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We derive exact analytic solutions for density and velocity fields to all orders in Eulerian standard
perturbation theory for ΛCDM cosmology. In particular, we show that density- and velocity-field kernels
can be written in a separable form in time and momenta at each perturbative order. The kernel solutions are
built from an analytic basis of momentum operators and their time-dependent coefficients, which solve a
set of recursive differential equations. We also provide an exact closed perturbative solution for such
coefficients, expanding around the (quasi-)Einstein–de Sitter (EdS) approximation. We find that the
perturbative solution rapidly converges towards the numerically obtained solutions and its leading-order
result suffices for any practical requirements. To illustrate our findings, we compute the exact two-loop
dark matter density- and velocity power spectra inΛCDM cosmology. We show that the difference between
the exact ΛCDM and the (quasi-)EdS approximated result can reach the level of several percent (at redshift
zero, for wave numbers k < 1 h=Mpc). This deviation can be partially mitigated by exploiting the
degeneracy with the effective field theory counterterms. As an additional benefit of our algorithm for the
solutions of time-dependent coefficients, the computational complexity of power-spectra loops inΛCDM is
comparable to the EdS case. In performing the two-loop computation, we devise an explicit method to
implement the so-called IR cancellations, as well as the cancellations arising as a consequence of mass and
momentum conservation.
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I. INTRODUCTION

The large scale structure (LSS) is a repository of key
information on our Universe’s origin and evolution, all the
way to the current dark energy-dominated era. Data on
inflationary interactions are encoded in the initial condi-
tions for structure formation while LSS dynamical evolu-
tion also depends on the presence of additional components
that may drive late-time acceleration. Astronomical surveys
of the galaxy distribution (e.g., Euclid, LSST, SKA)
promise to soon cross the qualitative threshold on cosmo-
logical parameter, such as a percent level accuracy on the
dark energy equation of state parameters [1–3]. Crucially, it
is by going beyond the background cosmology that we will,
for example, extract information on non-Gaussianities and

identify different dark energy models that otherwise sup-
port the same expansion history.
LSS dynamics is amenable to a perturbative description

for a limited range of wave numbers: those for which the
separation of scales underlying a consistent effective treat-
ment can be advocated. The large hierarchy separating the
size of the observable Universe 1=H0 and the onset of
nonlinearities 1=kNL in structure formation explains the
success of linear perturbation theory in describing the
essential features observed in galaxy surveys. At scales
as large as 10 Mpc, nonlinearities become relevant: differ-
ent Fourier modes stop evolving independently showing
hints of a UV/IR mixing typical of nonlinear regimes.
At the interface between the linear and highly nonlinear

regime are so-called quasi-(or mildly-non-) linear scales.
Gaining perturbative control over the quasilinear range
significantly increases the number of modes at our disposal
(N ∝ k3). A plethora of distinct perturbative approaches
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have been put forward in this direction [4–25], a program
that has been altogether quite successful. The exact kreach
of the perturbative treatment in particular has been the
subject of intense research activity, especially within the
context of the effective field theory (EFT) framework
[12,13] (see also Refs. [26,27] for recent reviews). Even
though several aspects need further development on the
“model building” front, there are already definite predic-
tions on given observables, consisting mainly of the one-
loop power spectrum and the tree-level bispectrum, that
have already been employed in obtaining cosmological
information from the LSS galaxy surveys [28–35].
Our work tackles the perturbative treatment of LSS in

ΛCDM cosmology. In this context, striving for exact
analytical solutions servesmultiple purposes. Besides being
necessary for a view of the projected accuracy of soon-to-be
operational probes, such solutions are also important to
ensure that approximations do not get in theway (i.e., create
degeneracies out) of otherwise distinct signatures. In this
work, we present all-order exact recursive solutions for
perturbation theory kernels of the density and velocity fields
(i.e., Fn, Gn) in ΛCDM cosmology. The need to go beyond
the so-called extended (quasi-)EdS approximation1 has long
been recognized as a timely step (see, e.g., Refs. [13,36–
44]), with our own previouswork [45], providing for the first
time exact all-order solutions forΛCDMand beyond. In this
manuscript we shall take [45] as the starting point and report
the significant progress in manifold directions.
We are, after separable solutions, accounting for the time

and momenta dependence of density and velocity kernels.
We identify, for each order in perturbation theory (PT),
a complete “basis” of operators in a separable form that
make up the solution for the F, G kernels. We derive such
basis recursively, i.e., by employing the results at lower
perturbative orders as building blocks. By construction,
the derivation of time-dependent coefficients needs no input
from the momenta operators and vice versa, greatly sim-
plifying and speeding up the calculation. We provide an
algorithm that unambiguously couples time and momenta
operators to give each basis element. Our algorithm com-
pletely eliminates the need (still present in [45]) for an
Ansatz to be put forward at every perturbative step
to identify the solution. This is a striking improvement,
especially relevant as the community has been increasingly
recognizing the importance of tackling higher orders in PT
[46–55].Moreover, we derive explicit perturbative solutions
for time-dependent coefficients. By a suitable choice of time
variable our perturbative solutions are valid for generic
cosmological parameters within the ΛCDM cosmology.

We also develop a systematic way to deal with IR (and
UV) divergences in loop integrals. As is well known (see,
e.g., Refs. [6,47,56,57]) the equivalence principle guaran-
tees the cancellation of leading and subleading IR diver-
gencies. The presence of several large IR contributions in
the expression for higher-order observables ahead of their
overall cancellation hinders calculational efficiency. In
addition to the cancellation of these IR divergences, mass
and momentum conservation also plays a role in determin-
ing the scale dependence of loop contributions by imposing
cancellations of large contributions sensitive to UV scales
[4,8,58,59]. By introducing suitable window functions, we
are able to renormalize correlation functions and make
contact with so-called perturbation theory counterterms in
the context of the EFT framework.
This paper is organized as follows: in Sec. II we set the

stage with the equations of motion for the ΛCDM system;
we also briefly report previous works on the subject. In
Sec. III we lay out our algorithm and derive recursive
separable solutions for the kernels thatmay be used up to any
order in perturbation theory. We further show how, starting
from the Einstein–de Sitter approximation one may derive
solutions arbitrarily close to the exact result. In Sec. IV we
focus on one- and two-loop results for the density and
velocity cross- and auto- power spectra. We draw our
conclusions in Sec. V and comment on future work. A
significant fraction of our derivations has been delegated to
the appendixes. Thus, in Appendix A we review the linear
growth equations and derive a new expansion of the specific
formof the linear growth rate combination. InAppendixBwe
review the integral solutions for perturbation theory kernels.
Based on these results, in Appendix C we derive separable
kernel form, forwhichwegive the perturbative solutionof the
time dependence in Appendix D. In Appendix E we explore
the various IR and UV limits of the newly obtained kernels,
which we use in Appendix F to explore the IR and UV
properties of the two-loop power spectra.
Throughout the paper, we assume a Euclidean cosmol-

ogy with Ωm ¼ 0.3, σ8 ¼ 0.8 and h ¼ 0.7 with the
Bardeen, Bond, Kaiser and Szalay linear power spectrum.
We work under the assumptions of adiabatic Gaussian
perturbations and General Relativity. As mentioned in
footnote 1, in the rest of the paper when we refer to the
EdS solutions, we have in mind the usual (quasi-EdS)
approximation of setting the nth-order growth factor Dnþ,
instead of the an which would be the solution in the actual
EdS Universe. Our results for time coefficients and
momentum kernels, used in this paper, are provided in
the Supplemental Material [60].

II. DYNAMICS IN THE ΛCDM UNIVERSE

As is well known, we may describe the large scale
structure as a fluid in the nonrelativistic limit obeying the
following equations of motion for the fluctuations of the
density contrast δ and the peculiar velocity θ≡ ∂ivi:

1This method consists of handling the time dependence of
kernels as in an Einstein–de Sitter universe (only matter content),
where, e.g., δðnÞðaÞ ∝ DnðaÞ but with the added prescription to
employ the linear growth rate D of a ΛCDM universe. Hence-
forth, in order to adhere to common parlance, we refer to this
approximation as EdS, rather than (quasi-)EdS.
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∂δk
∂τ

þ θk ¼ −
Z
q1;q2

δDk−q12αðq1; q2Þθq1δq2 ;

∂θk
∂τ

þHθk þ
3

2
ΩmH2δk ¼ −

Z
q1;q2

δDk−q12βðq1; q2Þθq1θq2 ;

ð1Þ

where δDq is the Dirac delta function, q12 ≡ q1 þ q2,R
q ≡

R
d3q=ð2πÞ3, and H ¼ d ln a=dτ. Here, a is the

scale factor, and τ is conformal time. The kernels α, β
are defined as αðq1; q2Þ≡ 1þ ðq1 · q2Þ=q21, βðq1; q2Þ≡
ðq12Þ2ðq1 · q2Þ=2q21q22. At linear order, assuming the grow-
ing-mode initial conditions, the time- and momentum-
dependent parts are clearly separable:

δð1Þk ðτÞ≡DþðτÞδink ; θð1Þk ðτÞ≡ −HðτÞfþðτÞDþðτÞδink ;
ð2Þ

where Dþ is the linear growth factor, fþ ≡ d lnD�=d ln a
is the linear growth rate (see Appendix A for a brief review
of results in the linear regime). In addition to the growth
mode, we also have the decaying mode with linear decay
factor D−, and equivalently defined decay rate f−. δink
represents the initial value of the density contrast. The
growing and decaying factors Dþ and D− satisfy the
differential equation,

d2DðτÞ
dτ2

þHðτÞ dDðτÞ
dτ

−
3

2
ΩmðτÞH2ðτÞDðτÞ ¼ 0: ð3Þ

In ΛCDM cosmology, the solutions for D�ðτÞ can be
expressed in a closed form [see Eq. (A1)]. In order to
identify the solutions for density contrast and velocity
beyond the linear order, we employ the following pertur-
bative Ansätze:

δkðτÞ ¼
X∞
n¼1

δDk−q1nF
s
nðq1;…; qn; τÞDnþðτÞδinq1…δinqn ;

θkðτÞ ¼
X∞
n¼1

δDk−q1nG
s
nðq1;…; qn; τÞDnþðτÞδinq1…δinqn ; ð4Þ

where q1n ≡ q1 þ q2 þ � � � qn. Henceforth, we shall not
display the integration over q1…qn on the right-hand side,
which is taken as granted. The kernel functions Fs

n, and Gs
n

are fully symmetrized with respect to the momenta in their
argument. Hereafter, all the kernels are to be understood as
symmetrized and we omit the superscript ‘‘s.” Although the
nonlinear kernels Fn, Gn are constant in time and more
easily obtained in the EdS universe [4,8], they become
time-dependent functions in ΛCDM. The standard approxi-
mation in the field is to keep the ΛCDM growth rate Dnþ
and keep the EdS, time-independent, solution for the Fn,
Gn kernels.

Recently, the full time-dependent solution for the kernels
in ΛCDM has been found in [45]. This solution has been
derived in an integral recursive form which is somewhat
impractical for direct use when computing correlators in
perturbation theory. Here we will start from the results of
[45], casting them in a slightly modified but equivalent
form, with the goal of expressing such solutions in an
explicitly separable form, disentangling the time depend-
ence of the kernels from their momentum dependence.
We thus start from the full implicit ΛCDM solution of

the kernels at nth order:

Fnðq1;…; qn; aÞ ¼
Z

a

0

dã
ã
ðwðnÞ

α ða; ãÞhðnÞα ðq1;…; qn; ãÞ

þ wðnÞ
β ða; ãÞhðnÞβ ðq1;…; qn; ãÞÞ;

Gnðq1;…; qn; aÞ ¼
Z

a

0

dã
ã
ðuðnÞα ða; ãÞhðnÞα ðq1;…; qn; ãÞ

þ uðnÞβ ða; ãÞhðnÞβ ðq1;…; qn; ãÞÞ; ð5Þ

where we use the scale factor a as the time variable, and

wðnÞ
α;β, u

ðnÞ
α;β are the “Green functions,” given in the explicit

form (B7). As clear by inspection, these are completely
determined by the D� and f� functions. In addition to the
purely time-dependent Green functions, we have source

terms hðnÞα;β, which also depend on time as well as the
momenta. These source terms are recursively constructed
from the lower-order kernels Fn0 and Gn0 , such that n0 < n.
The explicit form of these source terms is given in (B2). For
the full derivation of this result see Appendix B.
As mentioned, in the integral solution in Eq. (5), the

source functions hðnÞα;β depend both on time and momenta,
and a considerable calculational advantage would be
achieved if one could provide solutions whose time- and
momenta-dependent parts are separable. Furthermore,
given the importance of higher-order corrections, one
should aim at recursive solutions, which would enable
us to do without, for example, the order-specific Ansätze
used in [45] to arrive at the exact analytical solution for the
n ¼ 3 case. Here we present a systematic derivation of
recursive separable functions that make up the kernels
solution at any given order.
We start by suggesting the separable Ansätze for the

ΛCDM solutions in Eq. (5),

Fnðq1;…; qn; aÞ ¼
XNðnÞ

l¼1

λðlÞn ðaÞHðlÞ
n ðq1;…; qnÞ

¼ λnðaÞ ·Hnðq1;…; qnÞ;

Gnðq1;…; qn; aÞ ¼
XNðnÞ

l¼1

κðlÞn ðaÞHðlÞ
n ðq1;…; qnÞ

¼ κnðaÞ ·Hnðq1;…; qnÞ; ð6Þ
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where the time-dependent coefficients λðlÞn ; κðlÞn and the

momentum operators partHðlÞ
n are explicitly separated. The

last equalities in Eqs. (6) are written with a more compact
notation that we shall be using later in the text. For now, we
keep the index “l” explicit to make each manipulation of
the operators as clear as possible. We stress that the same

momentum operators HðlÞ
n are used for both Fn and Gn,

while the time-dependent coefficients λðlÞn and κðlÞn are
different. The number of terms in the sumNðnÞ gives us the
number of the basis elements at nth perturbative order
which are, for the first few orders,

Nð1Þ ¼ 1; Nð2Þ ¼ 2; Nð3Þ ¼ 6;

Nð4Þ ¼ 25; Nð5Þ ¼ 111: ð7Þ

In general, counting the number of terms generated by the
recursive form of Eq. (5) gives us the expression

NðnÞ ¼ δKn
2
;bn

2
c
1

2
N
�n
2

��
3N

�n
2

�
þ 1

�

þ 3
Xbðn−1Þ=2c

m¼1

NðmÞNðn −mÞ: ð8Þ

Note that NðnÞ provides a useful upper bound on the
dimension of the basis operators at each given order so that
our basis may contain redundant elements. In order to
obtain the minimal number of independent terms, one
would need to employ relations such as the one in Eq. (B9)
as well as other physical constraints that arise from
requirements such as the equivalence principle as well as
mass and momentum conservation [59,61]. We shall not
linger on extracting all such relations at this stage but just
point out that the solutions for the time coefficient we
obtain should manifest all such properties, as we will show
later on. Our task is thus split in two parts: determining the

explicit form of the momentum operator basis HðlÞ
n , as well

as computing the time coefficients λðlÞn and κðlÞn at each
perturbative order. For the detailed derivation of how the
split of the momentum operators and the time coefficients is
performed, we refer the reader to Appendix C. Here we
focus on presenting the main results.

