galaxy bias.

A. Standard perturbation theory

Given a phase space distribution of collisionless particles
fðτ; x; pÞ, the Boltzmann equation in an expanding uni-
verse is [85]

df
dt

¼ 1

a
∂f
∂τ

þ p
a2m

·
∂f
∂x

−m
∂f
∂p

·
∂ϕ

∂x
¼ 0: ð1Þ

Here, t denotes cosmic time, and is related to conformal
time τ via dt ¼ adτ, where a is the scale factor, x and p
are the comoving positions and momenta, and ϕ is the
gravitational potential. In this and following equations, we
use boldface type to represent vectors; however, we occa-
sionally use Einstein index notation to avoid ambiguities.
The first three moments of fðτ; x; pÞ correspond to the

comoving mass density, momentum density, and velocity
dispersion:

ρðτ; xÞ≡m
Z

đ3pfðτ; x; pÞ; ð2Þ

πðτ; xÞ≡
Z

đ3pfðτ; x; pÞp; ð3Þ

σijðτ; xÞ≡ 1

m2

Z
đ3pfðτ; x; pÞpipj −

πiπj

mρ
: ð4Þ

In these definitions, we denote đ3p ¼ d3p=ð2πÞ3. The first
two moments of the Boltzmann equation correspond to the
continuity equation

0 ¼ ∂τρþ
1

a
∇ · π ð5Þ

and the Euler equation

0 ¼ ∂τπi þ
1

a
∂j

�
πiπj
ρ

�
þ aρ∇iϕ: ð6Þ

In the present formulation, the fluid equations contain
no terms corresponding to shear forces, viscosity, or heat

conduction; our collisionless particles therefore constitute a
perfect fluid.
We solve these fluid equations perturbatively, defining

δ ¼ ρ=ρ̄ − 1, where ρ̄ is the mean density, and noting that
the momentum density can be rewritten in terms of the
physical peculiar velocity v as π ¼ ρav; this is not the
velocity of individual particles, but the bulk velocity of
the field, i.e., averaged velocity of the particles in a region.
Since the mean velocity of a homogeneous universe
vanishes, v is perturbatively small. In terms of δ and v,
the continuity and Euler equations become

0 ¼ ∂τδþ ∇ · ½ð1þ δÞv�; ð7Þ

0 ¼ ∂τvþHvþ ðv · ∇Þvþ ∇ϕ: ð8Þ

Here, H ¼ ∂τa=a is the conformal Hubble parameter. We
also include the Poisson equation in comoving coordinates
as an equation of motion; since we are dealing with scales
much smaller than the Hubble length, gravity can be treated
as Newtonian:

∂
2ϕ ¼ 3

2
H2Ωmδ: ð9Þ

Above, Ωm is the mass density in units of the critical
density. We hereafter set Ωm ¼ 1 since reionization occurs
deep in the matter-dominated era. The velocity can be
further decomposed in terms of its divergence, θ ¼ ∇ · v,
and curl or vorticity, ω ¼ ∇ × v. However, at leading order
in SPT, any initial vorticity decays linearly with the
expansion of the Universe; therefore, we neglect the
contribution to the velocity field coming from ω.1 With
this velocity decomposition, in Fourier space the continuity
and Euler equations are

∂τδk þ θk ¼ −
Z

đ3q
q · k
q2

θqδðk−qÞ; ð10Þ

∂τθkþHθkþ
3

2
H2δk¼−

Z
đ3q

�
k2½q ·ðk−qÞ�
2q2ðk−qÞ2

�
θqθðk−qÞ:

ð11Þ

Above, we have used bold subscripts to denote Fourier
transformed quantities, e.g., δk ¼

R
d3xδðxÞe−ik·x. It will

also be useful to convert the time derivatives into deriv-
atives with respect to scale factor using ∂τ ¼ Ha∂a and the
fact that H ∝ 1=

ffiffiffi
a

p
during matter domination.

1At higher order in SPT, there can be growing vorticity modes;
however, the sources always contain powers of the vorticity at
linear order, and are therefore still suppressed relative to the
growing modes of δ and θ. Vorticity can also matter in EFT at
third order, because the stress tensor and heat conduction terms
source a nondecaying contribution [86].
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The right-hand sides of Eqs. (10) and (11) mix the δ and
θ modes. To solve these coupled fluid equations, one can
adopt the perturbative Ansatz

δkðτÞ ¼
X∞
n¼1

DnðτÞδðnÞk ; ð12Þ

θkðτÞ ¼ −HðτÞfðτÞ
X∞
n¼1

DnðτÞθðnÞk ; ð13Þ

where δðnÞ and θðnÞ are Oðδð1ÞÞn and where DðτÞ and
fðτÞ ¼ d lnDðτÞ=Hdτ are the linear and logarithmic
growth functions. Since reionization occurs deep in the
matter-dominated epoch, we set DðτÞ ¼ aðτÞ and fðτÞ ¼ 1
in this work; to include the effect of a dark energy
component, one can substitute the appropriate growth
factors [87]. Given the form of the Ansatz, the solution
to Eqs. (10) and (11) can be expressed as

δðnÞk ¼
Z

đ3q1…
Z

đ3qnð2πÞ3δD
�
k −

Xn
i¼1

qi

�
Fnðq1;…; qnÞδð1Þq1 …δð1Þqn ; ð14Þ

θðnÞk ¼
Z

đ3q1…
Z

đ3qnð2πÞ3δD
�
k −

Xn
i¼1

qi

�
Gnðq1;…; qnÞδð1Þq1 …δðnÞqn ; ð15Þ

where the mode coupling kernels Fn and Gn have well-
known recursion relations [87–89]. The first few kernels,
symmetrized over permutations of the momenta, are

F1 ¼ G1 ¼ 1; ð16Þ

F2ðq1; q2Þ ¼
5

7
þ 2

7

ðq1 · q2Þ2
q21q

2
2

þ q1 · q2
2

�
1

q21
þ 1

q22

�
; ð17Þ

G2ðq1; q2Þ ¼
3

7
þ 4

7

ðq1 · q2Þ2
q21q

2
2

þ q1 · q2
2

�
1

q21
þ 1

q22

�
: ð18Þ

One can calculate correlation functions of these fields using
a diagrammatic representation. The diagram rules are
(1) Each δðnÞk and θðnÞk corresponds to a vertex with one

external leg of wave number k and n internal legs

representing the factors of δð1Þqi . The vertex couples
the n modes of the internal legs, and therefore
corresponds to Fnðq1;…; qnÞ or Gnðq1;…; qnÞ de-
pending on which field is involved. In analogy to
conservation of momentum, wave number is con-
served so each vertex also carries a factor of
ð2πÞ3δDðk −P

n
i¼1 qiÞ. We used filled dots to re-

present the density field and open dots to represent
the velocity field.

ð19Þ

ð20Þ
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(2) To compute a correlation function, draw all con-
nected diagrams that can be made by contracting the
internal δð1Þ legs. Since we are using symmetrized
Fn and Gn kernels, permuting the δð1Þ legs on each
δðnÞ vertex will give rise to a symmetry factor of n!,
and loops introduce additional combinatoric factors
to prevent double counting.

(3) For each internal leg carrying wave number p, write
down a factor of PLðpÞ, the linear matter power
spectrum. This is analogous to the propagator of the
linear, “free” density fields of the internal legs, since
the power spectrum is related to the two-point
correlation function.

ð21Þ

The vertices on the ends of the propagator can correspond
to both δ, both θ, or one of each; the factor of PLðpÞ
associated with the propagator is the same in any case,
since δð1Þ and θð1Þ are spatially the same up to time-
dependent factors.
(4) Integrate over the wave number q of each loop

with
R
đ3q.

