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We present the first numerical analysis of causal, stable first-order relativistic hydrodynamics with ideal
gas microphysics, based in the formalism developed by Bemfica, Disconzi, Noronha, and Kovtun (BDNK
theory). The BDNK approach provides definitions for the conserved stress-energy tensor and baryon
current, and rigorously proves causality, local well-posedness, strong hyperbolicity, and linear stability
(about equilibrium) for the equations of motion, subject to a set of coupled nonlinear inequalities involving
the undetermined model coefficients (the choice for which defines the “hydrodynamic frame”). We present
a class of hydrodynamic frames derived from the relativistic ideal gas “gamma-law” equation of state which
satisfy the BDNK constraints, and explore the properties of the resulting model for a series of ð0þ 1ÞD
and ð1þ 1ÞD tests in 4D Minkowski spacetime. These tests include a comparison of the dissipation
mechanisms in Eckart, BDNK, andMüller-Israel-Stewart theories, as well as investigations of the impact of
hydrodynamic frame on the causality and stability properties of Bjorken flow, planar shockwave, and heat
flow solutions.
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I. INTRODUCTION

Relativistic fluid theories have served as an essential
tool in modeling a remarkably diverse set of high-energy
systems, examples of which range from the quark-gluon
plasma (QGP), a tiny soup of quarks and gluons interacting
according to quantum chromodynamics [1], to the Universe
itself, composed of 1011 galaxies [2], dark matter, and dark
energy, all interacting gravitationally [3]. The apparent
differences between these two systems—and the many
others well described by fluid models—are bridged by the
ubiquity of the two requirements for applying hydrody-
namics: (1) that interactions between constituents occur
often, and (2) that the interaction length scale l is much
smaller than the macroscopic size of the system, L [4].
The latter condition is commonly expressed in terms

of a dimensionless ratio known as the Knudsen number
Kn≡ l=L, and hydrodynamics is expected to be applicable
when Kn ≪ 1. In the limit Kn → 0, interactions occur
instantaneously, the system always remains in thermody-
namic equilibrium, and one observes a perfect (ideal) fluid.
Real fluids, however, have Kn ≠ 0 and pick up corrections
beyond ideal hydrodynamics. At finite Kn, equilibration

takes finite time, and these corrections drive the system
toward thermodynamic equilibrium, for example by
allowing the transfer of energy (through heat conduction)
or the transfer of momentum (by viscosity).
Recent progress on the experimental front has made it

possible to detect these finite-Kn dissipative effects in
relativistic systems, most notable of which is the afore-
mentioned QGP [5], though there are also significant
indications that such effects may be relevant to cosmo-
logical models [6,7] and binary neutron star mergers
[8–12]. This experimental progress has directed significant
research interest toward the theoretical development of
relativistic dissipative hydrodynamics, whose origins
extend back as early as the 1940s with the “relativistic
Navier-Stokes” theories of Eckart [13] and Landau-Lifshitz
[14]. These early models are built upon the conserved
currents of ideal hydrodynamics, and are likewise para-
metrized by a set of “hydrodynamic variables” describing
the thermodynamic state of the system. Dissipation is
incorporated by adding to the conserved currents first-
order gradients of the hydrodynamic variables, which can
be roughly understood as corrections at linear order in Kn.
Working at finite Kn brings additional complications,
however, in that the fluid can now be outside of thermo-
dynamic equilibrium, where the hydrodynamic variables
(e.g., temperature and flow velocity) no longer have a
unique definition (the only restriction is that they agree with
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thermodynamic observables upon equilibration). Eckart
and Landau-Lifshitz each proposed their own method
for fixing these definitions (now referred to as fixing a
“hydrodynamic frame”), but it was later shown that
both prescriptions lead to fluid theories possessing acausal
solutions with unstable thermodynamic equilibria [15,16],
after which the theories were largely abandoned in favor
of a new approach developed by Müller, Israel, and
Stewart (MIS) [17–19]. Their formalism—henceforth
MIS theory—involves promoting dissipative corrections
to independent degrees of freedom and evolving them in a
way that makes them gradually approach their relativistic
Navier-Stokes values, rather than obtaining them instanta-
neously. This gradual application of dissipation appears to
remedy the pathologies present in the Eckart and Landau-
Lifshitz theories, and MIS-type approaches have since seen
significant success in modeling heavy-ion collisions [5,20].
An alternative approach to fix the issues of the Eckart

and Landau-Lifshitz theories is to make a better choice
for the hydrodynamic frame. This is precisely the method
underlying the so-called BDNK formalism, developed by
and named for Bemfica, Disconzi, Noronha [21,22], and
Kovtun [23]. Different from MIS theories, these equations
only include first-order dissipative terms (i.e., bulk and
shear viscosities, as well as heat conductivity), leading to
the same overall number of equations of motion as ideal
hydrodynamics, albeit now as second-order partial differ-
ential equations (PDEs). This leads to a simplification,
compared to MIS theories which can capture the full
second-order dissipative sector, e.g., [24]. The major
advantage of this restriction to first-order dissipation is
the ability to rigorously prove that the resulting theory is
causal, strongly hyperbolic, consistent with the second law
of thermodynamics, and (linearly) stable about thermody-
namic equilibrium [22]. Most of these properties have not
been proven for MIS-type theories, and examples of subtle
pathologies have arisen over the years,1 obscured by the
more complicated PDE structure. Finally, it has been
shown that using a novel perturbative expansion of the
Boltzmann equation allows one to derive BDNK hydro-
dynamics directly from kinetic theory [29], and that
generalizing the entropy argument of Israel and Stewart
[19] results in a variant of MIS theory containing BDNK as
its first-order truncation [30]. These results underscore the
ties between BDNK and MIS-type theories, and highlight
that both approaches can be consistently derived from a
description of the microscopic physics.
These reasons motivate further investigation of BDNK

theory as a potential alternative to MIS-based approaches.

In part due to how recently the BDNK formalism was
developed (the late 2010s), all numerical studies up to this
point have assumed a fluid with an underlying conformal
symmetry and zero chemical potential (see, e.g., [31–33]),
a system often used as a toy model for a QGP in the limit of
infinite temperature. Most fluids of interest do not possess
such a symmetry, however, and will generically have finite
chemical potential. Furthermore, the conformal model
vastly reduces the theory’s space of solutions, as the baryon
current cannot backreact on the stress-energy tensor, the
bulk viscosity vanishes identically, and there are no non-
trivial heat flow solutions (in the sense that temperature
gradients imply pressure gradients, so there are no dynami-
cal solutions with a thermal gradient at constant pressure).
In ideal hydrodynamics, generalizing from a conformal

fluid to a nonconformal one would only require changing
the equation of state. In relativistic dissipative fluid theories
the task is appreciably more difficult, however, as one must
derive and constrain a set of so-called transport coefficients
weighting the nonequilibrium corrections, bad choices for
which lead to the pathologies that plagued the Eckart and
Landau-Lifshitz theories. In this work, we make use of the
BDNK formalism to derive the first relativistic dissipative
fluid model outside of the conformal limit which is causal,
strongly hyperbolic, consistent with the second law of
thermodynamics, and linearly stable about thermodynamic
equilibrium. Our model incorporates the microphysics of
the relativistic ideal gas, and employs the “gamma-law”
equation of state commonly used in astrophysics (see,
e.g., [4]). In this study, we define the model and derive all
of the required transport coefficients, and then investigate
the properties of the resulting theory in a set of test
problems in 4DMinkowski spacetime with varying degrees
of spatial symmetry. Through these problems, we explore
the new phenomena which arise outside of the conformal
model, and also make use of the unique construction of
BDNK theory—in particular, the fact that the theory
provides allowed ranges for the transport coefficients—
to study where and why pathologies arise when violating
these constraints. Such an investigation is motivated in light
of the fact that the pathologies of the Eckart and Landau-
Lifshitz theories went largely unnoticed for decades, and
that even recent studies have shown that acausality (in the
sense of possessing superluminal characteristics) appears
“asymptomatically” in numerical simulations [27], often
going unnoticed.
In these tests, we investigate the dissipation mechanism

of BDNK theory, and show that in many ways it resembles
the “relaxation” structure characteristic of MIS-type theo-
ries. We find that the qualitative behavior of solutions is
typically unaffected by the presence of “slightly” super-
luminal characteristics, and for problems with sufficient
spatial symmetry we observe no such change even as the
maximum local characteristic speed is taken to infinity.
Such cases do come with numerical challenges, however,

1The original formulation of MIS theory has been shown to
break down for sufficiently fast shock waves [25]; many MIS
simulations of heavy-ion collisions violate causality, unless a
set of dynamical constraints are satisfied [26,27]; and smooth
solutions have been shown to break down in finite time
(specifically in a formulation with only bulk viscosity) [28].
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as the equations become “stiff” and require exceedingly
small time steps to integrate as the characteristic speeds are
increased. For less symmetric problems, we find that cases
with sufficiently superluminal characteristics exhibit a very
fast instability, which may be related to the fact that strictly
subluminal characteristic speeds are required for the proof
of linear stability in [22]. One can also excite instabilities
for strictly causal solutions by violating the BDNK linear
stability constraints. We consider such cases here as well,
and again find that small violations of the constraints
appear without a qualitative change in the solution;
instabilities only set in for choices of parameters well
outside the provided bounds.
We begin in Sec. II with an overview of relativistic

hydrodynamics outside of equilibrium, and briefly review
the BDNK formalism. We define the BDNK conserved
currents, and summarize the microphysics of interest for
this work before providing a class of hydrodynamic
frames consistent with the proofs of [22]. In Sec. III A,
we investigate the behavior of BDNK theory on simple
isotropic equilibrium states, and compare its dissipation
mechanism against that of Eckart theory and an example
from the class of MIS theories. In Sec. III B, we analyze
the effect of the relaxation times on the qualitative
behavior of Bjorken-type uniformly expanding flows,
and comment on the impact of superluminal character-
istics on the solution. We extend this investigation with a
discussion of planar shockwave solutions in Sec. III C,
and conclude our results in Sec. III D with an investigation
of “pure” heat flow solutions, which exist for the ideal gas
model but not for a conformal fluid, and an analysis of
how hydrodynamic frame impacts causality and stability
of these solutions. We briefly overview and discuss our
results in Sec. IV, and include a detailed explanation of
the choice of transport coefficients in Appendix A. Details
about the numerical method and convergence tests are
included in Appendix B.

II. MODEL

In this study we focus on the properties of BDNK theory,
and specialize to fluids in ð3þ 1ÞD Minkowski spacetime.
We use the “mostly plus” metric signature ð−þþþÞ, and
employ the Einstein summation convention with spacetime
indices fa; b; c; d; eg; we restrict the usage of the letters
fi; j; kg to denote spatial indices.
The remainder of this section overviews the gradient

expansion approach to hydrodynamics from which BDNK
theory is derived, defines the BDNK conserved currents,
and then derives the required transport coefficients from
the microphysics of the relativistic ideal gas “gamma-law”
equation of state.
The equations of relativistic hydrodynamics are written

with varying notation in the literature; here we most closely
follow the notation of [22]. Table I summarizes our notation
and common alternatives from the literature.