The momentum operator basis HðlÞ
n is given by the

recursive relation involving only the lower-order basis
operators. This is similar to the EdS solutions for the Fn

and Gn kernels, although the expression for the HðlÞ
n

contains more terms, and we have

HðlÞ
n ðq1;…;qnÞ¼ δKn

2
;bn

2
c
XNðn=2Þ

i¼1

" XNðn=2Þ

j¼1

½hα�ðijÞn
2
;n
2
δKl;ϕ1

þ
XNðn=2Þ

j¼i

½2− δKij�½hβ�ðijÞn
2
;n
2
δKl;ϕ2

#

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

�
½hα�ðijÞm;n−mδKl;ϕ3

þ½hα�ðjiÞn−m;mδKl;ϕ4
þ 2½hβ�ðijÞm;n−mδKl;ϕ5

�
; ð9Þ

where the sourcing term ½hα� above is given by

½hα�ðijÞm;n−mðq1;…; qnÞ ¼
m!ðn −mÞ!

n!

X
π−cross

αðqm; qn−mÞHðiÞ
m

× ðq1;…; qmÞHðjÞ
n−mðqmþ1;…; qnÞ;

ð10Þ

and the expression for ½hβ�ðijÞm;n−m is obtained by simply
replacing α with β in Eq. (10). The Kronecker delta δKl;ϕi

selects only one of the specific ½hα;β�ðijÞm;n−mðq1;…; qnÞ
operators and identifies it withHðlÞ

n . The key to this counting
are the bijective maps ϕi, which depend on the indices
fn;m; i; jg and relate them to the set of numbers that go
from 1 to NðnÞ. The explicit expressions for ϕi are provided
in (C4). At second order, one immediately recovers

Hð1Þ
2 ¼ αs, Hð2Þ

2 ¼ β, as expected. Having obtained the
expressions for the momentum operator basis, we now
move on to determining the time-dependent coefficients.

The expressions for the coefficients λðlÞn (and similarly

for κðlÞn ) introduced in Eq. (6) give

λðlÞn ðaÞ ¼ δKn
2
;bn

2
c
XNðn=2Þ

i¼1

" XNðn=2Þ

j¼1

WðijÞ
α;n=2;n=2δ

K
l;ϕ1

þ
XNðn=2Þ

j¼i

WðijÞ
β;n

2
;n
2
δKl;ϕ2

#

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

�
WðijÞ

α;m;n−mδKl;ϕ3

þWðjiÞ
α;n−m;mδKl;ϕ4

þWðijÞ
β;m;n−mδ

K
l;ϕ5

�
; ð11Þ

where the explicit time-integral representation for functions
W is given in Eq. (C3). Analogously to what happens for

the momentum basis “vector” HðlÞ
n , one of theWðijÞ

α;m;n−mðaÞ
or WðijÞ

β;m;n−mðaÞ functions with fixed indices is identified as

λðlÞn . Equivalent expression holds for κn as shown in

Eq. (C6), which identifies one of functions U as κðlÞn .
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Note that the momenta operators ½h�ðijÞm;n−m and the time

coefficients WðijÞ
m;n−m and UðijÞ

m;n−m share the same index

structure. For n ¼ 1 one has λð1Þ1 ¼ κð1Þ1 ¼ 1 and at n ¼ 2

one finds

λð1Þ2 ðaÞ ¼ W2ð1;1Þ
α;1;1 ; λð2Þ2 ðaÞ ¼ W2ð1;1Þ

β;1;1 ;

κð1Þ2 ðaÞ ¼ U2ð1;1Þ
α;1;1 ; κð2Þ2 ðaÞ ¼ U2ð1;1Þ

β;1;1 ; ð12Þ

which, as expected, agrees with the previous findings
[45,62]. Combined with those in Appendix C, the formulas

in Eqs. (9) and (11) for HðlÞ
n ; λðlÞn ; κðlÞn have a close

(recursive) structure allowing us to systematically compute

kernels up to an arbitrary order n. The operators HðlÞ
n are

made up by a combination of the basic building blocks α
and β, making it straightforward to automatize the calcu-
lation with a computer program.

Although the time-dependent coefficients, λðlÞn ; κðlÞn , can
also be systematically written down, their expressions
given in (C3) involve recursive time integrals. This in
itself is not a problem and these expressions can easily be
used to obtain the numerical values for the time

coefficients. However, instead of these integral representa-
tions, we can recast these expressions in the form of
coupled differential equations:

_WnðijÞ
α;m1;m2

þ nWnðijÞ
α;m1;m2

−UnðijÞ
α;m1;m2

¼ κðiÞm1
λðjÞm2

;

_WnðijÞ
β;m1;m2

þ nWnðijÞ
β;m1;m2

−UnðijÞ
β;m1;m2

¼ 0;

_UnðijÞ
α;m1;m2

þ ðn − 1ÞUnðijÞ
α;m1;m2

−
f−
f2þ

h
UnðijÞ

α;m1;m2
−WnðijÞ

α;m1;m2

i
¼ 0;

_UnðijÞ
β;m1;m2

þ ðn − 1ÞUnðijÞ
β;m1;m2

−
f−
f2þ

h
UnðijÞ

β;m1;m2
−WnðijÞ

β;m1;m2

i
¼ κðiÞm1

κðjÞm2
; ð13Þ

where one may identify m1 ¼ m, m2 ¼ n −m. The time
variable is η≡ lnDþ, and a dot denotes a derivative with to
respect to η, that is ⋅ ≡ d=dη. According to Eq. (11), one

selects time coefficients λðlÞn and κðlÞn from the functions W
and U, respectively. One can recursively solve Eq. (13)

with the initial conditions λð1Þ1 ¼ κð1Þ1 ¼ 1 and obtain the
time-dependent coefficients up to the desired order.
The differential equation for the time coefficients of the

kernels is amenable to the direct numerical treatment, and
indeed we will use this approach to obtain our main
reference results further on. In addition, the differential
equation representation is particularly useful in formulating
the analytical, perturbative solution which we discuss in the
next section.
Before we continue towards the solution of these

equations, we stress here an interesting and practical point
about the dependence of Eqs. (13) on cosmological
parameters. The only dependence on the cosmological
parameters Ωm0 and ΩΛ0 (z ¼ 0 values) comes from the

f−=f2þ factor in the equations for Uα and Uβ. Moreover, in
Appendix A we show that the functional dependence of
f−=f2þ can be written in the form of the single variable
ΩΛ0=Ωm0e3η, which captures the full dependence on the
cosmological parameters. In other words, in Eq. (A7) we
show that we can write

f−
f2þ

¼ −
3

2
þ c1

�
ΩΛ0

Ωm0

e3η
�
þ c2

�
ΩΛ0

Ωm0

e3η
�

2

þ c3

�
ΩΛ0

Ωm0

e3η
�

3

þ…; ð14Þ

with some numerical coefficients ci, fixed within the
ΛCDM paradigm. Figure 1 shows the convergence of this
expansion. This implies that in Eqs. (13) we can change
the variable to ζ ≡ΩΛ0=Ωm0e3η, which would alter only
the first-derivative terms with ∂η ¼ 3ζ∂ζ. Then a change

FIG. 1. δf ≡ f−=f2þ þ 3=2 is shown as a function of the scale
factor. Numerical results (solid black line) are compared to the
perturbative expansion in powers of ζ ¼ ΩΛ0=Ωm0e3η. The
expansion up to the first (dotted-dashed lines), second (dashed),
and third (long-dashed) order is shown using the c1, c2, and
c3 coefficients given in Eq. (18). In EdS approximation this
quantity vanishes identically, while beyond EdS the deviations

from zero source the time dependence of all the λðlÞn and κðlÞn

coefficients.
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of the cosmological parameters merely results in a shift of
time ζ.2

Thus, our equations are independent from cosmological
parameters Ωm0 and ΩΛ0 and once solved, the solutions are
valid for all choices of cosmological parameters.

III. NUMERICAL AND PERTURBATIVE
SOLUTIONS OF THE KERNEL TIME

DEPENDENCE

As we have anticipated in the previous section, the λðlÞn

and κðlÞn solutions can be obtained either by using the
explicit integral solutions given in Eqs. (C3), or alterna-
tively by numerically solving the differential equations (13)
and using the correspondence in Eq. (11). Either one is a
viable option, although given the plethora of existing tools
for solving coupled differential equations, the path via
differential equations seems the most practical and effi-
cient. We have used this method to obtain the results in

Fig. 2. Solid lines denote the relative deviations of λðlÞn and

κðlÞn obtained in the EdS limit from the exact numerical
results. Since the ΛCDM universe matches the EdS
universe at early times, the deviations vanish at a ¼ 0.
As expected, the deviations grow with time in all the panels

of Fig. 2, and can reach values barely shy of 10%. Note in
particular that the typical deviation at redshift z ¼ 1 is a
factor of a few smaller than its z ¼ 0 counterpart. One
expects this difference to propagate all the way to
correlators.
Given that the number of coefficients at higher orders is

large [see Eq. (7)], in Fig. 2 we show the average value of
all of the deviations and the typical spread (in terms of the
one standard deviation). From this, we can observe the
trend that, at later times, the deviation of the coefficients
from the EdS approximation tends to grow with n, (i.e.,
when considering higher perturbative orders) and the
spread of the coefficient values may also grow (i.e., some
tend to be close to the EdS values while for others the
deviations can be larger). One might wonder howmuch of a
role outliers play in such analysis. To address this, in Fig. 3
we show the relative deviations of the ΛCDM and the EdS
results for all the time-dependent coefficients at a ¼ 1, up

to n ¼ 5. Although the ΔλðlÞn are typically Oð1%Þ in size,

ΔκðlÞn can be as large as Oð10%Þ, which is not at all
negligible when compared to the precision of upcoming
observations.
Motivated by the discussion in the last section, we now

embark on a journey to find the analytic perturbative

solution for the time dependence of the λðlÞn and κðlÞn

coefficients. As shown in Fig. 2, EdS approximation for
these coefficients is a good starting point, and the deviation

FIG. 2. Relative error showing the deviation of the analytic (dashed) and EdS (solid) λn and κn coefficients from the numerical

calculations. The error is defined as X=Xnum − 1 for X ¼ λðlÞn (blue) and κðlÞn (red). The above four panels illustrate the typical time
evolution of the relative deviations for n ¼ 2 (top left), 3 (top right), 4 (bottom left), and 5 (bottom right). Analytic results correspond to
the perturbative calculations up to the third order in ζ; see Eqs. (19) and (D12). The central lines are the average of NðnÞ lines for each
order, while the colored bands indicate the spread of all of the coefficients in l (i.e., one standard deviation around the mean of all
coefficients in l is used). As can be seen in the figure, the analytic results generally agree with the full numerical solution to 0.1%
accuracy while the deviation associated with the EdS results can reach up to 10% at late times.

2This fact has subsequently been also observed, at the level of
one-loop results, in Ref. [63].
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are relatively small. It will thus serve us well to use the EdS
solution as the result around which to organize the
perturbative expansion. These deviations from the EdS
approximation are encoded in the factor f−=f2þ in the
differential equations (13), as well as in the higher -order
source terms. Since this ratio is exactly −3=2 in the EdS
limit, we introduce the deviation from the EdS value as a
small perturbative parameter,

δfðτÞ≡ f−ðτÞ
f2þðτÞ

þ 3

2
: ð15Þ

Figure 1 shows that this dimensionless parameter is ≲ 0.2
in absolute terms throughout the evolution of the Universe.
This is a good indication that a convergent perturbative
expansion can be obtained by treating δf as a small
parameter. In addition to the expansion in δf we are
interested in representing δf as a power series in
ζ ≡ΩΛ0=Ωm0e3η, which would allow us to express the

final λðlÞn and κðlÞn results as a power series in the same

variable. We thus expand WnðijÞ
m1;m2 and UnðijÞ

m1;m2 appearing in
Eqs. (13) as

Wn ¼ Wn½0� þWn½1� þWn½2� þ � � � ;
Un ¼ Un½0� þUn½1� þ Un½2� þ � � � ; ð16Þ

where the superscript [n] denotes the perturbative order
with respect to δf, namely OðδfnÞ, and the suppressed
indices are the same in both sides of the equations. Note
that order ½0� means the solution in the EdS limit. This also
corresponds to the static limit of the Eqs. (13), where
we drop the time-derivative terms turning these equations
into recursive algebraic equations. In this limit, once the

coefficients are combined with the momentum basis HðlÞ
n ,

one just recovers the usual EdS solutions for the Fn and Gn
kernels.
For a detailed derivation of the perturbative results, we

refer the reader to Appendix D. Here, we just note that the
solutions of Eq. (13) at the order of OðδflÞ can be
expressed in the integral form of lower-order terms:

Wn½l�
α ¼ In

��
∂η þ nþ 1

2

�
ðκλÞ½l�

þ δf
�
_Wn½l−1�
α þ ðn − 1ÞWn½l−1�

α − ðκλÞ½l−1�
��

;

Wn½l�
β ¼ In

h
ðκκÞ½l� þ δf

�
_Wn½l−1�
β þ ðn − 1ÞWn½l−1�

β

�i
; ð17Þ

where In½X� is the time functional defined in (D3). Using
the above recursive relations repeatedly, one can obtain the
expression for the perturbative solutions (D9) for Wn

α

and Wn
β . Moreover, to analytically evaluate the integral

expressions so obtained, we rely on the expansion of δf in

FIG. 3. Relative deviation of the λðlÞn (blue) and κðlÞn (red) coefficients in ΛCDM cosmology to the EdS values at the present time,
a ¼ 1. Shown are both numerical (solid lines) and analytic (dashed lines) results, calculated up to the third power in ζ. Different values

of n are given in each panel; coefficients range is ðn; lÞ ¼ ð2; 2Þ, (3,6), (4,25), and (5,111). κðlÞn ’s tend to have larger errors ranging from

0.1% to almost 10%, while λðlÞn ’s errors are somewhat smaller, reaching up to a few percent. This figure also shows that differences
between the ΛCDM and EdS coefficients tend to grow with perturbative order n.
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power -law form. In Appendix A we show how one may
obtain the expansion of δf in powers of ζ ¼ ΩΛ0=Ωm0e3η.
Up to the third order, it reads

δfðηÞ ≃ c1ζ þ c2ζ2 þ c3ζ3; c1 ¼ −
3

22
;

c2 ¼ −
141

4114
; c3 ¼ −

9993

1040842
: ð18Þ

Upon performing these steps, we derive the analytic

expressions for λðlÞn and κðlÞn for a generic choice of
cosmological parameters ΩΛ0, Ωm0. For instance, at
n ¼ 2, we obtain

λð1Þ2 ¼ 5

7
−
c1
91

ζ −
4c2
931

ζ2 −
2c3
875

ζ3;

λð2Þ2 ¼ 2

7
þ c1
91

ζ þ 4c2
931

ζ2 þ 2c3
875

ζ3;

κð1Þ2 ¼ 3

7
−
5c1
91

ζ −
32c2
931

ζ2 −
22c3
875

ζ3;

κð2Þ2 ¼ 4

7
þ 5c1

91
ζ þ 32c2

931
ζ2 þ 22c3

875
ζ3; ð19Þ

where we write explicitly only the leading-order results
in δf, suppressing the Oðδf2Þ terms. The results for

n ¼ 3 and 4, namely λðlÞ3 ; κðlÞ3 ; λðlÞ4 ; κðlÞ4 , are reported in
Eqs. (D12) and (D13). Using this perturbative approach, it
is straightforward to generate all terms at higher orders.3

It suffices here to derive the ones that will be needed for

the two-loop calculation (up to the λðlÞ5 and κðlÞ5 coef-
ficients). Given the number of components (recall that for
n ¼ 5 we have 111 terms), we do not report the explicit
expression. Nonetheless, in Figs. 2 and 3 we compare the
analytical results at leading order in δf to the numerical
ones. One observes that our analytic expressions typically
achieve Oð10−3Þ accuracy at the present time and better
accuracy at earlier times. Compared to the EdS results,
our analytic expressions are about 100 times more
accurate.

