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We propose a novel method to examine whether Galactic double neutron star binaries are formed in the
Laser Interferometer Space Antenna (LISA) band. In our method, we assign an effective time fraction τ to
each double neutron star binary detected by LISA. This fraction is given as a function of the observed orbital
period and eccentricity and should be uniformly distributed in the absence of in-band binary formation.
Applying statistical techniques such as the Kolmogorov-Smirnov test to the actual list of τ, we can inspect
the signature of the in-band binary formation. We discuss the prospects of this method, paying close
attention to the available sample number of Galactic double neutron star binaries around 1 mHz.
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I. INTRODUCTION

Double neutron star binaries (hereafter DNSBs) are
bountiful astrophysical targets. They have been detected
as radio pulsars [1,2], and the current sample has orbital
periods P from 1.9 h [3] to 6 weeks [4]. This sample
contains around 20 DNSBs, and searches might be incom-
plete at the faint end of the luminosity function (also limited
by the beaming fraction). Shorter period (P < 1 h) DNSBs
ought to exist in the Galaxy as well. However, due to
Doppler smearing and shorter merger timescales, their
detection would be more difficult than the longer period
ones [5].
The Laser Interferometer Space Antenna (LISA) is

planned in the 2030s [6] and is sensitive to gravitational
waves (GWs) around 0.1–100 mHz. It will detect all
Galactic DNSBs in the frequency range f ≳ 1.5 mHz
(corresponding to the orbital period P ¼ 2=f ≲ 20 min),
unlike the longer-period radio sample. Observationally
motivated estimates [7] suggest that at least dozens of
DNSBs exist in the Galaxy at f ≳ 1.5 mHz. Numerical
Galactic modeling [8,9] predicts that LISA will detect
altogether from a few to up to hundreds of DNSBs.
DNSB formation depends on the complex interplay

between many astrophysical processes. In the general
picture, the binary must survive two supernova explosions.
Preceding these supernovae, various mechanisms have
been theorized with respect to mass loss/exchange in the
binary [10–13] after hydrogen burning. These processes all
play a role in determining the separation at formation, if the
binary survives.
However, the related efficiencies and rates in populations

are not well established (see [14] for a review). In particular,
it is unclear whether there is a critical minimum orbital

period (or maximum orbital frequency) for isolated DNSB
formation.
Dynamical encounters in star clusters is an alternative

pathway for short period DNSB formation, though their
contribution to the LISA sample is estimated to be small
[15,16]. Also, for the dynamical scenario it will be difficult
to solidly estimate the distribution function for the orbital
periods of the generated DNSBs.
In this paper, we are interested in the possibility of

DNSB formation specifically at f ≳ 1 mHz. We hereafter
call this channel “in-band” (millihertz) DNSB formation,
or simply “injections.” Considering the aforementioned
theoretical uncertainties, it will be fruitful to observatio-
nally examine the in-band formation in a model indepen-
dent manner.
We thus develop a statistical method to examine the in-

band formation with LISA (see also [17] for formation
between the LISA band and the lower frequencies already
probed by the radio sample). Recently, several studies have
proposed to statistically deal with multiple LISA sources in
the Galaxy. Among others, a large number (∼104) of white
dwarf binaries (WDBs) will be a powerful dataset for
various astronomical analyses (e.g., probing the Galactic
structure [18,19]). In this context, one of the authors
suggested to measure the fluxes of the Galactic WDBs in
frequency space [20]. He pointed out that the measurement
will enable us to follow the collective evolution of the
WDBs, resulting in mergers or stable mass transfers.
One might imagine that we can get some information

about the in-band formation by similarly measuring the
DNSB flux with LISA at various frequencies. Unfortunately,
LISA will detect much fewer DNSBs than WDBs, and the
small number statistics will severely limit the flux approach
for DNSBs. On the other hand, unlike WDBs, DNSBs can
be well regarded as point particle systems in the LISA band,
and their long-term orbital evolution from GWemission can*mcneill@tap.scphys.kyoto-u.ac.jp
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be predicted quite accurately [1]. Considering these pros
and cons of DNSBs, we newly introduce the effective
time fraction τ, corresponding to the fraction of total time
that each binary has spent in the millihertz band. Without
in-band formation, the fraction τ should be uniformly
distributed. By analyzing the observed list of τ, we can
examine potential in-band formation through its deviation
from a uniform distribution.
The basic assumption of our study is that the millihertz

DNSB population is in the “steady state” [21]. This is a
reasonable assumption, since a DNSB passes through the
millihertz band in the timescale of a million years or less,
but the Galactic DNSB merger rate is likely to change over
the Hubble timescale, reflecting the slow variation of the
Galaxy-wide star formation rate in the past ∼5 Gyr [22,23].
LISA’s source localizability will also help us to examine the
anomalous (and unlikely) clustering of short-period
DNSBs that might be responsible for the violation of the
steady state.
This paper is organized as follows. In Sec. II, we roughly

estimate how many Galactic DNSBs are likely to be
detected by LISA. In Sec. III, we study the long-term
orbital evolution of DNSBs and define the effective time
fraction τ, as a function of the GW frequency and the orbital
eccentricity. Then, in Sec. IV, using statistical tools such as
the Kolmogorov-Smirnov test, we discuss how well we can
probe in-band formation with LISA. In Sec. V, we mention
potential extensions of this study. We summarize our
findings in Sec. VI.