A. The gradient expansion

Most relativistic fluid models are constructed by positing
definitions for conserved currents, usually a stress-energy
tensor Tab and a baryon current Ja, which are parametrized
by a set of hydrodynamic variables. These variables are
drawn from the thermodynamic description of the system,
and often include quantities such as the energy density ϵ,
baryon number density n, and (timelike) flow velocity ua;
other choices of parameters are possible as well, though, as
one may use the laws of thermodynamics to exchange these
quantities for others (for example, ϵ, n may be exchanged
for the local temperature and baryon chemical potential, T
and μ). Given the conserved currents, one may evolve the
state of the fluid forward through time using the corre-
sponding conservation laws

∇aTab ¼ 0; ð1Þ

∇aJa ¼ 0: ð2Þ

The simplest (and most commonly used) relativistic fluid
model is that of ideal (perfect fluid) hydrodynamics, which
assumes the system is always locally in thermodynamic
equilibrium and has conserved currents

Tab
0 ¼ ϵuaub þ PΔab; ð3Þ

Ja0 ¼ nua; ð4Þ

where the tensor

Δab ≡ gab þ uaub ð5Þ

projects onto the space orthogonal to the flow velocity ua

and the isotropic pressure P ¼ Pðϵ; nÞ defines the equation
of state. Inserting (3)–(4) into (1)–(2) yields a set of coupled
nonlinear first-order PDEs known as the relativistic Euler
equations. Since ideal hydrodynamics assumes the fluid to
always be in local thermodynamic equilibrium, entropy-
generating dissipative processes such as viscosity and heat

TABLE I. Summary of notation used in this work, as well as
alternative notation commonly used in the literature (such as, for
example, [4]).

Quantity This work Lit. alternatives

Energy density ϵ e
Specific internal energy e ϵ
Pressure P p
Energy densityþ pressure ρ eþ p
Rest mass density mn ρ
Adiabatic index Γ γ
Entropy density s s̃, s̄
Entropy per particle s̄ s, s̃
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conduction are neglected; to study these phenomena, one
needs to generalize beyond the perfect fluid.
A modern approach to construct a nonequilibrium fluid

theory is to use the so-called gradient expansion, which
assumes (1) that the system is near enough to equilibrium
that it may be parametrized by the same set of hydro-
dynamic variables used to describe equilibrium fluids and
(2) that gradients of these variables (which may be thought
of as fluctuations about equilibrium) can be treated as
small quantities. Given these assumptions, the “near-
equilibrium” conserved currents may be written as

Tab ¼ Tab
0 þOð∇Þ þOð∇2Þ þ � � � ;

Ja ¼ Ja0 þOð∇Þ þOð∇2Þ þ � � � ; ð6Þ

where the Oð∇Þ term includes a linear combination of all
one-gradient terms constructed from the hydrodynamic
variables, the Oð∇2Þ term includes products of all one-
gradient terms as well as two-gradient terms, so on and
so forth. Since each successive term is assumed to be
smaller than the one before it, one should be justified in
truncating the series at some order in gradients.2 BDNK
theory is constructed up to first order in gradients, and
drops terms of Oð∇2Þ and higher; most formulations
of MIS theory include second-order gradients (though
they are not derived by explicit reference to a gradient
expansion) [17–19,36], and a third-order theory has
been constructed but to our knowledge has not been
applied [37,38].
To construct a fluid theory up to a given order in

gradients, it is conventional to first decompose the
stress-energy tensor and baryon current with respect to
the flow velocity ua via

Tab ¼ Euaub þ PΔab þQaub þQbua þ T ab; ð7Þ

Ja ¼ N ua þ J a; ð8Þ

where the script quantities are projections of the conserved
currents defined by

E ¼ uaubTab; P ¼ 1

3
ΔabTab; Qa ¼ −ΔabucTbc;

T ab ¼ Thabi; N ¼ −uaJa; J a ¼ ΔabJb; ð9Þ

where the angle brackets around a pair of indices denote the
traceless part of a rank-two tensor which is also orthogonal
to the flow velocity in both indices, namely

Xhabi ≡ 1

2

�
ΔacΔbdXcd þ ΔadΔbcXcd −

2

3
ΔabΔcdXcd

�
:

ð10Þ

Inserting (9) into (7)–(8) simply yields the identity; con-
structing a fluid model involves replacing (9) with a set of
constitutive relations defining the script quantities E, P,
Qa, T ab, N , J a in terms of the hydrodynamic variables
(here ϵ, n, ua). For ideal hydrodynamics, E0 ¼ ϵ, P0 ¼ P,
N 0 ¼ n, and the purely dissipative terms all vanish,
Qa

0 ¼ T ab
0 ¼ J a

0 ¼ 0.

B. BDNK theory

The key result of the BDNK formalism is that a sensible
relativistic viscous fluid theory may be constructed by
adding terms of Oð∇Þ to the conserved currents Tab, Ja,
contrary to the expectation that arose after the Eckart
and Landau-Lifshitz theories were shown to be acausal
and thermodynamically unstable in the 1980s [15,16]. The
authors of [22] were able to prove that a generalized version
of Eckart’s theory can be rendered causal, (linearly) stable
about equilibrium, consistent with the second law of
thermodynamics, and strongly hyperbolic, provided one
makes good choices for the (transport) coefficients weight-
ing the gradient terms. In this work, we will use this
generalized Eckart theory and derive a set of transport
coefficients based in ideal gas microphysics which
are consistent with the requirements laid out in [22],
thus obtaining a theory with all of the aforementioned
properties.
The conserved currents used in [22] (hereafter referred to

as the BDNK conserved currents) are defined to be (7)–(8)
with the definitions

E ¼ ϵþ τϵ½uc∇cϵþ ρ∇cuc�; ð11Þ

P ¼ P − ζ∇cuc þ τP½uc∇cϵþ ρ∇cuc�; ð12Þ

Qa ¼ τQρuc∇cua þ βϵΔac∇cϵþ βnΔac∇cn; ð13Þ

T ab ¼ −2ησab ≡ −2η∇haubi; ð14Þ

N ¼ n; ð15Þ

J a ¼ 0: ð16Þ

Throughout we have used the shorthand

ρ≡ ϵþ P: ð17Þ

Note that these definitions imply the BDNK baryon
current (8), (15)–(16) is identical to that of ideal hydro-
dynamics (4). The same is not true for the stress-energy
tensor, however, as the terms E, P now incorporate gradient

2The expansion (6) should not be interpreted to mean that
higher-order gradient theories are necessarily superior to lower-
order ones. In fact, there is evidence that issues arise in theories
beyond first order in gradients—see [34,35].
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corrections to the energy density and pressure, respectively;
Qa is the heat flux vector; and σab is known as the shear
tensor. The quantities βi appearing in Qa are defined in
terms of the substance’s underlying microphysics by

βϵ ¼ τQp0
ϵ þ

σ

ρ
κϵ; ð18Þ

βn ¼ τQp0
n þ

σ

n
κn; ð19Þ

where we have defined the shorthand

p0
ϵ ≡

�
∂P
∂ϵ

�
n
; ð20Þ

p0
n ≡

�
∂P
∂n

�
ϵ

; ð21Þ

κϵ ≡ ρ2T
n

�
∂ðμ=TÞ
∂ϵ

�
n
; ð22Þ

κn ≡ ρT

�
∂ðμ=TÞ
∂n

�
ϵ

; ð23Þ

κs ≡ κϵ þ κn; ð24Þ

where Tðϵ; nÞ is the temperature of the fluid, μðϵ; nÞ is
the (relativistic) chemical potential, and subscripts on the
parentheses mean that the subscripted quantity is being held
constant while the derivative in parentheses is evaluated.
In ð3þ 1ÞD spacetime, the system (1)–(2) provides five

equations of motion to evolve the five unknowns ϵ, n, and
three components of ua (the fourth component is deter-
mined by the fact that ua is timelike, ucuc ¼ −1). To solve
these equations, however, one must specify the equation of
state Pðϵ; nÞ as well as the eight transport coefficients, τϵ,
τP, τQ, η, ζ, σ, βϵ, βn. The latter naturally fall into three
categories. The first three are relaxation times τϵ, τP, τQ,
and they determine the timescales over which dissipation
impacts the solution. The coefficients η, ζ, σ determine the
strength of the dissipative effects, and are known as the
shear viscosity, bulk viscosity, and thermal conductivity,
respectively. Finally the coefficients βϵ, βn appear only in
Qa and control the contributions of energy density and
baryon density gradients to the heat flux. The choice for
these eight coefficients defines the “hydrodynamic frame,”
and must satisfy the constraints laid out in [22] in order to
produce a hydrodynamic theory which is causal, strongly
hyperbolic, and well posed, with stable equilibrium states.

C. Relativistic ideal gas microphysics

In this study we specialize to fluids with the so-
called gamma-law equation of state, derived from the
thermodynamics of the relativistic ideal gas:

Pðϵ; nÞ ¼ ½Γ − 1�mneðϵ; nÞ ¼ nTðϵ; nÞ; ð25Þ

where Γ ∈ ð1; 2Þ is the adiabatic index. The specific
internal energy is defined to be the system’s total internal
energy divided by its total mass, e≡ U=ðmNÞ (where
N ¼ nV is the total number of particles, V is the system
volume), and is related to the total energy density by

ϵ ¼ mnð1þ eÞ: ð26Þ

One can see that (26) is simply the statement that the total
energy density is the sum of the rest mass energy density
mn and the internal energy density mne ¼ U=V.
Note that (18)–(19) also require us to take derivatives of

the quantity μ
T ðϵ; nÞ. This quantity can be computed using

the laws of thermodynamics, specifically the Euler relation
U ¼ TS − PV þ μNN (where μN is the Newtonian chemi-
cal potential), which may be written using (26) as

ρ ¼ Tsþ nμ; ð27Þ

where μ≡ μN þm is the relativistic chemical potential.
We will need to compute the entropy density s≡ S=V,
which can be done using the first law of thermodynamics
dU ¼ TdS − PdV þ μdN written in the form

de ¼ Td

�
s
nm

�
− Pd

�
1

nm

�
; ð28Þ

which we can expand, divide by dn, substitute for P, T
using (25), and integrate to find

sðϵ; nÞ ¼ mn

�
1

ðΓ − 1Þm ln

�
eðϵ; nÞ
nΓ−1

�
þ const

�
: ð29Þ

Inserting (29) into (27) yields the final result

μðϵ; nÞ ¼ mþmeðϵ; nÞ
�
Γ − ln

�
eðϵ; nÞ
nΓ−1

�
þ const

�
: ð30Þ

Using (25)–(26), (30) one can now compute all of the
required microphysics-based derivatives (20)–(23), which
are these:

p0
ϵ ¼ Γ − 1; ð31Þ

p0
n ¼ −ðΓ − 1Þm; ð32Þ

κϵ ¼ −ðΓ − 1Þ ϵρ
2

n2P
; ð33Þ

κn ¼
ρ

n2P
½ðΓ − 1Þϵ2 þ P2�; ð34Þ
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so

βϵ ¼ ðΓ − 1ÞτQ − ðΓ − 1Þ σϵρ
n2P

; ð35Þ

βn ¼ −ðΓ − 1ÞmτQ þ σρ

n3P
½ðΓ − 1Þϵ2 þ P2� ð36Þ

for the relativistic ideal gas.
We will also need to compute a few other quantities from

the microphysics, including the sound speed (squared)

c2s ≡
�
∂P
∂ϵ

�
s̄
¼

�
∂P
∂ϵ

�
n
þ n

ρ

�
∂P
∂n

�
ϵ

¼ ΓP
ρ

; ð37Þ

where s̄≡ S=N is the entropy per particle, and

κs ¼ −ðΓ − 1Þm ρ

n
; ð38Þ

ω≡ κs
κϵ

¼ mnP
ϵρ

; ð39Þ

α≡ p0
ϵ

c2s
¼ Γ − 1

c2s
; ð40Þ

which appear in our choice of hydrodynamic frame in the
following subsection as well as the linear stability con-
straints (see Appendix A).

