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The spacetime inside the white hole is like an anisotropic cosmological background with the past
singularity playing the role of a big bang singularity. The scale factor along the extended spatial direction is
contracting while the scale factor along the two-sphere is expanding. We consider an eternal Schwarzschild
manifold and study quantum cosmological perturbations generated near the white hole singularity which
propagate towards the past event horizon and to the exterior of the black hole. It is shown that an observer
deep inside the white hole and an observer far outside the black hole both share the same vacuum. We
calculate the Hawking radiation associated to these quantum white hole perturbations as measured by an
observer in the exterior of the black hole. Furthermore, we also consider the Hawking radiation for the
general case where the initial cosmological perturbations deep inside the white hole are in a “nonvacuum”
state yielding to a deviation from Planck distribution. This analysis suggests that if the black hole is not
entirely black (due to Hawking radiation) then the white hole is not entirely white either.
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I. INTRODUCTION

Black holes (BHs) have played important roles in the
development of theoretical physics. Furthermore, during
the past decades numerous observations have suggested the
existence of massive and supermassive black holes at the
center of typical galaxies. The recent detections of gravi-
tational waves by the LIGO and VIRGO collaborations
[1–3] from the merging of binary astrophysical black holes
put the reality of black holes in the cosmos beyond doubt.
On the theoretical side, BH physics play key roles in
understanding quantum gravity which was studied exten-
sively in past decades.
The physical processes governing the dynamics of the

interior of the BH are not well understood. The prime reason
is that the interior region of a BH is causally disconnected
from the exterior region. Any in-falling signal smoothly
passes through the event horizon and no signal can escape
from inside the event horizon to an outside observer. This
phenomena suggests that the interior of a BH is like a
cosmological background bounded by the event horizon.
This interpretation is supported by the fact that inside the
horizon, the roles of coordinates t and r as the timelike and
spacelike coordinates are switched. There have been works
in the past to treat the interior of a BH as a cosmological
background. For example, the idea that the interior of
a BH may be replaced by a nonsingular de Sitter (dS)

spacetimewas studied in [4–12], see also [13–18] for similar
ideas but in somewhat different contexts. The main moti-
vation to replace the interior of a BH by the dS background
was to remove the singularity of the BH. On the physical
ground, one may expect that the singularity of a BH is a
shortcoming of the classical general relativity. Onvery small
scales, say on the Planck scale, it is expected that the
quantum gravity effects cannot be neglected. It is expected
that these effects provide mechanisms to resolve the singu-
larity inside the BH. For example, the idea of maximum
curvature of spacetime [6,7,19] is an interesting proposal in
this direction.
Like the interior of the BH, the white hole (WH)

background is more akin to a cosmological spacetime in
which the global structure of spacetime suggests that the
past singularity r ¼ 0 behaves as the onset of big bang
singularity in which the signal generated from r ¼ 0 inside
the WH propagates towards the future null infinity Iþ. The
WH spacetime can be viewed as an anisotropic cosmo-
logical background with its spatial part having the topology
R × S2 known as the Kantowski-Sachs [20] spacetime. On
the other hand, perturbations in Friedmann–Lemaître–
Robertson–Walker (FLRW) cosmological backgrounds
have been studied extensively. Indeed, it is believed that
all structures in the observable Universe are generated from
tiny quantum fluctuations generated during primordial
inflation. It is therefore a natural question to study
perturbations inside the WH as a particular cosmological
background. With these discussions in mind, in this work
first we study some basic cosmological properties of the
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WH geometry as part of an eternal Schwarzschild mani-
fold. Then we study the quantum perturbations of a test
scalar field generated deep inside the WH which will
propagate towards the past event horizon and eventually
reaching to an observer far outside the BH. We calculate the
spectrum of Hawking radiation as measured by this
observer. For a related study see also [21].
It is believed that the WHs are not stable and have

disappeared in the early universe [22] so the current
analysis may not be directly relevant to the observable
Universe. However, we treat a WH as part of an eternal BH
manifold which exists along with a BH as required by the
time reversal symmetry of general relativity. We find
interesting properties of WH cosmology as an anisotropic
cosmological background while studying quantum field
theory in the WH background can provide a nontrivial
example of quantum field theory in curved backgrounds.
Hawking radiation in the spacetime of WH has been also

studied in [23,24]. In Ref. [23], it was shown that there is a
Hawking radiation associated to a WH spacetime equal to
the BH Hawking temperature when viewed from the
outside region of the WH geometry based on the BH-to-
WH tunneling scenario [25] during the gravitational col-
lapse process. The tunnelling rate inside the horizon of a
WH for scalar and massive vector particles was calculated
using the Hamilton-Jacobi method. Our study differs from
[23] in two ways: first we deal with an eternal WH while in
Ref. [23]; the WH is considered as a long-lived remnant of
the BH during gravitational collapse. Second, we study the
quantum fluctuations generated near the WH singularity
which propagate naturally towards the past event horizon.
While in [23], Hawking radiation is viewed as a quantum
tunneling effect to the tunneling rate of particles. Moreover,
the authors of [24] have presented a generalization of the
Hawking effect for dynamical trapping horizons by calcu-
lating the tunneling rate in the Hamilton-Jacobi formalism.
They studied the quantum effects (quantum tunneling)
across various horizons in general, including the WH
horizon (past outer trapping horizon).

II. BACKGROUND GEOMETRY

In this section we briefly review the necessary prelimi-
naries from a BH background and set the stage for the WH
cosmology.

A. Black hole preliminaries

We consider the Schwarzschild metric with the following
line element:

ds2 ¼ −
�
1 −

2GM
r

�
dt2 þ dr2

ð1 − 2GM
r Þ þ r2dΩ2; ð1Þ

in whichG is the Newton constant,M is the mass of the BH
as measured by an observer at infinity while dΩ2 represents

the metric on a unit two-sphere. The coordinate system
ðr; tÞ only covers the exterior of the whole manifold
while becoming singular on the BH event horizon at
r ¼ rS ≡ 2GM. Naively speaking, for the interior of the
BH and theWH the roles of t and r coordinates are reversed
in which t becomes spacelike while r becomes timelike.
This also suggests that the interiors of BH and WH are
actually dynamical, mimicking cosmological backgrounds.
To cover the entire manifold, we can use the Kruskal

coordinate in which

ds2 ¼ 32G3M3

r
e−r=2GMð−dT2 þ dR2Þ þ r2dΩ2; ð2Þ

where the ðT; RÞ coordinate is related to the original
coordinate ðt; rÞ by

T2 − R2 ¼ er=2GM
�
1 −

r
2GM

�
; ð3Þ

and

T
R
¼ tanh

�
t

4GM

�
: ð4Þ

It is evident that T is timelike while R is spacelike
throughout.
It is also very convenient to use the Kruskal coordinate in

its light-cone base ðU;VÞ defined via

U ≡GMðT − RÞ; V ≡ GMðT þ RÞ; ð5Þ

in which the line element takes the following form:

ds2 ¼ −
32GM

r
e−r=2GMdUdV þ r2dΩ2: ð6Þ

Note that in our convention, the coordinates ðU;VÞ carry
the dimension of length (or time).
A conformal diagram of the entire Schwarzschild mani-

fold is presented in Fig. 1. The exterior of the BH is the
region V > 0, U < 0 while the interior of the BH is the
region U;V > 0 bounded by the future singularity r ¼ 0.
The WH region is given by U;V < 0 bounded by the past
singularity r ¼ 0. Both the interior of the BH and the WH
share the common property that their backgrounds are
dynamical corresponding to anisotropic cosmological set-
ups. However, the crucial difference is that the singularity
of the BH is in the future, i.e. it represents a big crunch
singularity, while the singularity of the WH is in the past,
i.e. it represents a big bang singularity. As mentioned
before, the WH is unstable and may not exist in the current
observable Universe. However, in our treatment we con-
sider an eternal BH in which a WH is an integral part of the
full manifold. In this eternal background, the WH exists
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along with BH as required by the time reversal symmetry of
the classical general relativity.
Defining the tortoise coordinate dr� ¼ ð1 − 2GM

r Þ−1dr for
the interior of the BH and the WH regions (r < 2GM), we
have

r� ¼ rþ 2GM ln

�
1 −

r
2GM

�
; ðr < 2GMÞ: ð7Þ

Restricting our attention to the WH region, we note that
−∞ < r� ≤ 0 in which r� ¼ −∞ corresponds to the past
event horizon r ¼ 2GM;V ¼ 0 with U < 0 while r� ¼ 0
corresponds to the past singularity at r ¼ 0.