IV. ONE- AND TWO-LOOP POWER SPECTRA

Equipped with the results of the last section, we are now
ready to tackle observables such as the matter density and
velocity power spectra, as well as the cross-power spec-
trum. In the process, we shall develop and illustrate the
utility of a systematic method to handle infrared and
ultraviolet divergences in loop integrals. The equivalence
principle, fully at work in ΛCDM, guarantees that specific
cancellations will take place in the IR configurations of

the kernels. Similar cancellations take place due to the
mass and momentum conservation, in the absence of which
there would be large UV contributions. Such cancellations
between large contributions typically require very high
precision, thus making numerical integration more difficult
and less stable. As we show in the rest of this section, the
properties required for such cancellations are all imprinted
in the solutions for the λn and κn coefficients. The co-
efficients “remember” all the information inherited from
their equations of motion (EoM), and we see the equiv-
alence principle, mass and momentum conservation,
respected and manifested in the various limits of the
one- and two-loop power spectra that we study below.
One can use these properties in evaluating the loop
integrals: we do so by first isolating the leading divergen-
ces, analytically confirming they are canceled out, and
numerically evaluating the remaining “regularized” parts of
the power spectra.
As observables whose calculation (and target of percent-

level precision) requires an improvement upon the EdS
approximation, we compute the one-loop and two-loop
order of the following power spectra:

ð2πÞ3δDkþk0PδδðkÞ ¼ hδðkÞδðk0Þi;
ð2πÞ3δDkþk0PδθðkÞ ¼ hδðkÞθðk0Þi;
ð2πÞ3δDkþk0PθθðkÞ ¼ hθðkÞθðk0Þi: ð20Þ

A. One-loop results

Using the notation introduced in Eq. (6), the one-loop
results are as follows:

P1−loop
δδ ðkÞ ¼ ðλ2 · I22 · λ2Þ þ 2ðλ1 · I13 · λ3Þ;

P1−loop
δθ ðkÞ ¼ ðλ2 · I22 · κ2Þ þ ðλ1 · I13 · κ3 þ 1 ↔ 3Þ;

P1−loop
δθ ðkÞ ¼ ðκ2 · I22 · κ2Þ þ 2ðκ1 · I13 · κ3Þ; ð21Þ

where we have defined the scale-dependent integrals:

I22 ¼ 2

Z
q
H2ðq; k − qÞ ⊗ H2ðq; k − qÞPlinðqÞPlinðk − qÞ;

I13 ¼ 3

Z
q
H1ðkÞ ⊗ H3ðk; q;−qÞPlinðkÞPlinðqÞ: ð22Þ

Note that, when seen as matrices, these integrals have the
properties IT22 ¼ I22 and I13 ¼ IT31.
In this subsection, we describe an efficient method to

compute loop-power spectra using the one-loop power
spectrum as the simplest example before applying it to two-
loop calculations. This method is essentially important to
avoid artificial residuals of the physical cancellations and
achieve high-precision calculations while saving computa-
tional resources. Our strategy is simple. We know the

3Mathematica notebook for these coefficients and Hn
kernels, up to the fifth order, can be found in the Supplemental
Material [60].
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integrals Iij in (21) contain the IR and UV contributions,
which eventually cancel. Hence we isolate them as in
Iij ¼ Ĩij þ ½Iij�IR þ ½Iij�UV, where Ĩij is the remaining
regular part. The cancellations of ½Iij�IR and ½Iij�UV are
analytically confirmed. Then, we focus on the numerical
evaluations of the regularized contributions from Ĩij.
We begin with I22. One can see that its IR contributions

come from two configurations, namely q → 0, and q → k.
It is convenient at this point to remap the second sector to
the first one (see Ref. [47]) as

I22 ¼
Z
jqj<jk−qj

þ
Z
jqj≥jk−qj

¼ 4

Z
q
H2ðq; k − qÞ

⊗ H2ðq; k − qÞΘðjk − qj − qÞPlinðqÞPlinðk − qÞ:
ð23Þ

We extract the IR and UV contributions in this integrand.
Using the asymptotic form of the kernels, one can write

H2ðq; k − qÞ ⊗ H2ðq; k − qÞ

∼

8<
:

hð2Þ22;IRðk; q̂Þ k2

q2 þ hð1Þ22;IRðk; q̂Þ k
q þOðq0Þ; as q → 0;

hð4Þ22;UVðk̂; qÞ k4

q4 þOðk5Þ; as k → 0:

ð24Þ

For the explicit form of the Hn operators in the various

limits, as well as the asymptotics of hðnÞ22 , we refer the reader
to Appendix E. Having identified both the IR and UV limits
of the kernel products, we can introduce the regularized
version of our integral (we label it Ĩ22) by subtracting these
contributions only in the asymptotic regimes. In order to do
so, we introduce window functions, WIR

22ðkÞ and WUV
22 ðkÞ,

which ensure that the appropriate asymptotic form is
applied only in the IR and UV regimes. The regularized
integral is thus given by

Ĩ22 ¼
Z
q

�
4H2ðq; k − qÞ ⊗ H2ðq; k − qÞΘðjk − qj − qÞPlinðk − qÞ

− 4

�
hð2Þ22;IRðk; q̂Þ

k2

q2
þ hð1Þ22;IRðk; q̂Þ

k
q

�
WIR

22ðkÞPlinðkÞ − 2hð4Þ22;UVðk̂; qÞ
k4

q4
WUV

22 ðkÞPlinðqÞ
�
PlinðqÞ; ð25Þ

where one can write I22 ¼ Ĩ22 þ ½I22�IR þ ½I22�UV, with

½I22�IR ¼ 4

Z
q

�
hð2Þ22;IRðk; q̂Þ

k2

q2
þ hð1Þ22;IRðk; q̂Þ

k
q

�
WIR

22PlinðkÞPlinðqÞ ¼ ðhIR22WIR
22Þk2σ22PlinðkÞ;

½I22�UV ¼ 2

Z
q
hð4Þ22;UVðk̂; qÞ

k4

q4
WUV

22 PlinðqÞPlinðqÞ ¼ ðhUV22 WUV
22 Þk4Σ2

2: ð26Þ

Here we have introduced Σ2
2 ¼ 1

3

R
q PlinðqÞ2=q2, σ22 ¼

1
3

R
q PlinðqÞ=q2, and

hIR22 ¼
�
1 1

1 1

�
and hUV22 ¼ 1

2

� 7
5

−1
−1 3

�
; ð27Þ

as also shown in Appendix E. Note that the UV contribu-
tion does not have an additional factor of 2 since it does not
require a remap in the low-k limit.
Let us specify the window functions WIR

22 and WUV
22 . The

task we demand of these functions is to effectively restrict
the domain of the contribution they are multiplied by into
the appropriate momenta configuration, i.e., high- and low-
k regimes, respectively. We are free to choose the form of
such functions that is best suited for the task at hand. We
choose one convenient and simple form:

WIR
22ðkÞ ¼

ðk=kIRÞ4
1þ ðk=kIRÞ4

; and WUV
22 ðkÞ ¼

1

1þ ðk=kUVÞ6
;

ð28Þ

with parameters kIR ≈ 0.1 Mpc=h and kUV ≈ 0.2 Mpc=h. It
will, of course, be convenient to choose WIR

22 ¼ WIR
13, in

order to quickly arrive at the cancellation of the leading IR
contributions in the total one-loop power spectrum.
Let us turn to the I13 term, where the asymptotic

contributions are

H1ðkÞ ⊗ H3ðk; q;−qÞ

∼

8<
:

hð2Þ13;IRðk; q̂Þ k2

q2 þOðq0Þ; as q → 0;

hð0Þ13;UVðk̂; qÞ þ hð2Þ13;UVðk̂; qÞ k2

q2 þOðk4Þ; as k → 0:

ð29Þ
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In an analogous way to Ĩ22, we can introduce the regular-
ized integrals as

Ĩ13 ¼ 3

Z
q

�
H1ðkÞ ⊗ H3ðk; q;−qÞ − hð2Þ13;IRðk; q̂Þ

k2

q2
WIR

13

−
�
hð0Þ13;UVðk̂; qÞ þ hð2Þ13;UVðk̂; qÞ

k2

q2

�
WUV

13

�
× PlinðkÞPlinðqÞ; ð30Þ

i.e., I13 ¼ Ĩ13 þ ½I13�IR þ ½I13�UV with

½I13�IR ¼ 3

Z
q
hð2Þ13;IRðk; q̂Þ

k2

q2
WIR

13PlinðkÞPlinðqÞ

¼ ðhIR13WIR
13Þk2σ22PlinðkÞ;

½I13�UV ¼ 3PlinðkÞ
Z
q
hð2Þ13;UVðk̂; qÞ

k2

q2
WUV

13 PlinðkÞPlinðqÞ

¼ ðhUV13 WUV
13 Þk2σ22PlinðkÞ; ð31Þ

where hIR13 ¼ −ð 1 1 0 0 1 1 Þ and hUV13 ¼
−ð1;1;−12

5
;0;5;1Þ. Here, since λ3 ·h

ð0Þ
13;UV¼ κ3 ·h

ð0Þ
13;UV¼ 0,

the term hð0Þ13;UV does not contribute to the power spectrum
and is not included in ½I13�UV. The remaining UV con-
tribution comes only from the next-to-leading-order

term hð2Þ13;UV.
This is of course guaranteed by the mass and momentum

conservation of the original EoM [8]. We now move to the
IR cancellations. As soon as the “22” and “13” terms are
combined, we find

ðλ2 · ½I22�IR · λ2Þ þ 2ðλ1 · ½I13�IR · λ3Þ
¼ ½ðλ2 · hIR22 · λ2ÞWIR

22 þ 2ðλ1 · hIR13 · λ3ÞWIR
13�k2σ22PlinðkÞ ¼ 0;

ð32Þ

where we takeWIR
22 ¼ WIR

13. This is of course the same as the
usual IR cancellation between P22 and P13 in standard
perturbation theory (SPT) [8]: it is guaranteed for equal-
time correlators by the equivalence principle, as has been
discussed in [57,59,61,64–67]. The same cancellations
take place for the velocity-velocity spectrum and for the
velocity-density cross spectrum. The final expression for
the one-loop density power spectrum is

P1−loop
δδ ðkÞ ¼ ðλ2 · I 22 · λ2Þ þ 2ðλ1 · I 13 · λ3Þ; ð33Þ

and analogous expressions hold for the other two observ-
ables, P1−loop

δθ and P1−loop
θθ , with the appropriate time-

dependent coefficients in the same way as Eqs. (21).
The momentum-dependent matrices I ij that all the three
power spectra share at one-loop order are given by

I 22 ¼ Ĩ22 þ ðhUV22 WUV
22 Þk4Σ2

4; and

I 13 ¼ Ĩ13 þ ðhUV13 WUV
13 Þk2σ22Plin: ð34Þ

We numerically evaluate these regularized expressions, a
procedure that circumvents the expensive numerical treat-
ment of the IR and UV cancellations and saves significant
computational time.
In the left panels of Fig. 4 we show the one-loop

contributions for all these power spectra: Pδδ, Pδθ, and
Pθθ. In particular, we display the EdS solutions and the
corresponding ΛCDM correction to the EdS result, i.e.,
δPδδ ¼ PΛcdm

δδ − PEdS
δδ (and equivalently for the other two

spectra). As one can see from the figure, the one-loop
ΛCDM corrections are from one to two orders of
magnitude smaller than the one-loop EdS contributions.
However, the relevant regime lies in the higher-k range
(k≳ 0.1 h=Mpc), given that is where the one-loop
contributions start to be comparable in amplitude to the
linear result. Moving towards higher redshift, the correc-
tions relative to the EdS result decrease further (see
Appendix G).
In Fig. 5 we show the ratio of the three different total

power spectra in ΛCDM relative to the EdS results. The left
panels display the one-loop results, where the upper left
panel shows the one-loop spectra without adding counter-
terms to either EdS or ΛCDM solutions. We see that at
z ¼ 0, the largest corrections range from a half (for δPδδ) to
a few percent (for Pθθ) at scales k ∼ 0.4 h=Mpc (scales
where higher-loop results are also relevant). These results
are consistent with the earlier findings shown in
[42,43,45]). In the bottom panel of the same figure we
plot the effects of the EFT counterterms on the total
deviations from ΛCDM. First, we note that for the typical
values of the counterterms, shown as the central lines
within the gray bands, the relative difference in the power
spectra is lowered. This is expected since the counterterms
contributions to the total power spectrum is of the same
size as the loop contributions at the relevant scales and
by construction are equivalent in both the ΛCDM and
EdS case.
Gray bands around each of the three power-spectrum

lines show the effects of variations (of order 5%) in the
values of the ΛCDM counterterms. As one can see,
assuming the ∼1% accuracy thresholds, the presence of
a counterterm can make up for the deviation between the
EdS and the ΛCDM result for the density-density power
spectrum. This is not the case for the density-velocity and
velocity-velocity power spectra, which exhibit a noticeably
steeper scale dependence.
As the last comment on Fig. 5, we note that in addition to

the results obtained by numerical evaluation of the λn and
κn coefficients (shown as black lines), we also show in the
upper left panel the perturbative results given in Eqs. (19)
and (D12). The profiles corresponding to the Oðζ1Þ
perturbative order are shown explicitly (red lines), and
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FIG. 4. One- (left panel) and two-loop (right panel) contributions to the density-density, density-velocity, and velocity-velocity power
spectrum. Upper panels: absolute contributions of EdS results (blue lines) compared to the ΛCDM corrections (red lines). We see that
the three different spectra Pδδ (dashed lines), Pδθ (dotted-dashed lines), and Pθθ (solid lines) receive corrections of different sizes, whose
relative importance is also a function of the scale dependence of the EdS terms. Lower panels: ΛCDM corrections δPδδ, δPδθ, and δPθθ

computed using the numerical evaluations of the λn and κn coefficients (shown in dots). We also show the perturbative time-dependence
computation as described in Sec. III. The results including the Oðζ1Þ (dotted lines), Oðζ2Þ (dashed lines), and Oðζ3Þ (solid lines)
contributions are shown. Results are shown for redshift z ¼ 0.0.

FIG. 5. The ratio of the ΛCDM and the EdS density-density (solid lines), density-velocity (dotted-dashed lines), velocity-velocity
(dashed lines) power spectrum at the redshift z ¼ 0.0. Upper panels: ratios of these spectra without any counterterms. Black lines denote
spectra computed by numerically evaluating the λn and κn coefficients, while the orange lines show the perturbatively evaluated
coefficients up to the linear corrections in ζ. Adding the corrections up to order ζ3 would superimpose the perturbative results onto the
numerical ones (black lines). Lower panels: ratio of the power spectra when including the leading EFT counterterms (∼k2Plin), the latter
having been chosen to roughly match the realistic values (c2δδ ≈ 3.0, c2δθ ≈ −1.0, c2θθ ≈ −1.5). Gray hashed bands centered on each of the
lines indicate the 5% variation in the values for the counterterms.
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we see that they exhibit up to 0.5% agreement with the full
numerical solutions. The perturbative solutions accounting
up to Oðζ3Þ-order expansion are not shown as they would
be indistinguishable from the full numerical solutions
already present in these plots.