II. GALACTIC DOUBLE NEUTRON STAR
BINARIES

A. Expected number in the LISA band

We first estimate the merger rate RMW of DNSBs in our
Galaxy (Milky Way). As a basic observational input, we
use the comoving merger rate R ¼ 660þ1040−530 Gpc−3 yr−1
from a recent report by the LVK Collaboration [24]
(multisource model).
To relate the two rates R and RMW, we apply the

traditional argument based on the effective number density
of Milky Way equivalent Galaxies [15,25], and put
RMW ¼ LB;MWR=LB. Here LB is the B-band luminosity
per comoving volume and LB;MW is the B-band luminosity
of our Galaxy. Using their typical values, we obtain

RMW ¼ 6.0 × 10−5 yr−1
�

R
660 Gpc−3 yr−1

�

×

�
LB;MW

9 × 109L⊙

��
LB

1017L⊙ Gpc−3

�
−1
: ð1Þ

We should notice that the Galactic merger rate RMW still has
large uncertainties (at least a factor of 3).
Next, we roughly estimate the total number of Galactic

DNSBs in the LISA band. In this paper, we use the notation

f specifically for the second harmonic frequency (given by
f ¼ 2forb with the orbital frequency forb). Due to radiation
reaction, the GW frequency f evolves as [26]

df
dt

¼ 96π8=3G5=3f11=3M5=3

5c5ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
; ð2Þ

with the orbital eccentricity e and the chirp mass M of
the binary [26]. At the same time, eccentricity evolves
according to

de
dt

¼ −
304eπ8=3G5=3f8=3M5=3

15c5ð1 − e2Þ5=2
�
1þ 121

304
e2
�
: ð3Þ

These equations are a good approximation for DNSBs in
the LISA band since the relativistic corrections are small
(except for 1 − e ≪ 1).
Simply assuming (i) the steady state condition for the

Galactic DNSB population at f ≳ 1 mHz and (ii) no binary
formation there, we have the frequency distribution

dN
df

¼ RMW

�
df
dt

�
−1

∝ RMWf−11=3M−5=3: ð4Þ

Here we ignored the eccentricity dependence of _f. After the
frequency integral, we obtain the cumulative number

Nð> fÞ ¼ 30

�
M

1.2M⊙

�
−5=3

�
f

1.5 mHz

�
−8=3

×

�
RMW

6.0 × 10−5 yr−1

�
: ð5Þ

Note that the chirp mass distribution of known DNSBs is
narrow and centred around M ¼ 1.2M⊙ [27].
In fact, we will later relax the assumption (ii). But the

above result will serve as a rough guide, except for extreme
model settings.

B. Gravitational wave observations

1. Identification of binary neutron stars

Next, we consider a DNSB at distance D, with chirp
mass M, eccentricity e, and gravitational wave frequency
f. When the binary is approximated as monochromatic
(f ¼ constant), the dimensionless gravitational wave strain
amplitude from the binary in the second orbital harmonic is

h2 ¼
8G5=3M5=3π2=3f2=3

51=2Dc4

�
1 −

5

2
e2 þ 35

24
e4 þOðe6Þ

�
ð6Þ

[28–30]. This expression is obtained using the strain
amplitude in the nth orbital harmonic hn ∝ gðn; eÞ1=2=n,
with gðn; eÞ given by Eq. (20) in [31]. For binaries up
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to e ≤ 0.2, the correction for the eccentricity is less
than ∼10%.
In a gravitational wave detector with a sensitivity curve

SnðfÞ, the angle averaged signal-to-noise ratio ρ̄2 over an
observing time T is given by