B. White hole cosmology

As mentioned above, the WH background represents an
anisotropic cosmological setup known as the Kantowski-
Sachs background with the structure of R × S2. To see this
more clearly, let us define the future directed time coor-
dinate dτ ¼ −dr� so

τ ¼ −r − 2GM ln

�
1 −

r
2GM

�
: ð8Þ

Correspondingly, the WH singularity is at τ ¼ 0 while the
past event horizon U < 0, V ¼ 0 is mapped to τ ¼ þ∞.
Now defining the spacelike coordinate dx≡ dt with
−∞ < x < þ∞, the metric in the WH region takes the
following cosmological form:

ds2 ¼ aðτÞ2ð−dτ2 þ dx2Þ þ rðτÞ2dΩ2; ð9Þ

in which the scale factor aðτÞ is defined via

aðτÞ≡
�
2GM
rðτÞ − 1

�1
2

: ð10Þ

It is important to note that r ¼ rðτÞ.
The metric (9) represents an anisotropic background

with two scale factors aðτÞ and rðτÞ. At the “big bang”
singularity τ ¼ r ¼ 0, we have aðτÞ → ∞ while rðτÞ → 0
so the space along the x direction starts off very large and
contracts as time passes by while the scale factor along the
two-sphere is originally zero and starts to expand.
It is insightful to look at the metric in two limiting times

τ → 0 and τ → ∞ more closely. Using Eq. (8), at earlier
times when r → 0 we have r2 ≃ 4GMτ so the metric takes
the following form:

ds2 ≃
ffiffiffiffiffiffiffiffi
GM
τ

r
ð−dτ2 þ dx2Þ þ 4GMτ dΩ2 ðτ → 0Þ: ð11Þ

The contraction along the x direction and the expansion
along the two-sphere is evident from the above line
element.
On the other hand, near the past horizon r ¼ 2GM;

V ¼ 0 we have

rðτÞ ≃ 2GM

�
1 − exp

�
−

τ

2GM

��
ðτ → ∞Þ; ð12Þ

so the line element takes the following form:

ds2 ≃ exp
�

−τ
2GM

�
ð−dτ2 þ dx2Þ þ 4G2M2dΩ2 ðτ → ∞Þ:

ð13Þ
We see that near the horizon, the two-sphere reaches the
fixed radius 2GM while the scale factor in the x direction
falls off exponentially. Although the scale factor aðτÞ falls
off exponentially, the spacetime is regular near the horizon.
Indeed, calculating the Riemann tensor associated to the
metric (13) we find that Rθϕθϕ ¼ 4G2M2 sinðθÞ2 while all
other components are zero so the background is regular
near the horizon. Of course, this was expected with the
understanding that the apparent singularity of the metric (1)
near the horizon was a mere coordinate singularity.
While the coordinate τ is the conformal time, we can

define the “cosmic time” t̂ related to the conformal time via
dt̂≡ aðτÞdτ so

dt̂ ¼ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM
r − 1

q : ð14Þ

Choosing the onset of big bang singularity to be at t̂ ¼ 0,
we obtain

FIG. 1. The Kruskal diagram. We are interested in quantum
perturbations generated from the past singularity r ¼ 0 inside the
WH, crossing the past horizon at V ¼ 0, U < 0 and propagating
towards Iþ. To have a complete Cauchy surface of initial
conditions, we also consider the perturbations generated from
left I− and right I− located respectively to the left and to the right
of the WH. The wavy green line represents the propagation of the
right mover modes e�iωu while the left movers e�iωv are not
shown for brevity.
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t̂¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2GM− rÞ

p
þMG

�
π

2
− arcsin

�
1−

r
GM

��
; ð15Þ

so 0 < t̂ < πGM inside the WH. From the inverse of the
above expression, we can express r ¼ rðt̂Þ as well so the
metric in terms of cosmic time is given by

ds2 ¼ −dt̂2 þ
�
2GM
rðt̂Þ − 1

�
dx2 þ rðt̂Þ2dΩ2: ð16Þ

It is also instructive to look at the geometry near the
singularity when given in the form of Eq. (16). Near r ¼ 0,
we have

r ≃ ðGMÞ13
�
3t̂ffiffiffi
2

p
�2

3 ðt̂ → 0Þ; ð17Þ

so the metric (16) becomes

ds2 ≃ −dt̂2 þ ðGMÞ23ðc1 t̂−2
3dx2 þ c2t̂

4
3dΩ2Þ; ð18Þ

where c1 and c2 are some numerical factors. One can check
that the above geometry has the form of the Kasner metric.
More specifically, the Kasner metric is an exact solution of
the Einstein field equation in the vacuumwith the following
form (in four dimension):

ds2 ¼ −dt̂2 þ
X3
i¼1

t̂2pidx2i ; ð19Þ

in which the exponents pi satisfy the following constraints:

X3
i¼1

pi ¼
X3
i¼1

p2
i ¼ 1: ð20Þ

The structure of the above two constraints suggests that at
least one of the exponents pi should be negative. In our
example of WH cosmology near the singularity with the
metric (18) we obtain p1 ¼ − 1

3
while p2 ¼ p3 ¼ 2

3
. One

can check that these exponents indeed satisfy the con-
straints (20) with the contraction being along the x
direction.
We can also define the Hubble “expansion” rate asso-

ciated to metric (16). Actually, we have two Hubble rates as
we have two scale factors aðt̂Þ and rðt̂Þ. Defining the
Hubble rate associated to the scale factor aðt̂Þ by H1 ≡ 1

a
da
dt̂,

we obtain

H1 ¼ −
GM
rðt̂Þ2

�
2GM
rðt̂Þ − 1

�
−1
2

: ð21Þ

Since the scale factor a is contracting, the Hubble rateH1 is
negative. In addition, H1 diverges both near the WH
singularity and near the horizon. The former divergence

is genuine as the spacetime is singular at r ¼ 0 so physical
quantities like energy density or Hubble rate diverge.
However, the divergence of H1 near the past event horizon
is an artifact of coordinate singularity as can be seen from
the relation between dt̂ and dr in Eq. (14).
On the other hand, defining the Hubble rate associated to

the scale factor rðt̂Þ via H2 ≡ 1
rðt̂Þ

drðt̂Þ
dt̂ , we obtain

H2 ¼
1

rðt̂Þ
�
2GM
rðt̂Þ − 1

�1
2

: ð22Þ

One can check that the following relation between the two
Hubble rates holds:

H1H2 ¼ −
GM
rðt̂Þ3 : ð23Þ

We see thatH2 diverges near the singularity as expected but
it vanishes near the past event horizon. This is because near
the horizon (τ → ∞) the radius of the two-sphere
approaches a constant size so H2 vanishes in this limit.

