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The “no-hair” theorem can, in principle, be tested at the center of the MilkyWay bymeasuring the spin and
the quadrupole moment of Sgr A� with the orbital precession of S-stars, measured over their full periods.
Contrary to the original method, we show why it is possible to test the no-hair theorem using observations
from only a single star, by measuring precession angles over a half-orbit. There are observational and
theoretical reasons to expect S-stars to spin rapidly, and we have quantified the effect of stellar spin, via spin-
curvature coupling (the leading-order manifestation of the Mathisson-Papapetrou-Dixon equations), on future
quadrupole measurements. We find that spin-curvature coupling is generally a minor effect that causes errors
only of order a few percentage points, but for some orbital parameters, the error can be much higher. We
reexamine the more general problem of astrophysical noise sources that may impede future quadrupole
measurements, and find that a judicious choice of measurable precession angles can often eliminate individual
noise sources. We have derived optimal combinations of observables to eliminate the large noise source of
mass precession, the novel noise of spin-curvature coupling due to stellar spin, and the more complicated
noise source arising from transient quadrupole moments in the stellar potential.
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I. INTRODUCTION

At the center of our galaxy, there is a supermassive black
hole (SMBH), known as Sgr A�. It is surrounded by a dense
cluster of stars, the “S-stars” [1–5]. Some of them orbit the
SMBH with small semimajor axes and high eccentricities.
The main sequence star S2 is the canonical example of this:
it has a highly elliptical orbit with a 16 year period [6].
At its pericenter distance of ≈120 AU from Sgr A�, it has
an orbital speed of ≈7650 km s−1. The discovery of these
stars has given observers the ability to test relativistic
effects around a rotating black hole. For example, the
Schwarzschild precession of the S2 orbit [7] and its
gravitational redshift [8,9] have already been detected.
Further observations on the orbits of S-stars would allow

us to test the “no-hair” theorem [10,11]. The no-hair
theorem states that any black hole solution can be com-
pletely characterized by only three parameters: its massM•,

angular momentum J• ¼ χ •ðGM
2
•

c Þ, where χ • is the dimen-
sionless spin, and its electric charge. A direct consequence
is that all higher multipole moments of an astrophysical
(i.e., electrically neutral) black hole can be expressed as
a function of only M• and J• [12,13]. In particular, the

quadrupole moment is Q2• ¼ − 1
c
J2•
M•
. To test the no-hair

theorem, we need to determine five parameters: the mass of
the black hole, the magnitude and two angles [14] of its

spin, and the value of its quadrupole moment, and then
verify or refute the above relationship.
For a nonrotating black hole, Schwarzschild precession

is the most important relativistic effect, leading to a shift in
the stars’ pericenter angle. If the black hole is rotating, then
more relativistic phenomena affect the S-star orbits. The
Lense-Thirring (LT) effect and torques from the quadrupole
moment will lead to additional apsidal precession, and are
also the leading-order sources of nodal precession. Using
measurements of the S2 orbital period, observers have
already constrained the mass of Sgr A� toM• ≈ 4 × 106M⊙
[15,16], and by measuring the change in the orbital
orientations of two stars, it is possible to determine the
remaining four parameters [10]. Despite the recent detec-
tion of Schwarzschild precession [7], it will be challenging
to detect higher-order effects with S2’s orbit because they
fall off quickly with distance from the SMBH. To detect the
spin and the quadrupole moment of the SMBH, closer stars
are needed, both to yield observationally detectable pre-
cession angles and also to overcome sources of noise such
as gravitational perturbations from other stars [11]. In
principle, if spectroscopy can obtain radial velocity mea-
surements, these could be combined with astrometric
precession measurements to yield better constraints [17].
As with astrometry, radial velocity will be most sensitive to
general relativistic effects for stars closer to Sgr A�. There is
thus an effort to search for stars at smaller radii and smaller
orbital periods.
However, since S-stars are so hard to find, our constraints