ρ̄2 ¼
h2

SnðfÞ1=2
ffiffiffiffi
T

p
: ð7Þ

We put the noise curve of LISA by SnðfÞ ¼ SdðfÞ þ ScðfÞ
with the detector noise SdðfÞ and astrophysical foreground
confusion noise ScðfÞ [28], where the latter is a function
of T [32].
Now we will calculate some estimates related to gravi-

tational wave detection of Galactic DNSBs. Taking a
circular binary with the chirp mass 1.2M⊙, conservatively
located at 20 kpc, Eqs. (6) and (7) are used to obtain
ρ̄2 ¼ 7.8 and 452 for f ¼ 1.5 and 50 mHz, respectively, for
an observation time T ¼ 4 yr. If the observation time is
increased to T ¼ 10 yr, these increase to ρ̄2 ¼ 17 and 715,
respectively.
The gravitational wave frequency derivative _f charac-

terizes small frequency drifts due to GW emission in
Eq. (2). Even though we used the approximation that _f ¼
0 in Eqs. (6) and (7), measuring this small quantity is of
paramount importance. Specifically, _f can be used in
conjunction with Eq. (6) to constrain the chirp mass M ∝
_f3=5 (also accounting for the measured eccentricity dis-
cussed shortly).
In terms of the signal-to-noise ratio ρ̄2 and observation

time T (longer than 2 yr), the frequency derivative can be
measured with resolution [33],

Δ _f ≃ 0.43
�
ρ̄2
10

�
−1
T−2: ð8Þ

Using this and Eq. (2), we roughly estimate the fractional
frequency resolution _f=Δ _f for low eccentricity DNSBs
located at 20 kpc. If we consider binaries with f ¼ 1.5 and
2 mHz, then over a 4 yr observational period, we have
_f=Δ _f ¼ 1.0 and 7.4, respectively. These results are sum-
marized in the upper part of Table I. When the observing
time is increased to 10 yr, we obtain _f=Δ _f ¼ 14 and 110.
Therefore, for a 10 yr observational period, the majority

of low eccentricity DNSBs will have a measurable _f
accurate to within 10%. Over 4 yr, when f > 2 mHz, _f
is accurate within 15%. The fractional chirp mass resolution
follows

ΔM
M

≃
3

5

Δ _f
_f
: ð9Þ

It will be possible to select Galactic DNSBs based on the
chirp masses (expected to be narrowly distributed around

∼1.2M⊙), distinct from the much more numerous WDBs in
most cases. This is due to the expected rarity of millihertz
WDBs with mass M > 1M⊙ (see, e.g., Fig. 1 in [23]). We
will later discuss potential issues related to binaries includ-
ing high mass white dwarfs.

2. Eccentricity

Known Galactic DNSBs could have residual eccen-
tricities e ∼ 0.1 by the time they enter the LISA band
[34], even despite the tendency to rapidly circularize by
Eqs. (2) and (3) as they evolve toward millihertz
frequencies.
The Hulse-Taylor binary pulsar [1] (HT) has an eccentric

(e ¼ 0.6) 7.8 h orbit (f ¼ 0.07 mHz) and a chirp mass of
1.2M⊙. If we consider a HT-like pulsar with today’s
properties and evolve it from gravitational wave emission
through Eqs. (2) and (3), it will have eccentricity e ¼ 0.057
upon entering the LISA band at 1.5 mHz (see the lower part
of Table I).
For such binaries with small eccentricities e ≪ 1, whose

strain in the second orbital harmonic fGW ¼ 2forbð¼ fÞ is
given by Eq. (6), the subleading strains (∝ e) will be
present in the first and third orbital harmonics (at fGW ¼
1forb and 3forb). Using the same technique to obtain
Eq. (6), the strain in the third harmonic at fGW ¼ 3forb
is approximately

h3 ¼
9e
4
h2: ð10Þ

Ignoring changes in SnðfÞ at fGW ¼ 3forb compared to
fGW ¼ 2forb, the signal-to-noise ratio in the third orbital
harmonic ρ̄3 is then

TABLE I. Summary of detection properties of the Hulse-
Taylor–like DNSB. The binary is conservatively located at
20 kpc, and has a chirp mass of M ¼ 1.2M⊙.

Property Hulse-Taylor–like pulsar

M 1.2M⊙
D 20 kpc
SNR (1.5 mHz, 4 yr) 7.8
SNR (50 mHz, 4 yr) 452
SNR (1.5 mHz, 10 yr) 17
SNR (50 mHz, 10 yr) 715
_f=Δ _f (1.5 mHz, 4 yr) 1.0
_f=Δ _f (2 mHz, 4 yr) 7.4
_f=Δ _f (1.5 mHz, 10 yr) 14
_f=Δ _f (2 mHz, 10 yr) 110

e ð1.5 mHzÞ ¼ ei 0.057
e ð50 mHzÞ ¼ ef 0.0014
Tmerge;i 486 kyr
Tmerge;f 42 yr
Tband 486 kyr
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ρ̄3 ≈
9e
4
ρ̄2: ð11Þ

