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Probing the formation of double neutron star binaries around 1 mHz with LISA
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We propose a novel method to examine whether Galactic double neutron star binaries are formed in the
Laser Interferometer Space Antenna (LISA) band. In our method, we assign an effective time fraction 7 to
each double neutron star binary detected by LISA. This fraction is given as a function of the observed orbital
period and eccentricity and should be uniformly distributed in the absence of in-band binary formation.
Applying statistical techniques such as the Kolmogorov-Smirnov test to the actual list of 7, we can inspect
the signature of the in-band binary formation. We discuss the prospects of this method, paying close
attention to the available sample number of Galactic double neutron star binaries around 1 mHz.
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I. INTRODUCTION

Double neutron star binaries (hereafter DNSBs) are
bountiful astrophysical targets. They have been detected
as radio pulsars [1,2], and the current sample has orbital
periods P from 1.9 h [3] to 6 weeks [4]. This sample
contains around 20 DNSBs, and searches might be incom-
plete at the faint end of the luminosity function (also limited
by the beaming fraction). Shorter period (P < 1 h) DNSBs
ought to exist in the Galaxy as well. However, due to
Doppler smearing and shorter merger timescales, their
detection would be more difficult than the longer period
ones [5].

The Laser Interferometer Space Antenna (LISA) is
planned in the 2030s [6] and is sensitive to gravitational
waves (GWs) around 0.1-100 mHz. It will detect all
Galactic DNSBs in the frequency range f 2 1.5 mHz
(corresponding to the orbital period P =2/f <20 min),
unlike the longer-period radio sample. Observationally
motivated estimates [7] suggest that at least dozens of
DNSBs exist in the Galaxy at f 2 1.5 mHz. Numerical
Galactic modeling [8,9] predicts that LISA will detect
altogether from a few to up to hundreds of DNSBs.

DNSB formation depends on the complex interplay
between many astrophysical processes. In the general
picture, the binary must survive two supernova explosions.
Preceding these supernovae, various mechanisms have
been theorized with respect to mass loss/exchange in the
binary [10-13] after hydrogen burning. These processes all
play arole in determining the separation at formation, if the
binary survives.

However, the related efficiencies and rates in populations
are not well established (see [14] for a review). In particular,
it is unclear whether there is a critical minimum orbital
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period (or maximum orbital frequency) for isolated DNSB
formation.

Dynamical encounters in star clusters is an alternative
pathway for short period DNSB formation, though their
contribution to the LISA sample is estimated to be small
[15,16]. Also, for the dynamical scenario it will be difficult
to solidly estimate the distribution function for the orbital
periods of the generated DNSBs.

In this paper, we are interested in the possibility of
DNSB formation specifically at f = 1 mHz. We hereafter
call this channel “in-band” (millihertz) DNSB formation,
or simply “injections.” Considering the aforementioned
theoretical uncertainties, it will be fruitful to observatio-
nally examine the in-band formation in a model indepen-
dent manner.

We thus develop a statistical method to examine the in-
band formation with LISA (see also [17] for formation
between the LISA band and the lower frequencies already
probed by the radio sample). Recently, several studies have
proposed to statistically deal with multiple LISA sources in
the Galaxy. Among others, a large number (~10%) of white
dwarf binaries (WDBs) will be a powerful dataset for
various astronomical analyses (e.g., probing the Galactic
structure [18,19]). In this context, one of the authors
suggested to measure the fluxes of the Galactic WDBs in
frequency space [20]. He pointed out that the measurement
will enable us to follow the collective evolution of the
WDBs, resulting in mergers or stable mass transfers.

One might imagine that we can get some information
about the in-band formation by similarly measuring the
DNSB flux with LISA at various frequencies. Unfortunately,
LISA will detect much fewer DNSBs than WDBs, and the
small number statistics will severely limit the flux approach
for DNSBs. On the other hand, unlike WDBs, DNSBs can
be well regarded as point particle systems in the LISA band,
and their long-term orbital evolution from GW emission can
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be predicted quite accurately [1]. Considering these pros
and cons of DNSBs, we newly introduce the effective
time fraction 7, corresponding to the fraction of total time
that each binary has spent in the millihertz band. Without
in-band formation, the fraction z should be uniformly
distributed. By analyzing the observed list of 7z, we can
examine potential in-band formation through its deviation
from a uniform distribution.