III. QUANTUM FIELD IN WHITE
HOLE GEOMETRY

Here we study the quantum field perturbations in a WH
background. We primarily consider a real massless scalar
field Φ while the final results will be easily extended to
fields of other spins such as the vector and tensor
perturbations. We work in the test field limit where the
backreaction of the field on the background is negligible.
We use the metric (9) with the conformal time τ≡ −r�
while x≡ t represents the extended spatial direction.
As the background enjoys the two-dimensional rotation

invariance we expand the quantum field Φ in terms of the
spherical harmonics Ylmðθ;ϕÞ as follows:

Φ ¼ 1

r

X∞
l¼0

Xl
m¼−l

Zlmðτ; xÞYlmðθ;ϕÞ; ð24Þ

in which Zlmðτ; xÞ play the role of the quantum mode
operator. In addition, we have pulled out a factor 1=r such
that Zlm will be the canonically normalized field in the
perturbation analysis. Note that the reality of Φ requires
that Z�

lm ¼ ð−1ÞmZl−m.
Using the orthogonality of the spherical harmonics,

Z
dΩYlmðθ;ϕÞY�

l0m0 ðθ;ϕÞ ¼ δll0δmm0 ; ð25Þ

and the relations,

Ylmðθ;ϕÞ� ¼ ð−1ÞmYl−mðθ;ϕÞ;
Xl
m¼−l

jYlmðθ;ϕÞj2 ¼
2lþ 1

4π
; ð26Þ
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the action of the scalar field takes the following canonical
form:

S ¼ 1

2

Z
dτdx

X
l

����� ∂Zlm

∂τ

����
2

−
���� ∂Zlm

∂x

����
2

þ
�
1 −

2GM
rðτÞ

��
2GM
rðτÞ3 þ

lðlþ 1Þ
rðτÞ2

�
jZlmj2

�
: ð27Þ

From the above action one obtains the scalar field pertur-
bation equation,

∂
2
τZlm − ∂

2
xZlm −

�
1−

2GM
rðτÞ

��
2GM
rðτÞ3 þ

lðlþ 1Þ
rðτÞ2

�
Zlm ¼ 0:

ð28Þ

The above equation is similar to the standard Regge-
Wheeler perturbation equation for the field in the exterior
region of the BH. However, in our setup where WH is
treated as a cosmological background, the above equation
may be interpreted as the extension of the Sasaki-
Mukhanov equation to an anisotropic cosmological back-
ground such as the Bianchi I universe.
Since the spatial coordinate x has the translation invari-

ance, we can Fourier expand Zlm ∝ e−ikx in which k is a
one dimensional Fourier mode. Plugging the above mode
expansion in our master equation (28), the equations of
the perturbations take the form of the Regge-Wheeler
equation [26],

∂
2
τZlm þ ðk2 − VeffðτÞÞZlm ¼ 0; ð29Þ

with the following effective potential:

VeffðτÞ ¼
�
1 −

2GM
rðτÞ

��
lðlþ 1Þ
rðτÞ2 þ 2GM

rðτÞ3
�
: ð30Þ

It is worth mentioning that for the axial metric pertur-
bations and the electromagnetic field perturbations the
effective potential in Eq. (29) takes the following form:

VeffðτÞ ¼
�
1 −

2GM
rðτÞ

��
lðlþ 1Þ
rðτÞ2 þ 2GM

rðτÞ3 ð1 − s2Þ
�
; ð31Þ

in which s is the spin of the corresponding field, i.e. s ¼ 0;
1; 2 for the scalar, electromagnetic and gravitational fields
respectively.
We see that VeffðτÞ < 0 such that it diverges near τ → 0

while it goes to zero near the horizon corresponding to
τ → ∞. With the relation between τ and r given in Eq. (8) it
is not possible to solve the above mode function. However,
near the singularity the contribution of the term containing
lðlþ 1Þ can be neglected compared to the last term in
VeffðτÞ which is more divergent. Also, near the horizon, the
effective potential vanishes so the contributions of the

whole potential is subleading compared to the constant
term k2. As a result, we can neglect the contribution of the
term containinglðlþ 1Þ in themode function equation (29)
with reasonable accuracies. Correspondingly, to sim-
plify the notation, we drop the subscripts l; m in the
following analysis and effectively work in the s-wave limit
with l ¼ m ¼ 0.
We treat the wave equation as quantum fluctuations

generated at the point of past singularity r ¼ 0 (i.e. big
bang) inside the WH. To emphasize, note that the WH
region is bounded by the past horizon V ¼ 0, U < 0, the
future horizonU ¼ 0, V < 0 and the past singularity r ¼ 0,
see Fig. 1. After the generation of quantum perturbation at
past singularity r ¼ 0, they propagate towards the past
horizon V ¼ 0, U < 0 and eventually towards Iþ which is
measured by an observer at future infinity in the exterior
part of the BH. However, to have a complete Cauchy initial
condition, we also have to consider the perturbations
generated from left I− and right I− (which are respectively
to the left and to the right of WH); see Fig. 1 for a schematic
view. We would like to see if the perturbations genera-
ted deep inside the WH region are related to Hawking
radiation [27,28] as measured by the remote observer in
future infinity at Iþ. For a review of Hawking radiation
see [29–34].
Expanding the mode function as Z ∼ eikxgkðτÞ, and

neglecting the contribution of lðlþ 1Þ as discussed above,
the wave equation for the mode gkðτÞ is given by

g00kðτÞþ
�
k2 −

2GMð1− s2Þ
rðτÞ3

�
1−

2GM
rðτÞ

��
gkðτÞ ¼ 0; ð32Þ

in which a prime on gkðτÞ denotes the derivative with
respect to τ.
As mentioned before, this equation is in par with the

equation for cosmological perturbations in standard FLRW
cosmology. So interesting insights can be obtained when
comparing to perturbations in the FLRW background. As
reviewed in the previous section, we have two scale factors
rðτÞ and aðτÞ, in which the latter is contracting. Since we
decomposed the perturbations into spherical harmonics and
restricted to the s-wave limit, then Eq. (32) represents the
dynamics of perturbations in a 1þ 1 contracting universe
with the scale factor aðτÞ given in Eq. (10). Like in the
studies of perturbations in FLRW cosmology, we can
divide the perturbations into long “superhorizon” and short
“subhorizon” perturbations depending on the value of the
physical wave vector k=a. The structure of Eq. (32)
suggests that for a given rðτÞ the perturbations which
satisfy k2

a2 <
GM
rðτÞ3 are outside the horizon. Curiously, we see

that at the start of singularity near r ¼ 0, all perturbations
were superhorizon. As time goes by and the scale factor
aðτÞ contracts [i.e. rðτÞ increases] the perturbations enter
the horizon and k2

a2 >
GM
rðτÞ3. This is the hallmark of a
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contracting universe in contrast to an inflationary back-
ground where the perturbations of cosmological interests
are initially deep inside the horizon and then stretched
outside the horizon by the exponential expansion of the
background. An interesting conclusion from Eq. (32) is that
perturbations with the physical wavelength smaller than
ð2GMr3S Þ−1

2 ¼ rS remain subhorizon throughout the whole

evolution.
With the above qualitative discussions we try to solve

Eq. (32) approximately as it can not be solved analytically
for the whole region 0 < τ < ∞. We note that for the
regions near the singularity r ¼ 0, we have r2 ≃ 4GMτ and
Eq. (32) simplifies to

g00kðτÞ þ
�
k2 þ 1 − s2

4τ2

�
gkðτÞ ¼ 0 ðτ → 0Þ: ð33Þ

The above equation can be solved analytically, yielding

gkðτÞ ¼
ffiffiffi
τ

p �
C1ðωÞHð1Þ

s
2
ðωτÞ þ C2ðωÞHð2Þ

s
2
ðωτÞ

�
;

ðτ → 0Þ; ð34Þ
in which Hð1;2Þ

s=2 are the Hankel functions, C1ðωÞ; C2ðωÞ are
constants of integrations and ω≡ jkj ≥ 0.
The solution (34) cannot be used for the whole region

0 < τ < ∞. However, as we move away from r ¼ 0, the
effective potential in the wave equation (32) falls off rapidly
and the dominant term in the big bracket in Eq. (32) is
simply k2. This suggests that the solution (34) is a very
good solution for both regions τ → 0 and τ → ∞ with
modifications in the intermediate region. Therefore, we
take the analytic solution (34) to be qualitatively valid for
the entire region 0 < τ < ∞.
To fix the constants C1ðωÞ; C2ðωÞ we look at the initial

conditions of perturbations. In our view, these are quantum
fluctuations generated near the past singularity r ¼ 0
deep inside the WH. This interpretation is quite similar
to the case of FLRW cosmology, in which the observed
large scale perturbations are generated from quantum
fluctuations in the early universe at the time of big bang
(actually deep inside a Hubble patch during inflation).
Indeed, the link between these two views is quite natural
since the geometry inside the WH is dynamical, represent-
ing an anisotropic cosmological background, as reviewed
in Sec. II B.
With these discussions in mind, we expand the quantum

mode as follows:

Zðτ; xÞ ¼
Z þ∞

−∞

dkffiffiffiffiffiffi
2π

p ½eikxgkðτÞbk þ e−ikxg�kðτÞb†k�; ð35Þ

in which bk and b†k are the annihilation and the creation
operators defined deep in the WH background (i.e. near
r ¼ 0) with the usual commutation relations

½bk; b†k0 � ¼ δðk − k0Þ; ½bk; bk� ¼ ½b†k; b†k0 � ¼ 0: ð36Þ

Note that inside the WH, the spacelike coordinate x spans
the range ð−∞;þ∞Þ so the wave number k in the integral
(35) varies in the interval ð−∞;þ∞Þ.
To find the proper normalization, we have to impose the

equal time commutation relation between the field Z and its
conjugate momentum ∂τZ,

½Zðτ; xÞ; ∂τZðτ; x0Þ� ¼ iδðx − x0Þ: ð37Þ
Imposing the above quantization condition on the mode
function (34) yields

jC2ðωÞj2 − jC1ðωÞj2 ¼
π

4
: ð38Þ

The above constraint does not uniquely fix C1ðωÞ and
C2ðωÞ. However, the above relation suggests the natural
choice C1 ¼ 0 and C2 ¼

ffiffiffi
π

p
=2. This choice may be

compared to the standard “Bunch-Davies” vacuum in a
dS background which carries the lowest energy among all
possible vacua. Of course one may consider the general
case in which both C1ðωÞ and C2ðωÞ are present, parallel to
the “non-Bunch-Davies” vacuum in inflation. To start, first
we consider the natural case C1 ¼ 0 for simplicity. In
Sec. V, we extend the analysis for general values of C1ðωÞ
and C2ðωÞ. Now, choosing C1 ¼ 0, we have

gkðτÞ ¼
ffiffiffiffiffi
πτ

4

r
Hð2Þ

s=2ðωτÞ: ð39Þ

The mode propagates towards the exterior of WH into
the past event horizon τ → ∞ with U < 0, V ¼ 0. Using

the asymptotic expansion of Hð2Þ
s=2ðωτÞ, near the past

horizon we obtain

Hð2Þ
s=2ðωτÞ →

ffiffiffiffiffiffiffiffi
2

πωτ

r
eið−ωτþπ

4
ð1þsÞÞ ðτ → ∞Þ: ð40Þ

Plugging the above asymptotic expansion in the mode
expansion (35) we obtain

Zðτ; xÞ →
Z

∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p ½eiωð−τþxÞþiπ
4bω þ e−iωð−τþxÞ−iπ

4b†ω

þ eiωð−τ−xÞþiπ
4b−ω þ e−iωð−τ−xÞ−iπ4b†−ω�: ð41Þ

The above mode function is the superposition of two
independent left and right moving free waves, depending
respectively on the combinations τ þ x and τ − x. Defining
the tortoise light-cone coordinates,

u≡ τ þ x; v≡ τ − x; ð42Þ
and rescaling bk and b†k with the unimportant phase factor,
bk → e

iπ
4bk and b†k → e−

iπ
4b†k, we have
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Zðτ; xÞjr→2GM ¼
Z

∞

0

dωffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2ω

p ½e−iωvbω þ eþiωvb†ω

þ e−iωub−ω þ eþiωub†−ω�: ð43Þ

It is reassuring that our analytic solution (35) nicely
coincides with the notion of the right movers e�iωu and
left movers e�iωv expansion of the mode function near the
horizon. The right mover corresponds to wave crossing the
past event horizon V ¼ 0, U < 0, propagating towards
the right Iþ in the BH region. On the other hand, the left
mover corresponds to wave crossing the future event
horizon U ¼ 0, V < 0, propagating towards the left Iþ
on the mirror side of the exterior of the BH.
Our goal is to examine what an observer outside the BH

on the right Iþ with V → þ∞ measures. For this purpose,
we need to choose the right mover from the superposition
in Eq. (43). Considering the right mover part of Eq. (43)
near the past horizon we have

ZðuÞjr→2GM →
Z

∞

0

dωffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2ω

p ½e−iωub−ω þ eþiωub†−ω�:

ð44Þ
This solution, generated in the WH region, can be used as
the initial condition to propagate from the surface V ¼ 0 to
outside of the BH on the surface Iþ where the measure-
ments are made. After crossing the past horizon, this wave
will be scattered by the effective potential in the exterior
region 2GM < r < ∞. However, the crucial difference
compared to the WH region is that the effective Regge-
Wheeler potential for the exterior of BH is not divergent
and only has a finite bump. Therefore, at least for a large
enough value of ω, one can ignore the effects of the Regge-
Wheeler potential and treat the solution emerging from the
WH as simply propagating without change towards Iþ.
Because of this reason, we practically consider the near
horizon limit of the solution for the outgoing solution in the
exterior region.
Now the crucial point is that the tortoise coordinate r� and

equivalently the time coordinate τ covers only the WH
region. In order to properly extend the solution (44) through
the past horizon and into the exterior region, we have to pass
to the Kruskal coordinate which smoothly covers both the
WHand theBH regions. In otherwords, we employ thewave
function solution in the Kruskal coordinate to smoothly
connect thewave function for the exterior region r > 2GM to
the solution in the WH region as given by Eq. (44). The
Kruskal coordinate has the unique property that it is suitable
for a freely falling observer near the horizon while the mode
expansion (44) mixes the positive and the negative frequen-
cies of the freely falling observer which is the main reason
behind the Hawking radiation.
Near the horizon the coordinate ðU;VÞ is best suitable

for a freely falling observer in which the geometry is nearly
approximated by

ds2 ≃ −16GMdUdV þ ð2GMÞ2dΩ2 ðr → 2GMÞ: ð45Þ

Ignoring the angular parts, it describes a two-dimension flat
spacetime. The wave equation in the ðU;VÞ coordinate in
the near horizon approximation is simply

∂U∂VZðU;VÞ ¼ 0; ðr → 2GMÞ: ð46Þ

This admits the expected plane wave solution e�iωU and
e�iωV . Considering the right mover solution for our purpose
we have

ZðUÞ ¼
Z

∞

0

dωffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2ω

p ðe−iωUaω þ eiωUa†ωÞ;

ðr → 2GMÞ; ð47Þ

in which now the operators aω and a†ω are the annihilation
and the creation operators defined for a freely falling
observer near the horizon equipped with the Kruskal
coordinate. The important point is that the solution (47)
is valid on both sides of the past event horizon, whether
V > 0 or V < 0. Therefore, we can expand the solution
(44) in the base of the solution (47). This allows us to find
bω in Eq. (44) in the WH region in terms of aω and a†ω in
Eq. (47). Finally, we can use Eq. (47) as the initial condition
for the exterior region to be used as the initial conditions for
the observer on right Iþ.
To connect the two solutions (47) and (44) we have to

find a dictionary between ðu; vÞ and ðU;VÞ coordinates. In
the WH region both U and V are negative and they are
related to the ðu; vÞ coordinate via

V ¼ −
1

4κ
e−κv; U ¼ −

1

4κ
e−κu; ð48Þ

in which κ ≡ 1
4GM is the surface gravity.