For ðf; eÞ ¼ ð1.5 mHz; 0.057Þ, the strain in the third
orbital harmonic (h3) is 13% of the dominant harmonic
(h2) via Eq. (10). If conservatively located at 20 kpc, using
Eqs. (7) and (11) we get ρ̄3 ¼ 1 for a 4 yr observation.
Therefore, this eccentric binary will not produce a detect-
able ρ̄3. At 50 mHz, the eccentricity has decreased by a
factor of 40 (e ¼ 0.0014), but the signal-to-noise ratio has
increased by a factor of 60 (see Table I). This gives
ρ̄3 ¼ 1.4, which is also not detectable. However, at
intermediate frequencies between the frequency bounda-
ries, the HT binary’s eccentricity is marginally detectable.
For example, at f ¼ 15 mHz, ρ̄3 ¼ 5.
On the f-e plane, we define the “detectable region” as

the area where we can make a complete survey for
Galactic DNSBs. So far, we have mainly discussed
DNSBs with relatively small residual eccentricities in
the LISA band. The detection for these binaries will be
complete at f ≳ 1.5 mHz for an observational period of
∼10 yr. Meanwhile, we are particularly interested in the
DNSBs which formed in the LISA band. If they have large
eccentricities, their higher harmonic strains will be essen-
tial for detecting them.
However, on the f-e plane, we simply put the detectable

region as the rectangular area which is bounded by the

inequalities fi ≡ 1.5 ≤ f ≤ ff ≡ 50 mHz and 0 ≤ e < 1,
ignoring the eccentricity dependence for the boundary
frequencies fi and ff . Our choice ff ¼ 50 mHz is some-
what arbitrary, and most of our results below are almost
independent of it. We will comment on this issue at the end
of the next section.
In Fig. 1, the detectable region is shown as the colorful

rectangular area. While it will not be difficult to more
precisely include the eccentricity dependence of the boun-
daries, this task is beyond the scope of our conceptual
study. We hereafter put N as the total number of DNSBs in
the detectable region.

III. FLOW LINES IN THE DETECTABLE REGION

As discussed in the previous section, LISA will provide
us with Galactic DNSBs scattered in the detectable region
on the f-e plane. Our primary interest in this paper is to
detect the signature of DNSB formation in the LISA band.
If all of the detected DNSBs were formed at low frequen-
cies (much lower than millihertz) and resultantly have low
eccentricities e ≪ 1, the frequency distribution dN=df
would be the appropriate data to be analyzed. Indeed, in
such a case, we will have the profile dN=df ∝ f−11=3 as
shown in Eq. (4).
However, we might detect DNSBs with non-negligible

eccentricities. In particular, those formed around the milli-
hertz band could have e ¼ Oð1Þ. For our study, we thus need
to dealwith the two-dimensional distribution d2N=dfde. It is
nevertheless advantageous to compress the two-dimensional
data into much simpler one-dimensional data. In fact,
there are many useful tools to statistically examine one-
dimensional patterns, as we see later.
The basic question here is whether we have a data

compression scheme suitable for studying the potential
millihertz formation for DNSBs. In this section, after
discussing the long-term evolution of DNSBs in the
millihertz band, we formally define the effective time
fraction τðf; eÞ as a function of f and e, for the data
compression.

A. Binary evolution in the millihertz band

First, we consider the long-term evolution of DNSBs in
the millihertz band due to the GW emission. From Eqs. (2)
and (3), we have

d ln f
de

¼ −
18

19

ð1þ 73=24e2 þ 37=96e4Þ
eð1 − e2Þð1þ 121=304e2Þ : ð12Þ

This equation is independent of the mass parameters. As
mentioned earlier, except for 1 − e ≪ 1, the relativistic
correction is small for DNSBs in the LISA band, and this
equation is an excellent approximation. We can easily
integrate Eq. (12) and obtain the flow lines as shown in

FIG. 1. Evolution of Galactic DNSBs on the f-e plane. The
detectable region is shown in pastel colors, bounded by fi ¼ 1.5
and ff ¼ 50 mHz. The black curves are the flow lines from
Eq. (12), moving rightward in time. For each point, using the
associated flow line, we can define the effective time fraction
τðf; eÞ, which is shown as a contour map. We have τ
¼ 0 and 1 at the two boundary frequencies. The red curve
corresponds to τ ¼ 0.5 (halfway in this dimensionless time unit).
The purple point on the second flow line corresponds to a binary
with ðf; eÞ ¼ ð5 mHz; 0.5Þ.
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Fig. 1 with the black lines. Due to the structure of Eq. (12),
this family satisfies a self-similar relation.
For a given point in the detectable region, we can identify

an associated flow line. For example, with respect to
the point ðf; eÞ ¼ ð5 mHz; 0.5Þ shown in Fig. 1, we
have the flow line that enters the detectable region at
ðfi; eiÞ ¼ ð1.5 mHz; 0.74Þ and escapes it at ðff ; efÞ ¼
ð50 mHz; 0.073Þ. Similarly, as presented in Table 1, the
HT-like binary would have ei ¼ 0.057 and ef ¼ 0.0014.