B. Two-loop results

In the rest of this section we turn our attention to the two-
loop results. Writing the perturbative contributions in the
separable form, we have

P2−loop
δδ ðkÞ ¼ ðλ3 · I33 · λ3Þ þ 2ðλ2 · I24 · λ4Þþ 2ðλ1 · I15 · λ5Þ;

P2−loop
δθ ðkÞ ¼ ðλ3 · I33 · κ3Þ þ ðλ2 · I24 · κ4 þ 2↔ 4Þ

þ ðλ1 · I15 · κ5 þ 1↔ 5Þ;
P2−loop
θθ ðkÞ ¼ ðκ3 · I33 · κ3Þþ 2ðκ2 · I24 · κ4Þþ 2ðκ1 · I15 · κ5Þ;

ð35Þ

where the two-loop integral functions are

I33 ¼ 3

Z
q;p
ð2H3ðk − q − p; q; pÞ ⊗ H3ðk − q − p; q; pÞPlinðk − q − pÞ

þ 3H3ðk;−q; qÞ ⊗ H3ðk;−p; pÞPlinðkÞÞPlinðqÞPlinðpÞ;

I24 ¼ 12

Z
q;p

H2ðk − q; qÞ ⊗ H4ðk − q; q; p;−pÞPlinðk − qÞPlinðqÞPlinðpÞ;

I15 ¼ 15

Z
q;p

H1ðkÞ ⊗ H5ðk; q;−q; p;−pÞPlinðkÞPlinðqÞPlinðpÞ: ð36Þ

and one may verify that IT33 ¼ I33, I24 ¼ IT42 and
I15ðkÞ ¼ IT51ðkÞ.
In the two-loop calculation, there are two integration

variables, q and p. UV and IR divergences may result from
integrating in both these variables. After having identified
such divergent contributions, our goal is to subtract them
from the integrands and implement the cancellation explic-
itly, in full analogy with the one-loop case above. The
procedure in the two-loop case is somewhat more involved:
besides the leading divergencies (when specific limits of
both q and p produce a divergent contribution), one can
have subleading terms associated with a specific limit of
only one of the two variables, while the contribution from
the other stays finite. We provide more details on the UV
and IR properties of the two-loop result in Appendix F, and
we briefly summarize some of the key properties below.
Similarly to the one-loop case, the IR contribution

extracted from the individual two-loop terms ought to
cancel as a consequence of the equivalence principle and
consistency relations (see Ref. [61], e.g., for a recent
explicit treatment).
Hence, one may verify the following cancellation:

λ3 · ð½I33;I�IR þ ½I33;II�IRÞ · λ3 þ 2λ2 · ½I24�IR · λ4

þ 2λ1 · ½I15�IR · λ5 ¼ 0; ð37Þ

and similarly for the cross- and autocorrelations including
κn coefficients. Plugging the expressions derived in
Appendix F, we have

ðλ3 · hIR33;I · λ3 þ 2λ2 · hIR24;II · λ4 þ 2λ1 · hIR15 · λ5Þ
×WIR

I k2PlinðkÞ ¼ 0;

ðλ3 · hIR33;II · λ3 þ 2λ2 · hIR24;I · λ4ÞWIR
II k

2 ¼ 0; ð38Þ

where we used that WIR
33;I ¼ WIR

24;II ¼ WIR
15 ¼ WIR

I and
WIR

33;II ¼ WIR
24;I ¼ WIR

II . The fact that the cancellation occurs
independently in two different terms was also pointed out
in [47]. More explicitly, we can write

λ3 · ĥ
ð2Þ
33;I;IR · λ3 þ 2λ2 · ĥ

ð2Þ
24;II;IR · λ4 þ 2λ1 · ĥ

ð2Þ
15;IR · λ5 ¼ 0;

λ3 · ĥ
ð2Þ
33;II;IR · λ3 þ 2λ2 · ĥ

ð2Þ
24;I;IR · λ4 ¼ 0:

ð39Þ

In addition, IR and UV cancellations take place as a
consequence of the mass and momentum conservation.

Thus, in addition to the condition λ3 · ½H3;I�ð0ÞUV ¼
κ3 · ½H3;I�ð0ÞUV ¼ 0, one may also verify how the contribu-

tions from hð0Þ15 vanish after contractions with the λ5 and κ5
coefficients.
Using such properties in the IR and UV regimes as

well as the appropriately defined window functions WIR

and WUV, one may introduce the regularized integrals
Ĩ33;I, Ĩ33;II, Ĩ24, and Ĩ15, which are shown explicitly in
Appendix F. These steps mirror the procedure we employed
in the one-loop case and motivate our introducing the
regularized two-loop expressions,
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P2−loop
δδ ðkÞ ¼ ðλ3 · I 33 · λ3Þ þ 2ðλ2 · I 24 · λ4Þ

þ 2ðλ1 · I 15 · λ5Þ; ð40Þ

and similarly for P2−loop
δθ and P2−loop

θθ . The regularized
integral functions I ij, including the subleading UV con-
tributions that are isolated and subsequently computed,
read

I 33 ¼ Ĩ33;Iþ Ĩ33;IIþðhUV33;IWUV
33;IÞk4PlinðkÞþ ðhUV33;IIWUV

33;IIÞk4;
I 24 ¼ Ĩ24þðhUV24 WUV

24 Þk4;
I 15 ¼ Ĩ15þðhUV15 WUV

15 Þk2Plin; ð41Þ

where all the terms are written explicitly in Appendix F.
In the right panels of Fig. 4, we show the two-loop

contributions for the three power spectra Pδδ, Pδθ, and Pθθ.
The two-loop ΛCDM corrections are typically one to two
orders of magnitude smaller than the EdS contributions.
However, they can in fact dominate in the regimes where
EdS contributions have zero crossing.
Figure 5 shows the ratio of the three total power spectra

in ΛCDM relative to the EdS results. In the right panels, we
plot our two-loop results. The upper right panel displays the
two-loop spectra without the effect of counterterms either
in the EdS or ΛCDM case. The deviations range from a few
percent (for δPδδ) to a dozen percent (for, e.g., Pδθ) at scales
k≳ 0.4 h=Mpc.4 In the bottom panel of the same figure we
include the EFT counterterms for both PEdS and PΛcdm. For
two loops, this is done so that the additional counterterms
only cancel the k2Plin contributions, and so we effectively
only have counterterms that are already present at one-
loop order.
These are shown as the central lines within the gray

bands, while the bands themselves represent the effects of
variations of the ΛCDM counterterms by 5%. One can see
how the addition of counterterms can significantly change
the relative differences between the ΛCDM and EdS
results, reducing it to below 10% on most of the scales
of interest. We stress the high sensitivity of these lines on
the values of the counterterms. This is especially so for Pθθ,
in which case the values of the counterterms affect the zero
crossing of the total two-loop power spectrum prediction.
As in the case of one-loop results, we also compare our

two-loop numerical results (i.e., those obtained using the
numerical values for λn and κn) to their perturbative
counterpart. These are shown both in Fig. 4 and in
Fig. 5 as orange lines. We see that adding the linear
corrections in the ζ parameter reaches roughly a few
percent agreements with the full numerical results, while
adding corrections up to ζ3 renders the results essentially
indistinguishable from the numerical findings.

Before closing this section, a few comments on computa-
tional methods are in order. Our proposed method for
dealing with the cancellation of these divergences differs
from the one suggested in [47] in that it explicitly subtracts
the contributions that are canceled at the level of the
integrand(s). In the case of EdS, the difference between
the two recipes is not particularly noteworthy: the cancel-
lations, encoded in the analytic coefficients in the Fn and
Gn kernels, can be implemented with machine-level accu-
racy since they amount to subtractions of simple fractions.
In ΛCDM the time coefficients, when obtained numeri-
cally, are computed with finite accuracy which can generate
some spurious remainders in the cancellations. These can
spoil the accuracy when evaluating the various integrals.
For this reason, it is quite useful to implement subtraction
and cancellation of the key contributions analytically. We
also note that in our perturbative treatment of the coef-
ficients λn and κn given in Eqs. (19) and in Appendix D
these cancellations are enforced at each ζ order. Since the
corresponding prefactors of ζ powers are also given as
fractions, the implicit method proposed in [47] may also be
applied at each ζ order. We are able to confirm that the
power spectra with the perturbative coefficients computed
in this manner reproduce the same results as our proposed
method, thus providing yet another consistency check for
our treatment of the regularized integral functions.

V. DISCUSSION AND CONCLUSIONS

Perturbative approaches to structure formation allow us
to develop controlled analytical predictions on the physics
of mildly nonlinear scales. Although limited in its reach to
large scales, the perturbative scheme provides a clean and
systematic treatment of LSS dynamics. In particular, it is
the ideal framework to highlight the role of symmetries and
related properties, such as the equivalence principle, mass
and momentum conservation (see Refs. [59,61]), in the
construction of cosmological correlations, the key observ-
ables in large scale structure.
In this work, we develop exact, separable solutions

for PT kernels of density and velocity fields in ΛCDM
cosmology. So far, such explicit solutions have been
obtained only within the EdS approximation, with the
extensions to ΛCDMworked out analytically only to lower
orders. In this work, we presented a recursive solution valid
up to arbitrary order in perturbation theory, providing in
particular an algorithm to obtain separable solutions for the
Fn and Gn kernels at each perturbative order n.
The solution’s building blocks are elements of the basis

of the momentum dependent operatorsHn. The (upper limit
on the) dimension of the basis depends on the perturbative
order n and is given by the number NðnÞ, for which we also
provide the explicit recursive expression. To obtain the
full kernels Fn and Gn, this momentum operator basis has
to be appropriately “contracted” with the time-dependent

4These results also agree with the numerical results obtained in
Ref. [68].
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coefficients for matter and velocity fields, respectively
dubbed λn and κn.
We arrive at the solutions for the time coefficients

following two different paths. First, starting from the
implicit integral solutions obtained in [45], we obtain the
recursive integral solution for λn and κn. We show that these
can be recast as the solutions to a set of coupled differential
equations, which we find quite suitable for numerical
treatment. We are then able to compute our numerical
benchmark solutions, which we use in the remainder of our
analysis. The analysis of the differential equations makes it
clear that the “clock,” i.e., the time evolution, is set by the
combination of growth rates f−=f2þ, whose time depend-
ence in ΛCDM cosmology is completely determined by the
new variable ζ ¼ ΩΛ;0=Ωm;0Dþ. This implies that using ζ
as the time variable in solving for the λn and κn coefficients
one obtains solutions valid universally in ΛCDM, that is,
irrespective of the choice of cosmological parameters. This
significantly simplifies the computational task involved in
the cosmological parameter search.
As an alternative path to the solution, equipped with the

differential equations we develop an analytic perturbative
solution for the λn and κn coefficients. The starting point of
this perturbative solution lies in the observation that the
EdS approximation, a static solution to the set of our
differential equations, is an excellent (yet insufficient)
approximation to the full set of the λn and κn coefficients,
especially at lower orders. This suggests that we organize
the perturbative treatment around the parameter
δf ¼ 3=2þ f−=f2þ. We have obtained the general pertur-
bative solution, laying the basis for an iterative path to the
time coefficients. We then applied our algorithm to derive
solutions up to the leading correction in δf, and imple-
mented our procedure all the way to the λ5 and κ5
coefficients needed for the two-loop power spectrum
calculations.
The final form of these perturbative solutions is given in

terms of the variable ζ so as to fully capture the dependence
on cosmological parameters. We investigated the agree-
ment of our perturbative solutions with the full numerical
evaluation and found a perfect agreement for all coeffi-
cients up to n ¼ 5 if terms up to third order in ζ are
included. We also note that the perturbative solutions
exhibit, at each order in ζ, similar behavior as the EdS
solutions when it comes to IR cancellations and properties
that stem from mass and momentum conservation. This
makes them particularly well suited for use in the numerical
evaluation of higher-loop power spectra that rely on
accurate cancellations in their integrands. Let us also
mention that these findings may be generalized to
beyond-ΛCDM scenarios, something we will address in
future work.
As an application of our results, we compute one- and

two-loop matter and velocity auto- and cross-power spec-
tra. We compare our solutions and explore the differences

between the EdS and ΛCDM solutions. The results are
summarized in Figs. 4 and 5. We find that some care has to
be exerted in quantifying these differences since a fraction
of the effect in the one- and two-loop contributions can be
reabsorbed in the EFT counterterms, which can be treated
as free coefficients of the perturbative loop expansion.
Specifically, in the one-loop case, the difference in the
density-density power spectrum between ΛCDM and EdS
can be fully reabsorbed by the counterterms at the scales
and accuracy of interest. For the velocity statistics, the
deviation is instead more pronounced, at the level of a few
percent, even when fully engaging counterterms. At two
loop the ΛCDM deviation from the EdS result increases to
a couple of percent, which, to a large extent, can again be
covered by counterterms. In terms of the velocity-related
statistics, the results depend rather heavily on the numerical
values of the required counterterms, with the latter requir-
ing calibration against N-body simulations, something that
goes beyond the scope of our analysis. Nevertheless, our
work clearly shows how the deviation could reach 10% at
the scales of interest, as demonstrated in Fig. 5.
Beyond their use in higher-loop calculations, our results

are also readily applicable in tackling higher n-point
functions, such as the bispectrum, the trispectrum, etc.
Remarkably, these observables are sensitive to the ΛCDM
deviations from the EdS approximation already at tree
level (see Ref. [62] and also [44,69] for the recent
investigations).
Lastly, we ought to comment on the fact that the dark

matter density and velocity are not directly observable but
act as the building components within the more general
framework of the biased tracers of large scale structure
(see, e.g., Ref. [26]). Given the additional dynamics (and
degeneracies) associated with the presence of the bias
coefficients, one ought to take into account what survives
of the discrepancies such as the one between the EdS and
ΛCDM solutions at the level of the observables. This has
been recently explored in [43] at one-loop order. It would
be quite interesting to do the corresponding analysis at two
loops. This will be possible upon deriving the two-loop
results for biased tracers in redshift space. This is yet
another line of investigation we plan to pursue in the near
future. It is possible that deviations like the ones studied
here might well bias our parameter inference and would
thus need to be included in the budget of possible
theoretical systematic errors. It is important to keep this
budget to a minimum given that parameter tensions of
several sigmas are nowadays a familiar occurrence in data-
driven cosmology.
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APPENDIX A: LINEAR GROWTH AND DECAY
FACTORS AND RATES

In this appendix, we summarize the linear growth
solutions and derive some of the results in a form useful
for our subsequent computation. In particular, we derive a
specific form in which we can expand the linear growth rate
combination f−=f2þ around the EdS value.
We start from the well-known solutions forD�; these are

Dþ ¼ 5

2
H2

0Ωm0HðaÞ
Z

a

0

dã
ã3H3ðãÞ ; D− ¼ HðaÞ

H0

;

ðA1Þ

where Ωm0 and ΩΛ0 are the current-energy fractions of
dark matter and the cosmological constant, respectively.
The Hubble parameter is given by HðaÞ ¼
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0a−3 þ ΩΛ0

p
, where the radiation component can

be ignored. Changing the time variable into q≡
a3ΩΛ0=Ωm0 and performing the integral in Dþ, we find

D̂þ ≡
�
ΩΛ0

Ωm0

�1
3

Dþ ¼ q
1
3
2F1

�
1;
1

3
;
11

6
;−q

�
; ðA2Þ

where we introduced D̂þ, which depends only on q, and

2F1ða; b; c; zÞ is the hypergeometric function. Using the
above equations, we can compute δf ¼ f−=f2þ þ 3=2¼
ðd lnH=d lnaÞðDþ=aÞ2ðdDþ=daÞ−2 þ 3=2, obtaining

δf ¼ 3

2

�
1 − 4ð1þ qÞ

�
5

2F1ð1; 1=3; 11=6;−qÞ
− 3

�
−2
�
:

ðA3Þ

This expression is useful for the purpose of numerical
treatments. However, we choose to further reduce D̂þ and
δf to obtain simplified expressions. Expanding D̂þ around
q ¼ 0, one finds

D̂þ ≃ q
1
3

�
1 − ϵ

2

11
qþ ϵ2

16

187
q2 − ϵ3

224

4301
q3 þ…

�
; ðA4Þ

where we inserted a bookkeeping parameter ϵ. Inverting
the above expression by plugging an Ansatz,

q ¼ Q0 þ ϵQ1 þ ϵ2Q2 þ ϵ3Q3 þ � � �, and solving for Qn
at each order in ϵ, we obtain

q ≃ D̂3þ þ ϵ
6

11
D̂6þ þ ϵ2

492

2057
D̂9þ þ ϵ3

50216

520421
D̂12þ þ…:

ðA5Þ

We can also expand δf around q ¼ 0 to obtain

δf ≃ −
3

22
qþ ϵ

15

374
q2 − ϵ2

21585

1040842
q3

þ ϵ3
74212575

5644486166
q4 þ � � � : ðA6Þ

By substituting Eq. (A5) into this equation, one finds an
analytic expression for δf in powers of Dþ,

δf ≃ c1

�
ΩΛ0

Ωm0

�
D3þ þ c2

�
ΩΛ0

Ωm0

�
2

D6þ þ c3

�
ΩΛ0

Ωm0

�
3

D9þ

þ c4

�
ΩΛ0

Ωm0

�
4

D12þ þ…; ðA7Þ

with c1, c2, c3 given below Eq. (18) and c4 ¼ − 15954399
5644486166

.
Here we omit the higher-order correction OðD15þ Þ and set
ϵ ¼ 1. We find that c4 and the higher-order terms obtained
in this manner do not significantly improve the fit to δf,
as can also be deduced from Fig. 1. In this work it will
therefore suffice to truncate the expansion so as to include
the c1, c2, and c3 coefficients. Nevertheless, we note that
the extension to higher orders is straightforward within the
formalism developed in this work.