on general relativity (GR) will often be dominated by the*yael.alush@mail.huji.ac.il
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single most relativistic star known. Therefore, we should
understand how we can test the no-hair theorem with just
one star. A recent paper suggests a way to test the no-hair
theorem using one star by a Markov chain Monte Carlo
method using future measurements of stellar orbits [18].
The authors show that existing S2 astrometric measure-
ments cannot constrain the spin and the quadrupole
moment of the SMBH.
Recently, a few stellar candidates with shorter periods

and/or pericenters than S2 were detected [19]. Despite
the controversy over their orbital properties [20,21], they
may be better probes for testing relativistic effects than
S2 [22]. Observation suggests that at least one of them,
S4711, is fast-rotating with a projected rotation velocity of
V sin i ¼ 239.60� 25.21 km s−1. This result and similar
observations [23] indicate that many S-stars spin rapidly.
Even if the new S-star orbital solutions ultimately prove to
be incorrect, ongoing upgrades to the GRAVITY instru-
ment (“GRAVITYþ”) are likely to greatly expand our
sample of S stars in the near future [24], raising the prospect
of finding significantly more relativistic stellar orbits.
The spin of a test particle in a gravitational field will

cause deviations from geodesic motion. Its motion can be
described using the more complex Mathisson-Papapetrou-
Dixon (MPD) equations [25]. Those deviations would
complicate the testing of the no-hair theorem by adding
a new source of noise to the orbital precession measure-
ments. Both this and previously considered noise sources
(such as stellar perturbations) need to be carefully consid-
ered in any future tests of the no-hair theorem before
discovery of an anomalous SMBH quadrupole moment can
be claimed.
This paper is organized as follows. In Sec. II we

analytically derive a method for testing the no-hair theorem
using only one S-star. Section III describes the sources of
noise due to stellar perturbations and spin-curvature cou-
pling on the quadrupole moment measurements. Section IV
explores how those errors can be minimized, and shows
that many broad categories of “noise sources” can be
precisely removed with carefully tailored combinations
of observables. In Sec. V we conclude and discuss future
observations.

II. SHIFTS AND HALF-SHIFTS

Using orbital perturbation theory, we can calculate the
precessions per orbit of a star’s Euler angles (i.e., orbital
elements). We call these per-orbit precessions “full-shifts,”
and to 2nd post-Newtonian order, in the extreme mass-ratio
limit, they are given by [26]:

δϖ ¼ AS − 2AJ cos α −
1

2
AQ2

ð1 − 3cos2αÞ

þ
�
14 − e2=2

36π

�
A2
s ð1aÞ

sin iδΩ ¼ sin α sin βðAJ − AQ2
cos αÞ ð1bÞ

δi ¼ sin α cos βðAJ − AQ2
cos αÞ ð1cÞ

where

AS ¼
6π

c2
GM•

ð1 − e2Þa ; ð2aÞ

AJ ¼
4πχ•
c3

�
GM•

ð1 − e2Þa
�
3=2

; ð2bÞ

AQ2
¼ 3π

cM•

Q2•

ð1 − e2Þ2a2

¼ 3πχ2•
c4

�
GM•

ð1 − e2Þa
�
2

: ð2cÞ

Here the three angles that precess due to relativistic effects
are ϖ, the longitude of pericenter, Ω, the longitude of
ascending node, and i, the inclination of the orbit (each
angle is defined in the “sky plane,” i.e., with a reference
plane that is normal to the observer’s line of sight). The
quantities a and e are the semimajor axis and the eccen-
tricity of the star. The polar angles of the BH’s spin with
respect to the stellar orbital plane are denoted by a
colatitude angle, α, and an azimuthal angle, β.
Measuring the full-shifts of the ascending node and the

inclination of two S-stars orbits would allow us to calculate
the four remaining parameters J• and Q2• needed to test the
no-hair theorem. We note that it is important to include the
2PN contribution to apsidal precession (i.e., the last term in
δϖ) as it will generally exceed the magnitude of AQ2