B. Effective field theory

For small-wavelength modes, perturbations will have
collapsed enough to have become nonlinear and be outside
of the regime of validity of the present perturbative
theoretical treatment. These nonlinearities can also affect
large scales, since modes of different scales are coupled by
the vertex kernels of Eqs. (14) and (15) and since integrals
over loops formally run over all wave numbers. This
motivates introducing a smoothed version of the fields,
where we convolve the densities or velocities with a
windowing functionWΛ of characteristic length scale 1=Λ.
We can apply this smoothing to the equations of motion

e.g., Eqs. (5) and (6); however, smoothed composite
operators cannot be straightfowardly expressed as a product
of smoothed fields, e.g., ðδvÞsmooth ≠ δsmoothvsmooth. In
order to express the equations of motion in terms of
smoothed fields, one can express the smoothed composite
operators as a product of smoothed fields after introducing
additional correction terms [34,35,90–92]. These terms are
unknown a priori but can be constructed from the bottom
up from all terms consistent with the symmetries (e.g.,
Galilean invariance). These terms take the form of an
effective stress tensor for the long-wavelength fluid and the
sensitivity to unknown behavior of small-scale modes is
parametrized as an effective speed of sound, viscosity,
shear, etc. In other words, the smoothed density field is
not a perfect fluid because of the feedback from small-
scale modes.
The new terms in the effective stress tensor can be

constructed order by order, by expanding the stress tensor
in terms of convective time derivatives (co-moving with
fluid elements) of local operators [86]. As a result of this
change to the equations of motion, we must modify the
perturbative Ansatz to include additional counterterms,
which we denote by δ̃ðnÞ and θ̃ðnÞ,

δkðτÞ ¼
X∞
n¼1

�
aðτÞnδðnÞk þ ϵaðτÞnþ2δ̃ðnÞk

�
; ð22Þ

θkðτÞ ¼ −HðτÞ
X∞
n¼1

�
aðτÞnθðnÞk þ ϵaðτÞnþ2θ̃ðnÞk

�
: ð23Þ

Here, ϵ is a parameter that allows us to keep track of the
EFT power counting. The counterterms come with an
additional factor of aðτÞ2 compared to the SPT terms
because the EFT terms must have the same time depend-
ence as loop contributions from SPT in order to correct
them. The EFT kernels F̃n and G̃n are analogously defined
relative to the SPT kernels as

δ̃ðnÞk ¼
Z

đ3q1…
Z

đ3qnð2πÞ3δD
�
k −

Xn
i¼1

qi

�
F̃nðq1;…; qnÞδð1Þq1 …δð1Þqn ; ð24Þ

θ̃ðnÞk ¼
Z

đ3q1…
Z

đ3qnð2πÞ3δD
�
k −

Xn
i¼1

qi

�
G̃nðq1;…; qnÞδð1Þq1 …δð1Þqn : ð25Þ

The forms of the EFT kernels, F̃n and G̃n, are derived in
Ref. [86] and listed up to n ¼ 3. Correlation functions can
then be computed and are robust to the effects of non-
linearities affecting the results at the level of the fluid
equations; i.e., the large perturbative scales are less affected
by the uncertainties of small scale physics.

C. Renormalized bias

Much of the formalism for cosmological effective
field theories has been developed in the context of large
scale structure and the matter density field. However, EFT
techniques can also be extended to study biased tracers of
the matter field, such as galaxies and halos [48,75,93–98].
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Cosmological 21-cm radiation is also a biased tracer of the
underlying matter field on large scales. When expressing
the 21-cm intensity field as a local bias expansion in
terms of δ, one needs to include all operators that respect
homogeneity and isotropy; specifically, the theoretical
21-cm field is built up only from operators that obey these
symmetries, and should generically include contributions
from all such operators,

ðδ21Þk¼b1δk−b∇2k2δkþb2ðδ2ÞkþbG2ðG2Þkþ��� ð26Þ

Note that the momentum subscript denotes a Fourier
transformation over the entire operator, e.g., ðδ2Þk ¼R
đ3kδ2ðxÞe−ik·x ≠ ðδkÞ2. In the above equation, G2 is the

second Galileon or tidal operator, defined in configuration
space as

G2 ¼ ð∇i∇jϕÞð∇i∇jϕÞ − ð∇2ϕÞ2: ð27Þ

The bias coefficients b for the various operators in Eq. (26)
are not known a priori and must be determined from real
or simulated data; in fact, the field on the left-hand side of
Eq. (26) can be replaced with any biased tracer of the
underlying matter field, e.g., halos or galaxies, and the
inferred coefficients will differ depending on the physics of
the particular tracer in question.
From Eq. (26), we see that composite operators such

as δ2ðxÞ appear in the configuration space picture.
Diagramatically, we represent this composite operator in
Fourier space with the vertex

ð28Þ

where the “blob” indicates a convolution in Fourier space
and where the two legs ending in solid dots represent δðnÞ
component fields entering the convolution. Because these
operators are local in configuration space, in Fourier
space the convolution includes all wave numbers.
Therefore, these composite operators contain contribu-
tions from small-scale modes that are nonlinear, in
analogy to the previous subsection. These nonlinear
contributions to the bias expansion are not removed by
the EFT formalism described above, because the counter-
terms in Eqs. (22) and (23) only correct the nonlinearities
that affect the equations of motion for matter. We follow
the renormalization procedure in Ref. [48] to remove the
small scale or UV dependence of composite operators
order by order.
To renormalize an operator f, we take correlation

functions of f with factors of the linear density field δð1Þ
and add counterterms that cancel UV-sensitive loop con-
tributions to these correlation functions in the zero-mode

limit; this leaves only the tree-level (or zero-oop) contri-
bution. In other words, our renormalization condition is

h½fk�δð1Þq1 � � � δð1Þqn i ¼ hfkδð1Þq1 � � � δð1Þqn itree for qi ¼ 0; ∀ i;

ð29Þ

where the square brackets denote the renormalized operator
½f� ¼ f þP

O Zf
OO such that the sum over all counterterm

operators O,
P

O Zf
OO cancel the loop contributions. We

evaluate the renormalization conditions at zero wave
number, since this is the limit where the theory is most
perturbative. In evaluating loops, we only include diagrams
where the loops connect multiple component fields of the
convolution vertex; such diagrams are sometimes called
“one particle irreducible” or 1PI due to their similarity with
such diagrams from quantum field theory [48,92], but we
stress that these definitions are not exactly the same. The
diagrams we include capture the additional mixing between
small and large scale modes in the convolution that we are
concerned with, as opposed to the mixing that arises from
the equations of motion. We now make these definitions
more explicit:

(i) 1PI diagrams are diagrams that cannot be separated
into two valid, disconnected diagrams by cutting
a single internal line. The following graph is an
example of a fully 1PI diagram.

Since the momenta in the external legs coming out of the
composite operator are related via loops, this diagram
involves mode mixing, so we include it in the renormal-
ization procedure. Note that this example is a two-loop
diagram, so we do not include this for calculating the one-
loop power spectrum.
(ii) We also include diagrams of the following type.

This is not 1PI in the conventional sense, since it can be
separated into two valid diagrams by cutting the bottom leg
coming out of the convolution vertex. However, we still
include it for the purpose of renormalization, since there
is a loop that relates the momenta of the other two legs.
Such diagrams have been termed “partially 1PI” in the
literature [48].
(iii) Below is an example of a diagram that is neither

fully 1PI nor partially 1PI.
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We do not include this for bias renormalization, since
the momenta running through the external legs of the
composite operator vertex do not mix.
As an example, we show the calculation of the first few

of counterterms for δ2. The first counterterm cancels UV
sensitivity from the expectation value of δ2,

ð30Þ

Thus the lowest order counterterm is −σ2ðΛÞ. By sub-
tracting tadpole diagrams involving operators that contrib-
ute to Eq. (26), we ensure that the expectation value of
the biased tracer vanishes at the one-loop level, hδ21i ¼ 0.
The next counterterm cancels the UV sensitivity of

ð31Þ

Since the corresponding counterterm must be proportional
to PLðkÞ when correlated with a factor of δð1Þ, the counter-
term must be proportional to the operator δ. Thus, the first
few terms of the renormalized ðδ2Þk are

½δ2� ¼ δ2 − σ2ðΛÞ − 68

21
σ2ðΛÞδ: ð32Þ

Note that this equation is written in configuration space.
In order to include corrections from higher-order counter-
terms, we would continue to calculate higher point corre-
lation functions. In this way, we renormalize all the
composite operators that appear in our bias expansion.
The Galilean operator, G2, is not renormalized at leading

order in derivatives [48]. Even if we had decided to
calculate these higher derivative counterterms, the limit
qi → 0 in the renormalization conditions ensures that these

counterterms vanish anyway; thus, within this framework,
G2 is not renormalized.