The basic assumption of our study is that the millihertz
DNSB population is in the “steady state” [21]. This is a
reasonable assumption, since a DNSB passes through the
millihertz band in the timescale of a million years or less,
but the Galactic DNSB merger rate is likely to change over
the Hubble timescale, reflecting the slow variation of the
Galaxy-wide star formation rate in the past ~5 Gyr [22,23].
LISA’s source localizability will also help us to examine the
anomalous (and unlikely) clustering of short-period
DNSBs that might be responsible for the violation of the
steady state.

This paper is organized as follows. In Sec. II, we roughly
estimate how many Galactic DNSBs are likely to be
detected by LISA. In Sec. III, we study the long-term
orbital evolution of DNSBs and define the effective time
fraction z, as a function of the GW frequency and the orbital
eccentricity. Then, in Sec. IV, using statistical tools such as
the Kolmogorov-Smirnov test, we discuss how well we can
probe in-band formation with LISA. In Sec. V, we mention
potential extensions of this study. We summarize our
findings in Sec. VL.

II. GALACTIC DOUBLE NEUTRON STAR
BINARIES

A. Expected number in the LISA band

We first estimate the merger rate Ry of DNSBs in our
Galaxy (Milky Way). As a basic observational input, we
use the comoving merger rate R = 660f§g§0 Gpc 2 yr!
from a recent report by the LVK Collaboration [24]
(multisource model).

To relate the two rates R and Ry, we apply the
traditional argument based on the effective number density
of Milky Way equivalent Galaxies [15,25], and put
Ryw = LpvwR/Lp. Here Ly is the B-band luminosity
per comoving volume and L yw is the B-band luminosity
of our Galaxy. Using their typical values, we obtain

R
Ryw = 6.0x 107 yr! [ ———————
Vv 8 " <660 Gpc™3 yr‘l)

I3 -1
x B’M;V 17 Lo =) - (1)
9x10°Ly/) \10""Ly Gpc

We should notice that the Galactic merger rate Ry still has
large uncertainties (at least a factor of 3).

Next, we roughly estimate the total number of Galactic
DNSBs in the LISA band. In this paper, we use the notation

f specifically for the second harmonic frequency (given by
f = 2f . with the orbital frequency f ). Due to radiation
reaction, the GW frequency f evolves as [26]

8/3(35/3 £11/3 A 45/3
df _96n "G M 1+Eez+£e4 . (2)
dt 563(1 —2)7/2 24 96

with the orbital eccentricity e and the chirp mass M of
the binary [26]. At the same time, eccentricity evolves
according to

de  304en® 3G S M3 L et 3
dr 1565(1 = &2)3? < 304° > (3)
These equations are a good approximation for DNSBs in
the LISA band since the relativistic corrections are small
(except for 1 —e < 1).

Simply assuming (i) the steady state condition for the
Galactic DNSB population at f 2 1 mHz and (ii) no binary
formation there, we have the frequency distribution

dN dr\ -1
? = Rvw (d_]:> o Ry f 1B M™/3. (4)

Here we ignored the eccentricity dependence of f . After the
frequency integral, we obtain the cumulative number

B M \-5/3 f ~8/3
NG = 30(1.21\49) <1.5 mHz>

Ryiw
— . 5
x (6.0 x 1073 yr‘1> ®)

Note that the chirp mass distribution of known DNSBs is
narrow and centred around M = 1.2M [27].

In fact, we will later relax the assumption (ii). But the
above result will serve as a rough guide, except for extreme
model settings.

B. Gravitational wave observations

1. Identification of binary neutron stars

Next, we consider a DNSB at distance D, with chirp
mass M, eccentricity e, and gravitational wave frequency
f. When the binary is approximated as monochromatic
(f = constant), the dimensionless gravitational wave strain
amplitude from the binary in the second orbital harmonic is

8G5/3M5/3ﬂ'2/3f2/3 5 5 35 . .
2 = 51/2Dc4 1—56 +ﬂ€ +O(€) (6)

[28-30]. This expression is obtained using the strain
amplitude in the nth orbital harmonic 4,  g(n,e)'/?/n,
with g(n,e) given by Eq. (20) in [31]. For binaries up
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to e <0.2, the correction for the eccentricity is less
than ~10%.

In a gravitational wave detector with a sensitivity curve
S, (f), the angle averaged signal-to-noise ratio g, over an
observing time 7 is given by

Py = # VT. (7)

We put the noise curve of LISA by S,,(f) = S4(f) + S.(f)
with the detector noise S,(f) and astrophysical foreground
confusion noise S.(f) [28], where the latter is a function
of T [32].