B. Effective time fraction on a flow line

From Eqs. (2) and (3), we can also estimate the
remaining time before the merger [26],

Tmergeðf; eÞ ¼
15

304

c5

π8=3G5=3M
−5=3

× f−8=3
�

1 − e2

e12=19ð1þ 121
304

e2Þ870=2299
�

4

×
Z

e

0

e029=19ð1þ 121
304

e02Þ1181=2299
ð1 − e02Þ3=2 de0 ð13Þ

as a function of f and e. Then, for a given DNSB at ðf; eÞ in
the detectable region, we can evaluate the total time
T totalðf; eÞ that the binary spends on its flow line in the
detectable region (i.e., from the minimum frequency fi to
the maximum one ff ). More specifically, we can put

T totalðf;eÞ¼Tmergeðfi;eiðe;fÞÞ−Tmergeðff ;efðe;fÞÞ; ð14Þ

where the eccentricities ei and ef at the two boundary
frequencies should be regarded as functions of f and e
(through the corresponding flow line). For ff ¼ 50 mHz,
the second term in Eq. (14) is virtually ignorable. For the
HT-like binary in Table I, we obtain T total ¼ 486 kyr.
Similarly, the time elapsed after entering into the detectable
region at f ¼ fi is given by

Tbandðf; eÞ ¼ Tmergeðfi; eiðf; eÞÞ − Tmergeðf; eÞ: ð15Þ

Then, we define the effective time fraction

τðf; eÞ ¼ Tbandðf; eÞ
T totalðf; eÞ

ð16Þ

for characterizing the position of a DNSB on its flow line in
the detectable region. We note that the effective time
fraction τ is independent of the chirp mass M.
In Fig. 1, we show the contour levels for the effective

time fraction τ. We have τ ¼ 0 at the lower bound f ¼ fi
and τ ¼ 1 at the upper end f ¼ ff . The DNSB at ðf; eÞ ¼
ð5 mHz; 0.5Þ has τ ¼ 0.77, shown by the purple point. At
e≲ 0.05, the function τðf; eÞ depends very weakly on the
eccentricity e, as understood from the weak correction
Oðe2Þ in Eq. (2). We can approximately put

τ ≈
f−8=3i − f−8=3

f−8=3i − f−8=3f

≈ 1 −
�

f
1.5 mHz

�
−8=3

; ð17Þ

at e ≪ 1. In the high eccentricity limit e → 1, we have

τ ≈ 1.45

�
1 −

�
f

1.5 mHz

�
−1=3

�
: ð18Þ

For the detectable region in Fig. 1, we have simply
ignored the eccentricity dependence of the upper and lower
frequency boundaries. Even if the detectable region is
deformed on the f-e plane, it is straightforward to evaluate
the effective time fraction τðf; eÞ by using a family of the
flow lines.
Using the profile of the contour plot for τ ¼ 0.95 in

Fig. 1, we briefly discuss how the fraction τ depends very
weakly on the choice of the upper cutoff frequency
ff ¼ 50 mHz. If we set ff ¼ 35 mHz, the fraction τ
changes less than ∼5% even for highly eccentric binary
ef ∼ 1. For nearly circular or moderately eccentric binaries
ef ≲ 0.1, the corrections are much smaller than 5% (also
expected from Tmerge;i ≫ Tmerge;f in Table I for the HT-like
binary).

IV. STATISTICAL TESTS FOR IN-BAND BINARY
FORMATION

In this section, we discuss how to examine DNSB
injections by using the cumulative distribution function
(CDF) of the observed time fractions τ. First, we derive
theoretical expressions for the CDFs without injections and
with injections (based on a simple model). In reality, due to
the finiteness of the sample size N, the observed CDF will
have fluctuations around the theoretical curves. We discuss
statistical tests to determine the potential injections, under
the presence of these fluctuations.