III. THE 21-CM RADIATION FIELD
IN REDSHIFT SPACE

The 21-cm differential brightness temperature is a
biased tracer of the underlying matter density and can be
written as [99,100]

δTb ≈ 28ð1þ δÞxHI
�
1 −

TCMBðνÞ
Tspin

��
Ωbh2

0.0223

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ z
10

��
0.24
Ωm

�s �
HðzÞ=ð1þ zÞ

dvk=drk

�
mK: ð33Þ

In this expression, xHI is the fraction of hydrogen that is
neutral, TCMBðνÞ is the CMB brightness temperature, Ωb is
the baryon density in units of the critical density, h is the
Hubble constant in units of 100 km s−1Mpc−1, Ωm is the
mass density in units of the critical density, HðzÞ is
the Hubble expansion at z, and dvk=drk is the gradient
of the proper velocity along the line of sight. The spin
temperature Tspin is defined in terms of the ratio of the
occupancy of the spin-1 and spin-0 ground states of
hydrogen.

n1
n0

¼ 3 expð−T�=TspinÞ: ð34Þ

Here, T� ¼ 0.0681 K is the temperature corresponding
to the 21-cm wavelength. The spin temperature varies
throughout space and even throughout individual clumps of
neutral hydrogen. However, since we are studying redshifts
well into the EoR, we assume Tspin ≫ TCMB, so the factor

of ð1 − TCMBðνÞ
Tspin

Þ in Eq. (33) becomes saturated and the effect

of spatial fluctuations in the spin temperature is negligible.
Henceforth, we neglect spin temperature fluctuations.
This is a common simplification; however, there are also
a number of studies that do not assume Tspin ≫ TCMB

[101,102]. Extending our formalism to higher redshifts
relevant for cosmic dawn will require that spin temperature
fluctuations be taken into account, and will be the subject of
future work.
To be explicit, we define δ21 ¼ ðδTb − δTbÞ=δTb to be

the fluctuations in the brightness temperature, and not δTb
itself. Then, by comparing Eqs. (26) and (33), we see that
measuring the bias coefficients gives us information about
the distribution and ionization of the intervening hydrogen,
as well as cosmological parameters.

A. From real space to redshift space

Observations of the 21-cm radiation field are compli-
cated by the fact that neutral hydrogen has a peculiar
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velocity which gives rise to RSDs. In other words, the
measured redshift of the 21-cm line cannot be attributed
purely to the expansion of the Universe. The distances
mapped out from the redshift and ignoring the peculiar
velocity form a distorted “redshift space” and the coor-
dinates xr in this space are related to real space coordinates
x by

xr ¼ xþ n̂ · vpec
H

n̂: ð35Þ

Here, n̂ is the line-of-sight direction and vpec is the
peculiar velocity at the location indicated by the real space
coordinate.
The effect of RSDs has been accounted for in effective

field theory descriptions of LSS and biased tracers of LSS
[73–75,98,103–106]. RSDs have also been treated pertur-
batively for the 21-cm signal [107], but without including a
fully systematic treatment of small-scale nonlinearities as
described in the previous section. To derive the effect of
RSDs, we can use the above relationship to transform
between the real and redshift space density contrast. If the
density in real space is ρ and in redshift space is ρr, then
conservation of mass implies ρrðxrÞd3xr ¼ ρðxÞd3x. Then,
expanding in terms of the density constrast δ ¼ ρ=ρ̄ − 1,
we find

δrðxrÞ ¼ ð1þ δðxÞÞ
���� ∂xr
∂x

����−1 − 1: ð36Þ

Fourier transforming this relation yields

ðδrÞk ¼ δk þ
Z

d3xe−ik·x
�
exp

�
−i

kkvk
H

	
− 1

�
ð1þ δðxÞÞ:

ð37Þ

Here, we have defined vk ≡ n̂ · vpec and kk ≡ n̂ · k.
The quantity kkvk can be thought of as the rate at which

modes of length scale 1=k are changing along the line of
sight, due to peculiar velocities. For the modes of interest,
this rate is quite small compared to the expansion rate of
the universe because the peculiar velocities are very non-
relativistic, hence kkvk=H is a small quantity. Taylor
expanding in this parameter then gives another series
expansion,

ðδrÞk ¼ δk − i
kk
H

ðvkÞk − i
kk
H

ðδvkÞk −
1

2

�
kk
H

�
2

ðv2kÞk

−
1

2

�
kk
H

�
2

ðδv2kÞk þ
i
6

�
kk
H

�
3

ðv3kÞk þ � � � ð38Þ

We see that we now have new operators that include factors
of the velocity field which will also need to be renormalized
following the prescription of Sec. II C.

Note that the vk that appears in Eq. (38) is a projection
of the baryon velocity, while the velocity that appears
throughout Sec. II is the matter velocity. Relative velocities
between baryons and dark matter can affect the formation
and distribution of the first bound objects, leaving imprints
on the matter power spectrum and galaxy bispectrum
[108,109], as well as affecting the Lyman-α forest [105],
reionization, and the 21-cm signal [106,110–113].
However, during the EoR, when the first collapsed objects
have already formed, the effect of these relative velocities is
negligible [114]. In the simulations we use, the difference
between the two velocities is less than 2% in the vast
majority of the volume and this approximation is also
justified and used in other studies [107]. Hence, for our
purposes, we take the velocity of the neutral hydrogen and
matter to be the same and leave the inclusion of a relative
velocity term for future study.

B. The effective 21-cm field

The steps to building up our effective field theory are
(1) Use standard perturbation theory to treat the evolu-

tion of the matter density field, δ. See Sec. II A for a
review of SPT.

(2) Include a bias expansion to write the 21-cm field δ21
in terms of δ. See also Ref. [84] for a comprehensive
review of cosmological perturbation theory for
biased tracers.

(3) Include an RSD expansion in kkvk=H, in order to
write the redshift space field δ21;r in terms of the real
space field δ21.

(4) Smooth over nonperturbative modes in the field
using some wave number Λ and renormalize the
composite operators that appear. See Sec. II C for
more details.

Putting together the bias and RSD expansions, we obtain

ðδ21;rÞk ¼ b1δk − b∇2k2δk þ b2ðδ2Þk þ bG2ðG2Þk
− i

kk
H

½ðvkÞk þ b1ðδvkÞk − b∇2k2ðδvkÞk�

−
1

2

�
kk
H

�
2

ðv2kÞk þ � � � ð39Þ

There are terms in Eq. (39) that are not multiplied by any
bias coefficients; thus, when fitting the theory to data or
simulations, the size of these terms cannot be adjusted. We
have checked that in the linear limit, the bias-independent
term in Eq. (39) resulting from RSDs matches the result
used in Ref. [76]. RSDs therefore give rise to a bias-
independent contribution to the power spectrum, which
can enhance the 21-cm power spectrum relative to the
matter spectrum by a factor of up to ∼2 [76]. The
measurability of these contributions depends on redshift
[77] and the angular dependence of these terms can also be
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used to distinguish the contributions to the 21-cm power
spectrum due to density fluctuations from ionization
fluctuations [107].
We can now apply the procedure outlined in Sec. II C to

renormalize the operators appearing in Eq. (39). As
discussed above, G2 is not renormalized at leading order
in derivatives [48], and furthermore ðδvkÞk receives no extra
counterterms because the momentum πi ∝ ð1þ δÞvi is
automatically renormalized through the continuity equation

]73,75[.2 Then for the remaining operators, we find

½δ2� ¼ δ2− σ2ðΛÞ
�
1þ 68

21
δþ 8126

2205
δ2þ 254

2205
G2

�
þ� � �

½v2k� ¼ v2k −H2ς2ðΛÞ
�
1

3
þ 2

105

�
24þ 23

k2k
k2

�
δþ vð2Þct

	
þ� � � ;

ð40Þ

where ς2ðΛÞ ¼ R Λ
0

dp
2π2

PLðpÞ and vð2Þct is given in Fourier
space by

ðvð2Þct Þk ¼
δDðq1 þ q2 − kÞ

10290

�
996þ 2041

�q2
1;k
q21

þ
q2
2;k
q22

�
− 2142

q1;kq2;k
q1q2

þ q1 · q2
q1q2

�
1071

q2
1;k
q21

þ 1071
q2
2;k
q22

− 948
q1 · q2
q1q2

þ 2844
q1;kq2;k
q1q2

�	
δq1δq2 : ð41Þ

More details about the derivation of the counterterms for v2k can be found in Appendix A. Re-expressing Eq. (39) in terms of
these renormalized operators, we obtain