Now we will calculate some estimates related to gravi-
tational wave detection of Galactic DNSBs. Taking a
circular binary with the chirp mass 1.2M o, conservatively
located at 20 kpc, Egs. (6) and (7) are used to obtain
pr = 7.8 and 452 for f = 1.5 and 50 mHz, respectively, for
an observation time 7 = 4 yr. If the observation time is
increased to T = 10 yr, these increase to p, = 17 and 715,
respectively. )

The gravitational wave frequency derivative f charac-
terizes small frequency drifts due to GW emission in
Eq. (2). Even though we used the approximation that f =
0 in Egs. (6) and (7), measuring this small quantity is of
paramount importance. Specifically, f can be used in
conjunction with Eq. (6) to constrain the chirp mass M «
35 (also accounting for the measured eccentricity dis-
cussed shortly).

In terms of the signal-to-noise ratio p, and observation
time 7" (longer than 2 yr), the frequency derivative can be
measured with resolution [33],

. |
A ~0.43 <f—(2)> 72, (8)

Using this and Eq. (2), we roughly estimate the fractional
frequency resolution f /A f for low eccentricity DNSBs
located at 20 kpc. If we consider binaries with f = 1.5 and
2 mHz, then over a 4 yr observational period, we have
f /A f = 1.0 and 7.4, respectively. These results are sum-
marized in the upper part of Table I. When the observing
time is increased to 10 yr, we obtain f /A f = 14 and 110.
Therefore, for a 10 yr observational period, the majority
of low eccentricity DNSBs will have a measurable f
accurate to within 10%. Over 4 yr, when f > 2 mHz, f
is accurate within 15%. The fractional chirp mass resolution
follows

A A
AL (9)

f

It will be possible to select Galactic DNSBs based on the
chirp masses (expected to be narrowly distributed around

TABLE 1. Summary of detection properties of the Hulse-
Taylor-like DNSB. The binary is conservatively located at
20 kpc, and has a chirp mass of M = 1.2M,.

Property Hulse-Taylor-like pulsar
M 1.2M,
D 20 kpc
SNR (1.5 mHz, 4 yr) 7.8
SNR (50 mHz, 4 yr) 452
SNR (1.5 mHz, 10 yr) 17
SNR (50 mHz, 10 yr) 715
f/Af (1.5 mHz, 4 yr) 1.0
f/Af (2 mHz, 4 yr) 7.4
f/Af (1.5 mHz, 10 yr) 14
f/Af (2 mHz, 10 yr) 110

e (1.5 mHz) = ¢; 0.057
e (50 mHz) = ¢; 0.0014
Tmerge.i 486 kyl’
Tmerge,f 42 yr
Tband 486 kyr

~1.2M ), distinct from the much more numerous WDBs in
most cases. This is due to the expected rarity of millihertz
WDBs with mass M > 1M (see, e.g., Fig. 1 in [23]). We
will later discuss potential issues related to binaries includ-
ing high mass white dwarfs.

2. Eccentricity

Known Galactic DNSBs could have residual eccen-
tricities e ~ 0.1 by the time they enter the LISA band
[34], even despite the tendency to rapidly circularize by
Egs. (2) and (3) as they evolve toward millihertz
frequencies.

The Hulse-Taylor binary pulsar [1] (HT) has an eccentric
(e =0.6) 7.8 h orbit (f = 0.07 mHz) and a chirp mass of
1.2My. If we consider a HT-like pulsar with today’s
properties and evolve it from gravitational wave emission
through Egs. (2) and (3), it will have eccentricity e = 0.057
upon entering the LISA band at 1.5 mHz (see the lower part
of Table I).