IV. HAWKING RADIATION

For a freely falling observer near the horizon the natural
coordinate to employ is the Kruskal coordinate which is
nonsingular. On the other hand, an observer using the
coordinate ðτ; xÞ is accelerating with respect to the Kruskal
coordinate. Correspondingly, the vacua employed by these
two observers are not identical. Specifically, a positive
frequency mode function in (44) mixes the negative and
positive frequency modes of the Kruskal vacuum. The
interpretation is that the Kruskal vacuum, as viewed by an
accelerator observer in WH, is not empty and carries
particles with Planck distribution. In this section we look
at this issue more closely both from the point of view of an
observer deep in the WH region and also from the point of
view of the far observer in right Iþ.
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A. Relation between ðb− ω̃;b†− ω̃Þ and ðaω;a†ωÞ
Our first job is to find a relation between ðb−ω̃; b†−ω̃Þ and

ðaω; a†ωÞ. Here to simplify the notation, we denote the
frequency in the mode function for the WH region by ω̃.
Also see the Appendix for an alternative derivation of
ðb−ω̃; b†−ω̃Þ based on the standard inner product approach.
From Eq. (44) we have

b−ω̃ ¼
ffiffiffiffiffiffi
2ω̃

p Z þ∞

−∞

duffiffiffiffiffiffi
2π

p eiω̃uZ: ð49Þ

Now, expressing Z in terms of theU coordinates as given in
Eq. (47), this leads to

b−ω̃ ¼
Z

∞

0

dωðαωω̃aω þ βωω̃a
†
ωÞ; ð50Þ

in which the Bogoliubov coefficients αωω̃ and βωω̃ are
defined via

αωω̃ ≡
ffiffiffiffĩ
ω

ω

r Z þ∞

−∞

du
2π

eiω̃ue−iωU; ð51Þ

and

βωω̃ ≡
ffiffiffiffi
ω̃

ω

r Z þ∞

−∞

du
2π

eiω̃ueiωU: ð52Þ

Imposing the standard commutation relations among the
two sets of operators ðaω; a†ωÞ and ðbω̃; b†ω̃Þ, one can check
that the Bogoliubov coefficients satisfy the following
normalization condition:

Z
∞

0

dωðαωω̃α�ωω̃0 − βωω̃β
�
ωω̃0 Þ ¼ δðω̃ − ω̃0Þ: ð53Þ

In particular, for the special case ω̃ ¼ ω̃0, the above
normalization condition yields

Z
∞

0

dωðjαωω̃j2 − jβωω̃j2Þ ¼ δð0Þ: ð54Þ

Note that the factor δð0Þ appears because we have used the
infinite length normalization along the spatial x direction.
In a real situation it would be replaced by the physical
length.
To calculate the integrals appearing in αωω̃ and βωω̃ we

use the relation U ¼ − 1
4κ e

−κu yielding du ¼ − 1
κ dU=U in

which U ranges in the interval ð−∞; 0Þ. This gives

I ≡
Z þ∞

−∞
dueiω̃ue−iωU ¼ 1

κ

Z
0

−∞
dð4κUÞð−4κUÞ−1−iω̃

κ e−iωU

¼ 1

κ
e
πω̃
2κ

�
ω

4κ

�iω̃
κ

Γ
�
−iω̃
κ

�
: ð55Þ

The contour in the complex plane to calculate the above
integral is shown in the left panel of Fig. 2 where the branch
cut associated with the function ð−UÞ−1−iω̃κ is on the
positive real axis. The integral over the part of large circle
Cwith negative imaginary value vanishes while the integral
on the imaginary axis denoted by I2 yields the Γ function
given by

ΓðzÞ ¼
Z þ∞

0

dxe−xxz−1: ð56Þ

Similarly, for the other integral in βωω̃ we have

Z þ∞

−∞
dueiω̃ueiωU ¼ 1

κ
e−

πω̃
2κ

�
ω

4κ

�iω̃
κ

Γ
�
−iω̃
κ

�
; ð57Þ

in which now the contour C of the large circle closes on the
upper complex planes with positive imaginary values.
Combining the above results yields

�
αωω̃

βωω̃
¼ 1

2πκ

ffiffiffiffi
ω̃

ω

r
e�πω̃

2κ

�
ω

4κ

�iω̃
κ

Γ
�
−iω̃
κ

�
: ð58Þ

From the above expressions we find that

jαωω̃j2 ¼ e
2πω̃
κ jβωω̃j2: ð59Þ

Plugging this relation into the normalization condition (54)
yields the following identity:

Z
∞

0

dωjβωω̃j2 ¼
δð0Þ

e
2πω̃
κ − 1

; ð60Þ

which will be useful later on.

FIG. 2. Left: the contour in the complex plane to calculate the
integral I given in Eq. (55) for −∞ < U < 0. The integral Ic
evaluated along the part of large circle C vanishes while the
integral I2 over the negative imaginary axis yields to the Γ
function given in Eq. (56). The branch cut associated with the
function ð−UÞ−1−iω̃κ is on the positive real axis denoted by the
dotted line. Right: the contour to calculate the integral Eq. (76)
with the same description as in the left figure, but now 0<U<∞
where the branch cut is on the negative real axis and the contour is
closed on the upper complex plane.
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Having calculated b−ω̃, we can obtain b†−ω̃ from the
complex conjugation of Eq. (50).

B. Mode function outside the white hole

Our next job is to propagate the mode function from the
WH region across the past horizon to the exterior region
and then to Iþ. As the Kruskal coordinate is continuous
across the horizon, we can simply use the mode function
(47) for the observer outside the WH region.
For the exterior of WH, the spacetime is static so

the t coordinate is timelike while r is spacelike as usual.
The tortoise coordinate is now given by r� ¼ rþ
2GM lnð r

2GM − 1Þ, in which the past horizon is mapped
to r� ¼ −∞ while for the far observer r� ¼ þ∞.
Furthermore, the tortoise light-cone coordinates ðu; vÞ
are given by u≡ t − r� and v≡ tþ r� such that the
Kruskal light-cone coordinates ðU;VÞ are now given by

V ¼ 1

4κ
eκv; U ¼ −

1

4κ
e−κu: ð61Þ

As we are dealing with the right mover solution with the
mode function Z ¼ ZðUÞ, we need to express the right
mover solution across the past horizon from the WH region
to the exterior region. Looking at the quantum mode
solution of the Regge-Wheeler equation for the observer
near the past horizon in the exterior region, one can see that
the right mover solution has the following form:

ZðuÞ ¼
Z

∞

0

dω̃ffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2ω̃

p ðe−iω̃udω̃ þ eiω̃ud†ω̃Þ; ðr→ 2GMþÞ

ð62Þ

in which the creation and annihilation operators dω̃ and d†ω̃
are defined for this observer just outside the WH.
Our goal is to express the operators dω̃ and d†ω̃ in terms of

the corresponding operators in the WH region, i.e. b−ω̃ and
b†−ω̃. Following a very similar step as in the previous
subsection, we can express dω̃ and d†ω̃ in terms of the
Kruskal operators aω and a†ω. However, now the crucial
point is that the relation between theU and u coordinates as
given by Eqs. (61) and (48) is identical. Therefore, the
Bogoliubov coefficients relating dω̃ and d†ω̃ to aω and a†ω are
the same which relates b−ω̃ and b†−ω̃ to aω and a†ω.
Therefore, we conclude that

dω̃ ¼ b−ω̃; d†ω̃ ¼ b†−ω̃: ð63Þ

Interestingly, we see that the observers on both sides of the
past horizon agree on the form of the mode function and
share the same vacuum. This may be expected since locally
the horizon surface is regular so any mode function from
the WH region can continuously cross the horizon to the
exterior region without modification.