ðδ21;rÞk ¼ bðRÞ1 δk − b∇2k2δk þ bðRÞ2 ½δ2�k þ bðRÞG2 ðG2Þk − i
kk
H

½ðvkÞk þ b1ðδvkÞk − b∇2k2ðδvkÞk� −
1

2

�
kk
H

�
2

½v2k�k þ � � � ; ð42Þ

where the renormalized bias coefficients are given by

bðRÞ1 ¼ b1 þ σ2ðΛÞ
�
34

21
b2

�
−

2

420

�
24þ 23

k2k
k2

�
k2kς

2ðΛÞ;

bðRÞ2 ¼ b2 þ
8126

2205
σ2ðΛÞb2 −

1

2
k2kς

2ðΛÞvð2Þct ;

bðRÞG2 ¼ bG2 þ
254

2205
σ2ðΛÞb2: ð43Þ

In these expansions, we have only gone to second order in
fields. This is because renormalized operators that start at
third order in δð1Þ do not contribute to the one-loop power
spectrum. For example, consider the bare operator δ3. This
operator’s only contribution to the one-loop power spec-
trum is through the correlation function with the linear
density field hðδÞ3δð1Þi, which begins at one-loop order and
has no tree-level component. To build the renormalized
operator ½δ3�, the renormalization condition in Eq. (29)
requires that the correlation function between ½δ3� and

factors of the linear density field equal the tree-level
contribution, which is zero. Hence, these third order
operators have no contribution at one-loop order. This is
in contrast to the bare operator δ2, which contributes to the
one-loop power spectrum through hðδÞ2δð2Þi; the renorm-
alization procedure does not null out this contribution
unlike for the case of δ3.
Finally, we use the SPT Ansätze for δ and θ to write

the field in terms of the linear density perturbations δð1Þ.
We substitute

δ ¼ δð1Þ þ δð2Þ þ δð3Þ; ð44Þ

δ2 ¼ ðδð1ÞÞ2 þ 2δð1Þδð2Þ; ð45Þ

G2 ¼
�∇i∇j

∇2
δð1Þ

�
2

þ 2

�∇i∇j

∇2
δð1Þ

��∇i∇j

∇2
δð2Þ

�
− ðδð1ÞÞ2 − 2δð1Þδð2Þ; ð46Þ

vk ¼ −H
∇k
∇2

ðθð1Þ þ θð2Þ þ θð3ÞÞ; ð47Þ

δvk ¼ −H
�
δð1Þ

∇k
∇2

θð1Þ þ δð1Þ
∇k
∇2

θð2Þ þ δð2Þ
∇k
∇2

θð1Þ
�
;

ð48Þ

v2k ¼ H2

�∇k
∇2

θð1Þ
∇k
∇2

θð1Þ þ 2
∇k
∇2

θð1Þ
∇k
∇2

θð2Þ
�
: ð49Þ

2To be more explicit, the momentum can be decomposed into
gradient and curl components as πi ¼ aρ̄ð∂i

∂
2 πs þ ϵijk

∂j

∂
2 πv;kÞ. The

scalar potential πs is related to the density by the continuity
equation, πs ¼ −_δ, and so receives the same counterterms as δ.
The vector potential πv does not need to be renormalized since it
first appears at third order, which is all we need for the one-loop
power spectrum, and receives no counterterms at this order. Thus,
πi requires no additional counterterms. Since πi ∝ ð1þ δÞvi, and
vi is already renormalized through Eq. (23), then δvi also has no
additional counterterms.
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As we explain in the next section, we also use the second-
order approximation δ2 ¼ ðδð1ÞÞ2, as we find the δð1Þδð2Þ
term is very noisy and affects the quality of the fit to
simulations.

IV. FITTING TO THE THESAN SIMULATIONS

To validate our EFT calculation of the 21-cm power
spectrum, we fit Eq. (42) to simulations, emphasizing that
this procedure is performed at the field level. For this study,
we use the recently developed THESAN simulations [78–80].

THESAN is a new suite of radiation-magneto-
hydrodynamical simulations designed to simultaneously
capture the complex physics of cosmic reionization and
high-redshift galaxy formation. These simulations combine
a large comoving box size of 95.5 Mpc, high resolution
(sufficient to model the formation of atomic cooling halos,
the smallest structures significantly contributing to the
reionization process), a wide range of self-consistent
realistic prescriptions for high-redshift physics (built on
top of the successful IllustrisTNG galaxy formation model,
described in Refs. [115,116]), and the approach to initial
conditions production described in Ref. [117], which
significantly reduces the effect of sample variance, increas-
ing the statistical fidelity of the simulations. As a reminder,
all distances and wave numbers are reported in comov-
ing units.
The simulations are performed using the code AREPO-RT

[118,119]. Radiation-magneto-hydrodynamics equations
are solved on a mesh, built from a set of mesh-generating
points that approximately follow the gas flow as their
Voronoi tessellation. This approach ensures a natural
increase of resolution in the high-density regions, where
it is needed. Gravity is instead computed using an hybrid
Tree-PM approach, where long-range forces are computed
using a particle mesh algorithm and short-range ones are
calculated using a hierarchical oct-tree [120]. The photon
production rate for star is computed using the BPASS
[121,122] library.
Among other observables, the THESAN simulations

have been shown to reproduce realistic realizations of
the reionization history of the Universe, IGM temperature
evolution, optical depth to the CMB, z ≥ 6 UV luminosity
function [78], photoionization rate, mean free path of
ionizing photons, IGM opacity and temperature-density
relation [79].
The different simulations that make up the THESAN suite

are described in Ref. [78] and shown in Fig. 1. Here, we
briefly summarize the properties of the simulations we
include in this study.

(i) THESAN-1: The highest resolution simulation with
21003 dark matter particles of mass 3.12 × 106M⊙
and 21003 gas particles of mass 5.82 × 105M⊙.

(ii) THESAN-2: A medium resolution simulation with
10503 dark matter particles of mass 2.49 × 107M⊙

and 10503 gas particles of mass 4.66 × 106M⊙. This
simulation is the same as THESAN-1, but the spatial
resolution has been lowered by a factor of 2 (i.e., the
particles in the simulations have been coarse-grained
to be more massive by a factor of 8).

(iii) THESAN-WC-2: Same as THESAN-2, but the birth cloud
escape fraction is slightly higher to compensate for
lower star formation in the medium resolution runs.
The total integrated number of photons emitted in
THESAN-1 and THESAN-WC-2 are the same.

(iv) THESAN-HIGH-2: Same as THESAN-2, but using a halo-
mass-dependent escape fraction, with only halos
above 1010M⊙ contributing to reionization.

(v) THESAN-LOW-2: Same as THESAN-2, but using a halo-
mass-dependent escape fraction, with only halos
below 1010M⊙ contributing to reionization.

(vi) THESAN-SDAO-2: Same as THESAN-2, but using a
nonstandard dark matter model that includes cou-
plings to relativistic particles. The effect of these
new interactions is to give rise to sDAOs and cut
off the linear matter power spectrum at small
scales [123]. This difference is quantified through
a transfer function, which is defined as the square
root of the ratio between the DAO matter power
spectrum and the standard cold dark matter power
spectrum [124].

For this study, we use each simulation on a 1283 grid.
Higher resolutions are not necessary since our methods are
only relevant on the largest scales. To simulate the redshift
space distortions, we create a mock observer and adjust the
particle data according their peculiar velocities. Due to
the 1283 render grid that we use, we can only resolve
RSDs corresponding to peculiar velocities greater than

Δv ¼ HðzÞΔr ¼ 39 km=s ×
ffiffiffiffiffiffi
1þz
7

q
128
Npix

, where we have

used Hubble’s law, Δr is the smallest change in distance
we can resolve on the grid, and Npix is the number of pixels
along one dimension of the grid.