For such binaries with small eccentricities ¢ < 1, whose
strain in the second orbital harmonic fgw = 2f (= f) is
given by Eq. (6), the subleading strains (x e) will be
present in the first and third orbital harmonics (at fgw =
1fow and 3f,). Using the same technique to obtain
Eq. (6), the strain in the third harmonic at fgw = 3fon
is approximately

9e
hy = —h,. 10
=%, (10)

Ignoring changes in S,(f) at fgw = 3fon compared to
fow = 2f o, the signal-to-noise ratio in the third orbital
harmonic p5 is then
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FIG. 1. Evolution of Galactic DNSBs on the f-e plane. The
detectable region is shown in pastel colors, bounded by f; = 1.5
and fy = 50 mHz. The black curves are the flow lines from
Eq. (12), moving rightward in time. For each point, using the
associated flow line, we can define the effective time fraction
7(f,e), which is shown as a contour map. We have 7
=0 and 1 at the two boundary frequencies. The red curve
corresponds to 7 = 0.5 (halfway in this dimensionless time unit).
The purple point on the second flow line corresponds to a binary
with (f,e) = (5 mHz,0.5).

e

p3 R 97/)‘2- (11)
For (f,e) = (1.5 mHz,0.057), the strain in the third
orbital harmonic (/3) is 13% of the dominant harmonic
(h,) via Eq. (10). If conservatively located at 20 kpc, using
Egs. (7) and (11) we get p3 =1 for a 4 yr observation.
Therefore, this eccentric binary will not produce a detect-
able p3. At 50 mHz, the eccentricity has decreased by a
factor of 40 (e = 0.0014), but the signal-to-noise ratio has
increased by a factor of 60 (see Table I). This gives
p3 = 1.4, which is also not detectable. However, at
intermediate frequencies between the frequency bounda-
ries, the HT binary’s eccentricity is marginally detectable.
For example, at f = 15 mHz, p; = 5.

On the f-e plane, we define the “detectable region” as
the area where we can make a complete survey for
Galactic DNSBs. So far, we have mainly discussed
DNSBs with relatively small residual eccentricities in
the LISA band. The detection for these binaries will be
complete at f = 1.5 mHz for an observational period of
~10 yr. Meanwhile, we are particularly interested in the
DNSBs which formed in the LISA band. If they have large
eccentricities, their higher harmonic strains will be essen-
tial for detecting them.

However, on the f-e plane, we simply put the detectable
region as the rectangular area which is bounded by the

inequalities f; =15<f<f;=50mHz and 0 <e < 1,
ignoring the eccentricity dependence for the boundary
frequencies f; and f;. Our choice f; = 50 mHz is some-
what arbitrary, and most of our results below are almost
independent of it. We will comment on this issue at the end
of the next section.

In Fig. 1, the detectable region is shown as the colorful
rectangular area. While it will not be difficult to more
precisely include the eccentricity dependence of the boun-
daries, this task is beyond the scope of our conceptual
study. We hereafter put N as the total number of DNSBs in
the detectable region.

III. FLOW LINES IN THE DETECTABLE REGION

As discussed in the previous section, LISA will provide
us with Galactic DNSBs scattered in the detectable region
on the f-e plane. Our primary interest in this paper is to
detect the signature of DNSB formation in the LISA band.
If all of the detected DNSBs were formed at low frequen-
cies (much lower than millihertz) and resultantly have low
eccentricities e < 1, the frequency distribution dN/df
would be the appropriate data to be analyzed. Indeed, in
such a case, we will have the profile dN/df « f~''/3 as
shown in Eq. (4).

However, we might detect DNSBs with non-negligible
eccentricities. In particular, those formed around the milli-
hertz band could have e = O(1). For our study, we thus need
to deal with the two-dimensional distribution d>N /d fde. Itis
nevertheless advantageous to compress the two-dimensional
data into much simpler one-dimensional data. In fact,
there are many useful tools to statistically examine one-
dimensional patterns, as we see later.

The basic question here is whether we have a data
compression scheme suitable for studying the potential
millihertz formation for DNSBs. In this section, after
discussing the long-term evolution of DNSBs in the
millihertz band, we formally define the effective time
fraction 7(f,e) as a function of f and e, for the data
compression.

A. Binary evolution in the millihertz band

First, we consider the long-term evolution of DNSBs in
the millihertz band due to the GW emission. From Egs. (2)
and (3), we have

dinf 18 (14 73/24¢* +37/96¢*)
de  19e(1—e?)(1+121/304¢?)°

(12)

This equation is independent of the mass parameters. As
mentioned earlier, except for 1 —e <« 1, the relativistic
correction is small for DNSBs in the LISA band, and this
equation is an excellent approximation. We can easily
integrate Eq. (12) and obtain the flow lines as shown in
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Fig. 1 with the black lines. Due to the structure of Eq. (12),
this family satisfies a self-similar relation.