APPENDIX B: DIRECT INTEGRAL SOLUTIONS
OF THE DARK MATTER KERNELS

In Sec. II we have presented the integral solutions for
the dark matter kernels. Here we return to these findings,
providing further details for each component of the
solution. We start from the EoMs and briefly review the
solutions obtained in [45]. With the symmetrized kernels
Fnðq1;…; qn; ηÞ and Gnðq1;…; qn; ηÞ in Eq. (4), the EoMs
given in Eq. (1) read

_Fn þ nFn − Gn ¼ hðnÞα ðq1;…; qn; ηÞ;
_Gn þ ðn − 1ÞGn −

f−
f2þ

ðGn − FnÞ ¼ hðnÞβ ðq1;…; qn; ηÞ;

ðB1Þ

where we used the shorthand notation _ ¼ ∂=∂η (remember
that η≡ lnDþ). The functions fþ;− are defined as
fþ;− ≡ d lnDþ;−=d ln a. The source terms are given by
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hðnÞα ðq1;…; qn; ηÞ ¼
X
π−all

Xn−1
m¼1

αðpm; pn−mÞGmðq1;…; qm; ηÞFn−mðqmþ1;…; qn; ηÞ

¼
Xn−1
m¼1

m!ðn −mÞ!
n!

X
π−cross

αðpm; pn−mÞGmFn−m

¼ δKn
2
;bn

2
c
ðn=2!Þ2

n!

X
π−cross

αðpn=2; pn=2ÞGn=2Fn=2

þ
Xbðn−1Þ=2c

m¼1

m!ðn −mÞ!
n!

X
π−cross

½αðpm; pn−mÞGmFn−m þ αðpn−m; pmÞGn−mFm�;

hðnÞβ ðq1;…; qn; ηÞ ¼
X
π−all

Xn−1
m¼1

βðpm; pm−nÞGmðq1;…; qm; ηÞGn−mðqmþ1;…; qn; ηÞ;

¼ δKn
2
;bn

2
c
ðn=2!Þ2

n!

X
π−cross

βðpn=2; pn=2ÞGn=2Gn=2 þ 2
Xbðn−1Þ=2c

m¼1

m!ðn −mÞ!
n!

X
π−cross

βðpm; pn−mÞGmGn−m; ðB2Þ

where the subscript “π-all” stands for symmetrization over
all momenta fq1…qng while π − cross indicates permu-
tations that exchange the momenta in the f1…mg set with
those in the fmþ 1…ng set. In the last line of Eq. (B2) the
double counting for the case when n is even has been
removed. The following definitions have also been em-
ployed: pm ¼ q1 þ…þ qm; pn−m ¼ qmþ1 þ…þ qn.
Combining the two expressions in Eq. (B1), one readily
obtains the EoM for the first kernel Fn:

F̈n þ _Fn

�
2n − 1 −

f−
f2þ

�
þ ðn − 1ÞFn

�
n −

f−
f2þ

�

¼ hðnÞβ þ
�
n − 1 −

f−
f2þ

�
hðnÞα þ _hðnÞα ; ðB3Þ

whose solution reads

FnðηÞ ¼
Z

η

−∞
dη̃eðn−1Þðη̃−ηÞ

f̃þ
f̃þ − f̃−

��
h̃ðnÞβ −

f̃−
f̃þ

h̃ðnÞα

�

þ eη̃−η
D−ðηÞ
D−ðη̃Þ

�
h̃ðnÞα − h̃ðnÞβ

��
; ðB4Þ

where in deriving the above we have used Eq. (3) for the
growing and decaying solutions for the linear growth factor
D�ðηÞ. Using again the first expression in Eq. (B1) one
arrives at the solution for the G kernels:

GnðηÞ ¼
Z

η

−∞
dη̃eðn−1Þðη̃−ηÞ

f̃þ
f̃þ − f̃−

��
h̃ðnÞβ −

f̃−
f̃þ

h̃ðnÞα

�

þ eη̃−η
f−
fþ

D−ðηÞ
D−ðη̃Þ

�
h̃ðnÞα − h̃ðnÞβ

��
; ðB5Þ

where again a function with a tilde depends not on the
variable a but the variable ã [e.g., D̃þ ≡DþðãÞ]. Note that

the time-dependent coefficients of h̃ðnÞα and h̃ðnÞβ in the
integrands of Eqs. (B4) and (B5) also require integration,
thus implying recursive time integrals, something that is far
from ideal for a fast evaluation. Equations (B4) and (B5)
are the integral solutions, to all orders, as first derived in
[45]. Changing the time variable in favor of the scaling
factor a, we can express these solutions in the form

Fnðq1;…; qn; aÞ ¼
Z

a

0

dã
ã
ðwðnÞ

α ða; ãÞhðnÞα ðq1;…; qn; ãÞ

þ wðnÞ
β ða; ãÞhðnÞβ ðq1;…; qn; ãÞÞ;

Gnðq1;…; qn; aÞ ¼
Z

a

0

dã
ã
ðuðnÞα ða; ãÞhðnÞα ðq1;…; qn; ãÞ

þ uðnÞβ ða; ãÞhðnÞβ ðq1;…; qn; ãÞÞ; ðB6Þ

as was presented in the Eq. (5). The Green function
components are given by

wðnÞ
α ða; ãÞ ¼ wðnÞða; ãÞð1 − δðãÞdða; ãÞÞ;

wðnÞ
β ða; ãÞ ¼ −wðnÞða; ãÞð1 − dða; ãÞÞ;

uðnÞα ða; ãÞ ¼ wðnÞða; ãÞðδðaÞ − δðãÞdða; ãÞÞ;
uðnÞβ ða; ãÞ ¼ −wðnÞða; ãÞðδðaÞ − dða; ãÞÞ; ðB7Þ

where we introduced the quantities

wðnÞða; ãÞ ¼
�
D̃þ
Dþ

�n f̃2þ
f̃þ − f̃−

D−

D̃−
;

dða; ãÞ ¼ D̃−

D−

Dþ
D̃þ

; δðaÞ ¼ f−
fþ

: ðB8Þ
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Moreover, we find that wðnÞ
α;β and uðnÞα;β satisfy a simple

relation,

wðnÞ
α ða; ãÞ þ wðnÞ

β ða; ãÞ ¼ uðnÞα ða; ãÞ þ uðnÞβ ða; ãÞ

¼ wðnÞdð1 − δ̃Þ ¼
�
D̃þ
Dþ

�n−1
f̃þ:

ðB9Þ

Equation (B9) indicates that not all of the Green functions
are independent: there are relations between them that can
be obtained at each order n. We see how these come in to

play when computing the one- and two- loop power spectra
in Sec. III.

APPENDIX C: DERIVATION OF THE
SEPARABLE KERNELS

In Appendix B we have shown the explicit integral form
of the solutions for the Fn andGn kernels. In this appendix,
we recast such solutions into separable form Fn ¼ λn ·Hn
and Gn ¼ κn ·Hn, as indicated in Sec. II. Plugging
Eqs. (B2) and (6) into the right-hand side of Eq. (5),
and separately reorganizing the momentum-dependent and
time-dependent terms, one finds

FnðaÞ ¼ δKn
2
;bn

2
c
XNðn=2Þ

i¼1

XNðn=2Þ

j¼1

WðijÞ
α;n=2;n=2½hα�ðijÞn=2;n=2 þ δKn

2
;bn

2
c
XNðn=2Þ

i¼1

XNðn=2Þ

j¼i

½2 − δKij�WðijÞ
β;n=2;n=2½hβ�ðijÞn=2;n=2

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

�
WðijÞ

α;m;n−m½hα�ðijÞm;n−m þWðjiÞ
α;n−m;m½hα�ðjiÞn−m;m þ 2WðijÞ

β;m;n−m½hβ�ðijÞm;n−m

�
;

GnðaÞ ¼ δKn
2
;bn

2
c
XNðn=2Þ

i¼1

XNðn=2Þ

j¼1

UðijÞ
α;n=2;n=2½hα�ðijÞn=2;n=2 þ δKn

2
;bn

2
c
XNðn=2Þ

i¼1

XNðn=2Þ

j¼i

½2 − δKij�UðijÞ
β;n=2;n=2½hβ�ðijÞn=2;n=2

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

�
UðijÞ

α;m;n−m½hα�ðijÞm;n−m þ UðjiÞ
α;n−m;m½hα�ðjiÞn−m;m þ 2UðijÞ

β;m;n−m½hβ�ðijÞm;n−m

�
; ðC1Þ

with the momentum basis source terms ½hα� and ½hβ� defined as

½hα�ðijÞm;n−mðq1;…; qnÞ ¼
m!ðn −mÞ!

n!

X
π−cross

αðqm; qn−mÞHðiÞ
m ðq1;…; qmÞHðjÞ

n−mðqmþ1;…; qnÞ;

½hβ�ðijÞm;n−mðq1;…; qnÞ ¼
m!ðn −mÞ!

n!

X
π−cross

βðqm; qn−mÞHðiÞ
m ðq1;…; qmÞHðjÞ

n−mðqmþ1;…; qnÞ: ðC2Þ

We have also introduced the time-dependent coefficients:

Wn;ðijÞ
α;m1;m2

ðaÞ ¼
Z

a

0

dã
ã
wðnÞ
α ða; ãÞκðiÞm1

ðãÞλðjÞm2
ðãÞ;

Wn;ðijÞ
β;m1;m2

ðaÞ ¼
Z

a

0

dã
ã
wðnÞ
β ða; ãÞκðiÞm1

ðãÞκðjÞm2
ðãÞ;

Un;ðijÞ
α;m1;m2

ðaÞ ¼
Z

a

0

dã
ã
uðnÞα ða; ãÞκðiÞm1

ðãÞλðjÞm2
ðãÞ;

Un;ðijÞ
β;m1;m2

ðaÞ ¼
Z

a

0

dã
ã
uðnÞβ ða; ãÞκðiÞm1

ðãÞκðjÞm2
ðãÞ; ðC3Þ

which are constructed from the Green functions introduced
in Eq. (B7), as well as from the lower-order coefficients λn
and κn.
Note that Eqs. (C1) are already in the form required in

Eq. (6). However, there remains to be chosen a counting
algorithm that systematically maps (bijectively) the

½hα�ðijÞm;n−m and ½hβ�ðijÞm;n−m operators to the HðlÞ
n operators.

The running of the various indices in the h operators will

correspond to the running of the index l inHðlÞ
n according to

l ¼ 1; 2;…; NðnÞ at any given order n. We shall employ the
algorithm based on the following five “counting” functions:
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ϕ1ðn; i; jÞ ¼ N
�n
2

�
ði − 1Þ þ j;

ϕ2ðn; i; jÞ ¼
�
N
�n
2

��
2
−
1

2
iði − 1Þ þ ϕ1ðn; i; jÞ;

ϕ3ðn;m; i; jÞ ¼ δKn
2
;bn

2
c
1

2
N
�n
2

��
3N

�n
2

�
þ 1

�
þ
Xm−1

k¼1

NðkÞNðn − kÞ þ ði − 1ÞNðn −mÞ þ j;

ϕ4ðn;m; i; jÞ ¼
Xbðn−1Þ=2c

k¼1

NðkÞNðn − kÞ þ ϕ3ðn;m; i; jÞ;

ϕ5ðn;m; i; jÞ ¼ 2
Xbðn−1Þ=2c

k¼1

NðkÞNðn − kÞ þ ϕ3ðn;m; i; jÞ: ðC4Þ

For a given n, the ϕ1;…;5 counters run through all the relevant values of the indices fm; i; jg, eventually covering5 all the

NðnÞ entries and mapping all of the ½hα�ðijÞm;n−m and ½hβ�ðijÞm;n−m operators to HðlÞ
n operators. As shown in Eq. (9), using this

mapping, we obtain a closed expression:

HðlÞ
n ðq1;…; qnÞ ¼ δKn

2
;bn

2
c
XNðn=2Þ

i¼1

" XNðn=2Þ

j¼1

½hα�ðijÞn
2
;n
2
δKl;ϕ1

þ
XNðn=2Þ

j¼i

½2 − δKij�½hβ�ðijÞn
2
;n
2
δKl;ϕ2

#

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

�
½hα�ðijÞm;n−mδKl;ϕ3

þ ½hα�ðjiÞn−m;mδKl;ϕ4
þ 2½hβ�ðijÞm;n−mδKl;ϕ5

�
; ðC5Þ

with the initial terms Hð1Þ
2 ¼ α and Hð2Þ

2 ¼ β, and one can systematically compute the higher-momentum operators using
definition of the sourcing terms ½hα� and ½hβ� given in Eq. (C2).