A. Fitting the bias parameters

To test our perturbative expansion, we use the same
method as in Ref. [72] and fit to simulations at the level of
the fields, instead of the power spectrum itself. Since the
power spectrum has a broad shape and our bias expansion
has many parameters, fitting directly at the level of the
power spectrum could be subject to overfitting. Instead, we
fit the fields at every mode with wave number less than kNL,
where for practical purposes we define kNL to be the scale at
which the simulated 21 cm field smoothed over kNL has a
maximum value of jδsimj ¼ 0.8 in redshift space. In other
words, kNL is analogous to the smoothing scale Λ we
introduced in Sec. II B. In principle, one should choose the
Λ to be much less than kNL; however, the number of modes
available to fit drastically decreases as we lower the wave
number cutoff, from 6043 modes at Λ ¼ 1.1 h=Mpc to
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7 modes at Λ ¼ 0.1 h=Mpc. Hence, we find that using a
smaller Λ only increases the fit error, without substantially
changing the best fit parameters, so we choose to use
Λ ¼ kNL. In addition, one could choose a different criterion
with which to define the nonlinear wave number, but we
find that varying this threshold between 0.6 and 1.0 also
does not substantially change the range of wave numbers
that we fit.
In fitting at the field level, we take the error power

spectrum,

PerrðkÞ ¼
jðδsimÞk − ðδEFTÞkj2

V
; ð50Þ

where V is the simulation volume, and minimize the value
of PerrðkÞ over all modes up to kNL. We emphasize that this
quantity is not the same as the error on the power spectrum;
it is the power spectrum of errors at the field level. Thus,
our cost function is

A ¼
X
k

wkPerrðkÞ; ð51Þ

where the sum is over every mode and not just every wave
number value, wk is the weight that we assign to each
mode and quantifies how we smooth the fields, δsim is the
simulation field we want to fit to, and δEFT is the theory
expansion. In this study, δsim describes perturbations to the
redshifted 21-cm brightness temperature, neglecting fluc-
tuations in spin temperature since we are assuming the
Tspin ≫ TCMB limit, and δEFT is given by Eq. (42). The error
power spectrum is also sometimes referred to as “stochas-
ticity” and is commonly used to quantify the error in
estimators of fields [125–130]. If we were able to perfectly
construct the 21-cm field using our model, wewould expect
PerrðkÞ ¼ 0. However, there is an irreducible shot noise
contribution to the error due to the discreteness of the
simulation particles, which is given by [131]

Pshot ¼
V
Neff

; ð52Þ

where Neff is the effective number of neutral hydrogen
tracers, given by

Neff ¼
M2

hm2i : ð53Þ

In this expression, M ¼ P
i mi is the total mass of the

tracers and hm2i ¼ ðPi m
2
i Þ=N their mean squared mass,

with N being the total number of tracers.
Since we are only fitting modes with wave number less

than kNL,

wk ¼


1; k < kNL;

0; k > kNL:
ð54Þ

This choice of weights corresponds to performing least-
squares regression. Instead of implementing a sharp cutoff
such as this, we could choose to fit the simulation using a
smoother filter, such as a Gaussian that down-weights the
relative importance of modes closer to the nonlinear scale
in determining the fit parameters. However, we find that the
best-fit parameters are robust to the choice of filter, andA is
smaller for the sharp cutoff filter compared to the Gaussian
filter by about 25%–30%.
To calculate the operators appearing in Eq. (42), we take

δð1Þ to be the initial conditions of the simulation, which are
seeded at 1þ z ¼ 50 when the perturbations on the scales
of interest should still be in the linear regime. We calculate
δð2Þ and δð3Þ using equivalent methods from Lagrangian
perturbation theory, since the Lagrangian theory displace-
ments are easier to compute [40,132]. The velocity factors
can then be calculated using

θð1Þ ¼ δð1Þ;

θð2Þ ¼ δð2Þ þ 2

7
Gð2Þ
2 ;

θð3Þ ¼ δð3Þ þ 2

9

�
G2;v þ

1

7
∇2

�
∇iϕ

∇i

∇2
G2

�	ð3Þ
: ð55Þ

Above, we denote G2;v ¼ ∇i∇jϕ∇i∇jϕv −∇2ϕ∇2ϕv,
where ϕv ¼ θ=∇2 is the velocity potential. The superscript
3 at the end of the brackets indicates that we are only
keeping terms up to third order in δð1Þ. See Appendix B
for a derivation of these relationships. Finally, we find
that using the second-order approximation for the term
δ2 ¼ ðδð1ÞÞ2 leads to a better fit at most redshifts, see
Appendix C for details. Hereafter, we only show fits using
the second-order approximation for δ2.
Figure 2 shows the resulting power spectrum that

comes from fitting Eq. (42) to the THESAN-1 simulation
fields at redshifts of z ¼ 9.86, 8.30, and 7.16. This
corresponds to neutral hydrogen fractions of xHI ¼
0.811, 0.617, and 0.384, respectively. The red dash-dotted
lines show the relative contribution of the bias-independent
terms that arise from the RSD expansion, namely

−i kkH ðvkÞk − 1
2
ðkkHÞ

2ðv2kÞk. In the first panel, which is the

earliest redshift at z ¼ 9.86, we see that although we only
fit up to a maximum wave number of kNL ¼ 0.8 h=Mpc,
the series expansion power spectrum smoothly diverges
from that of the simulation at wave numbers above kNL. We
find similar behavior at z ¼ 8.30, where we instead fit up to
kNL ¼ 0.4 h=Mpc. In this case, the theory continues to fit
the simulation power spectrum up to a wave number of
about 0.7 h=Mpc. This is encouraging, as it indicates that
our effective theory has some predictive power past the
wave numbers that we fit. By the time the simulation
reaches z ¼ 7.16, reionization has nearly concluded and
the neutral fraction is much smaller compared to the other
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redshifts we show. As a result, δ21;r is becoming non-
perturbative even on the largest scales, since the ionized
bubbles have grown quite large as well. This degrades the
quality of the fit in the last panel relative to the previous
redshifts. For this redshift, we use kNL ¼ 0.2 h=Mpc and
the series expansion is not at all predictive above kNL.
To see how well the bias expansion fits at the field

level, we show in Fig. 3 the fluctuations in the redshift
space 21-cm differential brightness temperature along a
line through the simulation volume at z ¼ 8.30 and
xHI ¼ 0.617 (in Appendix D, we show fluctuations in
the differential brightness temperature along several
lines through the volume). The fields are smoothed over
kNL ¼ 0.4 h=Mpc. The green dots show the signal from
THESAN-1 and the solid black line in the top panel is the
signal from the best fit theory expansion. We also show the
contributions of each term to the best fit theory expansion
in the other panels. Along this particular line, we see that
the shapes that dominate the fit are the terms multiplying

the bðRÞ1 coefficient. Moreover, some of curves show a
degree of degeneracy with each other. Past studies have
dealt with such degeneracies using a Gram-Schmidt proc-
ess to orthogonalize the shapes [133]; we leave an
exploration of such a procedure on the 21-cm field in
redshift space to future work.
To quantify the level of agreement between the sim-

ulation and best-fit 21-cm fields in configuration space,
we take the root mean square of fluctuations in the
brightness temperature, as well as their difference. We
find the simulation box has a root mean square fluctuation
of 0.134, the best-fit theory field is 0.133, and their root
mean square difference is 0.050. Thus, the disagreement
at the field level is about ∼30%. We note that the
differences appear greatest at the field’s extrema. In
the EFT of LSS, comparisons are not typically done at
the level of fields in configuration space, but at the level
of the power spectrum. We emphasize that the level of
agreement between the power spectra is still percent
level; however, if we were to use our effective field theory
description to “paint on” the 21-cm field over a linear
initial density field, the root-mean-square difference with
the simulated 21-cm field would likely be degraded at the
level of ∼Oð10%Þ.
We can also assess goodness of fit by looking at the error

power spectrum with the best fit coefficients. Figure 4
shows the error power spectrum at z ¼ 8.30 for the best fit
to THESAN-1. The red dashed line shows the contribution of
the bias-independent RSD terms; as the most dominant
terms in the theory are added one by one, the error power
spectrum is reduced. For comparison, we also show the
curve for shot noise (gray dash-dotted), which is calculated
using Eqs. (52) and (53).