D. Hydrodynamic frame

In the following, we will discuss our choice of hydro-
dynamic frame, which can critically affect the outcome of
the evolution, i.e., only certain choices of hydrodynamic
frames will be causal, stable about equilibrium states,
consistent with the second law of thermodynamics, and
strongly hyperbolic. We will provide a more in-depth
discussion of the implications of this frame choice in
Sec. III A, and limit ourselves to just specifying our choice
of frame in this subsection.
The evolution of the dissipative sector is governed by six

transport coefficients: the relaxation times τϵ, τP, τQ and the
“physical” dissipative coefficients η, ζ, σ, all of which will
typically depend on the hydrodynamic variables (here ϵ, n).
For these six quantities, we introduce a new class of
hydrodynamic frames defined by

η ¼ ρc2sLη̂; ζ ¼ ρc2sLζ̂; σ ¼ V̂Lρc2s
ð−κϵÞ

σ̂;

τϵ ¼ τQ ¼ LV̂ τ̂; τP ¼ 2ðΓ − 1ÞLV̂; ð41Þ

where all of the hatted quantities are dimensionless, and we
have defined the shorthand

V ≡ 4η

3
þ ζ; ð42Þ

V̂ ≡ V
ρc2sL

≡ Re−1; ð43Þ

so V is a combined viscosity. The quantity V̂ acts like
an inverse Reynolds number3 in the sense that it is a
dimensionless ratio involving the viscosity V, a measure of
the (energy) density ρ, a characteristic flow speed cs, and
a characteristic length scale L > 0. Note that we have
factored the transport coefficients so that they are propor-
tional to a dimensionless free parameter (denoted with a
hat) and a dimensionful free parameter (the length scale L).
The dimensionless parameters η̂, ζ̂, σ̂, τ̂ may be freely
modulated according to the physics one wants to inves-
tigate. The dimensionful parameter, however, should be
set based upon the length scale of interest, for example by
specifying the total viscosity V, an effective Reynolds
number Re, then solving (43) for L; another option would
be to set L ∼ τi=v, where τi is a relaxation time and v is the
three-velocity of the flow; see also, for example, the power-
counting scheme of [39]. For the sake of simplicity, we set
L ¼ 1 in this work.
In this class of hydrodynamic frames, the quantities

η̂ > 0, ζ̂ ≥ 0, σ̂ ≥ 0 may be treated as free parameters
determining the amount of shear viscosity, bulk viscosity,
and thermal conductivity in the model. The three relaxation
times have only a single free parameter τ̂, which fixes the
characteristic speeds. It is important to point out that for this
reason the class of hydrodynamic frames (41) is not the most
general one. We find that this restriction is not too severe,
however, as we are only ever interested in fixing a single
characteristic speed, namely the maximum speed cþ (A15),
as it determines causality and the stability of fast flows (see
Sec. III C). The benefit of this restriction is made clear when
attempting to satisfy the BDNK constraints, which can be
done analytically in this case; see Appendix A.
The set of frame constraints laid out in [22] for the

frame (41)–(43) are all satisfied provided

σ̂ ≤
1

3
; τ̂ ≥

ðΓ − 1Þð2 − c2sÞ þ c2s
1 − c2s

; ð44Þ

where the constraint on σ̂ ensures linear stability and the τ̂
constraint ensures causality. The causality constraint in (44)
is simpler4 and places a higher lower bound on τ̂ than the
precise BDNK causality constraints derived from the frame
ansatz (41); for those, see Appendix A. Note that c2s → 1

3The nonrelativistic Reynolds number is typically defined to
be ReNR ≡ ðmnÞvL=η, where v is the flow speed and L is a
characteristic length. Our effective inverse Reynolds number (43)
differs in that the mass density is replaced by a measure of the
total energy density ρ, v is replaced by c2s (which must be divided
by a factor of c in units where c ≠ 1) and η → V.

4An even simpler causal bound on τ̂ may be obtained by taking
Γ → 2, which yields τ̂ ≥ 2

1−c2s
and bounds jcþj to be smaller than

the causality constraint in (44).
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requires τ̂ → ∞ in order for the characteristic speeds to
remain subluminal; this is a limitation of the frame
ansatz (41), and for systems in which the sound speed is
expected to be very close to the speed of light one would
likely need a different hydrodynamic frame.

III. RESULTS

In this section we explore the properties of the model
presented in Sec. II. In particular, we investigate the
behavior of solutions to the equations in ð3þ 1ÞD
Minkowski spacetime, assuming various degrees of spatial
symmetry. We focus on dissipative effects missing in the
previous studies [31,32] which considered a conformal
fluid at zero baryon chemical potential, namely bulk
viscosity and thermal conductivity. That said, we only
consider test problems in flat spacetime with variation in at
most one spatial dimension; this high degree of symmetry
renders the bulk and shear viscosities degenerate in the
sense that they only appear in the combination V (42) in the
equations of motion. We can still study the effect of this
combined viscosity here, however, and the spatial sym-
metry does not constrain the thermal conductivity (which
we consider in Sec. III D).
In the subsections that follow, we explore how static

(trivial) equilibrium states illustrate that the BDNK equa-
tions incorporate similar “relaxation”-type behavior to
MIS-type theories (Sec. III A), after which we consider
how the choice of hydrodynamic frame impacts uniformly
expanding (Bjorken) flows (Sec. III B). We then generalize
the analysis on steady-state shockwave solutions from [31]
to arbitrary BDNK fluids, and study solutions for the
ideal gas microphysics presented earlier in Sec. III C. We
conclude the section by considering how the thermal
conductivity expands the space of nontrivial solutions,
and further consider how hydrodynamic frame determines
the stability of such states in Sec. III D.
In order to obtain the numerical results presented

throughout this section, one must specify several model
parameters. Rather than repeatedly stating these in the text,
we summarize the parameters used to produce each of the
figures below in Table II.

A. Trivial equilibrium states and the structure
of BDNK theory

In this section, we aim to briefly compare the structure
of Eckart, MIS, and BDNK theories to better understand
the cause of pathologies (in the case of Eckart theory) and
how those pathologies are avoided (in MIS and BDNK
theories). Eckart theory can be obtained from BDNK
theory in a very simple way by taking the BDNK conserved
currents (7)–(8), and setting

Eckart frame∶ τϵ ¼ τP ¼ 0; τQ ¼ −
κT
ρ
; ð45Þ

where5 the thermal conductivity coefficient is

κ ≡ σρ2

n2T
; ð46Þ

and the Eckart particle current is given by Ja0 (4). Note
that Eckart theory badly violates the assumptions under-
lying the BDNK formalism’s proofs of causality, linear
stability, and strong hyperbolicity, each of which takes τϵ,
τP, τQ > 0.
MIS-type theories can be written in the form

Tab
MIS ¼ Tab

0 þ πab; ð47Þ

where Tab
0 is the perfect fluid stress-energy tensor (3) and

we will for the sake of comparison take the MIS baryon
current to be (4). The tensor πab incorporates all of the
dissipative effects present in the theory, and is evolved
using a set of “relaxation-type” equations of the form

uc∇cπ
ab ¼ 1

τπ
ðπabNS − πabÞ þ Iab; ð48Þ

where the tensor πabNS includes dissipative effects from a
relativistic Navier-Stokes theory (typically either Eckart
theory or Landau-Lifshitz theory elsewhere), and Iab are
additional higher-order corrections not present in πabNS. For
the sake of simplicity we will take Iab ¼ 0. We define πabNS
to be the most general linear combination of terms with a
single gradient of the hydrodynamic variables (i.e., the
general-frame first-order dissipative correction)

πabNS ¼ Auaub þ BΔab þ Caub þ Cbua þDab;

A ¼ c1uc∇cϵþ c2uc∇cnþ c3∇cuc; ð49Þ

TABLE II. Parameters used in the numerical tests whose results
are shown in Figs. 1–6.

Figure Γ m V̂ σ̂ τ̂

1 4
3

1 1
10

0 0.5, 1,2

2 4
3

0.1 2
15

0 1.5

3 4
3

0.1 4
3

0 1.5, 3

4 4
3

0.1 4
3

0 0.25, 0.4, 0.5, 1.5

5 4
3

0.1 2
15

0; 1
3

1.5

6 4
3

0.1 2
15

0.15, 1.5, 7.5 1.5, 15, 75

5The Eckart heat flux vector is typically written Qa
E ¼

−κTðuc∇cua þ Δac=T∇cTÞ, which can be obtained from (13),
(45)–(46) and the thermodynamic identity (82). Written in this
form, the BDNK heat flux Qa is simply the Eckart heat flux Qa

E
plus the transverse projection of the relativistic Euler equa-
tions (61), which is second order in gradients on shell.
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where we have performed the same decomposition on πab

as was done for Tab to get (7), so uaCa ¼ uaDab ¼ 0. We
will only need the definition of A in the analysis below,
and we weight the three unique Oð∇Þ scalar terms with
undetermined gradient-free coefficients c1, c2, c3. Note that
because we are taking the most general definition for πabNS
up to Oð∇Þ, uaubπabNS ≠ 0, different from most implemen-
tations of MIS theory (which use the Landau frame
wherein A ¼ Ca ¼ 0).
To compare the structure of the Eckart, MIS, and BDNK

theories, we will consider a very restrictive set of initial
data,

ϵ; n ≠ 0; ϵ;i ¼ n;i ¼ ui ¼ 0; ðEckart;BDNK;MISÞ
_ui ¼ 0; ðEckartÞ
_ϵ ≠ 0; _ui ¼ 0; ðBDNKÞ
πtt ≠ 0; πab;i ¼ πai ¼ 0; ðMISÞ

ð50Þ

where _X ≡ ∂tX, X;i ≡ ∂iX, a is a spacetime index, i is a
purely spatial index, and all quantities above are indepen-
dent of xi making the system spatially isotropic. Note that
in general the Eckart and BDNK theories include second-
order PDEs in ϵ, ua, and thus we must specify time
derivatives _ϵ, _ui at t ¼ 0 [though in Eckart theory _ϵ only
appears in the heat flux vector, which vanishes due to
spatial symmetry here, leaving only _ui freely specifiable in
(50)]. MIS-type theories, on the other hand, do not require
specification of _ϵ, _ui, but do require values for πab. To
choose a set of data roughly consistent between the Eckart,
BDNK, and MIS theories, we set nearly all time derivatives
and components of πab to zero, leaving only _ϵ; πtt ≠ 0
so that the “energy density” Ttt has a “nonequilibrium”
contribution, if the theory allows for one (Eckart theory
does not).
Starting with the baryon current conservation law (2), we

find that the initial data (50) for all three theories implies

_n ¼ 0; ð51Þ

so n is a constant in space and in time. Moving on to the
stress-energy conservation law (1), one finds only the t
component is nontrivial:

Ttt
;t ¼ 0 ⇒ Ttt ¼ const; ð52Þ

because all off-diagonal components and spatial derivatives
in the conservation law vanish (Tti ¼ Tij

;i ¼ 0) due to the
spatial isotropy of the system. For Eckart theory, (52)
combined with the definition of the Eckart stress-energy
tensor (7), (11), (45) implies

ϵ ¼ Ttt; ðEckartÞ ð53Þ

and there are no dynamics. For BDNK theory, (52) instead
entails

ϵþ τϵ _ϵ ¼ Ttt; ðBDNKÞ ð54Þ

which is a first-order ordinary differential equation (ODE)
in t and does have dynamics if _ϵ is chosen to be nonzero at
t ¼ 0. Finally, MIS theory has equations of motion coming
from (52) as well as (48):

ϵþ πtt ¼ Ttt; _πtt ¼ 1

τπ
ðc1 _ϵ − πttÞ; ðMISÞ ð55Þ

after noting that Δtt ¼ Ct ¼ Dtt ¼ 0 because they are all
orthogonal to ua by definition, and that ∇cuc vanishes
due to spatial isotropy. The left equation of (55) implies
πtt ¼ Ttt − ϵ, and its time derivative implies _ϵ ¼ − _πtt.
Using these two facts in the equation of (55) on the right,
we can eliminate πtt to obtain a single equation for MIS
theory which can be directly compared to the Eckart and
BDNK theory equations:

ϵ ¼ Ttt; ðEckartÞ

_ϵ ¼ 1

τϵ
ðTtt − ϵÞ; ðBDNKÞ

_ϵ ¼ 1

τπ þ c1
ðTtt − ϵÞ; ðMISÞ ð56Þ

and one can immediately see that the BDNK and MIS
equations of motion are equivalent upon the identifica-
tion τϵ ¼ τπ þ c1 ≡ τ.
To understand (56), it is important to ask why the