Once this mapping is chosen for theHðlÞ
n operators, it immediately fixes the mapping between the λnðκnÞ andW (U) time

coefficients. Explicitly, we have

λðlÞn ðaÞ ¼ δKn
2
;bn

2
c
XNðn=2Þ

i¼1

" XNðn=2Þ

j¼1

WðijÞ
α;n=2;n=2δ

K
l;ϕ1

þ
XNðn=2Þ

j¼i

WðijÞ
β;n

2
;n
2
δKl;ϕ2

#

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

�
WðijÞ

α;m;n−mδKl;ϕ3
þWðjiÞ

α;n−m;mδKl;ϕ4
þWðijÞ

β;m;n−mδ
K
l;ϕ5

�
;

κðlÞn ðaÞ ¼ δKn
2
;bn

2
c
XNðn=2Þ

i¼1

" XNðn=2Þ

j¼1

UðijÞ
α;n=2;n=2δ

K
l;ϕ1

þ
XNðn=2Þ

j¼i

UðijÞ
β;n

2
;n
2
δKl;ϕ2

#

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

�
UðijÞ

α;m;n−mδKl;ϕ3
þUðjiÞ

α;n−m;mδKl;ϕ4
þUðijÞ

β;m;n−mδ
K
l;ϕ5

�
; ðC6Þ

with W and U coefficients given in Eq. (C3). We have thus achieved the separation of the Fn and Gn kernels in the purely
momentum-dependent operators Hn and time-dependent coefficients λn and κn. However, the time coefficients are still
determined by the recursive time integrals given in Eq. (C3). In order to facilitate the evaluation of these coefficients we can
recast these integral expressions into differential equations. After some manipulation of our integral solutions, we obtain

5One may choose, for example, to first fix a value form starting with the lowest possible,m ¼ 1, then do the same for the index i, and
run through the index j, again running from the lowest to the highest value allowed, etc. So long as this is done consistently, no
ambiguity arises in the process.
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_WnðijÞ
α;m1;m2

þ nWnðijÞ
α;m1;m2

−UnðijÞ
α;m1;m2

¼ κðiÞm1
λðjÞm2

;

_WnðijÞ
β;m1;m2

þ nWnðijÞ
β;m1;m2

−UnðijÞ
β;m1;m2

¼ 0;

_UnðijÞ
α;m1;m2

þ ðn − 1ÞUnðijÞ
α;m1;m2

−
f−
f2þ

h
UnðijÞ

α;m1;m2
−WnðijÞ

α;m1;m2

i
¼ 0;

_UnðijÞ
β;m1;m2

þ ðn − 1ÞUnðijÞ
β;m1;m2

−
f−
f2þ

h
UnðijÞ

β;m1;m2
−WnðijÞ

β;m1;m2

i
¼ κðiÞm1

κðjÞm2
; ðC7Þ

which we have also presented in Eq. (13). This form is
convenient for the recursive numerical treatment using the
λð1Þ1 ¼ κð1Þ1 ¼ 1 initial conditions. These expressions are
used in Sec. III to compare the results with the analytic
perturbative treatment derived in Appendix D.
Before we close this appendix and turn our attention

towards obtaining the analytic solutions for these time
coefficients, we note that it is useful to count the number
of coefficients at each perturbative order n. As we have
indicated when postulating the Ansatz in Eq. (6), we expect
the number of the basis elements NðnÞ to be a function of
the perturbative order. Thus, counting the terms given either
in Eq. (9), or equivalently in Eq. (11) gives

NðnÞ ¼ δKn
2
;bn

2
c
1

2
N
�n
2

��
3N

�n
2

�
þ 1

�

þ 3
Xbðn−1Þ=2c

m¼1

NðmÞNðn −mÞ; ðC8Þ

which, up to the fifth order, yields the numbers given in
Eq. (7). As noted in Sec. II, not all of these time coefficients
are independent; there are indeed several constraints that
effectively reduce the dimension of the operators basis
down from the upper bound NðnÞ.

APPENDIX D: PERTURBATIVE SOLUTION
OF THE TIME DEPENDENCE

In Sec. III we have summarized the perturbative solution

for the time-dependent coefficients λðlÞn and κðlÞn . Here we
present the derivation. In this appendix, we show how we
can analytically invert the differential equations given in
Eqs. (13) [and Eqs. (C7)] and thus represent the solution as
a power expansion in δf parameter.
We start by eliminating Un

α;β from the equations given in
Eqs. (13), to find the EoMs for Wn

α;β. As expected, we end
up with the second-order differential equations that read

ẄnðijÞ
α;m1;m2

þ
�
2nþ 1

2
− δf

�
_WnðijÞ
α;m1;m2

þ
�
n2 þ n − 3

2
− ðn − 1Þδf

�
WnðijÞ

α;m1;m2
¼

�
∂η þ nþ 1

2
− δf

�
κðiÞm1

λðjÞm2
;

ẄnðijÞ
β;m1;m2

þ
�
2nþ 1

2
− δf

�
_WnðijÞ
β;m1;m2

þ
�
n2 þ n − 3

2
− ðn − 1Þδf

�
WnðijÞ

β;m1;m2
¼ κðiÞm1

κðjÞm2
: ðD1Þ

Further on we suppress the indices, n;m1; m2, and ðijÞ, that are not relevant for the following calculation, given that they
stay the same on the right and the left side of the equations. We can reorganize the above equations perturbatively with
respect to δf, recasting them as

Ẅn
α þ

�
2nþ 1

2

�
_Wn
α þ

�
n2 þ n

2
−
3

2

�
Wn

α ¼
�
∂η þ nþ 1

2

�
κλþ δfð _Wn

α þ ðn − 1ÞWn
α − κλÞ;

Ẅn
β þ

�
2nþ 1

2

�
_Wn
β þ

�
n2 þ n

2
−
3

2

�
Wn

β ¼ κκ þ δfð _Wn
β þ ðn − 1ÞWn

βÞ: ðD2Þ

We note that the structure of the left-hand side in both these equations is exactly the same. It is straightforward to solve this
type of equation,

Ẅn
γ ðηÞ þ

�
2nþ 1

2

�
_Wn
γ ðηÞ þ

�
n2 þ n

2
−
3

2

�
Wn

γ ðηÞ ¼ Snγ ðηÞ;

⇒ Wn
γ ðηÞ ¼ In½Snγ �≡ 2

5

Z
η

−∞
dη0

h
eðn−1Þðη0−ηÞ − eðnþ3

2
Þðη0−ηÞ

i
Snγ ðη0Þ; ðD3Þ
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where γ ¼ α, β and Snγ denotes the source term, including
the one proportional to δf. Note that in the process above,
we have also defined the functional integral In. Although
one initially includes other terms with integration constants
c1e−ðnþ3=2Þη þ c2eð1−nÞη in the general solution, these ought
to be set to zero in our case in order to reproduce the known
EdS results. This is, of course, equivalent to setting the
initial conditions to the EdS values. In particular, for a
constant source term, the time integration is performed as
follows:

In½C� ¼
2

5
C
Z

η

−∞
dη0

h
eðn−1Þðη0−ηÞ − eðnþ3

2
Þðη0−ηÞ

i

¼ 2C
ð2nþ 3Þðn − 1Þ : ðD4Þ

We seek to obtain the perturbative solution using this
integral representation. As noted in Sec. III we expand our
solutions in δf as

Wn ¼ Wn½0� þWn½1� þWn½2� þ � � � ; ðD5Þ

where the superscript [n] denotes the order in powers of δf,
with ½0� representing the solution in the EdS limit. We
obtain the recursive relations

Wn½l�
α ¼ In

��
∂ηþnþ1

2

�
ðκλÞ½l� þδfð _Wn½l−1�

α

þðn−1ÞWn½l−1�
α − ðκλÞ½l−1�Þ

�
;

Wn½l�
β ¼ In

h
ðκκÞ½l� þδf

�
_Wn½l−1�
β þðn−1ÞWn½l−1�

β

�i
; ðD6Þ

where ðxyÞ½l� ¼ x½0�y½l� þ x½1�y½l−1� þ x½2�y½l−2� þ � � � þ x½l�y½0�

and ðκλÞ½−1� ¼ 0. To further reduce the expressions, it is
useful to define the second functional expression

Ĩn½X�≡ ð∂η þ n − 1ÞIn½δfX�

¼ 2nþ 1

5

Z
η

−∞
dη0eðnþ3

2
Þðη0−ηÞδfðη0ÞXðη0Þ: ðD7Þ

Repeatedly using the above recursive relation, one finds

_Wn½l�
β þ ðn − 1ÞWn½l�

β

¼ Ĩn

�ðκκÞ½l�
δf

þ _Wn½l−1�
β þ ðn − 1ÞWn½l−1�

β

�

¼ Ĩn

�ðκκÞ½l�
δf

þ Ĩn

�ðκκÞ½l−1�
δf

þ _Wn½l−2�
β þ ðn − 1ÞWn½l−2�

β

��

¼
Xl

k¼1

Ĩk
n

�ðκκÞ½l−kþ1�

δf

�
þ ðn − 1ÞWn½0�

β Ĩ l
n½1�; ðD8Þ

where _Wn½0�
β ¼ 0 and Ĩk

n½X� means the recursive operations

of Ĩn by k times, for instance, Ĩ3
n½X� ¼ Ĩn½Ĩn½Ĩn½X���. In

the case of Wn½l�
α , ðκκÞ½l� in Eq. (D8) is replaced by

ð∂η þ nþ 1
2
ÞðκλÞ½l� − δfðκλÞ½l−1�. Plugging these expres-

sions back into Eq. (D6), and restoring the suppressed
indices, we obtain the general solutions

WnðijÞ
α;m1;m2

¼
�
1 −

2n − 2

2nþ 1

X∞
l¼1

In½δfĨ l−1
n ½1��

�
WnðijÞ½0�

α;m1;m2
þ
X∞
l¼1

In

��
∂η þ nþ 1

2

�
ðκðiÞm2

λðjÞm2
Þ½l�

�
−
X∞
l¼2

In

h
δfðκðiÞm2

λðjÞm2
Þ½l−1�

i

þ
X∞
l¼2

In

�
δf

Xl−1
k¼1

Ĩk
n

�
δf−1

�
∂η þ nþ 1

2

�
ðκðiÞm2

λðjÞm2
Þ½l−k�

�
− δf

Xl−2
k¼1

Ĩk
n

h
ðκðiÞm2

λðjÞm2
Þ½l−k−1�

i�
;

WnðijÞ
β;m1;m2

¼
�
1þ ðn − 1Þ

X∞
l¼1

In

h
δfĨ l−1

n ½1�
i�

WnðijÞ½0�
β;m1;m2

þ
X∞
l¼1

In

h
ðκðiÞm1

κðjÞm2
Þ½l�

i
þ
X∞
l¼2

In

�
δf

Xl−1
k¼1

Ĩk
n

h
δf−1ðκðiÞm1

κðjÞm2
Þ½l−k�

i�
;

ðD9Þ

where we manipulated the terms with ðκλÞ½0�. The results in
the EdS limit can be found from (D6) for l ¼ 0,

Wn½0�
α ¼ In

��
nþ 1

2

�
ðκλÞ½0�

�
¼ ð2nþ 1Þκ½0�λ½0�

ð2nþ 3Þðn − 1Þ ;

Wn½0�
β ¼ In½ðκκÞ½0�� ¼

2κ½0�κ½0�

ð2nþ 3Þðn − 1Þ ; ðD10Þ

where we used the fact that the zeroth-order quantities are
constant, κ½0�; λ½0� ¼ const.
In order to utilize these general solutions and employ the

explicit form of the In and Ĩn integrals, we use the
expanded form of δf that we put forward in Eq. (18)
and derived in Appendix A. Plugging this approximated
expression into (D9) and then using (13), at leading order in
δf we obtain for n ¼ 2
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λð1Þ2 ¼ 5

7
−
c1
91

ζ −
4c2
931

ζ2 −
2c3
875

ζ3; λð2Þ2 ¼ 2

7
þ c1
91

ζ þ 4c2
931

ζ2 þ 2c3
875

ζ3;

κð1Þ2 ¼ 3

7
−
5c1
91

ζ −
32c2
931

ζ2 −
22c3
875

ζ3; κð2Þ2 ¼ 4

7
þ 5c1

91
ζ þ 32c2

931
ζ2 þ 22c3

875
ζ3; ðD11Þ

shown also in Eq. (19). In the same way, we compute the n ¼ 3 time-dependent coefficients:

λð1Þ3 ¼ 5

18
−
29c1
4725

ζ −
22c2
9261

ζ2 −
118c3
93555

ζ3; λð2Þ3 ¼ 1

9
þ c1
4725

ζ −
5c2

18522
ζ2 −

2c3
8505

ζ3;

λð3Þ3 ¼ 1

6
−
19c1
1575

ζ −
31c2
6174

ζ2 −
86c3
31185

ζ3; λð4Þ3 ¼ 2

9
þ 29c1
4725

ζ þ 22c2
9261

ζ2 þ 118c3
93555

ζ3;

λð5Þ3 ¼ 1

21
þ 22c1
20475

ζ þ 85c2
117306

ζ2 þ 368c3
779625

ζ3; λð6Þ3 ¼ 4

63
þ 298c1
61425

ζ þ 338c2
175959

ζ2 þ 2396c3
2338875

ζ3;

κð1Þ3 ¼ 5

42
−
529c1
20475

ζ −
334c2
19551

ζ2 −
10018c3
779625

ζ3; κð2Þ3 ¼ 1

21
−
199c1
20475

ζ −
263c2
39102

ζ2 −
362c3
70875

ζ3;

κð3Þ3 ¼ 1

14
−
17c1
975

ζ −
141c2
13034

ζ2 −
2066c3
259875

ζ3; κð4Þ3 ¼ 2

21
−
53c1
2925

ζ −
254c2
19551

ζ2 −
7802c3
779625

ζ3;

κð5Þ3 ¼ 1

7
þ 44c1
6825

ζ þ 85c2
13034

ζ2 þ 1472c3
259875

ζ3; κð6Þ3 ¼ 4

21
þ 596c1
20475

ζ þ 338c2
19551

ζ2 þ 9584c3
779625

ζ3; ðD12Þ

and the result for n ¼ 4∶

λð1Þ4 ¼ 45

539
−
900c1ζ
119119

−
2272c2ζ2

706629
−
3496c3ζ3

1953875
; λð2Þ4 ¼ 18

539
−
489c1ζ
238238

−
724c2ζ2

706629
−
2381c3ζ3

3907750
;

λð3Þ4 ¼ 60

539
þ 2425c1ζ

714714
þ 3232c2ζ2

2119887
þ 10147c3ζ3

11723250
; λð4Þ4 ¼ 24

539
þ 947c1ζ
357357

þ 2032c2ζ2

2119887
þ 2861c3ζ3

5861625
;

λð5Þ4 ¼ 6

539
−

32c1ζ
119119

þ 188c2ζ2

4946403
þ 19c3ζ3

279125
; λð6Þ4 ¼ 8

539
þ 257c1ζ
357357

þ 5680c2ζ2

14839209
þ 197c3ζ3

837375
;

λð7Þ4 ¼ 32

1617
þ 856c1ζ
357357

þ 14144c2ζ2

14839209
þ 424c3ζ3

837375
; λð8Þ4 ¼ 5

66
−
223c1ζ
117810

−
244c2ζ2

334719
−
13c3ζ3

33495
;

λð9Þ4 ¼ 1

33
−

43c1ζ
117810

−
149c2ζ2

669438
−

3c3ζ3

22330
; λð10Þ4 ¼ 1

22
−
31c1ζ
13090

−
179c2ζ2

223146
−
13c3ζ3

33495
;

λð11Þ4 ¼ 2

33
þ 13c1ζ
117810

−
50c2ζ2

334719
−

3c3ζ3

22330
; λð12Þ4 ¼ 1

77
−

c1ζ
85085

−
43c2ζ2

4239774
−

c3ζ3

76125
;

λð13Þ4 ¼ 4

231
þ 373c1ζ
765765

þ 530c2ζ2

6359661
þ c3ζ3

76125
; λð14Þ4 ¼ 5

154
−
6469c1ζ
1531530

−
12352c2ζ2

6359661
−
313c3ζ3

279125
;

λð15Þ4 ¼ 1

77
−
2449c1ζ
1531530

−
9743c2ζ2

12719322
−
249c3ζ3

558250
; λð16Þ4 ¼ 3

154
−
1439c1ζ
510510

−
5185c2ζ2

4239774
−
193c3ζ3

279125
;

λð17Þ4 ¼ 2

77
−
4601c1ζ
1531530

−
9446c2ζ2

6359661
−
489c3ζ3

558250
; λð18Þ4 ¼ 3

77
þ 16c1ζ
36465

þ 1741c2ζ2

4239774
þ 81c3ζ3

279125
;

λð19Þ4 ¼ 4

77
þ 394c1ζ
109395

þ 9026c2ζ2

6359661
þ 632c3ζ3

837375
; λð20Þ4 ¼ 5

693
−

944c1ζ
11486475

þ 218c2ζ2

4946403
þ 6857c3ζ3

135654750
;