FIG. 2. 21-cm power spectra in redshift space at various
redshifts and values for the neutral hydrogen fraction. Green
dots indicate the binned power spectrum from the THESAN-1
simulation; the shaded regions indicate the shot noise error. The
black dashed line shows the best fit from the effective field theory.
The fits are performed at the level of the fields, rather than at the
power spectrum level. The red dash-dotted line shows the relative
contribution of the terms with no bias coefficients. The vertical
gray dotted line is at kNL, which is the maximum wave number
that we fit up to. For earlier redshifts, our theory expansion
remains a good fit to THESAN at slightly larger wave numbers than
kNL, indicating that the 21-cm intensity field is still perturbative at
these times and our theory still has predictive power for smaller
scales than the ones that we fit.
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V. DISCUSSION

Figure 5 shows the evolution of the neutral hydrogen
fraction and best-fit bias coefficients for THESAN-1. While
the evolution of the bias coefficients is smooth prior to
z ∼ 7.5, at later times the evolution is very rapid, signaling

that our perturbative treatment is breaking down as the
universe becomes very ionized.
The bias parameters have natural physical interpretations:
(i) bðRÞ1 is the linear bias and measures how well the

21-cm field traces the underlying linear matter
density.

(ii) b∇2 is related to the effective size of the ionization
bubbles Reff , as argued in Ref. [72],

b∇2 ¼ 1

3
bðRÞ1 R2

eff :

As we would expect, this quantity is small at the
beginning of reionization, but grows larger with
time. Once this quantity becomes very large, we
expect the ionization field to be quite nonperturba-
tive, hence our formalism will no longer apply.

(iii) bðRÞ2 is the quadratic bias, and therefore related to
nonlinearities in the 21-cm field.

(iv) bðRÞG2 is the coefficient for the tidal field, which
captures the effects of local anisotropies in the
matter field. The length scales of these anisotropies
are small compared to the ionization bubbles, hence
on the large scales we consider, this term should be
subdominant. In addition, the galaxies that source

FIG. 4. The error power spectrum for the best fit theory field to
the THESAN-1 simulation at z ¼ 8.30 and xHI ¼ 0.617. Starting
with the contribution of the bias-independent RSD terms, the
error spectrum is reduced as we add terms one by one, starting
with the most dominant terms. Shown in the gray dash-dotted line
is the contribution from shot noise.

FIG. 3. The redshift space 21-cm differential brightness temper-
ature along a line through the simulation volume at z ¼ 8.30,
xHI ¼ 0.617, smoothed over kNL ¼ 0.4 h=Mpc. The green dots
show the signal from the THESAN-1 simulation, the thick black
line in the first panel is the best fit theory expansion. For
comparison, we also show the contributions of each of the bias
parameters to the black line in the other panels, as well as the bias
independent contribution (thick red dashed). The filled contours
show the 68% confidence intervals on the fitted coefficients.
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ionizing radiation are highly biased tracers, hence
the quadratic bias terms will dominate over the tidal
term [72].

In order to verify these interpretations of the bias
parameters, we can look at how the fitted parameters
change between simulations run with different physical
models. Figure 6 compares the ionization histories and bias
parameters for the five different versions of THESAN-2.
Since the ionization histories can vary widely depending on
the physics, fair comparisons of the simulations should be
done at similar values of the neutral hydrogen fraction,
instead of similar redshifts. Hence, the remaining panels
of Fig. 6 show the evolution of the bias parameters as a
function of xHI. At early times and high neutral fractions,
the evolution of the bias parameters is relatively smooth.
As reionization progresses and xHI decreases, the curves
begin to diverge from each other and evolve more rapidly,
indicating when the perturbative expansion breaks down
for each of the simulations. At late times, the fitted values
of these coefficients should not be trusted; however, it is not
surprising that they tend towards zero at the very end of

reionization, since the 21-cm signal should vanish as the
neutral fraction goes to zero.
For all of the simulations, b∇2 is initially small, then

blows up after some critical value for the neutral fraction.

Note that since bðRÞ1 is negative at the redshifts where
significant bubble growth occurs, we expect b∇2 to also be
negative according to its relation with Reff . b∇2 diverges
earliest for THESAN-HIGH-2 and THESAN-SDAO-2, as we
would expect since these simulation source the largest
bubbles; the coefficients exceed b∇2 < −5 before reioniza-
tion has even reached the halfway point. In contrast, the
other three simulations evolve quite similarly at high
neutral fractions, with b∇2 > −4 up to xHI ¼ 0.6. In

addition, the coefficient bðRÞ2 starts near zero at the begin-
ning of reionization and grows in magnitude with time.
This indicates the growing bias of the signal over time;

since bðRÞ2 is consistently most negative for THESAN-HIGH-2
and thesan-SDAO-2 at early times, the 21-cm signal is more
highly biased in these models. Again, this is not surprising,
since reionization is driven by the largest halos in these
simulations, and such halos form in the largest over-

densities. Finally, bðRÞG2 is relatively small at early times
for all the simulations, with values ranging between about 0
and 0.5 for xHI > 0.7. This is in line with our argument that
contributions to the 21-cm power spectrum from anisotro-
pies should be small.
To estimate the validity of our EFT methods beyond the

range of modes we fit to, we define kdiv as the wave number
at which the power spectrum of the perturbative expansion
with the best-fit bias parameters diverges from the simu-
lation power spectrum by a factor of 2. Figure 7 shows kNL
(dashed lines) and kdiv (solid lines) as a function of xHI. At
early times or high enough neutral fractions, kdiv > kNL,
which indicates the theory has predictive power even at
scales smaller than those that we fit to. This indicates that
our EFT method is valid earlier on in reionization. Notice
that kdiv falls below kNL at the highest value of xHI for
THESAN-HIGH-2 compared to the other simulations, again
demonstrating that this simulation field is the least pertur-
bative, due to the large size of the ionized bubbles.

A. Observational limits

Experiments such as HERA will soon have measure-
ments of the 21-cm brightness temperature field. Already,
HERA has set upper limits on the 21-cm power spectra in
the spectral windows spanning 117.1–132.6 MHz (Band 1)
and 150.3–167.8 MHz (Band 2) [134]. The central
frequencies of these bands are 124.8 and 159.0 MHz,
corresponding to redshifts of 10.4 and 7.9, respectively.
HERA and other instruments primarily observe modes
along the line of sight; in other words, if we define
μ ¼ cos θ, where θ is the angle from the line of sight,
then typically instruments probing the 21-cm power spec-
trum are most sensitive to larger values of μ. Furthermore,

FIG. 5. Evolution of the neutral hydrogen fraction and bias
coefficients for THESAN-1. The top panel shows the reionization
history of THESAN-1. The bottom panel shows how the bias
coefficients change between z ∈ ½6; 15�. The filled contours show
the 68% confidence intervals on the fitted coefficients. The
evolution of the coefficient is quite smooth down to redshift
z ∼ 7.5, but evolves rapidly thereafter, signaling the breakdown of
the perturbation theory.
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due to the chromatic response of interferometers, fore-
grounds in 21-cm intensity mapping will leak into the
so-called “foreground wedge”[16–18,20,23–25]; cuts to
avoid foregrounds thus reduce the observable range of μ
even further [9].
If the shapes of the terms that appear in the bias

expansion power spectrum look similar across the range

of angles that HERA can probe, then varying the bias
coefficients of these terms will have the same effect, and a
measurement of the power spectrum will not allow us to
distinguish the different operators. To investigate which of
the terms in our bias expansion are effectively degenerate,
we plot the power in the terms multiplying each bias
coefficient in Fig. 8 as a function of μ, averaging over