BDNK/MIS theories possess dynamical solutions at all,
since the system being described is a “trivial” equilibrium
state and has no dynamics in the physical observables
Tab, Ja. We can most easily clarify this by considering the
behavior of the hydrodynamic variables outside of equi-
librium. In particular, it is useful to begin by noting that the
BDNK stress-energy tensor is composed of an equilibrium
piece and a nonequilibrium one, i.e.,

uμuνTμν ¼ Ttt ¼ ϵþ δϵ: ð57Þ

One can use (57) along with the equation of state (25) to
compute the temperature

T ¼ Γ − 1

n
ðTtt −mnÞ − τϵ _T; ð58Þ

which clearly illustrates that different choices of hydro-
dynamic frame (i.e., values of τϵ) lead to different temper-
atures outside of equilibrium (in this case when _T ≠ 0).
Thus the notion of temperature outside of equilibrium is
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intrinsically frame dependent, whereas the total energy
content, Ttt, is frame independent; as a result, one is able to
excite dynamics which are “purely frame,” even when the
system’s physical observables (Tab, Ja) are static.
One can also see from (58) that removing the temper-

ature’s frame dependence, as is done in Eckart theory
by taking τϵ → 0, results in a violation of the causality
constraint (44). The BDNK and MIS solutions in (56)
provide the natural causal generalization of the Eckart
behavior, and relax ϵ → Ttt with timescale τ. In the special
case where τ is independent of t, one can integrate the
BDNK/MIS results from (56) directly to find

ϵðtÞ ¼ Ttt þ ðϵ0 − TttÞe−t
τ; ð59Þ

where Ttt and ϵ0 ≡ ϵðt ¼ 0Þ are freely specifiable as initial
data. Note that initial data with ϵ0 ≠ Ttt, _ϵ ≠ 0 has ϵ → Ttt

exponentially fast, with a timescale set by τ. Specifying ϵ0
then corresponds to the choice of initial out-of-equilibrium
contribution δϵ. Since there is no physical dissipation
driving the out-of-equilibrium corrections, the choice of
hydrodynamic frame leads to an exponential decay of this
correction, which recovers the perfect fluid value at late
times. Causality is then maintained by enforcing that this
relaxation cannot occur too quickly.
It may also be somewhat surprising that BDNK theory

gives a relaxation equation in (56) like MIS theory, which
is constructed to obey relaxation-type PDEs. It is clear
from (56) that Eckart theory does not possess a relaxation-
type structure, so it must come from the additional terms
added to Eckart theory to obtain BDNK theory. These
terms are proportional to

ua∇bTab
0 ¼ ½ub∇bϵþ ρ∇bub�; ð60Þ

Δa
c∇bTbc

0 ¼ ½ρub∇bua þ Δab∇bP�; ð61Þ

where (60) is added to the energy density and the pressure,
and (61) is added to the heat flux vector prior to the
application of a thermodynamic identity; see [22] or foot-
note 5. Though each term only possesses first gradients of
the hydrodynamic variables, since it is proportional to the
relativistic Euler equations ∇aTab

0 , it is equal to zero up to
first order in gradients and thus is of Oð∇2Þ on shell, i.e.,
when evaluated on solutions to the equations of motion. As
a result, adding the terms (60)–(61) to the Eckart stress-
energy tensor does not alter it up to Oð∇Þ, and for this
reason BDNK theory is said to have the same “physical
content” as Eckart theory. The terms (60)–(61) are respon-
sible for the relaxation form of (56). This can be shown in
general by computing, for example, uaubTab from (7), (11),
which can be rearranged to yield

uc∇cϵ ¼
1

τϵ
ðuaubTab − ϵÞ − ρ∇cuc;

¼ 1

τϵ
δϵ − ρ∇cuc; ð62Þ

where to obtain the second line we have used (57). The first
line is a relaxation equation [cf. (48)], and the second line is
equal to the energy conservation equation for the perfect
fluid (60) with the addition of the out-of-equilibrium
correction term δϵ.
Purely frame dynamics and the relaxation form of the

BDNK equations will be essential to the discussions of the
tests in the following sections, each of which will consider
scenarios with symmetries far more relaxed than in the
simple example considered in this section.

B. ð0 + 1ÞD uniform expansion: Bjorken flow

In this section we investigate the impact of the choice of
the relaxation times τϵ, τP, τQ on solutions to the BDNK
equations in a dynamical setting. In particular, we aim to
address the following questions: (1) does the behavior
of the solution qualitatively change when dissipation is
applied too quickly (such that the characteristic speeds are
superluminal)? And (2) what happens in the opposite limit,
when dissipation is applied too slowly?
A natural starting point is to consider the simplest

possible system with time dynamics, so we will specialize
to boost-invariant uniformly expanding flows as were
famously described by Bjorken [40]. Boost invariance is
defined by the flow having a velocity profile which remains
unchanged upon Lorentz boosts along a given axis. In
Cartesian coordinates xa ¼ ðt; x; y; zÞ, such a profile can be
described by a three-velocity of the form vz ¼ z=t (where
we have defined the boost-invariant axis to be z).
Bjorken flow is not typically studied in Cartesian

coordinates, however, as the Cartesian equations of motion
take the form of coupled PDEs. If one instead uses Milne
coordinates xa ¼ ðτ; x; y; ξÞT , where the proper time coor-
dinate is τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

and the rapidity is ξ≡ arctanhðz=tÞ,
the equations of motion reduce to a single ODE; for
this reason we study Bjorken flow in Milne coordinates.
Minkowski spacetime in Milne coordinates is characterized
by the metric

gab ¼ diagð−1; 1; 1; τ2Þ; ð63Þ

which leads to nonzero Christoffel symbols

Γξ
τξ ¼ Γξ

ξτ ¼
1

τ
; Γτ

ξξ ¼ τ; ð64Þ

and the square root of the metric determinant is
ffiffiffiffiffijgjp ¼ τ.

Bjorken flow assumes that there are no dynamics transverse
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to the z axis, so everything is independent of x, y, ξ
and ua ¼ ð1; 0; 0; 0ÞT .
The particle current conservation law (2) then immedi-

ately implies

nðτÞ ¼ n0
τ
; ð65Þ

where n0 is a spacetime constant. Only one component of
the stress-energy conservation law (1) is nontrivial due to
the high degree of symmetry, the τ component, which can
be written

τϵ ̈ϵ ¼ −
1

τ
ðτ þ 2τϵ þ τPÞ_ϵ −

1

τ2
½ρðτ þ τPÞ − V�; ð66Þ

where ̈ϵ≡ ∂
2
τ ϵ, _ϵ≡ ∂τϵ, and the transport coefficients

fτϵ; τP; Vg are defined in (41)–(42). As mentioned in
Sec. III, the high degree of symmetry and the flat spacetime
background imply the shear and bulk viscosities only
appear in the combination V, and the heat flux vanishes,
Qa ¼ 0, so the thermal conductivity σ and relaxation time
τQ do not appear.
Before investigating the dynamics of the BDNK sol-

utions, it is useful to first orient oneself using the corre-
sponding inviscid solution, which for a fluid with the
relativistic ideal gas equation of state (25) is given by the
τϵ, τP, V → 0 limit of (66) which has solution

ϵðτÞ ¼ mn0τ−1½1þ e0τ−ðΓ−1Þ� ðinviscidÞ; ð67Þ

where e0 is an integration constant. Comparison of the
inviscid solution (67) with the definition of the specific
internal energy density e (26) shows that ϵ separates into a
rest mass energy density term ∼mn0 which decays like 1=τ,
and an internal energy density term which decays more
quickly since 1 < Γ < 2. The local characteristic speeds of
the relativistic Euler equations (at zero fluid velocity) are
always equal to the local sound speed cs (37), which is
bounded above by unity and thus solutions are always
causal for reasonable choices of the equation of state [such
as (25) with 1 < Γ < 2].
Moving on to the viscous theory, one can show that

the BDNK characteristic speeds for the relativistic ideal
gas (A15)–(A16) all diverge in the limit τ̂ð∝ τϵÞ → 0.
Inspection of (66) in the limit τ̂ → 0 (keeping everything
else, i.e., τP; V finite) does not show any clear indication
that the qualitative behavior of the solution will change
when the characteristic speeds become superluminal. This
notion is supported by the numerical results below—
see Fig. 1.
The opposite limit τ̂ → ∞ (with τP, V finite), however,

reduces (66) to ̈ϵ ¼ −2_ϵ=τ which can be analytically
integrated to yield

lim
τϵ→∞

ϵðτÞ ¼ c1τ−1 þ c2: ð68Þ

Note that this solution can, in principle, agree with the
inviscid solution (67) in the limit τ → ∞ if c1 ¼ mn0,
c2 ¼ 0, but it will not agree in the ultrarelativistic limit
(m → 0 while keeping mn0e0 finite) where the inviscid
solution becomes ϵ ∝ τ−ðΓ−1Þ. This result agrees with the
intuition that the system should not equilibrate in the limit
of infinite relaxation times.
To check the reasoning derived from the τ̂ → 0;∞ limits

described above, we numerically integrate (66) starting

FIG. 1. Top panel: plot of the quantity _ϵþ Γϵ=τ [equal to
mn0ðΓ − 1Þ=τ2 for the inviscid solution (67), independent of e0]
for BDNK solutions with n0 ¼ 0.1, ϵ0 ¼ 0.25 and _ϵ0 ∈ f−2; 0; 2g
(other parameters held constant are listed in Table II). In solid, dot-
dash, and dotted lines the relaxation time τ̂ð∝ τϵÞ is varied between
0.5 and 2, the only noticeable effect of which is that larger
relaxation times result in solutions which equilibrate (reach the
inviscid solution, red dashed line) more slowly. The presence of
superluminal characteristic speeds has no noticeable impact on the
solution, as the τ̂ ¼ 0.5 case’s characteristics are always super-
luminal, τ̂ ¼ 1 has superluminal characteristics only at early times,
and τ̂ ¼ 2 has strictly subluminal characteristics, and all three have
the same qualitative behavior. Bottom panel: the τ̂ ¼ 2 solutions
(_ϵ0 ∈ f−2; 0; 2g) from the top panel, except plotted is the temper-
ature T in the BDNK frame (black solid lines) and a temperature
which is computed in the Eckart frame at each τ (blue dashed lines;
see the text for how this is computed). Note that the bottom-most
pair of lines exhibit T < 0 as a result of taking far-from-
equilibrium initial data. At large τ (beyond what is shown in
the plot), T > 0 in both frames.
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from initial data ϵ ¼ 0.25, _ϵ ∈ f−2; 0; 2g from τ ¼ 1 to
τ ¼ 20 for a fluid with n0 ¼ 0.1 (other parameters held
constant are listed in Table II). These results are shown in
the top panel of Fig. 1, which shows τ versus the quantity
_ϵþ Γϵ=τ, which evaluates to mn0ðΓ − 1Þ=τ2 when evalu-
ated on the inviscid solution (67), independent of e0. In the
plot, one can see that the choice of relaxation time τϵ ∝ τ̂
only impacts how long it takes the viscous solution to
approach the inviscid solution (red dashed line). In the
figure, the case τ̂ ¼ 0.5 always has superluminal character-
istics, as maximum characteristic speed cþ ≈ 1.3; the
τ̂ ¼ 1 case has superluminal characteristics at early times
(cþ ≈ 1.05) but they are all subluminal at late times
(cþ ≈ 0.9); and the case with τ̂ ¼ 2 has characteristics
which are always subluminal, cþ ≈ 0.7. There appears to be
no qualitative change in the solution when the character-
istics are superluminal, aside from approaching the inviscid
solution more rapidly. Numerically, however, decreasing
τ̂ ∝ τϵ makes the equation of motion (66) a “stiff” ODE,
requiring very small steps in τ to still resolve the decay
time τϵ.
This behavior is also in line with the loose analogy

between gauge (coordinate) dynamics in general relativity
and frame dynamics here. In the former, gauge modes are
not confined to propagate at the speed of light and can
be superluminal without leading to any causality violation.
Presumably here something similar holds, in that as long as
physical degrees of freedom do not propagate superlumi-
nally, the underlying PDEs have superluminal character-
istics is not a priori a problem. Of course, this ð0þ 1ÞD
situation by construction does not allow propagating
features relative to the Milne spatial coordinates, and
any conclusions drawn from it relating to the influence
of superluminal characteristics on the solutions are limited.
Though in the following section we further explore this
issue in a ð1þ 1ÞD setting, and find similar conclusions, at
least up to “moderately” superluminal frames.
We now turn to the evolution of the temperature,

motivated by the fact that its value outside of equilibrium
is dependent on the choice of hydrodynamic frame [see the
discussion around (58)]. In the bottom panel of Fig. 1, we
show the temperature evolution for the τ̂ ¼ 2 solutions
from the top panel in solid black lines. Apparent from the
figure is that one of the solutions has a negative temperature
and, therefore, also negative equilibrium pressure, P < 0.
Although this might seem puzzling at first, the causality
and linear stability constraints of BDNK theory only
require that ρ > η=τQ [22], which in our case translates to