For a given point in the detectable region, we can identify
an associated flow line. For example, with respect to
the point (f,e) = (5 mHz,0.5) shown in Fig. 1, we
have the flow line that enters the detectable region at
(fi,e;) = (1.5 mHz,0.74) and escapes it at (f,ep) =
(50 mHz,0.073). Similarly, as presented in Table 1, the
HT-like binary would have e¢; = 0.057 and e; = 0.0014.

B. Effective time fraction on a flow line

From Egs. (2) and (3), we can also estimate the
remaining time before the merger [26],

15 &

_ -5/3
- ﬁﬂs/sGw M

T inerge (/- €)
X f‘8/3( 1-e )4
e12/19(1 T %62)870/2299
y /e 6/29/19(1 +%612)1181/2299
0 (1- e/2>3/2

de’  (13)

as a function of f and e. Then, for a given DNSB at (f, ) in
the detectable region, we can evaluate the total time
Ty (f, e) that the binary spends on its flow line in the
detectable region (i.e., from the minimum frequency f; to
the maximum one f;). More specifically, we can put

Ttotal(f’e) = Tmerge(fhei(e’f)) - Tmerge(ffaef(e’f))’ (14)

where the eccentricities e; and e; at the two boundary
frequencies should be regarded as functions of f and e
(through the corresponding flow line). For f; = 50 mHz,
the second term in Eq. (14) is virtually ignorable. For the
HT-like binary in Table I, we obtain T, = 486 kyr.
Similarly, the time elapsed after entering into the detectable
region at f = f; is given by

Tband(fv 6) = Tmerge(fi’ ei(f? 6)) - Tmerge(f’ 6). (15)

Then, we define the effective time fraction

w(f.e) = % (16)

for characterizing the position of a DNSB on its flow line in
the detectable region. We note that the effective time
fraction 7 is independent of the chirp mass M.

In Fig. 1, we show the contour levels for the effective
time fraction 7. We have 7 = 0 at the lower bound f = f;
and 7 = 1 at the upper end f = f;. The DNSB at (f,e) =
(5 mHz,0.5) has = = 0.77, shown by the purple point. At
e < 0.05, the function z(f, ) depends very weakly on the
eccentricity e, as understood from the weak correction
O(e?) in Eq. (2). We can approximately put

-8/3 _ r-8/3 -8/3
e (k)™
o = 1.5 mHz

at e < 1. In the high eccentricity limit e — 1, we have

tx 145 [1 - <]5fm> _1/3]. (18)

For the detectable region in Fig. 1, we have simply
ignored the eccentricity dependence of the upper and lower
frequency boundaries. Even if the detectable region is
deformed on the f-e plane, it is straightforward to evaluate
the effective time fraction z(f, ¢) by using a family of the
flow lines.

Using the profile of the contour plot for z =0.95 in
Fig. 1, we briefly discuss how the fraction 7 depends very
weakly on the choice of the upper cutoff frequency
fr=50mHz. If we set f; =35 mHz, the fraction 7
changes less than ~5% even for highly eccentric binary
e; ~ 1. For nearly circular or moderately eccentric binaries
e; < 0.1, the corrections are much smaller than 5% (also
expected from Terge i > Tnerge ¢ in Table I for the HT-like
binary).

TR

IV. STATISTICAL TESTS FOR IN-BAND BINARY
FORMATION

In this section, we discuss how to examine DNSB
injections by using the cumulative distribution function
(CDF) of the observed time fractions 7. First, we derive
theoretical expressions for the CDFs without injections and
with injections (based on a simple model). In reality, due to
the finiteness of the sample size N, the observed CDF will
have fluctuations around the theoretical curves. We discuss
statistical tests to determine the potential injections, under
the presence of these fluctuations.

A. Without injections

Without injections, each binary goes through the detect-
able region on a flow line at a constant speed dz/d¢ = const.
As long as the DNSBs are in a steady state, after counting
contributions from all flow lines, we have a uniform
probability distribution function (PDF) for 7

Pr(z) = const. (19)

From the normalization condition [} dzPr(r) =1, we
obtain

Pr(z) = 1. (20)

The corresponding CDF is given as

F(z) = A " Pr(e) = . (21)
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B. With injections

Now we discuss the PDFs and CDFs for populations
with injections. As the simplest model, we assume a
constant injection rate over 7 = [0,1] described as

dPr(z

i ) = const. (22)

This toy model is not based on astrophysical grounds but
allows us to analytically generate related expressions. Even
if there is a 7 dependence for in-band DNSB formation, our
analysis framework will not be changed. After integrating
this equation and normalizing the result, we obtain

1 +ar

PI'(T) = Ta/z s

(23)

where the positive parameter a is related to the injection
rate. In the numerator of Eq. (23), the first and second terms
respectively show the component formed below f; and the
component injected in the band [fj, ft]. The associated
CDF is given as

7+ ar?/2
R0 = (24)
and is convex downward. Here we added the subscript a to
explicitly show the parameter dependence. For a = 0, we
recover Eq. (21) without injections.