FIG. 6. Evolution of the neutral hydrogen fraction and bias coefficients for the various THESAN-2 simulations. The filled contours show
the 68% confidence intervals on the fitted coefficients. For these fits, we continue to use the approximation δ2 ¼ ðδð1ÞÞ2, which yields a
slightly better fit for many redshifts compared to the third-order expression. The top panel shows the neutral fraction as a function of
redshift for the different simulations—since the ionization histories vary widely, it is more appropriate to compare simulations at similar
values of xHI, instead of redshift. The remaining panels show the best-fit bias coefficients as a function of xHI. At early times, i.e., high
neutral fractions, the parameters evolve relatively smoothly; the curves begin to diverge at different values of the neutral fraction,
indicating when the perturbative expansion breaks down for each simulation.
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k ∈ ½0.4; 0.5� h=Mpc and k ∈ ½0.85; 1.0� h=Mpc. The win-
dows between the light gray (dark gray) regions show the
range of μ that HERA could probe in Band 1 (Band 2), if
one could mitigate foregrounds within the aforementioned
wedge. From these figures, we see that the power in most of
the terms is relatively flat as a function of μ. The exceptions
are the terms multiplying b1 and b∇2 on small scales and the
bias-independent terms arising as a result of RSDs. Thus,
without signal contamination from the wedge, HERA could
distinguish a few types of shapes in the power spectrum: the
relatively flat contribution coming from terms multiplying

bðRÞ2 and bðRÞG2 ; the contribution from bðRÞ1 and b∇2 ; and the
contribution from RSDs, which have the strongest scaling
with μ in the relevant range of angles. In reality, the data
cuts that HERA uses to avoid foregrounds limits the
observable range to μ≳ 0.98, i.e., nearly directly along
the line of sight. This foreground window may differ
between experiments, e.g., LOFAR can probe μ≳ 0.97
[135], and SKA predicts an observable window of μ≳ 0.67
[136]; however, it is clear that the capacity for experiments
to distinguish between different shapes in the bias expan-
sions would be greatly improved if one could recover
information inside the foreground wedge.
Using the upper limits set by HERA at 95% confidence

level, it is also possible to constrain the possible range of
bias parameters. A simple method to estimate the con-
straints would be to set all parameters to zero except the one
of interest; we then vary the parameter until we find the
values where the power spectrum of the bias expansion lies
just under the HERA power spectrum upper limits. While
this is neither the most conservative nor accurate method

for constraining the bias parameters, we expect the true
values of the bias coefficients to have absolute values much
smaller than these limits anyways, since the current upper
limits on the power spectrum as measured by HERA are
largely set by instrumental systematics and thermal noise
[134]. We find that the estimated HERA constraints on the
bias parameters are about 1–2 orders of magnitude larger
than the values fit from simulations. As 21 cm experiments
continue to peel away instrumental systematics and take
more data, these constraints will shrink and give a more
meaningful estimate for the bias parameters.

VI. CONCLUSIONS

In this study, we have incorporated renormalized bias
and redshift space distortions into an EFT-inspired descrip-
tion for the 21-cm brightness temperature. Using the

FIG. 7. kNL (solid lines) and kdiv (dashed lines) as a function of
redshift for the various THESAN-2 simulations. Regions where
kdiv > kNL indicate that our theory has predictive power past the
wave numbers that we fit, demonstrating that perturbative
methods are valid at high enough values for the neutral fraction,
i.e., early enough in the process of reionization.

FIG. 8. Power in the different operators appearing in the bias
expansion, binned over the angle from the line of sight μ ¼ cos θ.
For the top panel, we only average over modes with wave
numbers k ∈ ½0.4; 0.5� h=Mpc. For the lower panel, we only
average over modes with wave numbers k ∈ ½0.85; 1.0� h=Mpc.
The windows between the light gray (dark gray) regions show the
range of μ that HERA could probe for Band 1 (Band 2), if the
foreground wedge could be mitigated. We see that all the shapes
are relatively flat, except for the term multiplying b∇2 on certain
scales and the terms appearing due to RSDs. The top panel is
missing the lowest bin because the simulation did not have modes
at those angles for the given range of k, due to the lower
resolution of the 1283 grid used for our analysis.
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THESAN simulations, we have shown that these perturba-
tive techniques are valid for describing the behavior of
large scales (k≲ 0.8 h=Mpc) early in reionization
(xHI ≳ 0.4). In particular, we can achieve percent-level
agreement at the level of the power spectrum andOð10%Þ
level agreement at the field level on large scales. We have
given physical interpretations for the bias parameters and
used simulations run with different physics to test these
interpretations. Since the simulations have very different
ionization histories, we have compared them at the same
values for ionization and found that the THESAN-HIGH-2

simulation is perturbative for a smaller range of xHI due
to the larger sizes of the ionization bubbles, while the
behavior of THESAN-SDAO-2 lies between THESAN-HIGH-2

and the other simulations.
Finally, we have drawn connections between our work

and interferometry experiments by showing which shapes
in the power spectrum HERAwill be able to distinguish in
the range of angles that they are sensitive to. We have also
estimated how the HERA upper limits on the 21-cm power
spectrum constrain our parameters.
There are many directions that can be taken to further

develop this perturbative treatment of the 21-cm intensity
field. For example, we found some of the terms in the
theory are partially degenerate in describing the power
spectrum. To reduce such degeneracies and better under-
stand the true degrees of freedom involved, one could
apply a method to orthogonalize the shapes appearing in
the effective field theory, as was done in Ref. [133]. In
addition, we ignored spin temperature fluctuations in this
work; however, this will be an important effect to include
if we want to extend this description to describe redshifts
where Tspin < TCMB. Such improvements will be critical
for using these methods to extract astrophysical and
cosmological information from the 21-cm power spec-
trum, as we gain important new insights into the EoR in
the next few years.
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APPENDIX A: COUNTERTERMS
FOR THE v2k OPERATOR

The renormalization of v2k is very similar to the renorm-

alization of δ2, as described in Sec. II C. However, the

vertices corresponding to the component θðnÞp fields will
come with Gn kernels instead of Fn, as well as a factor of
pk=p ¼ cos θ for projecting the velocity onto the line
of sight.

The zeroth order counterterm is given by

ðA1Þ

At n ¼ 1, there are two identical diagrams that contribute, one each from δð1Þ contracting with one of the component θðnÞ
fields. Each of these diagrams also comes with a symmetry factor of 2, from permuting the two linear legs emerging
from θð2Þ.
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ðA2Þ

At n ¼ 2, there are three diagrams to consider.

ðA3Þ

The crossed dot on the third diagram represents the n ¼ 1 counterterm. We label these terms M1, M2, and Mc:t.,
respectively. The first diagram should have a symmetry factor of 8; 2 from each of the G2 vertices, and another factor of 2
from choosing which of the linear legs contracts with which vertex. There will be two diagrams of the second type with
identical contributions; each will have a symmetry factor of 3! on the G3 kernel. The third diagram will again have a
symmetry factor of 2 from permuting the external legs or the G2 vertex.

M1 ¼ −23H2Pðq1ÞPðq2Þ
Z

đ3pPðpÞG2ðq1;−pÞG2ðq2; pÞ
ðq1 − pÞk
ðq1 − pÞ2

ðq2 þ pÞk
ðq2 þ pÞ2 ;

M2 ¼ 2 × 3!H2Pðq1ÞPðq2Þ
Z

đ3pPðpÞG3ðq1; q2; pÞ
pk
p2

ðq1 þ q2 þ pÞk
ðq1 þ q2 þ pÞ2 ;

Mc:t: ¼ −
H2

105

�
71þ 23

ðq1 þ q2Þ2k − ðq1 þ q2Þ2⊥
ðq1 þ q2Þ2

�
ς2ðΛÞ × 2Pðq1ÞPðq2ÞF2ðq1; q2Þ: ðA4Þ

Summing these together, integrating, and keeping only the contribution that is nonzero when fq1; q2g → 0, we find

D
ðv2kÞq1þq2

δð1Þq1 δ
ð1Þ
q2

E
¼ M1 þM2 þM3

¼ H2

5145
Pðq1ÞPðq2Þς2ðΛÞ

�
996þ 2041

�q2
1;k
q21

þ
q2
2;k
q22

�
− 2142

q1;kq2;k
q1q2

þ q1 · q2
q1q2

�
1071

q2
1;k
q21

þ 1071
q2
2;k
q22

− 948
q1 · q2
q1q2

þ 2844
q1;kq2;k
q1q2

�	
: ðA5Þ

APPENDIX B: PERTURBATIVE VELOCITY DIVERGENCES FROM PERTURBATIVE DENSITIES

Here, we derive some relationships between the lowest order θðnÞ’s and the operators δð1Þ, δð2Þ, δð3Þ, and G2. At first order,
we see from the form of the perturbative Ansätze that θð1Þ ¼ δð1Þ. Deriving the second order relationship is also fairly
straightforward. For compactness, we denote

R
q ¼

R
đ3q.
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θð2Þq ¼
Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞG2ðq1; q2Þδð1Þq1 δ
ð1Þ
q2

¼
Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞF2ðq1; q2Þδð1Þq1 δ
ð1Þ
q2 þ 2

7

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞ
�ðq1 · q2Þ2

q21q
2
2

− 1

	
δð1Þq1 δ

ð1Þ
q2

¼ δð2Þq þ 2

7

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞ
�ðq1 · q2Þ2

q21q
2
2

− 1

	
δð1Þq1 δ

ð1Þ
q2 : ðB1Þ

In configuration space, the above expression becomes

θð2Þ ¼ δð2Þ þ 2

7
Gð2Þ
2 :

Since the perturbative Ansatz includes a factor of −H, the velocity is given by vi ¼ ∂i
∂
2 θ ¼ −H ∂i

∂
2 ðθ1 þ θ2 þ � � �Þ.