P >
Γ − 1

Γ

�
η

τQ
−mn

�
; ð69Þ

which can easily become negative for small shear viscos-
ities η, large relaxation times τQ, or large rest-mass energy
densities mn. The only “purely frame” quantity of these

three is τQ, so one may decide to require an additional
constraint on the choice of hydrodynamic frame,

τQ >
η

mn
: ð70Þ

We stress again that this additional constraint is not
required for causality but merely to ensure that P, defined
to be the equilibrium pressure, is positive for the ideal fluid
equation of state considered here [and we do not enforce
(70) in this work]. This again highlights the ambiguity in
defining hydrodynamic frames, as the hydrodynamic var-
iables (including T) are not unique outside of equilibrium
and are only constrained in that they must agree with
thermodynamic observables upon equilibration. The diffi-
culty, however, is that one typically uses the equilibrium
equation of state to close the system of hydrodynamics
equations, which assumes equilibrium values for parame-
ters such as the temperature (i.e., that T > 0). Here this
does not cause mathematical problems, as the equation of
state (25) has a simple analytic form valid for T < 0, but in
many cases of interest it is tabulated and simply does not
exist for negative temperatures, energy densities, etc.,
which are in principle allowed during the evolution.
One possible, partial solution to the aforementioned

problem would be to take advantage of the nonuniqueness
of the hydrodynamic parameters outside of equilibrium to
map between the hydrodynamic frame used in the evolution
scheme and the one where the equilibrium equation of state
is known. This would at least allow a more self-consistent
implementation of the desired microphysical equation of
state (though of course will not address how the latter may
change outside of equilibrium). We illustrate this in Fig. 1
by computing Tττ, which is a frame-independent physical
observable, and then using its value to compute an Eckart
frame temperature (dashed blue lines). This is done using
the definition Tττ

E ¼ ϵE, where ϵE is the Eckart frame
energy density, which can then be used to compute the
Eckart temperature TE using the equation of state (25) after
noting that the baryon density n is identical between the
two frames. One still finds that the bottom-most solution
has TE < 0, owing to the fact that the initial data in that
case is very far from equilibrium (far enough, in fact, that it
violates the weak energy condition as uaubTab < 0). Even
though the top-most solution has positive temperatures
throughout, at early times it is also far from equilibrium as
judged by the difference between the BDNK-frame and
Eckart temperatures. This could be a further useful diag-
nostic (in addition to the weak energy condition) to monitor
when a solution might be outside the realm of validity of
first-order hydrodynamics.
We leave a detailed analysis of Bjorken flow for BDNK

theory to a future work, and note that related analyses
involving Bjorken flow, either in the context of kinetic
theory in the general frame formalism or with conformal
BDNK theory, are given in [21,29,30,41–45].
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C. ð1 + 1ÞD approach to steady-state
shockwave solutions

In this section we consider planar shockwave solutions,
generalizing the analysis done in [31] for the conformal
BDNK fluid. All of the results below, with the exception
of the numerical solutions depicted in Figs. 2–4, are
obtained without specifying a hydrodynamic frame or
even the equation of state, and thus apply to BDNK fluids
in general.
Starting with a traveling planar shockwave solution in

4D Minkowski spacetime, one can boost into the rest frame
of the shock so that the solution becomes independent
of the time coordinate t; furthermore, one can align the
(Cartesian) coordinate system such that all variation occurs
in the x direction. We choose to write the four-velocity ua in
terms of the three-velocity in the x direction, v ∈ ½0; 1Þ, as
well as the Lorentz factor W ≡ ð1 − v2Þ−1=2 via

ua ¼ ðW;Wv; 0; 0ÞT; ð71Þ

which is timelike and thus satisfies ucuc ¼ −1.
The equations of motion (1)–(2) then reduce to ODEs for

the three quantities nðxÞ, ϵðxÞ, vðxÞ. Of these, the particle
current conservation law (2)—which reduces to ðJxÞ0 ¼ 0,
where a prime represents ∂x—is the simplest and yields

n0 ¼ −
W2nv0

v
; ð72Þ

allowing one to eliminate n0 in favor of v0 in the other
equations of motion. The remaining two equations—
ðTtxÞ0 ¼ 0 and ðTxxÞ0 ¼ 0—derive from (1) and can be

rearranged to isolate ϵ0ðxÞ, v0ðxÞ. Doing so yields equations
of the form

ϵ0ðxÞ; v0ðxÞ ∝ 1

Av4 þ v2ðB − τϵδÞ þ ðCþ τPδÞ
; ð73Þ

where A, B, C are defined in (A2)–(A4) and

δ≡ βϵρþ βnn − ρc2sτQ − σκs ¼ 0; ð74Þ

which vanishes identically after inserting the definitions
of βϵ, βn, c2s , and κs (18)–(24). Thus the shared denominator
in (73) is quadratic in v2 with roots

c2� ¼ −B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A
; ð75Þ

where c� are two of the three unique characteristic speeds
of the BDNK equations. In terms of c�, the full system
specifying a steady-state BDNK planar shockwave is
given by the baryon current conservation equation (72)
in addition to

ϵ0ðxÞ ¼ c4v4 þ c3v3 þ c2v2 þ c1vþ c0
AWvðv − cþÞðvþ cþÞðv − c−Þðvþ c−Þ

; ð76Þ

v0ðxÞ ¼ d3v3 þ d2v2 þ d1vþ d0
AW3ðv − cþÞðvþ cþÞðv − c−Þðvþ c−Þ

; ð77Þ

where the coefficients ci, di are given by

c0 ¼ βnnðTxx − PÞ; c1 ¼ −Ttxð2βnn− ρτP þ VÞ;
c2 ¼ ½βnn− ρðτϵ þ τP þ τQÞ þ V�ðTxx þ ϵÞ þ ρ2ðτϵ þ τQÞ;
c3 ¼ ρTtxðτϵ þ 2τQÞ; c4 ¼ −ρτQðTxx þ ϵÞ;
d0 ¼ βϵðTxx − PÞ; d1 ¼ −Ttxð2βϵ þ τPÞ;
d2 ¼ ðTxx þ ϵÞðβϵ þ τϵ þ τPÞ− ρτϵ; d3 ¼ −τϵTtx;

ð78Þ

and the quantities Ttx, Txx are constant by the equations of
motion.
From inspection of (72), (76)–(77) one immediately

notices that the denominators of the three equations vanish
for v ¼ �c�; 0, which will lead the system to have no
solution unless the numerators simultaneously vanish. It is
difficult to verify whether the numerators vanish in general
if v attains these values, since the numerator of (76) is a
fourth-order polynomial in v and (77) is one of third order,
implying that the general form of the roots will be quite
complicated. Instead of evaluating the roots analytically,
we will implicitly try to understand this structure by
numerically solving the BDNK fluid equations with ideal
gas microphysics.

FIG. 2. Steady-state shockwave solutions to (72), (76)–(77) for
a BDNK fluid with relativistic ideal gas microphysics (25) and
the chosen frame (41) in black, and a conformal fluid with the
same shear viscosity and the sharply causal hydrodynamic frame
[Eq. (16), frame B of [31]] in green. For each case we use
asymptotic left state fϵ; v; ng ¼ f1; 0.8; 0.1g as x → −∞; the
other required parameters are given in Table II. The inviscid
solution in each case would have the same asymptotic left and
right states, except with the smooth transition between those
states replaced with a step function discontinuity at x ≈ 0.
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The solution to the system of coupled ODEs (72),
(76)–(77) is shown in Fig. 2 for a pair of shockwaves
each with asymptotic left state fϵL; vL; nLg ¼ f1; 0.8; 0.1g
as x → −∞. In black, we show the shockwave profile for
a BDNK fluid with ideal gas microphysics (with other
parameters in Table II) and in green a conformal BDNK
fluid as studied in [31]. The two required (constant) stress-
energy tensor components Ttx, Txx appearing in (76)–(77)
are computed using the perfect fluid stress-energy tensor
since the asymptotic states at x → �∞ should be in
thermodynamic equilibrium, so (3) implies Ttx ¼ ρW2v
and Txx ¼ ρW2v2 þ P and these values are computed using
ϵL, vL, nL. For both shockwaves shown in Fig. 2, the
velocity profile never attains a value which makes the
denominators in (76)–(77) vanish. Using an asymptotic
left state with vL ≥ cþ results in the solver finding the
trivial equilibrium state where ϵ; v; n ¼ ϵL; vL; nL are all
constant ∀ x.
To address what occurs when a shockwave forms

dynamically, we follow [31] in using a set of initial data
which approximates the profile of a shockwave in its
rest frame:

ϵð0; xÞ ¼ ϵR − ϵL
2

�
erf

�
x
w

�
þ 1

�
þ ϵL;

vð0; xÞ ¼ vL − vR
2

�
1 − erf

�
x
w

��
þ vR;

nð0; xÞ ¼ nL − nR
2

�
1 − erf

�
x
w

��
þ nR; ð79Þ

where erfðyÞ is the Gaussian error function and each of the
above functions is chosen to smoothly interpolate between
the asymptotic left states obtained as x → −∞ (ϵL, vL, nL)
and the asymptotic right states obtained as x → ∞ (ϵR, vR,
nR); the width of the transition is controlled by w. We treat
the left states as freely specifiable, and fix the right states
using the Rankine-Hugoniot conditions for a shockwave in
its rest frame,

nLWLvL ¼ nRWRvR;

vLW2
LρL ¼ vRW2

RρR;

v2LW
2
LρL þ PL ¼ v2RW

2
RρR þ PR; ð80Þ

where Wi ¼ ð1 − viÞ−1=2, ρi ¼ ϵi þ Pi, and we solve the
above relations numerically to find the left-right state pairs
fϵ; v; ng

f1; 0.9; 1gL ⇒ f11.5174; 0.354727; 5.44212gR;
f1; 0.6; 1gL ⇒ f1.33795; 0.514414; 1.25027gR; ð81Þ

which are used in Figs. 3 and 4, respectively.
A comparison of states from these initial data (79), (81)

with w ¼ 10 and different hydrodynamic frames

(τ̂ ¼ 1.5, 3) are shown in Fig. 3 for a BDNK fluid with
ideal gas microphysics (other parameters are listed in
Table II). As occurs in the case of a conformal fluid
(described in detail in [31]), the evolution exhibits a high-
frequency numerical instability when part of the velocity
profile exceeds the maximum characteristic speed cþ,
precisely the same case where the ODEs describing a
steady-state shockwave (72), (76)–(77) yield no solution.
When a hydrodynamic frame is chosen such that jcþj > jvj
across the entire shockwave profile, the evolution is stable
and at late times asymptotes to a solution of the steady-state
ODEs (72), (76)–(77). This intuition—namely that the
corresponding steady-state solution must exist for dynami-
cal shockwave solutions to be stable—is consistent with
a mathematically rigorous result for conformal BDNK
fluids [46], which showed that a given hydrodynamic
frame will always possess shockwave solutions which
break down unless the maximum local characteristic speed
is greater than or equal to the speed of light.
One could similarly ask whether issues arise when

the velocity profile of the shockwave crosses c−, the other
nonzero root of the denominators in (76)–(77). For the
hydrodynamic frame considered here (41) we find empiri-
cally that one must severely violate both the causality and
linear stability constraints for such a case to occur. We
observe the onset of an instability in those cases, but it is
unclear whether it arises due to nonexistence of the steady-
state shockwave solution or due to an entirely different
mechanism triggered by violation of the aforementioned