λð21Þ4 ¼ 2

693
−

239c1ζ
11486475

þ 277c2ζ2

14839209
þ 1384c3ζ3

67827375
; λð22Þ4 ¼ 1

231
−

334c1ζ
3828825

þ 311c2ζ2

14839209
þ 17c3ζ3

587250
;

λð23Þ4 ¼ 4

693
−

181c1ζ
11486475

þ 620c2ζ2

14839209
þ 37c3ζ3

880875
; λð24Þ4 ¼ 2

231
þ 2434c1ζ
3828825

þ 1553c2ζ2

4946403
þ 4111c3ζ3

22609125
;

λð25Þ4 ¼ 8

693
þ 14356c1ζ
11486475

þ 7444c2ζ2

14839209
þ 18292c3ζ3

67827375
; κð1Þ4 ¼ 15

539
−
152c1ζ
17017

−
28492c2ζ2

4946403
−
8444c3ζ3

1953875
;
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κð2Þ4 ¼ 6

539
−
115c1ζ
34034

−
11212c2ζ2

4946403
−
6709c3ζ3

3907750
; κð3Þ4 ¼ 20

539
−
941c1ζ
102102

−
101648c2ζ2

14839209
−
63317c3ζ3

11723250
;

κð4Þ4 ¼ 8

539
−
25c1ζ
7293

−
39920c2ζ2

14839209
−
12571c3ζ3

5861625
; κð5Þ4 ¼ 24

539
−
32c1ζ
17017

þ 1880c2ζ2

4946403
þ 247c3ζ3

279125
;

κð6Þ4 ¼ 32

539
þ 257c1ζ

51051
þ 56800c2ζ2

14839209
þ 2561c3ζ3

837375
; κð7Þ4 ¼ 128

1617
þ 856c1ζ

51051
þ 141440c2ζ2

14839209
þ 5512c3ζ3

837375
;

κð8Þ4 ¼ 5

198
−
12569c1ζ
1767150

−
3838c2ζ2

781011
−
10267c3ζ3

2713095
; κð9Þ4 ¼ 1

99
−
4889c1ζ
1767150

−
3055c2ζ2

1562022
−
8201c3ζ3

5426190
;

κð10Þ4 ¼ 1

66
−
2659c1ζ
589050

−
4687c2ζ2

1562022
−
2069c3ζ3

904365
; κð11Þ4 ¼ 2

99
−
9481c1ζ
1767150

−
3022c2ζ2

781011
−
16321c3ζ3

5426190
;

κð12Þ4 ¼ 1

231
−
4429c1ζ
3828825

−
24515c2ζ2

29678418
−
14533c3ζ3

22609125
; κð13Þ4 ¼ 4

693
−
16561c1ζ
11486475

−
16138c2ζ2

14839209
−
57901c3ζ3

67827375
;

κð14Þ4 ¼ 5

462
−
9523c1ζ
2552550

−
104122c2ζ2

44517627
−
5581c3ζ3

3229875
; κð15Þ4 ¼ 1

231
−
3763c1ζ
2552550

−
83159c2ζ2

89035254
−
4463c3ζ3

6459750
;

κð16Þ4 ¼ 1

154
−
279c1ζ
121550

−
41893c2ζ2

29678418
−
7829c3ζ3

7536375
; κð17Þ4 ¼ 2

231
−
1061c1ζ
364650

−
82862c2ζ2

44517627
−
62401c3ζ3

45218250
;

κð18Þ4 ¼ 1

77
−
1436c1ζ
425425

−
71675c2ζ2

29678418
−
14257c3ζ3

7536375
; κð19Þ4 ¼ 4

231
−
1658c1ζ
425425

−
137806c2ζ2

44517627
−
56104c3ζ3

22609125
;

κð20Þ4 ¼ 20

693
−

944c1ζ
1640925

þ 2180c2ζ2

4946403
þ 89141c3ζ3

135654750
; κð21Þ4 ¼ 8

693
−

239c1ζ
1640925

þ 2770c2ζ2

14839209
þ 17992c3ζ3

67827375
;

κð22Þ4 ¼ 4

231
−
334c1ζ
546975

þ 3110c2ζ2

14839209
þ 221c3ζ3

587250
; κð23Þ4 ¼ 16

693
−

181c1ζ
1640925

þ 6200c2ζ2

14839209
þ 481c3ζ3

880875
;

κð24Þ4 ¼ 8

231
þ 2434c1ζ

546975
þ 15530c2ζ2

4946403
þ 53443c3ζ3

22609125
; κð25Þ4 ¼ 32

693
þ 14356c1ζ

1640925
þ 74440c2ζ2

14839209
þ 237796c3ζ3

67827375
: ðD13Þ

One can continue this exercise up to an arbitrary n. For
the purposes of this work, it suffices to run this procedure
up to n ¼ 5: F5 and G5 are the highest-order kernels
necessary for the calculation of the two-loop power spectra,
and therefore we may stop at the λðiÞ5 ; κðiÞ5 set of time
coefficients (all the coefficients and corresponding kernels
can be found in the Supplemental Material [60]).

APPENDIX E: IR AND UV LIMITS OF KERNELS

In this appendix we consider the IR and UV limits of the
Hn kernels in the momenta configurations contributing to
the one- and two-loop calculations. For IR limits we have
the following expansions:

H2ðp; k − pÞ ∼ ½H2�ð1ÞIR ðp̂Þ
k
p
þ ½H2�ð0ÞIR ðp̂Þ þOðp1Þ;

H3ðk; p;−pÞ ∼ ½H3;I�ð2ÞIR ðp̂Þ
k2

p2
þ ½H3;I�ð0ÞIR ðp̂Þ þOðp1Þ;

H3ðk − q − p; q; pÞ ∼ ½H3;II�ð1ÞIR ðp̂Þ
k
p
þ ½H3;II�ð0ÞIR ðp̂Þ þOðp1Þ;

H4ðk − q; q; p;−pÞ ∼ ½H4;I�ð2ÞIR ðp̂Þ
k2

p2
þ ½H4;I�ð0ÞIR ðp̂Þ þOðp1Þ;

H4ðk − p; p; q;−qÞ ∼ ½H4;II�ð1ÞIR ðp̂Þ
k
p
þ ½H4;II�ð0ÞIR ðp̂Þ þOðp1Þ;

H5ðk; q;−q; p;−pÞ ∼ ½H5�ð2ÞIR ðp̂Þ
k2

p2
þ ½H5�ð0ÞIR ðp̂Þ þOðp1Þ; ðE1Þ

as p → 0. We can write explicitly the first few coefficients as ½H2�ð1ÞIR ¼ μ
2
ð1; 1Þ and ½H2�ð0ÞIR ¼ 1

2
ð1; 2μ2 − 1Þ, and

½H3;I�ð2ÞIR ¼ − μ2

3
ð1; 1; 0; 0; 1; 1Þ, ½H3;I�ð0ÞIR ¼ − 1

3
ðμ2; μ2; μ2 − 2;−μ2; 2 − 6μ2 þ 4μ4; 0Þ, where μ ¼ k̂ · p̂. We shall not give
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the explicit form here for the remaining coefficients. These are obtained in a similar manner and can be arrived at by
expanding the full kernels.
In computing the loop contribution, it is crucial to isolate the leading product divergencies of the kernel products.

Focusing on the IR limit at one loop, we have

hð2Þ22;IR ¼ ½H2�ð1ÞIR ⊗ ½H2�ð1ÞIR ¼ μ2

4

�
1 1

1 1

�
;

hð1Þ22;IR ¼ ½H2�ð1ÞIR ⊗ ½H2�ð0ÞIR þ ½H2�ð0ÞIR ⊗ ½H2�ð1ÞIR ¼ μ

2

�
1 μ2

μ2 2μ2 − 1

�
;

hð2Þ13;IR ¼ H1ðkÞ ⊗ ½H3;I�ð2ÞIR ¼ −
μ2

3
ð 1 1 0 0 1 1 Þ; ðE2Þ

while at two loops one finds

hð2Þ33;I;IR ¼ H3ðk; q;−qÞ ⊗ ½H3;I�ð2ÞIR ;

hð2Þ33;II;IR ¼ ½H3;II�ð1ÞIR ⊗ ½H3;II�ð1ÞIR ;

hð1Þ33;II;IR ¼ ½H3;II�ð1ÞIR ⊗ ½H3;II�ð0ÞIR þ ½H3;II�ð0ÞIR ⊗ ½H3;II�ð1ÞIR ;

hð2Þ24;I;IR ¼ H2ðk − q; qÞ ⊗ ½H4;I�ð2ÞIR ;

hð2Þ24;II;IR ¼ ½H2�ð1ÞIR ⊗ ½H4;II�ð1ÞIR ;

hð1Þ24;II;IR ¼ ½H2�ð1ÞIR ⊗ ½H4;II�ð0ÞIR þ ½H2�ð0ÞIR ⊗ ½H4;II�ð1ÞIR ;

hð2Þ15;IR ¼ H1ðkÞ ⊗ ½H5�ð2ÞIR : ðE3Þ

Similarly, one can derive the UV limit of the various terms, which are given by

H2ðp; k − pÞ ∼ ½H2�ð2ÞUVðk̂Þ
k2

p2
þ ½H2�ð3ÞUVðk̂Þ

k3

p3
þOðk4Þ;

H3ðk; p;−pÞ ∼ ½H3;I�ð0ÞUVðk̂Þ þ ½H3;I�ð2ÞUVðk̂Þ
k2

p2
þOðk4Þ;

H3ðk − q − p; q; pÞ ∼ ½H3;II�ð1ÞUVðk̂Þ
k
p
þ ½H3;II�ð2ÞUVðk̂Þ

k2

p2
þ ½H3;II�ð3ÞUVðk̂Þ

k3

p3
þOðk4Þ;

H4ðk − q; q; p;−pÞ ∼ ½H4�ð2ÞUVðk̂Þ
k2

p2
þ ½H4�ð3ÞUVðk̂Þ

k3

p3
þOðk4Þ;

H5ðk; q;−q; p;−pÞ ∼ ½H5�ð0ÞUVðk̂Þ þ ½H5�ð2ÞUVðk̂Þ
k2

p2
þOðk4Þ; ðE4Þ

as k → 0. Again, the first few coefficients can be written as ½H2�ð2ÞUV ¼ 1
2
ð1 − 2μ2;−1Þ, ½H2�ð3ÞUV ¼ μ

2
ð3 − 4μ2;−1Þ,

½H3;I�ð0ÞUV ¼ μ2

3
ð−1;−1; 1; 1; 0; 0Þ, and ½H3;I�ð2ÞUV ¼ − 1

3
ðμ2; μ2; 2ð1 − μ2Þð2μ2 − 1Þ; 0; 2 − μ2; μ2Þ. The kernel products rel-

evant for the UV divergencies in the power spectra are, at one-loop power,

hð4Þ22;UV ¼ ½H2�ð2ÞUV ⊗ ½H2�ð2ÞUV ¼ 1

4

� ð2μ2 − 1Þ2 2μ2 − 1

2μ2 − 1 1

�
;

hð0Þ13;UV ¼ H1 ⊗ ½H3;I�ð0ÞUV ¼ −
μ2

3
ð−1 −1 1 1 0 0 Þ;

hð2Þ13;UV ¼ H1 ⊗ ½H3;I�ð2ÞUV ¼ −
1

3
ð μ2 μ2 2ð1 − μ2Þð2μ2 − 1Þ 0 2 − μ2 μ2 Þ; ðE5Þ
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and, at two loop,

hð0Þ33;I;UV ¼ ½H3;I�ð0ÞUV ⊗ ½H3;I�ð0ÞUV;

hð2Þ33;I;UV ¼ ½H3;I�ð0ÞUV ⊗ ½H3;I�ð2ÞUV; not symmetric in q̂ and p̂;

hð4Þ33;I;UV ¼ ½H3;I�ð2ÞUV ⊗ ½H3;I�ð2ÞUV;

hð2Þ33;II;UV ¼ ½H3;II�ð1ÞUV ⊗ ½H3;II�ð1ÞUV;

hð3Þ33;II;UV ¼ ½H3;II�ð1ÞUV ⊗ ½H3;II�ð2ÞUV þ ½H3;II�ð2ÞUV ⊗ ½H3;II�ð1ÞUV;

hð4Þ33;II;UV ¼ ½H3;II�ð2ÞUV ⊗ ½H3;II�ð2ÞUV þ ½H3;II�ð1ÞUV ⊗ ½H3;II�ð3ÞUV þ ½H3;II�ð3ÞUV ⊗ ½H3;II�ð1ÞUV;

hð4Þ24;UV ¼ ½H2�ð2ÞUV ⊗ ½H4�ð2ÞUV;

hð0Þ15;UV ¼ H1ðkÞ ⊗ ½H5�ð0ÞUV;

hð2Þ15;UV ¼ H1ðkÞ ⊗ ½H5�ð2ÞUV: ðE6Þ

APPENDIX F: TWO-LOOP BASIS POWER SPECTRA, IR AND UV PROPERTIES

In this appendix, we look into the IR and UV properties of the integrands given in Eq. (36). We first look at the I33 term,
which has two distinct contributions. It is convenient to remap the contributions (see Ref. [47]) as

I33;I ¼ 9PlinðkÞ
Z
q;p

H3ðk;−q; qÞ ⊗ H3ðk;−p; pÞPlinðqÞPlinðpÞ

¼ 9PlinðkÞ
Z
q;p
½H3ðk;−q; qÞ ⊗ H3ðk;−p; pÞΘðq − pÞ þ q ↔ p�PlinðqÞPlinðpÞ: ðF1Þ

The IR and UV limits can be expressed as

H3ðk;−q; qÞ ⊗ H3ðk;−p; pÞ

∼

8<
:

hð2Þ33;I;IRðk; q; p̂Þ k2

p2 þOðp0Þ; asp → 0;

hð0Þ33;I;UVðk̂; q; pÞ þ ðhð2Þ33;I;UVðk̂; q; pÞ k2

q2 þ q ↔ pÞ þ hð4Þ33;I;UVðk̂; q; pÞ k4

p2q2 þOðk5Þ; as k → 0;
ðF2Þ

and we can thus write the regularized integral as

Ĩ33;I ¼ 18PlinðkÞ
Z
q;p

�
H3ðk;−q; qÞ ⊗ H3ðk;−p; pÞ − hð2Þ33;I;IRðk; q; p̂Þ

k2

p2
WIR

33;I

−
�
hð0Þ33;I;UVðk̂; q; pÞ þ

�
hð2Þ33;I;UVðk̂; q; pÞ

k2

q2
þ q ↔ p

�
þ hð4Þ33;I;UVðk̂; q; pÞ

k4

p2q2

�
WUV

33;I

�
Θðq − pÞPlinðqÞPlinðpÞ:

ðF3Þ

Given that λ3 · ½H3;I�ð0ÞUV ¼ κ3 · ½H3;I�ð0ÞUV ¼ 0, both in EdS and ΛCDM case, the terms hð0Þ33;I;UV and hð2Þ33;I;UV are zero. We thus
have I33;IðkÞ ¼ Ĩ33;IðkÞ þ ½I33;I�IR þ ½I33;I�UV, where

½I33;I�IR ¼ 18PlinðkÞ
Z
q;p

hð2Þ33;I;IRðk; q; p̂Þ
k2

p2
WIR

33;IΘðq − pÞPlinðqÞPlinðpÞ ¼ ðhIR33;IWIR
33;IÞk2PlinðkÞ;

½I33;I�UV ¼ 9PlinðkÞ
Z
q;p

hð4Þ33;I;UVðk̂; q; pÞ
k4

p2q2
WUV

33;IPlinðqÞPlinðpÞ ¼ ðhUV33;IWUV
33;IÞk4PlinðkÞ: ðF4Þ

In the last integral we have reverted back to the symmetric form of the integrand. We used the fact that
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hIR33;I ¼
Z
q
ĥð2Þ33;I;IRðk; qÞσ22ðqÞPlinðqÞ; and hUV33;I ¼ 2ðhUV13 ⊗ hUV13 Þðσ22Þ2; ðF5Þ

where we have introduced the coefficients ĥð2Þ33;I;IRðk; qÞ ¼ 54
R dΩp̂

4π hð2Þ33;I;IRðk; q; p̂Þ, integrating the hð2Þ33;I;IR over p̂. We have
also introduced the variance due to the p modes smaller than q as

σ22ðqÞ ¼
1

3

Z
p
Θðq − pÞPlinðpÞ=p2 ¼ 1

3

Z
q

0

dp
2π2

PlinðpÞ: ðF6Þ

Note that the final IR term hIR33;IðkÞ is k dependent.