In the limit where we neglect the bump of the potential in
the Regge-Wheeler equation the quantum mode function
propagates freely from the near horizon region to the
observer in the far region. Correspondingly, the observer
in Iþ detects the mode function (62). In addition, because
of the relations (63), the observer in Iþ shares the same
vacuum as the observer deep inside the WH. While these
two observers share the same vacuum, their vacuum is
different than the vacuum defined by a locally inertial
observer using the Kruskal coordinate. This is because the
Bogoliubov coefficients αωω̃ and βωω̃ are nontrivial. As
such, both of these two observers conclude that the vacuum
defined by the Kruskal coordinate is not empty.
Let us denote the vacuum defined by the Kruskal observer

by j0iK which is annihilated by ak, akj0iK ¼ 0. Also let us
denote the vacuum defined deep inside the WH by j0iWH
which is annihilated by bq, bqj0iWH ¼ 0. As shown above,
this vacuum is also annihilated by dq employed by the
observer in the BH region, i.e. dqj0iWH ¼ 0. Note that j0iWH

was used to define the positive frequency solution (39)
yielding to (44).Asmentioned before, the two states j0iK and
j0iWH are different. For the observer which defines j0iWH
as the vacuum inside the WH, the state j0iK is not empty.
This is the source of Hawking radiation. Now, we calculate
the number of produced particles Kh0jb†−ω̃b−ω̃j0iK ¼
Kh0jd†ω̃dω̃j0iK as detected by either the WH observer or
the observer at Iþ.
Using the formula (50) for b−ω̃ and similarly for b†−ω̃, we

obtain

Kh0jb†−ω̃b−ω̃j0iK ¼
Z

∞

0

dωdω0β�ωω̃βω0ω̃Kh0jaωa†ωj0iK

¼
Z

∞

0

dωjβωω̃j2: ð64Þ

Now, using the relation (60), we conclude

Kh0jb†−ω̃b−ω̃j0iK ¼ δð0Þ
e
2πω̃
κ − 1

: ð65Þ

Calculating the number density measured by the
observer in the BH region (say at Iþ), we obtain

Kh0jd†ω̃dω̃j0iK
δð0Þ ¼ Kh0jb†−ω̃b−ω̃j0iK

δð0Þ ¼ 1

e
2πω̃
κ − 1

; ð66Þ

which is the expected Planck spectrum with the Hawking
temperature,

TH ¼ κ

2π
¼ 1

8πGM
: ð67Þ

Consequently, the observer outside the WHmeasures a flux
of particles with the Planck distribution emitted from WH.
Alternatively, the above equation also suggests that an
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observer deep in the WH region absorbs particles with the
same Planckian distribution from the exterior region.
Naively speaking, if the BH is not completely black (via
Hawking radiation) then the WH is not completely white
either. This conclusion is consistent with the results of [24]
who have studied the Hawking effect for dynamical
trapping horizons, calculating the quantum tunneling rate
using the Hamilton-Jacobi formalism.
Note that we worked in the simplified picture that the

effects of the Regge-Wheeler potential and the scattering of
the propagating waves towards Iþ are neglected. This is a
good approximation for large enough ω in which one may
ignore the effect of the scattering by the effective potential.
In general, the flux measured by the remote observer is
essentially a Planck spectrum but with a greybody factor
correction.

C. Outgoing wave from left I −
As mentioned before, to have a complete Cauchy initial

condition, we also have to consider perturbations generated
from left I− and right I− which respectively are to the left
and to the right of the exterior of the WH, see Fig. 1. The
perturbations generated from left I− are right movers, i.e.
the mode functions depend on u orU coordinates, while the
perturbations generated at right I− are left movers, depend-
ing on v or V coordinates. Since from the start we have
considered the right movers, here we consider the right
moving perturbations originated from the left I−. The
discussions for the left movers will be the same.
The region enclosed by the left I− and the part of the

future horizon with V ¼ 0, U > 0 (which is usually
referred to as part of the “other universe”) is similar to
the exterior of the BH in our part of the universe. The only
difference is that from the surface I− to the past event
horizon the future directed time is −t. To see this, let us
construct the Kruskal coordinate in this region. Knowing
that V < 0 and U > 0, the Kruskal coordinate is given by

V ¼ −
1

4κ
e−κv; U ¼ 1

4κ
eκu; ð68Þ

in which

v ¼ −ðtþ r�Þ; u ¼ −tþ r�; ð69Þ

and now

r� ≡ rþ 2GM ln

�
r

2GM
− 1

�
: ð70Þ

Note that r� defined above has a branch cut with respect to
r� defined inside the WH given in Eq. (7). As u and v
change in the range ð−∞;þ∞Þ, U and V respectively
change in the range ð0;þ∞Þ and ð−∞; 0Þ. On the surface
I−, V → −∞ so from Eq. (4) we find t → þ∞ while near

the past event horizon where V → 0, t → −∞. This
suggests that the future directed time in this region (outside
and to the left of WH) is indeed −t.
In this region, like the exterior of BH, −∞ < r� < þ∞

in which r� → þ∞ is near I− while r� → −∞ is mapped to
the past horizon. As in the BH case, the effective potential
is given by the Regge-Wheeler potential which has a finite
bump. Therefore, for high enough frequencies, we can
ignore the effects of the potential and the wave equation in
the ðr�; tÞ coordinate for the entire region is approximately
given by

∂
2
r�Z − ∂

2
t Z ≃ 0: ð71Þ

Remembering that now the future directed time is −t, the
positive frequency mode solution is given by

Zðr�; tÞ ¼
Z þ∞

−∞

dkffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2ω

p ½eiðωtþkr�Þck þ e−iðωtþkr�Þc†k�;

ð72Þ

in which the new operators ck and c†k are defined as the
creation and annihilation operators for the local observer on
left I−.
In terms of the ðu; vÞ coordinate defined in Eq. (69), we

have

Zðr�; tÞ ¼
Z

∞

0

dωffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2ω̃

p ½e−iω̃vcω̃ þ eþiω̃vc†ω̃ þ e−iω̃uc−ω̃

þ eþiω̃uc†−ω̃�: ð73Þ

Now, concentrating on right movers as before, the
outgoing solution near the past horizon V ¼ 0 and
U > 0 is given by

ZðuÞ≃
Z

∞

0

dω̃ffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2ω̃

p ½e−iω̃ucω̃ þ eþiω̃uc†ω̃�; ðr→ 2GMÞ:

ð74Þ

Note that the plane wave (74) is similar to (44) which were
defined for the other half of the past horizon, V ¼ 0 and
U < 0. The goal is to express ðcω̃; c†ω̃Þ in terms of ðaω; a†ωÞ
defined for a freely falling Kruskal observer equipped with
the vacuum (47).
Similar to the analysis in Sec. IVA we can relate these

two sets of operators via the new Bogoliubov coefficients
ᾱωω̃ and β̄ωω̃ as follows:

cω̃ ¼
Z

∞

0

dωðᾱωω̃aω þ β̄ωω̃a
†
ωÞ: ð75Þ

Compared to analysis in Sec. IVA, the difference is that
now U changes in the interval ð0;þ∞Þ where U ¼ eκu=4κ.
The contour in complex plane to calculate the above
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integral is shown in the right panel of Fig. 2. Similar to
integral (55) we have

Z þ∞

−∞
dueiω̃ue−iωU ¼ 1

κ
e
πω̃
2κ

�
ω

4κ

�−iω̃
κ

Γ
�
iω̃
κ

�
; ð76Þ

and

Z þ∞

−∞
dueiω̃ueiωU ¼ 1

κ
e
−πω̃
2κ

�
ω

4κ

�−iω̃
κ

Γ
�
iω̃
κ

�
; ð77Þ

yielding

�
ᾱωω̃

β̄ωω̃
¼ 1

2πκ

ffiffiffiffi
ω̃

ω

r
e�πω̃

2κ

�
ω

4κ

�−iω̃
κ

Γ
�
iω̃
κ

�
: ð78Þ

Comparing with the values of αωω̃ and βωω̃ given in
Eq. (58) we observe that

ᾱωω̃ ¼ α�ωω̃; β̄ωω̃ ¼ β�ωω̃: ð79Þ

We see that the results here are on par with the results of
the Secs. IVA and IV B. In particular, a remote observer,
either on left I− where the perturbations are generated or
near the future singularity r ¼ 0 inside the BH where the
perturbations are heading for, concludes that the vacuum
defined by a freely falling Kruskal observer (47) has the
particle flux with the spectrum

Kh0jc†ω̃cω̃j0iK
δð0Þ ¼ 1

e
2πω̃
κ − 1

; ð80Þ

with the Hawking temperature TH ¼ κ
2π as before.