FIG. 3. Solutions starting from initial data (79), (81) for a
BDNK fluid with ideal gas microphysics (41) and parameters
given in Table II. The top panel illustrates the onset of a high-
frequency numerical instability in the region of the flow where
the flow velocity v (solid lines with darkness indicating greater
numerical resolution) exceeds the maximum characteristic speed
cþ (dotted line). In the bottom panel, a different hydrodynamic
frame is chosen such that cþ > v throughout the shockwave, and
no instability sets in (note the much later time stamp in the top-
right corner).
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constraints. We leave further consideration of this case to a
future work.
In Fig. 4 we examine the qualitative behavior of

shockwave solutions for the initial data (79), (81) with
w ¼ 10, ϵL; vL; nL ¼ f1; 0.6; 1g for hydrodynamic frames
with superluminal characteristics. The figure shows that
“weakly” superluminal frames, in this case with cþ ∼ 1.5
(τ̂ ¼ 0.5) do not present any issues, and give solutions
which are identical up to the resolution of Fig. 4 to those
produced from the subluminal frame τ̂ ¼ 1.5 ⇒ cþ ∼ 0.9
(but not exactly identical, as they converge to slightly
different solutions in the continuum limit). Moreover, here,
compared to the results discussed in the previous section,
we do have propagating dynamics. In particular notice the
“bump” to the right of the initial transition in the top panel
of Fig. 3, which is sourced by the part of our initial data
(79) that deviates from the stationary shockwave state,
hence also forms in numerically stable cases, and prop-
agates downstream to the right at essentially the sound
speed of the fluid. For the frames with superluminal
characteristics we do not see any features propagating
superluminally, nor even upstream. This gives further

evidence that superluminal characteristics are not a priori
related to physical propagation speeds, and hence do not
necessarily lead to causality violation. That said, requiring
all characteristics to be subluminal guarantees causality is
respected, and thus such a restriction should be considered
an essential component of constructing a sensible relativ-
istic fluid theory. One may even go so far as to require
jcþj ¼ 1 (or, at the very least, jcþj ¼ 1 − δ, for infinitesi-
mal δ > 0) to ensure that the system’s characteristics are
causal and that fast shockwave solutions do not exhibit the
instability displayed in Fig. 3.
As the relaxation times are decreased, the equations

become “stiff” numerically, meaning one must significantly
reduce the Courant–Friedrichs–Lewy (CFL) number for a
stable evolution (e.g., the case with τ̂ ¼ 0.4 ⇒ cþ ∼ 1.6
requires an order of magnitude smaller CFL number than
τ̂ ¼ 0.5 ⇒ cþ ∼ 1.5) though one still recovers a solution at
late times which is effectively identical to the case with
strictly subluminal characteristics.
For “wildly” superluminal frames, however, we observe

the onset of a very fast instability, shown in the bottom panel
of Fig. 4. In this case, we find that as the initial transient
“bump” begins to leave the shockwave, rather than growing
to a fixed size and propagating away, it grows unboundedly
without propagating. The growth of this feature can be seen
in the dotted, dot-dash, and solid lines in the bottom panel
of Fig. 4. Shortly later, the quantities _ϵ; _v appear to diverge
in finite time at a point to the right of the bump. This
divergence forms a very sharp feature in essentially all state
variables, though none of them—including cs, c�, Tta, ϵ, P,
n—appear to obtain unphysical values as a result. The sharp
feature in the v profile is shown in the inset at multiple
numerical resolutions whose behavior appear to be indicat-
ing convergence. This implies that the very rapid growth up
until this point is present in the continuum PDE solution and
is not numerical in origin. Shortly beyond the time shown in
Fig. 4, the sharp feature sources an oscillatory numerical
instability which crashes the simulation.
To briefly summarize, we find that there is no qualitative

change in the solution for “weakly superluminal” frames,
but the equations become stiff numerically as the character-
istic speeds increase. At some point, when the fastest
characteristic speed is much greater than unity an instability
may set in, potentially leading to singular behavior in the
solution. This instability is likely related to the fact that
subluminal characteristics are required in the BDNK
formalism’s proof of linear stability. We further investigate
the stability of BDNK solutions in the next section in the
context of heat flow.

D. ð1 + 1ÞD heat conduction

1. Heat flow problem with constant coefficients

In this section we consider heat flow in BDNK theory for
a fluid with relativistic ideal gas microphysics, inspired in

FIG. 4. Comparison of solutions for initial data (79), (81) for
various hydrodynamic frames. In the top panel, the solution is
shown at t ¼ 0 (dotted line) and at a very late time (t ¼ 1582)
when the dynamics have damped out and the shockwave very
closely approximates the steady-state solution (solid line). At
each of these times, the solution for the three hydrodynamic
frames with τ̂ ¼ 0.4, 0.5, 1.5 (corresponding to maximum
characteristic speeds cþ ∼ 1.6, 1.5, 0.9) are identical up to the
resolution of the plot. The fact that the τ̂ ¼ 0.5 case has super-
luminal characteristics has no noticeable impact on the solution,
though dropping much below τ̂ ¼ 0.5 results in the equations
becoming “stiff” in the same manner as occurs for Bjorken flow,
and very small timesteps are required to integrate them (the
τ̂ ¼ 0.4 case requires CFL number λ ¼ 0.01 for stable evolution,
an order of magnitude smaller than that used in the other cases).
For wildly superluminal frames—one example of which is shown
in the bottom panel, with τ̂ ¼ 0.25 ⇒ cþ ∼ 2—a very fast
instability sets in at early times, stemming from the development
of a large bump near x ∼ 20 and a sharp feature (x ∼ 40) shown in
the inset (with numerical resolutions N ∈ f27; 28; 29; 210; 211g in
increasingly dark shades of gray).
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part by the analysis of [47] in the context of dissipative
magnetohydrodynamics. In particular, we will specialize
to problems in ð3þ 1ÞD Minkowski spacetime which vary
only in time t and one Cartesian spatial coordinate, x, and
furthermore we restrict to solutions which never source a
flow velocity, so ui ¼ 0 at all times (where i is a spatial
index). Before working out the equations of motion, it is
useful to apply the thermodynamic identity

dP
ρ

¼ dT
T

þ nT
ρ

dðμ=TÞ ð82Þ

to the BDNK particle current to write it in the form

Qa ¼ −κΔab∇bT þ τQρub∇bua þ γΔab∇bP; ð83Þ

where κ ≡ σρ2

n2T (46) and

γ ≡ τQ þ σρ

n2
: ð84Þ

Moving on to the equations of motion, the baryon current
equation (2) implies

_n ¼ 0; ð85Þ

and the two nontrivial components (t, x) of (1) can be
written

0 ¼ ðϵþ τϵ _ϵÞ;t þ ð−κT 0 þ γP0Þ;x; ð86Þ

0 ¼ ð−κT 0 þ γP0Þ;t þ ðPþ τP _ϵÞ;x: ð87Þ

Note that, as written, the variables T, P are each functions
of the hydrodynamic variables ϵ, n and are related by the
equation of state (25).
To investigate the causality and stability of “pure heat

flow” solutions to the BDNK equations, we will now
consider three different classes of hydrodynamic frames:

Eckart frame∶ τϵ; τP ¼ 0; τQ ¼ −
κT
ρ
;

Eckart=BDNKhybrid∶ τϵ > 0; τP ¼ 0; τQ ¼ −
κT
ρ
;

BDNK frame∶ τϵ; τP; τQ > 0; ð88Þ

where the choice of τQ in the first two frames implies γ ¼ 0

and the pressure gradient vanishes from the heat flux
vector (83). For the remainder of this subsection, to
simplify calculations we will take the transport coefficients
fτϵ; κ; γg to be spacetime constants. Note that though one is
free to choose constant transport coefficients within the
scope of Eckart and BDNK theories, this assumption is not
true for the hydrodynamic frame chosen in Sec. II, which
we will return to in the next subsection.

For each of the three hydrodynamic frames described
in (88), the respective t components of the equations of
motion (86) can be written entirely in terms of the variables
T, n in the following form:

0 ¼ _T − αET 00; ðEckartÞ ð89Þ

0 ¼ T̈ − c2hT
00 þ 1

τϵ
_T; ðhybridÞ ð90Þ

0 ¼ T̈ − c2BT
00 þ 1

τϵ
_T þ l:o:t:; ðBDNKÞ ð91Þ

where αE ≡ κðΓ−1Þ
n , c2h ≡ κðΓ−1Þ

nτϵ
, c2B ≡ c2hð1 − γn

κ Þ, and the

lower-order terms l:o:t:≡ ðΓ−1Þ
nτϵ

γðn00T þ 2n0T 0Þ. Inspection
of (89)–(91) provides a clear physical illustration of how
the choice of hydrodynamic frame impacts the causal
properties of the equations of motion. Beginning with
the Eckart frame equation (89) one can identify it as the
heat equation with thermal diffusivity αE (the definition of
which depends on the equation of state). The heat equation
is a second-order parabolic PDE, and thus may be thought
of as describing a system which propagates information
infinitely fast, violating causality. Causality may be
restored, however, for frames like the hybrid Eckart/
BDNK frame. One can see from the hybrid frame’s
equation of motion (90) that it is a second-order hyperbolic
PDE with a wavelike principle part with “thermal propa-
gation speed” c2h. In particular, (90) is an example of the
so-called telegrapher’s equation, which is the natural
hyperbolic generalization of the heat equation [48]. The
BDNK frame’s equation of motion (91) is similar to that
of the hybrid frame except it possesses a modified thermal
propagation speed c2B as well as additional lower-order
terms.
As was discussed in Sec. I, Eckart theory is both acausal

and linearly unstable about thermodynamic equilibrium,
while BDNK theory is causal and stable. We can address
the cause of the instability for the heat flow problem
by considering how the choice of hydrodynamic frame
impacts the x component of the stress-energy conservation
law, (87), which for constant fτϵ; κ; γg becomes

0 ¼ ðθ _T þ PÞ0; ð92Þ

where

θ ¼
�−κ ðEckart; hybridÞ
−κ þ γnþ τP

n
ðΓ−1Þ ðBDNKÞ ; ð93Þ

and in each case θ is a constant in time [but not in space in
the BDNK case, as n ¼ nðxÞ by (85)]. For all three classes
of hydrodynamic frames (92) may be integrated once
trivially in x yielding an integration constant-in-x P0ðtÞ,
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then solve for _T, multiply each side by nðxÞ, and rearrange
to yield

_P ¼ 1

τθ
ðP0ðtÞ − PÞ: ð94Þ

This is a relaxation equation for the pressure with relaxation
time τθ ≡ θ=n. Inspection of (94) provides a simple
explanation for why the Eckart frame exhibits instability
for the heat flow problem: the relaxation time τθ ¼ −κ=n is
negative, forcing P to exponentially deviate from P0 rather
than relax to it. Since the hybrid Eckart/BDNK frame
shares the same (negative) value for θ, it is unstable in the
same fashion. The BDNK frame, on the other hand, can be
stable as long as θ ≥ 0, which can be thought of as an upper
bound on σ [note that the BDNK linear stability constraints
give a similar bound, (44), for the frame (41) with non-
constant coefficients; see Sec. II]. We remark that the
system (89)–(91), (94) may be too restrictive to have global
solutions—in other words, the ui ¼ 0 constraint may need
to be slightly violated in order for solutions to exist. The
analysis above should hold approximately in these cases,
however, and we consider cases with ui ≠ 0 in the next
subsection.