Note that we do not need to directly deal with detailed
models for the eccentricity dependence of the injections.
This is another advantage of using the compressed
variable 7.

From Eq. (24) we can easily confirm that, in the
detectable region, the fraction of injected DNSBs in the
whole population is given by

a/?2

B=—+—.
1+a/2

(25)

Since this parameter is more comprehensive than the
original one a, we use them in parallel. Note that for
our simple model (23), we have

1dPr(z)
B = > dr (26)
In Fig. 2, with the red dotted curves, we show the two
CDFs Fyg(z) (upper) and F,g(7) (lower). We have the
injected fractions B = 0.29 and 0.47, respectively. We
also present the CDF F((7) = = without injections (blue
curves).

CDF
1.0
— Fy(n)
L R F
osl 0.8(7)
0.6-

04+

e A+ — F(t)p;: N=200, d=0.094,

Prs=0.054, pap=0.018

02 04 06 08 10
CDF
10
— Fy(@)
0. Fis(@
06

04

02  F(Dy, N=200,d=0.14,

PKsS =4.7e-4, PAD =74e-5

02 04 06 08 10"

FIG. 2. The CDFs for the effective time fraction 7, for the cases
of a = 0.8 and a = 1.8, are shown in the upper and lower panels,
respectively. The blue curves show F((z) = 7 without injections
(uniform distribution). The dotted red curves show F,(7) [see
Eq. (24)] with the injections parameters a = 0.8 and 1.8 (or the
injected fractions B = 0.29 and 0.47). The solid red curves are
the corresponding numerical realizations F (), and F(7)z, with
the sample size N = 200. The maximum deviations d, which are
used in the Kolmogorov-Smirnov (KS) test, are given by the
black arrows. The respective KS p-values are 0.054 and
4.7 x 10~*. Generally speaking, increasing a leads to a larger
deviation d and hence smaller pgg, while a larger N gives a curve
more similar to the theoretical CDF F,(z). The p-values are also
provided for the Anderson-Darling (AD) test.

C. Statistical tests

For a nonzero injection parameter a, the analytical
function F,(z) is distinct from F(z) without injections.
However, we should recall that the expected number N of
the DNSBs in the detectable region is 10’s—100’s. If we
make the CDF for the observed time fractions 7z of this
small sample size, we will have significant scatter due to the
finiteness of N.
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To be concrete, we perform a numerical experiment for
a = 0.8 with the sample number N = 200. We employ the
scheme known as inverse transform sampling and generate
a list {r;} (i=1,...,N) whose individual elements are
drawn from the analytic CDF Fg(7) without measure-
ment errors. After sorting, we obtain the CDF F(7)g,, as
shown by the solid red line in the upper panel of Fig. 2.
Similarly, we generate another realization F(z)g, for N =
200 and a = 1.8 (given in the lower panel). As expected,
we can observe fluctuations around the original CDFs
Fos(7)and F| 3(7) [Eq. (24)] presented with the dotted red
curves.

Now, let us assume that LISA provides us with the
sample corresponding to F(7)g,. Our central task here is to
statistically determine how likely this realization could
have been drawn from the model CDF F(r) without
injections (the null hypothesis). If unlikely, it would be
reasonable to claim that we detect a signature of injections.

There are many sophisticated statistical techniques to
check the consistency of a data sample with respect to a
reference CDF. In the KS test [35], we evaluate the
maximum deviation between the two CDFs. In our case,
it is expressed as

d= maxl|F(T)R1 — Fo(1)]. (27)

0<7<

For an observed sample with size N, the probability of
obtaining a maximum deviation > d is approximately given
by [35]

o]

. , 0.11\ ]2
PKszzz(—l)HExp{—Zf[(N'/2+0.12+W>d} }

j=1
(28)

We use the probability pgg as the p-value for the sample
F(7)g, to be drawn from the CDF F(7) without injections.