V. NONVACUUM INITIAL CONDITION

In the analysis so far we have assumed that the wave
function Eq. (34) inside the WH has C1 ¼ 0 and C2 ¼ 1.
This corresponds to the vacuum initial condition. This is
similar to the Bunch-Davies initial condition in inflationary
perturbations. Alternatively, we can consider the general
case with arbitrary values of C1ðωÞ and C2ðωÞ subject to
the normalization condition Eq. (38). Here we repeat the
analysis of Hawking radiation for this general case. We
only consider the right mover perturbations generated deep
inside the WH region propagating towards the past horizon
V ¼ 0, U < 0.
Using the asymptotic form of Hankel function given in

Eq. (40), the mode function near the past horizon inside the
WH region is given by

Zðτ; xÞjr→2GM →
Z

∞

0

dωffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2ω

p fe−iωvðC2bω þ C�
1b

†
−ωÞ

þ eiωvðC�
2b

†
ω þ C1b−ωÞ

þ e−iωuðC2b−ω þ C�
1b

†
ωÞ

þ eiωuðC�
2b

†
−ω þ C1bωÞg; ð81Þ

in which the coordinates ðu; vÞ are defined as in Eq. (42).
Also to shorten the notation, we simply wrote CiðωÞ ¼ Ci,
but it is understood that the coefficients Ci depend on ω.
From the above form of mode function we see that one

cannot uniquely fix the operators bω̃ and b−ω̃ just by
matching the right mover solution ZðuÞ at the horizon
V ¼ 0. We also need to match the left mover ZðvÞ at the
future horizon U ¼ 0 to determine bω̃ and b−ω̃ simulta-
neously. The left mover mode function near the future
horizon U ¼ 0 in the Kruskal coordinate is given by

ZðVÞ ¼
Z

∞

0

dωffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2ω

p ðe−iωVa−ω þ eiωVa†−ωÞ: ð82Þ

Performing the inverse Fourier transformation like in
Eq. (49) and following the same steps as in Sec. IVA and
imposing the continuity of the mode function for both left
movers and right movers across the past horizon we obtain

bω̃ ¼ C2ðω̃Þ�Qðω̃Þ − C1ðω̃Þ�Pðω̃Þ†;
b−ω̃ ¼ C2ðω̃Þ�Pðω̃Þ − C1ðω̃Þ�Qðω̃Þ†; ð83Þ

in which Pðω̃Þ and Qðω̃Þ are defined via

Pðω̃Þ≡
Z

∞

0

dωðαωω̃aω þ βωω̃a
†
ωÞ; ð84Þ

and

Qðω̃Þ≡
Z

∞

0

dωðαωω̃a−ω þ βωω̃a
†
−ωÞ; ð85Þ

where ðαωω̃; βωω̃Þ are the Bogoliubov coefficients defined
in Sec. IVA.
Using the normalization condition (53) one can check

that

½Pðω̃Þ; Pðω̃0Þ†� ¼ ½Qðω̃Þ; Qðω̃0Þ†� ¼ δðω̃ − ω̃0Þ;
½Pðω̃Þ; Qðω̃0Þ†� ¼ ½Pðω̃Þ; Qðω̃0Þ� ¼ 0: ð86Þ

Note that b†ω̃ and b†−ω̃ are obtained from the complex
conjugation of bω̃ and b−ω̃ in Eq. (83).
Having obtained b−ω̃ and b†−ω̃ in terms of a�ω and a†�ω,

we are ready to calculate the flux of Hawking radiation as
measured by the WH observer or the observer outside the
WH. From Eq. (83) we obtain
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Kh0jb†−ω̃b−ω̃j0iK ¼ Kh0jðC2ðω̃ÞPðω̃Þ†
− C1ðω̃ÞQðω̃ÞÞðC2ðω̃Þ�Pðω̃Þ
− C1ðω̃Þ�Qðω̃Þ†Þj0iK: ð87Þ

Performing the contractions and using the normalization
conditions (59) and (60) the flux of particles is obtained
to be

Kh0jb†−ω̃b−ω̃j0iK
δð0Þ ¼ jC2ðω̃Þj2 þ jC1ðω̃Þj2e2πω̃

κ

e
2πω̃
κ − 1

¼ 1

e
2πω̃
κ − 1

þ jC1ðω̃Þj2 coth
�
πω̃

κ

�
: ð88Þ

One can easily see that when C1 ¼ 0, the above result
coincides with the Planck distribution of Hawking radia-
tion. However, when C1 ≠ 0, we see that the spectrum
deviates from the Planck distribution. The deviation from a
Planck distribution is significant. It would be interesting to
examine if the above result has anything important to say in
connection to the information loss problem.

VI. SUMMARY AND DISCUSSIONS

In this work we studied the cosmology associated to a
white hole background. The past singularity inside the WH
is like a big bang singularity such that the WH background
represents an anisotropic cosmological setup. The scale
factor associated to the extended spatial direction is
contracting while the scale factor representing the size of
the two-sphere is expanding. Motivated by the cosmologi-
cal perturbation analysis in FLRW cosmology, in which the
observed large scale structures are created from quantum
fluctuations during inflation, here we have performed a
similar analysis and studied the quantum perturbations
generated deep inside the WH region. First we considered
the case with the vacuum initial condition C1 ¼ 0.
Matching the asymptotic solution to a plane wave solution
as measured by a freely falling observer equipped with the
Kruskal coordinate and the annihilation and creation
operators ak and a†k, we have expressed the annihilation
and creation operators bk and b†k defined for an observer
deep inside the WH in terms of aq and a†q. Furthermore,
demanding that the wave function be continuous across the
horizon, we have related bk and b†k to dk and d†k as defined
for an observer outside the WH and to Iþ.
While the observer deep inside the WH and the observer

far from the BH both agree on their quantummode function
and share the same vacuum, their vacuum is different than
the one defined for a freely falling observer near the
horizon. In particular, the WH observer and the far observer
detect a spectrum of particle with a Planckian distribution
and with the Hawking temperature TH ¼ 1

8πGM. Intuitively
speaking, the conclusion is that if the BH is not entirely

black due to Hawking radiation, then the WH is not entirely
white either.
We have extended the analysis to the general case

where the initial condition deep inside the WH region is
not a pure vacuum, corresponding to C1 ≠ 0. This may be
interpreted as an initial state which contains particles and is
not the state of minimum energy. Interestingly, in this case
we have shown that the observer far from the BH detects a
flux which deviates from the Planck spectrum with a
deviation of the form jC1ðω̃Þj2 cothðπω̃κ Þ. One has to check
if this has interesting implications for the information loss
problem associated to BH thermodynamics and Hawking
radiation.
To simplify the analysis, we have neglected the

scattering of the wave function by the bump of effective
potential, practically by setting l ¼ 0. It would be
interesting to perform the analysis for the realistic case
where the effects of scattering are included. However, we
expect that the main results remain unchanged for high
frequency modes where the effects of the potential
scattering and the dependence of wave function on l
may not be important. However, for the general case, one
expects that the Planck distribution is modified by a
greybody factor.
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APPENDIX: INNER PRODUCT

In this appendix we show that the analysis in Sec. IVA
can be obtained using the inner product method as well.
The inner product for the mode functions is defined

via [31,32]

ðfω; fω0 Þ≡ −i
Z

ðfωf�ω0;a − fω;af�ω0 ÞdΣa ¼ δðω − ω0Þ

ðA1Þ

in which dΣa is the initial Cauchy surface.
We would like to relate b−ω̃ from the mode function of

ZðuÞ in Eq. (44) to aω of the mode function ZðUÞ in
Eq. (47). We choose the surface dΣa to be the surface near
the past event horizon, with V ¼ 0 and −∞ < U < 0.
Denoting the positive wave function in Eq. (44) as

fω̃ ¼ e−iω̃u=
ffiffiffiffiffiffiffiffiffi
4πω̃

p
, we have
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b−ω̃ ¼ ðZ; fω̃Þ ¼ −i
Z

0

−∞
dUðZðUÞf�̃ω;U − ZðUÞ;Uf�̃ωÞ;

ðA2Þ

in which ZðUÞ is given by Eq. (47).
Now noting that U ¼ − 1

4κ e
−κu we obtain

b−ω̃ ¼
Z

dω̃
2π

1

2
ffiffiffiffi
ω

p
Z

0

−∞
dUeiu

��
ω −

4ω̃

U

�
e−iωUaω

−
�
ωþ 4ω̃

U

�
eiωUa†ω

�
: ðA3Þ

Each of the two types of integrals can be calculated, using a
similar contour as in Fig. 2, yielding

Z
0

−∞
dUeiω̃u

�
ω −

4ω̃

U

�
e−iωU ¼ 8ω̃e2πω̃ω4iω̃Γð−4iω̃Þ;

ðA4Þ

and

−
Z

0

−∞
dUeiω̃u

�
ωþ 4ω̃

U

�
eiωU ¼ 8ω̃e−2πω̃ω4iω̃Γð−4iω̃Þ:

ðA5Þ

Combining these two terms, we obtain b−ω̃ in exact
agreement with Eq. (50) with αωω̃ and βωω̃ given in
Eq. (58). The rest of the analysis is exactly the same as
in Sec. IVA.