. In this
approach, two stars are needed because there is not enough
information in the full-shifts of a single star.
However, there is more information contained in the

relativistic orbital motion that is hidden by a full orbit
average. This was recently exploited in Ref. [28] to
separate between the Schwarzschild and mass precession
signatures within a single orbit, to constrain the mass
enclosed within the S2 orbit [29]. Also, in Ref. [18], it
was demonstrated with a Markov chain Monte Carlo
method that a single stellar orbit can in principle measure
the four parameters to test the no-hair theorem. Here we
give an explicit analytic demonstration of how this
additional information is contained within a single star’s
orbit. Specifically, we can use the precession completed
after a half-orbit (the “half-shifts”), which in some cases
are nondegenerate with the full-shifts (i.e., we will have
more independent equations to calculate the SMBH spin
and quadrupole moment).
In order to test the no-hair theorem using the half-shifts,

we need to calculate them using orbital perturbation theory
over a half-orbit (specifically, from pericenter to apocenter).
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Using the Gauss planetary equations to integrate leading-
order post-Newtonian accelerations [30,31], we find:

δϖ1
2
¼ δϖ

2
−
1þ 2e2

3πe
AQ2

sin2α sinð2βÞ; ð3aÞ

sin iδΩ1
2
¼ sin iδΩ

2
−
2e
3π

AQ2
sin α cos α cos β; ð3bÞ

δi1
2
¼ δi

2
þ sin α sin β

�
e
π
AJ −

2e
3π

AQ2
cos α

�
: ð3cÞ

Combining the half-shifts in Eq. (3) with the full-shifts in
Eq. (1), we have a set of six observables, of which five
of them are independent of each other. Therefore, there is
enough information encoded in the orbit of a single star to
test the no-hair theorem without the need for a second star
to break degeneracies. Our choice of half-shifts is not a
unique combination of measurables for breaking the
degeneracies in the full-shifts of a single star, and for
detailed tests one may wish to compare future observations
to large libraries of geodesic or post-Newtonian orbits
around central objects with arbitrary quadrupole moments.
The advantage of the approach here is its simplicity and
transparency, although even using only analytic combina-
tions of observables, one could choose differently (e.g.,
“quarter-shifts”). We limit ourselves to half-shifts in this
work because (i) for eccentric orbits, the vast majority of
precession happens near pericenter; (ii) further subdividing
the orbit near pericenter will increase the statistical errors
on any real observation; (iii) our definition of half-shifts
(i.e., integrating the true anomaly from 0 to π) produces the
simplest analytic form that still breaks full-shift degener-
acies. As we will see, an additional benefit of the analytic
approach taken here is that we can design combinations
of observables that, by construction, cancel out astrophysi-
cally relevant sources of noise.

III. SOURCES OF NOISE

A. Stellar perturbations

Previous studies [11] showed that the presence of other
stars in the cluster around the SMBH can induce orbital
precession at the same order of magnitude as relativistic
effects. For future observations aimed at testing the no-hair
theorem (or other aspects of GR), these stellar perturbations
are a noise source whose relative importance increases with
distance from the SMBH.
To a first-order approximation, the stellar distribution

can be approximated as a smooth spherical cluster with a
mass density ρ ∝ r−Γ, where r is the distance from the
SMBH. The spherical component of the gravitational field
causes apsidal precession, such that the shift and the half-
shift of the pericenter are [11]

δϖmass ¼ 2π
M⋆ðaÞ
M•

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
FðΓ; eÞ ð4aÞ

δϖ1
2
;mass ¼

δϖmass

2
; ð4bÞ

whereM⋆ðaÞ is the mass enclosed within radius r ¼ a, and
F ∼ 1 is a weak function of e and Γ (F ¼ 1 exactly for
Γ ¼ 1) [11]. This “mass-precession” effect can mimic
relativistic precession and cause error in the spin and the
quadrupole moment measurements. We note that the mass
precession dominates in the apocenter while the GR effects
dominate in the pericenter [28].
Nonspherically symmetric perturbations, such as vector

resonant relaxation (VRR), can also create a source of error
by changing the orientation of the orbital planes. Unlike the
deterministic effect of mass precession, VRR is usually
modeled as a stochastic perturbation to the longitude of the
ascending node [11]:

δΩVRR ∼ q
ffiffiffiffi
N

p ð5Þ

where q ¼ m⋆=M• and N is the number of stars inside the
orbit of the test star. However, this picture of VRR is
only relevant over long (secular) timescales, considering
many orbit-averaged interactions between different
stars. Fundamentally, VRR is driven by the stochastically
varying net multipole moments of the total stellar poten-
tial, each of which emerge as a result of Poissonian
discreteness in the stellar population. Over one to a few
dynamical times, however, these multipole moments do
not have time to evolve and can be regarded as “frozen
in.” For the purposes of measuring S star orbital pre-
cession, therefore, we will estimate the statistically
typical values of these multipole moments using the
formalism of Ref. [32].
The stellar potential’s quadrupole AQ⋆

2
, the lowest order

aspherical contribution in the multipole expansion, domi-
nates over higher multipole moments, which combined
contribute about ≈10% as much precession as AQ⋆

2
[32].

Therefore, in this paper we will only consider the leading-
order multipole moment, AQ⋆

2
. The precessions due to the

stellar quadrupole moment are:

δϖQ⋆
2
¼ −

1

2
AQ⋆

2
ð1 − 3cos2α⋆Þ ð6aÞ

sin iδΩQ⋆
2
¼ −AQ⋆

2
cos α⋆ sin α⋆ sin β⋆ ð6bÞ

δiQ⋆
2
¼ −AQ⋆

2
cos α⋆ sin α⋆ cos β⋆ ð6cÞ

δϖ1
2
;Q⋆

2
¼ δϖQ⋆

2

2
−
1þ 2e2

3πe
AQ⋆

2
sin2α⋆ sin ð2β⋆Þ; ð6dÞ
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sin iδΩ1
2
;Q⋆

2
¼ sin iδΩQ⋆

2

2
−
2e
3π

AQ⋆
2
sin α⋆ cos α⋆ cos β⋆; ð6eÞ

δi1
2
;Q⋆

2
¼ δiQ⋆

2

2
−
2e
3π

AQ⋆
2
cos α⋆ sin α⋆ sin β⋆ ð6fÞ

where α⋆ and β⋆ are the polar angles of the stellar
quadrupole with respect to the stellar orbital plane. The
deterministic nature of precession due to the stellar quadru-
pole moment contrasts strongly with the usual stochasticity
of VRR, and we emphasize that this difference arises
merely because of the very short timescales relevant for no-
hair tests. This determinism is actually quite advantageous;
in Sec. IV, we will show that it permits us to precisely
eliminate this noise source.

B. Spin-curvature coupling

As mentioned in Sec. I, there is substantial direct
evidence [23] that S-stars spin rapidly. Moreover, there
are empirical and theoretical reasons to expect S-stars to
rotate rapidly. First, the S-stars are B stars. In the field,
many B-type stars spin with an equatorial rotation velocity
of about 250 km s−1 ∼ 30% of the centrifugal breakup
limit [33]. Second, the S-stars are located in a dense cluster
around a SMBH. The dense environment leads to close,
repeated hyperbolic tidal encounters between the stars,
which spins them up [34]. A similar effect may lead to tidal
spin-up of stars during close passages near the SMBH
[35,36]. If in the future, a rapidly spinning S-star is used for
no-hair tests, it will be important to understand the addi-
tional precessions due to the MPD equations (of which
spin-curvature coupling is the leading-order effect) as an
additional noise source.
To quantify the importance of spin-curvature coupling,

we need to calculate the precessions of the orbital elements
due to the MPD effect. We denote the mass of the star
by m⋆ ≪ M•, its dimensionless spin magnitude by
s⋆ ¼ S⋆ðGm2⋆=cÞ−1 (here S⋆ is its dimensional angular
momentum), and its direction with two polar angles, a
colatitude angle, γ, and an azimuthal angle, δ, both relative
to the star’s orbital plane.
Before calculating the MPD shifts, we need to check