The process is analogous for the third order term. Using the recursive relations given in Refs. [87–89], we obtain the
following expressions for θð3Þ:

θð3Þq ¼
Z
q1

Z
q2

Z
q3

ð2πÞ3δDðq1 þ q2 þ q3 − qÞG3ðq1; q2; q3Þδð1Þq1 δ
ð1Þ
q2 δ

ð1Þ
q3 ðB2Þ

¼ δð3Þq −
2

9

Z
q1

Z
q2

Z
q3

ð2πÞ3δDðq1 þ q2 þ q3 − qÞ½αðq1; q2 þ q3ÞF2ðq2; q3Þ − βðq1; q2 þ q3ÞG2ðq2; q3Þ

þ αðq1 þ q2; q3ÞG2ðq1; q2Þ − βðq1 þ q2; q3ÞG2ðq1; q2Þ�δð1Þq1 δ
ð1Þ
q2 δ

ð1Þ
q3 : ðB3Þ

The αðq1; q2Þ and βðq1; q2Þ kernels are given by

αðk1; k2Þ ¼
k1 · ðk1 þ k2Þ

k21
; βðk1; k2Þ ¼

ðk1 þ k2Þ2k1 · k2
2k21k

2
2

: ðB4Þ

Introducing the combinations m ¼ q2 þ q3 and n ¼ q1 þ q2, we find

θð3Þq ¼ δð3Þq −
2

9

Z
m

Z
q1

ð2πÞ3δDðq1 þm − qÞαðq1;mÞ
Z
q2

Z
q3

ð2πÞ3δDðq2 þ q3 −mÞF2ðq2; q3Þδð1Þq1 δ
ð1Þ
q2 δ

ð1Þ
q3

þ 2

9

Z
m

Z
q1

ð2πÞ3δDðq1 þm − qÞβðq1;mÞ
Z
q2

Z
q3

ð2πÞ3δDðq2 þ q3 −mÞG2ðq2; q3Þδð1Þq1 δ
ð1Þ
q2 δ

ð1Þ
q3

−
2

9

Z
n

Z
q3

ð2πÞ3δDðnþ q3 − qÞαðn; q3Þ
Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − nÞG2ðq1; q2Þδð1Þq1 δ
ð1Þ
q2 δ

ð1Þ
q3

þ 2

9

Z
n

Z
q3

ð2πÞ3δDðnþ q3 − qÞβðn; q3Þ
Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − nÞG2ðq1; q2Þδð1Þq1 δ
ð1Þ
q2 δ

ð1Þ
q3

¼ δð3Þq −
2

9

Z
m

Z
q1

ð2πÞ3δDðq1 þm − qÞαðq1;mÞδð1Þq1 δ
ð2Þ
m þ 2

9

Z
m

Z
q1

ð2πÞ3δDðq1 þm − qÞβðq1;mÞδð1Þq1 θ
ð2Þ
m

−
2

9

Z
n

Z
q3

ð2πÞ3δDðnþ q3 − qÞαðn; q3Þθð2Þn δð1Þq3 þ 2

9

Z
n

Z
q3

ð2πÞ3δDðnþ q3 − qÞβðn; q3Þθð2Þn δð1Þq3 : ðB5Þ

Upon relabeling the wave number that is being integrated over, this expression becomes
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θð3Þq ¼ δð3Þq −
2

9

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞ
n
αðq1; q2Þδð1Þq1 δ

ð2Þ
q2 þ ½αðq2; q1Þ − βðq1; q2Þ − βðq2; q1Þ�δð1Þq1 θ

ð2Þ
q2

o

¼ δð3Þq −
2

9

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞ½αðq1; q2Þ − αðq2; q1Þ þ βðq1; q2Þ þ βðq2; q1Þ�δð1Þq1 δ
ð2Þ
q2

−
2

9

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞ½αðq2; q1Þ − βðq1; q2Þ − βðq2; q1Þ�
�
θð1Þq1 δ

ð2Þ
q2 þ δð1Þq1 θ

ð2Þ
q2

�
: ðB6Þ

Since the choice of momentum labeling was arbitrary, the expressions should be symmetrized over q1 and q2.

θð3Þq ¼ δð3Þq −
2

9

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞβðq1; q2Þ × 2δð1Þq1 δ
ð2Þ
q2

−
2

9

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞ
�
αðq1; q2Þ þ αðq2; q1Þ

2
− 2βðq1; q2Þ

	�
θð1Þq1 δ

ð2Þ
q2 þ δð1Þq1 θ

ð2Þ
q2

�

¼ δð3Þq −
2

9

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞβðq1; q2Þ × 2δð1Þq1 δ
ð2Þ
q2

þ 2

9

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞ
�ðq1 · q2Þ2

q21q
2
2

− 1þ βðq1; q2Þ
	�

θð1Þq1 δ
ð2Þ
q2 þ δð1Þq1 θ

ð2Þ
q2

�

¼ δð3Þq þ 2

9
ðGð3Þ

2;vÞq −
2

9

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞβðq1; q2Þ × 2δð1Þq1 δ
ð2Þ
q2

þ 2

9

Z
q1

Z
q2

ð2πÞ3δDðq1 þ q2 − qÞβðq1; q2Þ
�
θð1Þq1 δ

ð2Þ
q2 þ δð1Þq1 θ

ð2Þ
q2

�
: ðB7Þ

As a reminder, we denote G2;v ¼ ∇i∇jϕ∇i∇jϕv −∇2ϕ∇2ϕv, where ϕv ¼ θ=∇2 is the velocity potential. Then in
configuration space, we can write this as

θ3 ¼ δ3 þ
2

9

�
G2;v þ

∇2

2
ð∇iϕ∇iϕv −∇iϕ∇iϕÞ

	
3

¼ δ3 þ
2

9

�
G2;v þ

1

7
∇2

�
∇iϕ

∇i

∇2
G2

�	
3

: ðB8Þ

The subscript 3 at the end of the brackets indicates that we are only keeping terms up to third order in δ1.
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APPENDIX C: NOISINESS OF THE δ2 OPERATOR

When fitting our theoretical expansion for the 21-cm field to simulations, we find that using the second-order
approximation for the term δ2 ¼ ðδð1ÞÞ2 leads to a better fit at most redshifts compared to using the full third-order
expression. An example of this is shown in Fig. 9. The gray dashed line shows the best fit using the third-order expression;
the black line uses the second-order expression; the vertical dotted line shows kNL, the maximum wave number that we fit
up to. Not only is the line with the second-order approximation a better fit, it has better predictive power at wave numbers
above those that we fit to.
The degradation of the fit as we go to higher order can be attributed to the fact that δ2 captures the effects of nonlinear

bias and therefore has a large shot noise contribution; including higher order terms then makes this expansion a noisier
template when fitting to the simulation field [72]. Hence, the main results of this study use the second-order
approximation.

APPENDIX D: BEST FIT AT THE FIELD LEVEL

Figure 10 shows examples of fluctuations in the redshift space 21-cm differential brightness temperature along several
different lines through the simulation volume at z ¼ 8.30, xHI ¼ 0.617, smoothed over kNL ¼ 0.4 h=Mpc. The lines are
chosen to be evenly spaced along the x and y coordinates of the simulation volume.

FIG. 9. The 21-cm power spectrum at z ¼ 8.30 (xHI ¼ 0.617). Green dots indicate the binned power spectrum from the THESAN-1
simulation; the shaded regions indicate the shot noise error. The gray dashed line is the theory expansion fit to the simulations using the
third-order expression for δ2, while the black dashed line shows the best fit from the effective field theory, using the approximation
δ2 ¼ ðδð1ÞÞ2. The vertical dotted line shows kNL, the maximum wave number that we fit up to. Due to the noisiness of the δ2 operator, we
find that the lower-order approximation provides a slightly better fit to the simulation than the full expression, and has greater predictive
power for small, mildly nonlinear scales.
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