[1] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Observation of Gravitational Waves from a Binary Black
Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GW151226: Observation of Gravitational Waves from a
22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev.
Lett. 116, 241103 (2016).

[3] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Binary black hole population properties inferred from
the first and second observing runs of Advanced LIGO
and Advanced Virgo, Astrophys. J. Lett. 882, L24
(2019).

[4] A. D. Sakharov, Nachal’naia stadija rasshirenija
Vselennoj i vozniknovenije neodnorodnosti raspredelenija
veshchestva, Sov. Phys. JETP 22, 241 (1966).

[5] E. Poisson and W. Israel, Structure of the black hole
nucleus, Classical Quantum Gravity 5, L201 (1988).

[6] V. P. Frolov, M. A. Markov, and V. F. Mukhanov, Through a
black hole into a new universe?, Phys. Lett. B 216, 272
(1989).

[7] V. P. Frolov, M. A. Markov, and V. F. Mukhanov, Black
holes as possible sources of closed and semiclosed worlds,
Phys. Rev. D 41, 383 (1990).

[8] H. Firouzjahi, Primordial universe inside the black hole and
inflation, arXiv:1610.03767.

[9] S. Wenda and S. Zhu, Junction conditions on null hyper-
surface, Phys. Lett. A 126, 229 (1988).

[10] R. Brandenberger, L. Heisenberg, and J. Robnik, Non-
singular black holes with a zero-shear S-brane, J. High
Energy Phys. 05 (2021) 090.

[11] E. Gaztanaga, Inside a black hole: The illusion of a big
bang, Hal Open Sci. 7, 03783110 (2021).

[12] E. Gaztanaga, How the big bang ends up inside a black hole,
Universe 8, 257 (2022).

[13] K. Sato, M. Sasaki, H. Kodama, and K.-i. Maeda, Creation
of wormholes by first order phase transition of a vacuum in
the early universe, Prog. Theor. Phys. 65, 1443 (1981).

[14] K.-i. Maeda, K. Sato, M. Sasaki, and H. Kodama, Creation
of de Sitter-Schwarzschild wormholes by a cosmological
first order phase transition, Phys. Lett. 108B, 98 (1982).

[15] K. Sato, H. Kodama, M. Sasaki, and K.-i. Maeda, Multi-
production of universes by first order phase transition of a
vacuum, Phys. Lett. 108B, 103 (1982).

[16] E. Farhi and A. H. Guth, An obstacle to creating a universe
in the laboratory, Phys. Lett. B 183, 149 (1987).

[17] S. K. Blau, E. I. Guendelman, and A. H. Guth, The dy-
namics of false vacuum bubbles, Phys. Rev. D 35, 1747
(1987).

[18] N. Oshita and J. Yokoyama, Creation of an inflationary
universe out of a black hole, Phys. Lett. B 785, 197 (2018).

[19] M. Markov, Limiting density of matter as a universal law of
nature, JETP Lett. 36, 265 (1982).

[20] R. Kantowski and R. K. Sachs, Some spatially homo-
geneous anisotropic relativistic cosmological models,
J. Math. Phys. (N.Y.) 7, 443 (1966).

[21] S. Chakraborty, S. Singh, and T. Padmanabhan, A quantum
peek inside the black hole event horizon, J. High Energy
Phys. 06 (2015) 192.

[22] D. M. Eardley, Death of White Holes in the Early Universe,
Phys. Rev. Lett. 33, 442 (1974).

[23] K. Jusufi, Hawking radiation in the spacetime of white
holes, Gen. Relativ. Gravit. 50, 84 (2018).

[24] C. Giavoni and M. Schneider, Quantum effects across
dynamical horizons, Classical Quantum Gravity 37,
215020 (2020).

[25] C. Barceló, R. Carballo-Rubio, and L. J. Garay, Exponential
fading to white of black holes in quantum gravity, Classical
Quantum Gravity 34, 105007 (2017).

[26] T. Regge and J. A. Wheeler, Stability of a Schwarzschild
singularity, Phys. Rev. 108, 1063 (1957).

[27] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[28] W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D
14, 870 (1976).

WHITE HOLE COSMOLOGY AND HAWKING RADIATION FROM … PHYS. REV. D 106, 123505 (2022)

123505-13

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.1088/0264-9381/5/12/002
https://doi.org/10.1016/0370-2693(89)91114-3
https://doi.org/10.1016/0370-2693(89)91114-3
https://doi.org/10.1103/PhysRevD.41.383
https://arXiv.org/abs/1610.03767
https://doi.org/10.1016/0375-9601(88)90751-7
https://doi.org/10.1007/JHEP05(2021)090
https://doi.org/10.1007/JHEP05(2021)090
https://doi.org/10.3390/universe8050257
https://doi.org/10.1143/PTP.65.1443
https://doi.org/10.1016/0370-2693(82)91151-0
https://doi.org/10.1016/0370-2693(82)91152-2
https://doi.org/10.1016/0370-2693(87)90429-1
https://doi.org/10.1103/PhysRevD.35.1747
https://doi.org/10.1103/PhysRevD.35.1747
https://doi.org/10.1016/j.physletb.2018.08.018
https://doi.org/10.1063/1.1704952
https://doi.org/10.1007/JHEP06(2015)192
https://doi.org/10.1007/JHEP06(2015)192
https://doi.org/10.1103/PhysRevLett.33.442
https://doi.org/10.1007/s10714-018-2406-0
https://doi.org/10.1088/1361-6382/abb576
https://doi.org/10.1088/1361-6382/abb576
https://doi.org/10.1088/1361-6382/aa6962
https://doi.org/10.1088/1361-6382/aa6962
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870


[29] W. G. Unruh and R. M. Wald, What happens when an
accelerating observer detects a Rindler particle, Phys. Rev.
D 29, 1047 (1984).

[30] V. Mukhanov and S. Winitzki, Introduction to Quantum
Effects in Gravity (Cambridge University Press, Cambridge,
England, 2007).

[31] P. K. Townsend, Black holes: Lecture notes, arXiv:gr-qc/
9707012.

[32] A. Fabbri and J. Navarro-Salas, Modeling Black Hole
Evaporation (World Scientific, Singapore, 2005).

[33] M. Visser, Essential and inessential features of Hawking
radiation, Int. J. Mod. Phys. D 12, 649 (2003).

[34] T. Jacobson, Introduction to quantum fields in curved
space-time and the Hawking effect, in Lectures on
Quantum Gravity (Springer, New York, 2003), Vol. 8,
pp. 39–89.

HASSAN FIROUZJAHI and ALIREZA TALEBIAN PHYS. REV. D 106, 123505 (2022)

123505-14

https://doi.org/10.1103/PhysRevD.29.1047
https://doi.org/10.1103/PhysRevD.29.1047
https://arXiv.org/abs/gr-qc/9707012
https://arXiv.org/abs/gr-qc/9707012
https://doi.org/10.1142/S0218271803003190