A. Without injections

Without injections, each binary goes through the detect-
able region on a flow line at a constant speed dτ=dt ¼ const.
As long as the DNSBs are in a steady state, after counting
contributions from all flow lines, we have a uniform
probability distribution function (PDF) for τ

PrðτÞ ¼ const: ð19Þ

From the normalization condition
R
1
0 dτ PrðτÞ ¼ 1, we

obtain

PrðτÞ ¼ 1: ð20Þ

The corresponding CDF is given as

FðτÞ ¼
Z

τ

0

dτ0 Prðτ0Þ ¼ τ: ð21Þ
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B. With injections

Now we discuss the PDFs and CDFs for populations
with injections. As the simplest model, we assume a
constant injection rate over τ ¼ [0,1] described as

d PrðτÞ
dτ

¼ const: ð22Þ

This toy model is not based on astrophysical grounds but
allows us to analytically generate related expressions. Even
if there is a τ dependence for in-band DNSB formation, our
analysis framework will not be changed. After integrating
this equation and normalizing the result, we obtain

PrðτÞ ¼ 1þ aτ
1þ a=2

; ð23Þ

where the positive parameter a is related to the injection
rate. In the numerator of Eq. (23), the first and second terms
respectively show the component formed below fi and the
component injected in the band ½fi; ff �. The associated
CDF is given as

FaðτÞ ¼
τ þ aτ2=2
1þ a=2

ð24Þ

and is convex downward. Here we added the subscript a to
explicitly show the parameter dependence. For a ¼ 0, we
recover Eq. (21) without injections.
Note that we do not need to directly deal with detailed

models for the eccentricity dependence of the injections.
This is another advantage of using the compressed
variable τ.
From Eq. (24) we can easily confirm that, in the

detectable region, the fraction of injected DNSBs in the
whole population is given by

B ¼ a=2
1þ a=2

: ð25Þ

Since this parameter is more comprehensive than the
original one a, we use them in parallel. Note that for
our simple model (23), we have

B ¼ 1

2

d PrðτÞ
dτ

: ð26Þ

In Fig. 2, with the red dotted curves, we show the two
CDFs F0.8ðτÞ (upper) and F1.8ðτÞ (lower). We have the
injected fractions B ¼ 0.29 and 0.47, respectively. We
also present the CDF F0ðτÞ ¼ τ without injections (blue
curves).

C. Statistical tests

For a nonzero injection parameter a, the analytical
function FaðτÞ is distinct from F0ðτÞ without injections.
However, we should recall that the expected number N of
the DNSBs in the detectable region is 10’s–100’s. If we
make the CDF for the observed time fractions τ of this
small sample size, wewill have significant scatter due to the
finiteness of N.

FIG. 2. The CDFs for the effective time fraction τ, for the cases
of a ¼ 0.8 and a ¼ 1.8, are shown in the upper and lower panels,
respectively. The blue curves show F0ðτÞ ¼ τ without injections
(uniform distribution). The dotted red curves show FaðτÞ [see
Eq. (24)] with the injections parameters a ¼ 0.8 and 1.8 (or the
injected fractions B ¼ 0.29 and 0.47). The solid red curves are
the corresponding numerical realizations FðτÞR1 and FðτÞR2 with
the sample size N ¼ 200. The maximum deviations d, which are
used in the Kolmogorov-Smirnov (KS) test, are given by the
black arrows. The respective KS p-values are 0.054 and
4.7 × 10−4. Generally speaking, increasing a leads to a larger
deviation d and hence smaller pKS, while a larger N gives a curve
more similar to the theoretical CDF FaðτÞ. The p-values are also
provided for the Anderson-Darling (AD) test.

LUCY O. MCNEILL and NAOKI SETO PHYS. REV. D 106, 123031 (2022)

123031-6



To be concrete, we perform a numerical experiment for
a ¼ 0.8 with the sample number N ¼ 200. We employ the
scheme known as inverse transform sampling and generate
a list fτig (i ¼ 1;…; N) whose individual elements are
drawn from the analytic CDF F0.8ðτÞ without measure-
ment errors. After sorting, we obtain the CDF FðτÞR1, as
shown by the solid red line in the upper panel of Fig. 2.
Similarly, we generate another realization FðτÞR2 for N ¼
200 and a ¼ 1.8 (given in the lower panel). As expected,
we can observe fluctuations around the original CDFs
F0.8ðτÞ and F1.8ðτÞ [Eq. (24)] presented with the dotted red
curves.
Now, let us assume that LISA provides us with the

sample corresponding to FðτÞR1. Our central task here is to
statistically determine how likely this realization could
have been drawn from the model CDF F0ðτÞ without
injections (the null hypothesis). If unlikely, it would be
reasonable to claim that we detect a signature of injections.
There are many sophisticated statistical techniques to

check the consistency of a data sample with respect to a
reference CDF. In the KS test [35], we evaluate the
maximum deviation between the two CDFs. In our case,
it is expressed as

d ¼ max
0≤τ≤1

jFðτÞR1 − F0ðτÞj: ð27Þ

For an observed sample with size N, the probability of
obtaining a maximum deviation ≥ d is approximately given
by [35]

pKS≈2
X∞
j¼1

ð−1Þj−1Exp
�
−2j2

��
N1=2þ0.12þ0.11

N1=2

�
d

�
2
�
:

ð28Þ

We use the probability pKS as the p-value for the sample
FðτÞR1 to be drawn from the CDF F0ðτÞ without injections.
As shown in the upper panel of Fig. 2, for the realization

FðτÞR1, we have d ¼ 0.094 and pKS ¼ 0.054 (using
Mathematica). Similarly, for the other realization
FðτÞR2 in the lower panel, we have d ¼ 0.14 and pKS ¼
4.7 × 10−4. Note that, in each panel, due to the statistical
fluctuations, the black deviation d is larger than the
maximum deviation between the two theoretical curves
at τ ¼ 0.5. These are respectively given by a=ð4aþ 8Þ ¼
B=4 ¼ 0.071 and 0.12.
The KS test is a simple method, and it is most sensitive

to the data around τ ¼ 0.5, where we typically have the
maximum deviation d. In contrast, the AD test uses the
whole range of a CDF [35] and often provides us with a
more stringent p-value pAD < pKS. For the two realiza-
tions in Fig. 2, we have pAD ¼ 0.018 and 7.4 × 10−5,
respectively (again using Mathematica). Interestingly, for
the a ¼ 0.8 case the upper sample is now below the
standard threshold p ¼ 0.05.

D. Systematic study

We now systematically explore the parameter space
ðN;BÞ. Given the current uncertainties of these parameters,
we consider the range 0 < N < 500 and 0 < B < 0.5, as
shown in Fig. 3, and divide this space with a 20 × 20 grid.
At each grid point, we simulate 1000 realizations for the

τ distribution, evaluate the p-values pKS individually for
the realizations, and take their median value hpiKS. The
numerical results hpiKS are shown in Fig. 3 by the pastel
levels.
To determine the characteristic curve corresponding to

hpiKS ¼ 0.05 in Fig. 3, we made iterative calculations and
obtained an approximate expression

B ¼ 0.37

�
N
100

�
−1=2

: ð29Þ

We show this expression with the black curve. For example,
at B ¼ 0.37, we need N ∼ 100, which is 3.3 times larger
than the reference value for the expected number of
Galactic DNSBs in Eq. (5).
In the same manner, we obtain an expression for the AD

test (hpiAD ¼ 0.05) as

B ¼ 0.35

�
N
100

�
−1=2

; ð30Þ

presented with the red curve in Fig. 3. For a given injected
fraction B, the AD test requires ∼10% smaller sample size
N than the KS test.

FIG. 3. Contour plot of the median p-value log10½hpiKS� for the
KS test. This is calculated for sample size N and injected fraction
B with a 20 × 20 resolution. The black curve shows the boundary
for hpiKS ¼ 0.05 (or log10½hpiKS� ¼ −1.3). The red curve shows
a similar boundary for the AD test hpiAD ¼ 0.05. Above these
curves, it is likely that the no injection scenario will be rejected
due to a p-value less than 0.05.
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E. Parameter estimation

So far, we have studied the statistical tests to check
potential DNSB injections. Here we briefly discuss how
well we can estimate the injected fraction B (or equivalently
a) from the CDF of the observed effective time fractions τ.
The standard approach for the estimation is to compare the
overall profile of the observed CDF with the theoretical
expression (24) and fit the parameter B (see, e.g., the solid
and dotted red curves in Fig. 2). Roughly speaking, this
method is similar to the concept of the AD test. Instead,
below, we examine a simple method only using the
maximum deviation d, as in the case of the KS test.
As mentioned earlier, the maximum deviation d has

statistical fluctuations, due to the finiteness of the sample
size N. For a given B and N, we put the mean value of d by
d̄ðB;NÞ and the root-mean-square (rms) scatter by
σdðB;NÞ. If we try to estimate the parameter B from
the observed maximum deviation d [inversely using the
relation d ¼ d̄ðB;NÞ], the estimated parameter B contains
the rms error σBðB;NÞ roughly given by

σBðB;NÞ ¼ σdðB;NÞ
�
∂d̄ðB;NÞ

∂B

�−1
ð31Þ

with the Jacobian ∂d̄ðB;NÞ=∂B.
At various points in Fig. 3, we numerically evaluated the

two factors σd and ∂d̄ðB;NÞ=∂B by generating a large
number of realizations. For the scatter σd, we found an
approximate relation

σdðB;NÞ ≃ 0.04

�
N
100

�
−1=2

; ð32Þ

which is independent of B. By taking finite differences
instead of the derivatives, we also found

∂d̄ðB;NÞ
∂B

≃ 0.25: ð33Þ

This simple relation seems reasonable, given the maximum
deviation B=4 between the two theoretical curves in Fig. 2
(as mentioned earlier). Then, for the estimation error of B,
we have

σBðB;NÞ ≃ 0.16

�
N
100

�
−1=2

: ð34Þ

Comparing this result with the critical curves given by
Eqs. (29) and (30), we can see that these curves roughly
correspond to the condition B ∼ 2σB.