2. Heat flow problem with nonconstant coefficients

In this subsection we consider a slightly relaxed heat
flow problem: rather than asserting that ui always remain
zero, we instead simply require that it be zero at t ¼ 0. To
specialize to heat flow solutions, we adopt initial data
which possesses a temperature gradient but no pressure
gradients,6 namely

Tð0; xÞ ¼ Ae−
x2

w2 þ δ; Pð0; xÞ ¼ P0 ¼ const: ð95Þ

Since the BDNK PDEs are formulated in terms of hydro-
dynamic variables ϵ, n rather than T, P, we implement the
initial data (95) using the relations ϵ¼P½mT−1þðΓ−1Þ−1�,
n ¼ PT−1, which are derived from the equation of
state (25). Furthermore, we choose time-symmetric initial
data to specify the required first time derivatives, so
_ϵð0; xÞ ¼ _uið0; xÞ ¼ 0.
For this set of initial data, (2) again reduces to _n ¼ 0, and

one can straightforwardly show that the x component of (1)
is trivially satisfied at t ¼ 0, leaving just the t component:

Tat
;a jt¼0 ¼ 0 ¼ τϵ ̈ϵ − ðκT 0Þ0: ð96Þ

Notice that the solution only has dynamics so long as κ ≠ 0,
which in turn implies σ ≠ 0 by (46); in other words, the

system only has dynamical heat flow solutions if the
thermal conductivity is nonzero. We confirm that this
statement is true in Fig. 5 for a BDNK fluid with σ̂ ¼ 0
(top panel) and σ̂ ¼ 1=3 (bottom panel) and other constant
parameters listed in Table II. Notice that _ϵ converges to zero
with numerical resolution when σ ¼ 0, and converges to a
finite value for σ ≠ 0.
In Fig. 6, we test the intuition derived from the constant-

coefficient heat flow problem studied in the previous
subsection. There, it is shown that for constant transport
coefficients the BDNK solution obeys a modified telegra-
pher’s equation (91). Note that (91) reduces to a simple 1D
wave equation in the limit σ; τϵ → ∞ so long as c2B ∝ σ=τϵ
is kept finite; in Fig. 6 we numerically approximate this
limit and observe the transition from heat-equation-like
behavior at small σ̂, τ̂ (in light gray) to wavelike behavior at
large σ̂, τ̂ (in black). This wavelike behavior is readily
apparent in the middle panel of Fig. 6 for the σ̂ ¼ 7.5 case,
as the central temperature peak splits in two rather than
simply decaying. That said, all solutions (even the one with
σ̂ ¼ 0.15) possess some wavelike behavior, which can be
seen in the form of a transient shown in the inset.
Though all three solutions shown in Fig. 6 possess

subluminal characteristic speeds, two of the three cases

FIG. 5. Snapshots from an evolution starting from initial data
(95) for a BDNK fluid (see Table II for a list of other parameters
held constant) with σ̂ ¼ 0 (top panel) as well as σ̂ ¼ 1=3 (bottom
panel) at a time shortly after t ¼ 0 (darker gray for higher
numerical resolution). In the top panel, the fact that σ ¼ 0 implies
that ̈ϵ ¼ 0 in (96), so the solution should not have dynamics; the
fact that it does here is purely a result of numerical error, and _ϵ
converges to zero as the grid is refined. In the bottom panel, since
σ > 0, there exists a dynamical heat flow solution and _ϵ
converges to a nonzero value over part of the domain.

6It is impossible to pose data which have temperature gradients
but no pressure gradients for a conformal fluid, as there P ∝ T4.
In this sense, heat flow for a conformal fluid is “trivial” in that it is
always accompanied by flow due to the pressure gradient.

PANDYA, MOST, and PRETORIUS PHYS. REV. D 106, 123036 (2022)

123036-16



(σ̂ ¼ 1.5, 7.5) violate the linear stability constraint (44)
on σ̂. The effects of this violation are readily apparent in the
rightmost panel of Fig. 6, where the σ̂ ¼ 7.5 solution
exhibits an oscillatory instability which eventually crashes
the simulation. The σ̂ ¼ 1.5 solution does not appear to
demonstrate any unexpected behavior, however; this may
be because the instability is slow relative to the dynamical
timescale, or perhaps that this case is somehow stabilized
by a nonlinear mechanism.

IV. CONCLUSION

In this work we have presented the first relativistic fluid
model with ideal gas microphysics based in the BDNK
formalism, which rigorously proves causality, linear sta-
bility of equilibrium states, strong hyperbolicity, and
consistency with the second law of thermodynamics,
provided the transport coefficients obey two simple con-
straints (Sec. II). This model serves as a significant
extension over previous work [31–33] which has been
restricted to conformal fluids at zero baryon chemical
potential, and thus cannot capture the effects of bulk
viscosity, “nontrivial” heat flow (see footnote 6), or back-
reaction of the baryon current onto the stress-energy tensor.
Using this model, we investigated a number of properties

of BDNK theory, though we restricted to four-dimensional
flat spacetimes with high degrees of spatial symmetry. We
began with a comparison of the structure of the Eckart,
MIS, and BDNK theories, and how each applies dissipation
to the solution. We pointed out that Eckart theory does so in
an acausal fashion, applying dissipation instantaneously,
whereas the MIS and BDNK theories apply dissipation
through a “relaxation”-type mechanism. This mechanism

arises in MIS theory by construction, as its dissipative
degrees of freedom are defined to obey “relaxation”-type
PDEs. In BDNK theory, it stems from the addition of terms
which are higher order on shell (in other words, propor-
tional to projections of the relativistic Euler equations) to
the stress-energy tensor.
Afterward we considered uniformly expanding, boost-

invariant Bjorken flows for the BDNK fluid with ideal gas
microphysics. We investigated the limits of infinite and
zero relaxation times, and find that the former leads to
solutions which never equilibrate (as expected) and the
latter leads to superluminal characteristics (also expected),
though there is no clear qualitative impact on the solution in
the latter case, other than that the equations become stiff
and require small steps to integrate numerically. This
intuition was clarified in an investigation of planar shock-
wave solutions, where we find that solutions with super-
luminal characteristics show no indications of ill behavior
(and/or acausal propagation) up to a certain threshold,
beyond which increasing the characteristic speed results in
the onset of a very fast instability. We extended the intuition
described in [31,46] regarding the existence of shockwave
solutions for a conformal BDNK fluid to the general case,
and provided evidence that shockwave solutions exist so
long as the flow’s three-velocity v is never equal to the local
characteristic speeds of the BDNK PDEs.
A model such as the one presented here is required to

study “pure” heat flow solutions, where energy flows due to
a thermal gradient while the pressure is kept constant.
These solutions do not exist in the conformal fluid model
studied previously [31,32] as there temperature gradients
imply pressure gradients, since P ∝ T4. In the context of
the ideal gas model with constant transport coefficients,

FIG. 6. Evolution of the heat flow initial data (95) for three different BDNK fluids with σ̂ ¼ 0.15, 1.5, 7.5, with the appropriate values
of τ̂ such that σ̂=τ̂ ¼ 0.1 in each case; other parameters are listed in Table II. At the earliest time (left panel) the central hot spot at x ¼ 0
decays and spreads, similar to the behavior found in solutions to the heat equation. Shortly later, though, the σ̂ ¼ 7.5 case begins
exhibiting wavelike behavior and the central peak splits in two, as expected from a telegrapher’s-type equation in the limit τϵ → ∞
keeping c2B ∝ σ̂=τ̂ constant, where it becomes a wave equation (cf. [47] Fig. 2). Also shown in this panel is an enlarged inset, showing
that all cases show some wavelike behavior in the form of a small transient which propagates away at the sound speed. Finally, at late
times the σ̂ ¼ 7.5 solution exhibits an oscillatory instability which eventually crashes the numerical simulation.
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we investigated how the hydrodynamic frame impacts the
causal properties of the solution, showing that heat flows
according to the nonrelativistic heat equation in Eckart
theory, a telegrapher’s (damped wave) equation in a hybrid
Eckart-BDNK frame, and finally a generalized telegrapher’s
equation in the BDNK class of frames. We also provided an
explanation for the thermodynamic instability of Eckart
theory in this setup, and illustrate how BDNK theory
manages to avoid this instability. For nonconstant coeffi-
cients, we posed a set of constant-pressure initial data and
observe that nonzero thermal conductivity is indeed required
for nontrivial heat flow solutions, and find that telegrapher’s-
equation-like behavior is indeed obtained for the proposed
fluid model with frame (41). Finally, we studied what occurs
when one violates the linear stability constraints (which
reduce to an upper bound on the dimensionless thermal
conductivity). For sufficiently small violations of the bound,
there is no apparent qualitative effect, possibly owing to
the fact that the bound only guarantees linear stability, or
perhaps implying that the onset of instability is slow
compared to the dynamical timescale of the problem. For
sufficiently large violations of the bound, however, we
observe the onset of an oscillatory instability.
We find in our investigation of Bjorken flow that one can

obtain solutions which, at early times, have hydrodynamic
parameters outside of the allowed physical ranges of their
equilibrium counterparts—namely, we have temperatures
T < 0. This is allowed outside of equilibrium, as there the
hydrodynamic variables are not unique, with the only
restriction being that they relax to reasonable equilibrium
values (i.e., T > 0). It may cause problems when evaluating
the equation of state, however, which assumes as inputs
values of the equilibrium hydrodynamic variables, and will
not be defined for, e.g., T < 0. We remark that this issue
must be solved in order to apply realistic (tabulated) nuclear
equations of state, but for the simple analytic one consid-
ered here (25), it does not cause problems; we leave
investigation of this issue to a future work.
As mentioned previously, the BDNK fluid with ideal gas

microphysics has the potential to be of use in studies of
pure hydrodynamics such as this one, as it is relatively
simple, the microphysics are well motivated, and the model
contains all of the dissipative effects present in the BDNK
formalism (shear viscosity, bulk viscosity, and heat con-
duction). The gamma-law equation of state is also com-
monly used in toy models of astrophysical phenomena,
examples of which include neutron stars [49,50] and black
hole accretion disks [51,52], both of which may be systems
where dissipative fluid effects could be relevant at the level
of next-generation observations [9,12,53,54]. Since the
conformal fluid is contained as a limiting case of the ideal
gas model, one may also use it as a somewhat generalized
toy model for the quark-gluon plasma produced in heavy-
ion collisions, though truly realistic studies will include a
tabulated equation of state derived from nuclear theory.

Each of the systems mentioned above presents a number
of avenues for future work. Given that the ideal gas model
includes bulk viscosity and heat conduction, one could
perform a comparison with a MIS-type theory with the
same microphysics in order to better understand the
differences between the two formalisms. BDNK theory
has yet to be applied outside of flat spacetime, and the
model proposed in this work would allow for investigations
of viscous fluids in strong gravity (e.g., neutron stars
and black hole accretion disks, as mentioned previously).
That said, a truly “modern” study in most cases relevant to
astrophysics will require a dissipative formulation of
magnetohydrodynamics, examples of which exist but have
yet to be applied in such contexts [47,55,56].

ACKNOWLEDGMENTS

Thismaterial is baseduponwork supported by theNational
Science Foundation (NSF) Graduate Research Fellowship
Program under Grant No. DGE-1656466. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. F. P.
acknowledges support from NSF Grant No. PHY-2207286,
the Simons Foundation, and the Canadian Institute For
Advanced Research (CIFAR). E. R.M. acknowledges sup-
port from postdoctoral fellowships at the Princeton Center for
Theoretical Science, the Princeton Gravity Initiative, and the
Institute for Advanced Study.