As shown in the upper panel of Fig. 2, for the realization
F(7)g;, we have d=0.094 and pgs = 0.054 (using
Mathematica). Similarly, for the other realization
F(7)g, in the lower panel, we have d = 0.14 and pgs =
4.7 x 107*. Note that, in each panel, due to the statistical
fluctuations, the black deviation d is larger than the
maximum deviation between the two theoretical curves
at 7 = 0.5. These are respectively given by a/(4a + 8) =
B/4 =0.071 and 0.12.

The KS test is a simple method, and it is most sensitive
to the data around 7 = 0.5, where we typically have the
maximum deviation d. In contrast, the AD test uses the
whole range of a CDF [35] and often provides us with a
more stringent p-value pap < pks. For the two realiza-
tions in Fig. 2, we have psp = 0.018 and 7.4 x 1073,
respectively (again using Mathematica). Interestingly, for
the @ = 0.8 case the upper sample is now below the
standard threshold p = 0.05.

D. Systematic study

We now systematically explore the parameter space
(N, B). Given the current uncertainties of these parameters,
we consider the range 0 < N < 500 and 0 < B < 0.5, as
shown in Fig. 3, and divide this space with a 20 x 20 grid.

At each grid point, we simulate 1000 realizations for the
7 distribution, evaluate the p-values pgg individually for
the realizations, and take their median value (p)gs. The
numerical results (p)gg are shown in Fig. 3 by the pastel
levels.

To determine the characteristic curve corresponding to
(p)ks = 0.05 in Fig. 3, we made iterative calculations and
obtained an approximate expression

N \-1/2
B_0.37<100> . (29)

We show this expression with the black curve. For example,
at B = 0.37, we need N ~ 100, which is 3.3 times larger
than the reference value for the expected number of
Galactic DNSBs in Eq. (5).

In the same manner, we obtain an expression for the AD
test ((p)ap = 0.05) as

N\ -1/2
B=035(— ,
035(10()) (30)

presented with the red curve in Fig. 3. For a given injected
fraction B, the AD test requires ~10% smaller sample size
N than the KS test.

0.5
log;o[{P)ks]
04 e O
£
= -2
£ 03
&
™ 4
2
£ 02
2 -6
=
0.1 -8
s
0 100 200 300 400 500
sample size N
FIG. 3. Contour plot of the median p-value log;o[{p)ks] for the

KS test. This is calculated for sample size N and injected fraction
B with a 20 x 20 resolution. The black curve shows the boundary
for (p)gs = 0.05 (or logy[(p)ks] = —1.3). The red curve shows
a similar boundary for the AD test (p),p = 0.05. Above these
curves, it is likely that the no injection scenario will be rejected
due to a p-value less than 0.05.
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E. Parameter estimation

So far, we have studied the statistical tests to check
potential DNSB injections. Here we briefly discuss how
well we can estimate the injected fraction B (or equivalently
a) from the CDF of the observed effective time fractions 7.
The standard approach for the estimation is to compare the
overall profile of the observed CDF with the theoretical
expression (24) and fit the parameter B (see, e.g., the solid
and dotted red curves in Fig. 2). Roughly speaking, this
method is similar to the concept of the AD test. Instead,
below, we examine a simple method only using the
maximum deviation d, as in the case of the KS test.

As mentioned earlier, the maximum deviation d has
statistical fluctuations, due to the finiteness of the sample
size N. For a given B and N, we put the mean value of d by
d(B,N) and the root-mean-square (rms) scatter by
o4(B,N). If we try to estimate the parameter B from
the observed maximum deviation d [inversely using the
relation d = d(B, N)], the estimated parameter B contains
the rms error o3(B, N) roughly given by

o0

3B (31)

o5(B.N) = adw,zv){

with the Jacobian dd(B,N)/0B.

At various points in Fig. 3, we numerically evaluated the
two factors 6, and dd(B,N)/0B by generating a large
number of realizations. For the scatter 6, we found an

approximate relation

N\ -1/2
B ~0.04( — , 2
64(B.N) ~0.0 (100) (32)

which is independent of B. By taking finite differences
instead of the derivatives, we also found

dd(B.N)

~(0.25.
3B 5 (33)

This simple relation seems reasonable, given the maximum
deviation B/4 between the two theoretical curves in Fig. 2
(as mentioned earlier). Then, for the estimation error of B,
we have

N \-1/2

Comparing this result with the critical curves given by
Egs. (29) and (30), we can see that these curves roughly
correspond to the condition B ~ 2.