Next we consider the I33;II integral:

I33;II ¼ 6

Z
q;p

H3ðk − q − p; q; pÞ ⊗ H3ðk − q − p; q; pÞPlinðk − q − pÞPlinðqÞPlinðpÞ; ðF7Þ

which has leading divergencies when q and p go to zero, and when one of these momenta goes to zero while the other
approaches k. The subleading divergencies arise when q or p go to zero, while the other is finite, and when qþ p → k. Since
the integral can be symmetrized by introducing the delta function (see, e.g., Ref. [47]), we can remap some of these
divergencies into others by writing

I33;II ¼ 36

Z
q;p

H3ðk − q − p; q; pÞ ⊗ H3ðk − q − p; q; pÞΘðq − pÞΘðjk − q − pj − qÞPlinðk − q − pÞPlinðqÞPlinðpÞ; ðF8Þ

where the leading divergencies appear only when q and p go to zero and the subleading ones appear when q goes to zero for
finite p. The product of the kernels can be written as

H3ðk − q − p; q; pÞ ⊗ H3ðk − q − p; q; pÞ

∼

8<
:

hð2Þ33;II;IRðk; q; p̂Þ k2

p2 þ hð1Þ33;II;IRðk; q; p̂Þ k
p þOðp0Þ; asp → 0;

hð2Þ33;II;UVðk̂; p; qÞ k2

p2 þ hð3Þ33;II;UVðk̂; p; qÞ k3

p3 þ hð4Þ33;II;UVðk̂; p; qÞ k4

p4 þOðk5Þ; as k → 0:
ðF9Þ

We can thus write the regularized integral as

Ĩ33;II ¼ 36

Z
q;p

�
H3ðk − q − p; q; pÞ ⊗ H3ðk − q − p; q; pÞΘðjk − q − pj − qÞPlinðk − q − pÞ

−
�
hð2Þ33;II;IRðk; q; p̂Þ

k2

p2
þ hð1Þ33;II;IRðk; q; p̂Þ

k
p

�
WIR

33;IIΘðjk − qj − qÞPlinðk − qÞ

−
�
hð2Þ33;II;UVðk̂; p; qÞ

k2

p2
þ hð3Þ33;II;UVðk̂; p; qÞ

k3

p3
þ hð4Þ33;II;UVðk̂; p; qÞ

k4

p4

�
WUV

33;IIΘðjqþ pj − qÞPlinðqþ pÞ
�

× Θðq − pÞPlinðqÞPlinðpÞ: ðF10Þ

After integrating over the p̂ we see that the hð1Þ33;II;IR term does not contribute. Similarly, the contribution of hð2Þ33;II;UV and

hð3Þ33;II;UV vanish once contracted with λ3 and κ3. This is so since λ3 · ½H3;II�ð1ÞUV ¼ κ3 · ½H3;II�ð1ÞUV ¼ 0. Note also that only the

first term in hð4Þ33;II;UV actually contributes. To compute the full I33;II we have I33;IIðkÞ ¼ Ĩ33;II þ ½I33;II�IR þ ½I33;II�UV, where

½I33;II�IR ¼ 36

Z
q;p

hð2Þ33;II;IRðk; q; p̂Þ
k2

p2
WIR

33;IIΘðjk − qj − qÞΘðq − pÞPlinðk − qÞPlinðqÞPlinðpÞ ¼ ðhIR33;IIWIR
33;IIÞk2;

½I33;II�UV ¼ 6

Z
q;p

hð4Þ33;II;UVðk̂; p; qÞ
k4

p4
WUV

33;IIPlinðqþ pÞPlinðqÞPlinðpÞ ¼ ðhUV33;IIWUV
33;IIÞk4: ðF11Þ
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The leading IR contribution gives

hIR33;II ¼
Z
q
ĥð2Þ33;II;IRðk; qÞσ22ðqÞΘðjk − qj − qÞPlinðk − qÞPlinðqÞ; ðF12Þ

hUV33;II ¼
Z
q;p

ĥð4Þ33;II;UVðp; qÞPlinðqþ pÞPlinðqÞPlinðpÞ; ðF13Þ

where we have introduced the coefficients ĥð2Þ33;II;IRðk; qÞ ¼ 108
R dΩp̂

4π hð2Þ33;II;IRðk; q; p̂Þ. We also have the variance due to the p
modes smaller than q, defined in Eq. (F6). We have defined the short scale noise hUV33;II contribution, which is scale

independent given that ĥð4Þ33;II;UVðp; qÞ ¼ 6
R dΩk̂

4π hð4Þ33;II;UV=p
4.

Next we look first at the I24 terms. The integrals are of the form

I24 ¼ 12

Z
q;p

H2ðk − q; qÞ ⊗ H4ðk − q; q; p;−pÞPlinðk − qÞPlinðqÞPlinðpÞ; ðF14Þ

and the leading divergencies arise when p → 0 & q → 0, and p → 0 and q → k. The latter divergence can be remapped
again into p → 0 & q → 0 in the same way as was done for the I22 term. We have

I24 ¼
Z
p;q<jk−qj

þ
Z
p;q>jk−qj

¼ 24

Z
p;q

H2ðk − q; qÞ ⊗ H4ðk − q; q; p;−pÞΘðjk − qj − qÞPlinðk − qÞPlinðqÞPlinðpÞ:

The remaining divergencies are now in p → 0 and q → 0. Since the integral is not symmetric in these variables the two
divergencies are distinct. However, we can symmetrize the integral first to get

I24 ¼ 12

Z
p;q
½H2ðk − q; qÞ ⊗ H4ðk − q; q; p;−pÞPlinðk − qÞΘðjk − qj − qÞ þ q ↔ p�PlinðqÞPlinðpÞ: ðF15Þ

We can remap the integral as

I24 ¼ 24

Z
p;q
½H2ðk − q; qÞ ⊗ H4ðk − q; q; p;−pÞPlinðk − qÞΘðjk − qj − qÞ þ q ↔ p�Θðq − pÞPlinðqÞPlinðpÞ; ðF16Þ

where the q → 0 divergencies have been remapped into p → 0 ones. The two terms obviously give equal contributions to
the leading divergence while in the subleading case they are different. In the IR limit, we thus have

H2ðk − q; qÞ ⊗ H4ðk − q; q; p;−pÞ ∼
8<
:

hð2Þ24;I;IRðk; q; p̂Þ k2

p2 þOðp0Þ; asp → 0;

hð4Þ24;UVðk̂; q; pÞ k4

p4 þOðk5Þ; as k → 0;

H2ðk − p; pÞ ⊗ H4ðk − p; p; q;−qÞ ∼
8<
:

hð2Þ24;II;IRðk; q; p̂Þ k2

p2 þ hð1Þ24;II;IRðk; q; p̂Þ k
p þOðp0Þ; asp → 0;

hð4Þ24;UVðk̂; p; qÞ k4

q4 þOðk5Þ; as k → 0:
ðF17Þ

We thus have
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Ĩ24 ¼ 24

Z
p;q

��
H2ðk − q; qÞ ⊗ H4ðk − q; q; p;−pÞ − hð2Þ24;I;IRðk; q; p̂Þ

k2

p2
WIR

24;I

�
Plinðk − qÞΘðjk − qj − qÞ

þH2ðk − p; pÞ ⊗ H4ðk − p; p; q;−qÞPlinðk − pÞΘðjk − pj − pÞ

−
�
hð2Þ24;II;IRðk; q; p̂Þ

k2

p2
þ hð1Þ24;II;IRðk; q; p̂Þ

k
p

�
WIR

24;IIPlinðkÞ

−
�
hð4Þ24;UVðk̂; q; pÞ

k4

p4
PlinðqÞ þ q ↔ p

�
WUV

24

�
PlinðqÞPlinðpÞΘðq − pÞ: ðF18Þ

To compute the full I, we have I24 ¼ Ĩ24ðkÞ þ ½I24;I�IR þ ½I24;II�IR þ ½I24�UV, where

½I24;I�IR ¼ 24

Z
p;q

hð2Þ24;I;IRðk; q; p̂Þ
k2

p2
WIR

24;IΘðjk − qj − qÞΘðq − pÞPlinðk − qÞPlinðqÞPlinðpÞ ¼ ðhIR24;IWIR
24;IÞk2;

½I24;II�IR ¼ 24PlinðkÞ
Z
p;q

hð2Þ24;II;IRðk; q; p̂Þ
k2

p2
WIR

24;IIΘðq − pÞPlinðqÞPlinðpÞ ¼ ðhIR24;IIWIR
24;IIÞk2PlinðkÞ; ðF19Þ

where

hIR24;I ¼
Z
q
ĥð2Þ24;I;IRðk; qÞσ22ðqÞΘðjk − qj − qÞPlinðk − qÞPlinðqÞ; where ĥð2Þ24;I;IR ¼ 72

Z
dΩp̂

4π
hð2Þ24;I;IRðk; q; p̂Þ;

hIR24;II ¼
Z
q
ĥð2Þ24;II;IRðk; qÞσ22ðqÞPlinðqÞ; where ĥð2Þ24;II;IR ¼ 72

Z
dΩp̂

4π
hð2Þ24;II;IRðk; q; p̂Þ: ðF20Þ

The UV components give

½I24�UV ¼ 12

Z
p;q

hð4Þ24;UVðk̂; q; pÞ
k4

p4
WUV

24 PlinðqÞ2PlinðpÞ ¼ ðhUV24 WUV
24 Þk4; ðF21Þ

where

hUV24 ¼
Z
p;q

ĥð4Þ24;UVðq; pÞPlinðqÞ2PlinðpÞ; where ĥð4Þ24;UVðq; pÞ ¼ 12

Z
dΩk̂

4π
ĥð4Þ24;UVðk̂; q; pÞ: ðF22Þ

At last, let us look at the I15 term. The integrals are of the form

I15 ¼ 15PlinðkÞ
Z
q;p

H1ðkÞ ⊗ H5ðk; q;−q; p;−pÞPlinðqÞPlinðpÞ: ðF23Þ

The leading divergencies arise when p → 0 & q → 0. We can remap this so that we have

I15 ¼ 30PlinðkÞ
Z
q;p

H1ðkÞ ⊗ H5ðk; q;−q; p;−pÞθðq − pÞPlinðqÞPlinðpÞ: ðF24Þ

The IR and UV limits are

H1ðkÞ ⊗ H5ðk; q;−q; p;−pÞ ∼
8<
:

hð2Þ15;IRðk; q; p̂Þ k2

p2 þOðp0Þ; asp → 0;

hð0Þ15;UVðk̂; q; pÞ þ hð2Þ15;UVðk̂; q; pÞ k2

p2 þOðp0Þ as k → 0:

The regularized integrals are thus
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Ĩ15ðkÞ ¼ 30PlinðkÞ
Z
q;p

�
H1ðkÞ ⊗ H5ðk; q;−q; p;−pÞ −

k2

p2
hð2Þ15;IRðk; q; p̂ÞWIR

15

−
�
hð0Þ15;UVðk̂; q; pÞ þ hð2Þ15;UVðk̂; q; pÞ

k2

p2

�
WUV

15

�
θðq − pÞPlinðqÞPlinðpÞ: ðF25Þ

The contributions from hð0Þ15 vanish after contractions with the λ5 and κ5 coefficients. To compute the full integral we have
I15ðkÞ ¼ Ĩ15ðkÞ þ ½I15�IR þ ½I15�UV, with

½I15�IR ¼ 30PlinðkÞ
Z
q;p

hð2Þ15;IRðk; q; p̂Þ
k2

p2
WIR

15θðq − pÞPlinðqÞPlinðpÞ ¼ ðhIR15WIR
15Þk2PlinðkÞ;

½I15�UV ¼ 15PlinðkÞ
Z
q;p

hð2Þ15;UVðk̂; q; pÞ
k2

p2
WUV

15 PlinðqÞPlinðpÞ ¼ ðhUV15 WUV
15 Þk2PlinðkÞ: ðF26Þ

We have also introduced

hIR15 ¼
Z
q
ĥð2Þ15;IRðk; qÞσ22ðqÞPlinðqÞ and hUV15 ¼

Z
q
ĥð2Þ15;UVðq; pÞ

1

p2
PlinðqÞPlinðpÞ; ðF27Þ

where ĥð2Þ15;IRðk;qÞ¼90
R dΩp̂

4π h
ð2Þ
15;IRðk;q;p̂Þ, and ĥð2Þ15;UVðq;pÞ¼

15
R dΩk̂

4π h
ð2Þ
15;IRðk̂;q;pÞ=p2.

APPENDIX G: ONE- AND TWO-LOOP RESULTS
AT REDSHIFT z= 1.0

In this appendix, we present the results of one- and two-
loop contributions to the density-density, density-velocity,

and velocity-velocity power spectrum at redshift z ¼ 1.0,
similar to what was presented in Sec. IV for the z ¼ 0.0
case. In analogy to Fig. 4, the left panels of Fig. 6 show the
one-loop contributions for power spectra of density and
velocity fields at z ¼ 1.0: Pδδ, Pδθ, and Pθθ. We again show
the EdS results and the corresponding ΛCDM correction.
We see that the one-loop ΛCDM corrections at z ¼ 1.0 are
approximately two orders of magnitude smaller than the

FIG. 6. Plotted above are the same quantities shown in Fig. 4, but this time at z ¼ 1.0. Upper panels: absolute contributions of EdS
results (blue lines) compared to the ΛCDM corrections (red lines). We again see that the three different spectra Pδδ (dashed lines), Pδθ

(dotted-dashed lines), and Pθθ (solid lines) receive corrections of different size, whose relative importance is also a function of the scale
dependence of the EdS terms. Lower panels: ΛCDM corrections δPδδ, δPδθ, and δPθθ computed using the numerical evaluations of the
λn and κn coefficients (shown in dots). We also show the perturbative time-dependence computation as described in Sec. III up to the
third order (solid lines).
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one-loop EdS contributions. Note that in the wavelength
range where the EdS results exhibit the zero crossing, the
relative importance of ΛCDM correction is larger and
similar in magnitude to the two-loop EdS results.
Analogous results hold for the two-loop order, shown on

the right-hand side of Fig. 6. One can observe that the
corresponding ΛCDM corrections are approximately two
orders of magnitude smaller than the EdS results (except in
the Pθθ case for k < 0.1 h=Mpc, where the corrections can

reach up to 5%). Here too, the exception is the wave-
number interval in the proximity of the k value correspond-
ing to the zero crossing of the EdS result. The correction
due to such contributions can be partially mitigated once
the UV counterterms are added, as was shown for the
z ¼ 0.0 case in Fig. 5. In general, we see that these beyond-
EdS corrections are overall smaller and less relevant at
higher redshifts than is the case at z ¼ 0.0, as one would
expect.
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