V. DISCUSSION

In this paper we have discussed the basic idea of probing
DNSB injections in the detectable region on the ðf; eÞ
plane. Here we mention potential extensions of our study.

A. Other projections

For simplicity, we proposed the projection to the single
variable τ. Considering the dimensionality of the original
data, we might develop other projection methods, as
illustrated in the following example.
Using the variable τ in Fig. 1, we first divide the

DNSBs into two groups: G− (with 0 ≤ τ ≤ 0.5) and Gþ
(with 0.5 < τ ≤ 1.0). Then, along the flow lines, we move
the DNSBs in the group G−, to the boundary curve τ ¼ 0.5
(the red line in Fig. 1). We put P−

0.5ðeÞ as the resultant
eccentricity distribution at τ ¼ 0.5. In the same manner, we
can obtain Pþ

0.5ðeÞ for the group Gþ.
Now, without the DNSB injections, the two profiles

P−
0.5ðeÞ and Pþ

0.5ðeÞ should be the same, except for some
statistical fluctuations. With injections, this is generally not
the case. Therefore, we can apply various techniques, such
as the two sample KS test [35], for probing potential
injections.

B. Lower frequency regime

We have dealt with DNSBs only in the detectable region
at f ≥ 1.5 mHz, by evaluating the signal-to-noise ratios at a
conservative distance of 20 kpc. However, it would be highly
desirable to probe the injections in the lower frequency
regime. In the extended regime, LISA’s Galactic DNSB
survey is not complete. For applying our method, we thus
need to correct for the selection bias, by using appropriate
models for the distribution of Galactic DNSBs.

C. Massive white dwarfs

PSR B2303þ 46 [36,37] and J0453þ 1559 [38] are
Galactic neutron star white dwarf (NS-WD) binary candi-
dates with relatively large chirp masses of M ¼ 1.05M⊙
and M ¼ 1.17M⊙ respectively. While they have orbital
periods of days (merger timescales larger than Hubble time),
we might actually detect similar NS-WD systems with
DNSB-like chirp masses in the millihertz band. This is
because NS-WD are likely to be the next most abundant
compact binary after WDBs [39]. A binary’s white dwarf
component could be confirmed with targeted optical/IR
follow-up, but these searches may not be successful.
Observational challenges include interstellar extinction
and limitations in the sky localization with LISA. In relation
to the electromagnetic wave observation, radio followup
will be also important for estimating the age of a DNSB [7].
Here, we should note that a dynamically formed DNSBmay
have an age largely different from the spin-down age of the
component pulsars.
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In any case, we can rather decrease the chirp mass
threshold to add NS-WDs and WDBs to our binary sample,
and thereby increase the total numberN. However, in Fig. 1,
the flow lines and the associated time fraction τ are based on
the point particle approximation in Eqs. (2) and (3). We thus
need to carefully examine the possible modifications
induced by the finiteness of white dwarfs [40,41].

VI. SUMMARY

Due to the complex interplay between various physical
processes, it is still difficult to solidly predict the orbital
parameters of compact binaries at their formation. New
observational results will thus help us to refine theoretical
modelings. In the near future, the space interferometer
LISA will explore GWs around 0.1–100 mHz and will
make a complete survey for Galactic DNSBs above
∼1.5 mHz after ∼10 yr operation.
In this paper, we discussed how well we can detect a

signature of DNSB formation (injections) around 1 mHz
with LISA. We first introduced the effective time fraction τ
for each DNSB to compress the original two-dimensional
data ðf; eÞ, as shown in Fig. 1. The probability distribution
function PrðτÞ for the measured fractions τ plays the central
role in our method. There was a flat profile d PrðτÞ=dτ ¼ 0
without injections, but d PrðτÞ=dτ > 0 with injections.

In reality, we need to discriminate the differences between
the profiles under the existence of scatter due to the finite
sample size N. To be concrete, we made a simple model for
the DNSB injections with d PrðτÞ=dτ ¼ 2Bð¼ constÞ, char-
acterized by the injection fraction B. Then, we examined the
prospects for discriminating the profile differences with the
Kolmogorov-Smirnov and Anderson-Darling tests. Our
main results are presented in Fig. 3 with the characteristic
relations (29) and (30) for the p-value of 0.05. For example,
with the sample sizeN ¼ 100, we need an injection fraction
B≳ 0.35 to detect injections.
In this paper, we have discussed the very basic idea of

studying potential DNSB formation around 1 mHz. Our
approach can be extended in various directions, including
those mentioned in Sec. V.
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