V. DISCUSSION

In this paper we have discussed the basic idea of probing
DNSB injections in the detectable region on the (f,e)
plane. Here we mention potential extensions of our study.

A. Other projections

For simplicity, we proposed the projection to the single
variable 7. Considering the dimensionality of the original
data, we might develop other projection methods, as
illustrated in the following example.

Using the variable 7z in Fig. 1, we first divide the
DNSBs into two groups: G~ (with 0 <7 <0.5) and G*
(with 0.5 < 7 £ 1.0). Then, along the flow lines, we move
the DNSBs in the group G, to the boundary curve 7 = 0.5
(the red line in Fig. 1). We put Pjs(e) as the resultant
eccentricity distribution at 7 = (.5. In the same manner, we
can obtain P (e) for the group G.

Now, without the DNSB injections, the two profiles
Pjs(e) and Pj(e) should be the same, except for some
statistical fluctuations. With injections, this is generally not
the case. Therefore, we can apply various techniques, such
as the two sample KS test [35], for probing potential
injections.

B. Lower frequency regime

We have dealt with DNSBs only in the detectable region
at f > 1.5 mHz, by evaluating the signal-to-noise ratios at a
conservative distance of 20 kpc. However, it would be highly
desirable to probe the injections in the lower frequency
regime. In the extended regime, LISA’s Galactic DNSB
survey is not complete. For applying our method, we thus
need to correct for the selection bias, by using appropriate
models for the distribution of Galactic DNSBs.

C. Massive white dwarfs

PSR B2303 + 46 [36,37] and J0453 + 1559 [38] are
Galactic neutron star white dwarf (NS-WD) binary candi-
dates with relatively large chirp masses of M = 1.05M
and M = 1.17M, respectively. While they have orbital
periods of days (merger timescales larger than Hubble time),
we might actually detect similar NS-WD systems with
DNSB-like chirp masses in the millihertz band. This is
because NS-WD are likely to be the next most abundant
compact binary after WDBs [39]. A binary’s white dwarf
component could be confirmed with targeted optical/IR
follow-up, but these searches may not be successful.
Observational challenges include interstellar extinction
and limitations in the sky localization with LISA. In relation
to the electromagnetic wave observation, radio followup
will be also important for estimating the age of a DNSB [7].
Here, we should note that a dynamically formed DNSB may
have an age largely different from the spin-down age of the
component pulsars.
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In any case, we can rather decrease the chirp mass
threshold to add NS-WDs and WDBs to our binary sample,
and thereby increase the total number N. However, in Fig. 1,
the flow lines and the associated time fraction 7 are based on
the point particle approximation in Eqgs. (2) and (3). We thus
need to carefully examine the possible modifications
induced by the finiteness of white dwarfs [40,41].

VI. SUMMARY

Due to the complex interplay between various physical
processes, it is still difficult to solidly predict the orbital
parameters of compact binaries at their formation. New
observational results will thus help us to refine theoretical
modelings. In the near future, the space interferometer
LISA will explore GWs around 0.1-100 mHz and will
make a complete survey for Galactic DNSBs above
~1.5 mHz after ~10 yr operation.

In this paper, we discussed how well we can detect a
signature of DNSB formation (injections) around 1 mHz
with LISA. We first introduced the effective time fraction 7
for each DNSB to compress the original two-dimensional
data (f, e), as shown in Fig. 1. The probability distribution
function Pr(z) for the measured fractions 7 plays the central
role in our method. There was a flat profile d Pr(z)/dr = 0
without injections, but d Pr(z)/dr > 0 with injections.

In reality, we need to discriminate the differences between
the profiles under the existence of scatter due to the finite
sample size N. To be concrete, we made a simple model for
the DNSB injections with d Pr(7) /dr = 2B(= const), char-
acterized by the injection fraction B. Then, we examined the
prospects for discriminating the profile differences with the
Kolmogorov-Smirnov and Anderson-Darling tests. Our
main results are presented in Fig. 3 with the characteristic
relations (29) and (30) for the p-value of 0.05. For example,
with the sample size N = 100, we need an injection fraction
B = 0.35 to detect injections.

In this paper, we have discussed the very basic idea of
studying potential DNSB formation around 1 mHz. Our
approach can be extended in various directions, including
those mentioned in Sec. V.
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