APPENDIX A: DERIVING SUITABLE
HYDRODYNAMIC FRAMES

BDNK theory is proven to be causal, linearly stable about
equilibrium, locally well posed, strongly hyperbolic, and
consistent with the second law of thermodynamics so long as
the set of transport coefficients fτϵ; τP; τQ; η; ζ; σ; βϵ; βng
satisfy a set of algebraic constraints. In this section, we
describe the process of deriving a choice for these transport
coefficients (a “hydrodynamic frame”) which simultaneously
satisfies all of the aforementioned constraints.
In [22] it is proven that BDNK theory is consistent with

the second law of thermodynamics (in the sense that total
entropy generation is nonnegative) up to third order in
gradients provided one takes η, ζ, σ ≥ 0. For the work that
follows, we will assume the following about the parameters
which appear:

ρ; n; τϵ; τP; τQ; η > 0;

m; ζ; σ ≥ 0;

0 < c2s < 1; 0 < ω < 3 − 2
ffiffiffi
2

p
≈ 0.2; 1 ≤ α; ðA1Þ

where c2s , ω, α are defined in (37)–(39). Thus assuming (A1)
guarantees consistency of our solutions with the second law
of thermodynamics, up to third order in gradients.
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Causality is established provided the transport coeffi-
cients satisfy Eq. (20) of [22], which we will reproduce
here as

ρτQ > η; ðCAUSAÞ

B2 ≥ 4AC ≥ 0; ðCAUSBÞ

2A > −B ≥ 0; ðCAUSCÞ

A > −B − C; ðCAUSDÞ

where we have written the constraints in a much simpler
form using the shorthand of [22],

A ¼ ρτϵτQ; ðA2Þ

B ¼ −τϵðρc2sτQ þ V þ σκsÞ − ρτPτQ; ðA3Þ

C ¼ τPðρc2sτQ þ σκsÞ − βϵV; ðA4Þ

D≡ ρc2sðτϵ þ τQÞ þ V þ σκϵ; ðA5Þ

E≡ σðp0
ϵκs − c2sκϵÞ: ðA6Þ

In terms of this shorthand, the (squared) characteristic
speeds c2�, c

2
1 are given by (A15)–(A16).

Local well-posedness and strong hyperbolicity are
established given η, ζ, σ ≥ 0, (CAUS A)–(CAUS D),
and some restrictions on the allowed initial data. Linear
stability of solutions about thermodynamic equilibrium is
given provided one satisfies Eq. (48) of [22], reproduced
here:

ðτϵ þ τQÞjBj ≥ τϵτQD; ðSTABA1Þ

τϵτQD ≥ ρc2sτϵτQðτϵ þ τQÞ; ðSTABA2Þ

ðτϵ þ τQÞjBjDþ ρτϵτQðτϵ þ τQÞE
> τϵτQD2 þ ρðτϵ þ τQÞ2C; ðSTABBÞ

c2sD − E ≥ ρc4sðτϵ þ τQÞ; ðSTABCÞ

ðτϵ þ τQÞ½jBjðc2sD − 2EÞ þ 2c2sρτϵτQEþ CD�
> 2c2sρðτϵ þ τQÞ2Cþ τϵτQDðc2sD − EÞ; ðSTABDÞ

jBjD½CðτϵþτQÞþEτϵτQ�þ2ρτϵτQðτϵþτQÞCE
>ρC2ðτϵþτQÞ2þτϵτQðCD2þρτϵτQE2ÞþB2EðτϵþτQÞ;

ðSTABEÞ

where we have split their (48a) into our (STAB A1)–
(STAB A2). In summary, the hydrodynamic frames
we are interested in here simultaneously satisfy (A1),

(CAUS A)–(CAUS D), and (STAB A1)–(STAB E). Of
these three sets of inequalities, it is clear from inspection
that the linear stability constraints (STAB A1)–(STAB E)
are the most complicated, so we will focus on satisfying
those first.
We work through the following two subsections in a

publicly available Mathematica notebook,7 which allows
for analytic simplification of the complicated inequalities
above. We provide the notebook so that others may confirm
the calculations done here, and so that they may modify
the notebook to evaluate the BDNK constraints for other
classes of hydrodynamic frames.

1. Linear stability constraints

Inspection of (STAB A1)–(STAB E) shows that the
inequalities contain both the shorthand B, C, D, E as well
as explicit factors of ρ, c2s , τϵ, τQ. We will begin by
rescaling B, C, D, E to absorb these factors to get

B̂≡ B
ρc2sτϵτQ

¼ −
�
1þ LV̂

τQ
ð1 − ωσ̂Þ þ τP

c2sτϵ

�
;

Ĉ≡ C
ρc4sτϵτQ

¼ τP
c2sτϵ

þ LV̂
τϵ

�
LV̂
τQ

σ̂ −
τP
c2sτQ

σ̂ω − α

�
;

D̂≡ D
ρc2sðτϵ þ τQÞ

¼ 1þ LV̂
ðτϵ þ τQÞ

ð1 − σ̂Þ;

Ê≡ E
ρc4sðτϵ þ τQÞ

¼ σ̂LV̂
ðτϵ þ τQÞ

ð1 − αωÞ; ðA7Þ

where we have further defined

V ¼ V̂Lρc2s ;

σ ¼ σ̂
LV̂ρc2s
ð−κϵÞ

; ðA8Þ

and we have used (39)–(40). In terms of B̂, Ĉ, D̂, Ê the
linear stability constraints (STAB A1)–(STAB E) become

jB̂j ≥ D̂;

D̂ ≥ 1;

jB̂jD̂þ Ê − D̂2 − Ĉ > 0;

D̂ − Ê ≥ 1;

jB̂jD̂þ Ê − D̂2 − Ĉ > 2jB̂jÊþ Ĉ − D̂Ê − Ê − ĈD̂

½jB̂jD̂þ Ê − D̂2 − Ĉ�Ĉ > ½Êþ B̂2 − Ĉ − jB̂jD̂�Ê; ðA9Þ

which appear to be much simpler. In particular, the first,
second, and fourth lines are especially simple; substituting
the definitions (A7) into these three constraints and using

7https://github.com/aapandy2/BDNK_frame_constraints.
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the parameter ranges (A1) one finds that the first line is
automatically satisfied, and it is clear that since Ê ≥ 0
(by thermodynamics; see [22]) the fourth line implies the
second one. Thus the three “simple” linear stability con-
straints boil down to just the fourth line of (A9), which is

1 − ð2 − αωÞσ̂ ≥ 0; ðA10Þ
noting that 0 < αω ⪅ 0.2 (A1) we can see that the strongest
case of (A10) has αω ¼ 0 so (A10) is implied by
1 − 2σ̂ ≥ 0, or equivalently σ̂ ≤ 1

2
.

Moving on to the three “complicated” linear stability
constraints, we find it essential to make use of a computer
algebra system such as Mathematica8 along with an ansatz
for the relaxation times τϵ, τP, τQ. We find the class of
frames of the form

τϵ ¼ τQ ¼ LV̂ τ̂; τP ¼ 2αc2sLV̂; ðA11Þ
where we require τ̂, L > 0 for consistency with (A1), along
with the further restriction

σ̂ ≤
1

3
ðA12Þ

satisfies all of the linear stability inequalities (STAB A1)–
(STAB E).

2. Causality constraints

Given the assumptions (A1), the frame ansatz (A11), and
the constraint (A12), one can show that (CAUS B) and the
second half of (CAUS C) are automatically satisfied,
leaving just (CAUS A), the first half of (CAUS C), and
(CAUS D). These three remaining constraints take the form

τ̂ > c2s
η

4η
3
þ ζ

;

2τ̂ > c2sð2α − ωσ̂ þ τ̂ þ 1Þ;
c4sð−2αωσ̂ þ σ̂ þ ατ̂Þ þ τ̂2 ≥ c2s τ̂ð2α − ωσ̂ þ τ̂ þ 1Þ:

ðA13Þ
All three of these inequalities are implied by the stronger,
single inequality

τ̂ ≥
ðΓ − 1Þð2 − c2sÞ þ c2s

1 − c2s
; ðA14Þ

which is obtained from the third line of (A13) in the limit
σ → 0, which increases the lower bound on τ̂. The tradeoff
for using (A14) rather than (A13) is that saturating (A14)

for σ̂ > 0will yield a maximum characteristic speed strictly
smaller than the speed of light; saturating (A13), on the
other hand, always gives jcþj ¼ 1. Note that [22] excludes
the case jcþj ¼ 1 from their proofs; if one wishes to ensure
that the hydrodynamic frame has jcþj < 1, one must alter
the third line of (A13) and (A14) to have > rather than ≥.
For the frame used in this study (41), the (squared)

characteristic speeds are

c2� ¼ c2s
2τ̂

ð2α − ωσ̂ þ τ̂ þ 1� ½ωσ̂ð4αþ ωσ̂Þ þ ð2αþ 1Þ2

− 2ðωþ 2Þσ̂ þ τ̂2 þ τ̂ð2 − 2ωσ̂Þ�1=2Þ; ðA15Þ

c21 ¼ c2s
η

V τ̂
; ðA16Þ

where V is defined in (42).

APPENDIX B: NUMERICAL ALGORITHMS
AND CONVERGENCE TESTS

Throughout this work we integrate all ODEs—namely
(66) in Sec. III B and (72), (76)–(77) in Sec. III C—using
the fourth-order explicit Runge-Kutta method. These sol-
utions are produced at resolutions ranging between N ¼ 29

and 213 grid points, and the rate of convergence,

QN ¼ kRN=2k
kRNk

; ðB1Þ

is computed and summarized in Table III. In (B1), RN is a
discrete residual evaluated on the numerical solution of
resolution N (whose value should be identically zero for
solutions to the continuum PDEs) and k · k is any vector
norm (here the 1-norm). One may straightforwardly show
using the Richardson expansion that a numerical scheme
that is second order in the grid spacing will have QN → 4
as N → ∞, and a fourth-order scheme should have
QN → 16. All ODE solutions presented in this work

TABLE III. Convergence factor QN (B1), for three resolutions
N=4; N=2; N, where N is given in the second column of the table,
for the Bjorken flow solutions with _ϵ ¼ −2 (convergence results
for solutions with _ϵ ¼ 0, 2 are essentially identical) and the
shockwave ODE solution shown in Fig. 2. In all cases, we should
observe QN → 16 as N → ∞. For the Bjorken flow solutions,
the residual RN is an independent (fourth-order centered finite
difference) discretization of (66); for the shockwave case we use a
fourth-order centered finite difference discretization of the t
component of (1), namely Ttx

;x ¼ 0.

Test N QN=4 QN=2 QN

Bjorken flow, τ̂ ¼ 0.5 211 34.8 18.7 16.9
Bjorken flow, τ̂ ¼ 1 211 18.4 16.9 16.3
Bjorken flow, τ̂ ¼ 2 211 16.9 16.3 16.1
Shockwave 213 15.9 15.9 15.9

8When using such a system, it is necessary to minimize the
number of free parameters appearing in the constraints; we find
that computation time is significantly reduced in the rescaled
quantities (A7) in that the only free parameters which appear
are α, ω, τ̂, V̂, σ̂.
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demonstrate fourth-order convergence as the grid is
refined, consistent with the use of the fourth-order
explicit Runge-Kutta method.
To solve the BDNK PDEs, we employ the conservative

finite volume method of [32]. It uses the method of lines
to integrate the system forward in time with the total
variation diminishing second-order Runge-Kutta scheme
known as Heun’s method. We use CFL number λ≡ Δt

Δx ¼
0.1 throughout, except for the “stiff superluminal” and
“wildly superluminal” solutions in Fig. 4 which require
λ ¼ 0.01. In space, the method of [32] uses a WENO/
CWENO discretization which is at most fourth-order
convergent in the grid spacing for smooth flows; thus,
the scheme is second-order overall but can converge at
higher rates at finite resolution when time derivatives are
small. Convergence results are shown for the shockwave
(Sec. III C) and heat flow (Sec. III D) problems in Fig. 7. In
both cases, solutions converge at second order in the grid
spacing, as expected, up until there is significant interaction
with the ghost cell boundaries; afterward, the solution
converges at a rate between first and second order.
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