how fast the star’s spin itself precesses during its motion.
To estimate how much the spin direction changes during
one orbital period, we integrated the leading-order post-
Newtonian (PN) approximation for the rate of stellar spin
precession [30,37], i.e., the geodetic precession. The spin
direction changes over time, but only very slowly. The
spin of the star will return to its initial direction after
∼að1 − e2ÞðGM•=c2Þ−1 ¼ ða=rgÞð1 − e2Þ orbital periods
(here rg ¼ GM•=c2 is the gravitational radius). This con-
clusion is also shown in previous research [38] in a more
detailed examination, using higher orders of PN spin
precession. Therefore, we approximate the spin direction

as fixed in the following calculations, greatly simplifying
the orbit-averaging procedure.
Orbital perturbations due to the rotation of a star

appear at lowest-order in the 1.5PN term of the PN
approximation [30], and after orbit-averaging, the shifts
are given by:

δϖMPD ¼ −6AMPD cos γ; ð7aÞ

sin iδΩMPD ¼ 3AMPD sin γ sin δ; ð7bÞ

δiMPD ¼ 3AMPD sin γ cos δ; ð7cÞ

δϖ1
2
;MPD ¼ δϖMPD

2
; ð7dÞ

sin iδΩ1
2
;MPD ¼ sin iδΩMPD

2
þ 2e

π
AMPD sin γ cos δ; ð7eÞ

δi1
2
;MPD ¼ δiMPD

2
þ 2e

π
AMPD sin γ sin δ ð7fÞ

where

AMPD ¼ πs⋆
c3

m⋆
M•

�
GM•

ð1 − e2Þa
�
3=2

: ð8Þ

We are particularly interested in the influence of the
MPD effect on the quadrupole measurements. Therefore,
we show in Fig. 1 the ratios between the MPD precessions
and the quadrupole precessions, as functions of different
angles (the stellar orbit is chosen to resemble that of S2). In
both cases, the spin directions of the SMBH and the star can
affect the ratios by almost two orders of magnitude.

C. Tidal force

At very small pericenters, tidal interactions between the
SMBH and the star can cause a level of precession that
overwhelms the higher order GR shifts we are interested in.
The equilibrium tide describes quasistatic changes to the
shape of an extended object due to a slowly varying tidal
field acting on it. The force of the equilibrium tide is in
the radial direction, and it thus only causes an apsidal
precession [39]:

δϖtide ¼
15πM•

4a5m⋆
8þ 12e2 þ e4

ð1 − e2Þ5 kr5⋆ ð9Þ

where m⋆ and r⋆ are the mass and the radius of the star,
respectively, and k is the star’s tidal Love number.
The dynamical tide describes the more general situation

where the tidal deformations are not necessarily quasistatic.
It is usually relevant only for pericenters near the tidal
radius of the star. The local apsidal precession rate due to
the dynamical tide is [40]:
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_ϖdyn tide

2π
∼

_L
L
≈

_EΩp

L
ð10Þ

where L is the star’s orbital angular momentum, E is the
orbital energy, and Ωp is the orbital angular frequency of
the star at pericenter. For a highly eccentric orbit, most of
precession happens near pericenter, so the shift is

δϖ ∼
ΔE
L

Ωp ð11Þ

where ΔE is the change in the orbital energy per orbit. The
change in E can be expressed by [41]:

ΔE ¼
�
Gm⋆
r⋆

�
2
�
M•

m⋆

�
2 X
l¼2;3;…

�
r⋆
rp

�
2lþ2

Tl

�
rp
r⋆

�
ð12Þ

where l is the spherical harmonic index, rp is the pericenter
distance, and the function Tl falls off exponentially with
distance from the SMBH. Therefore, the dynamical tides
are negligible in our case.

IV. MINIMIZING THE ERRORS

Now that we have the mathematical description for
the mass precession, the stellar quadrupole, and the
MPD shifts, we can compare these effects and see how
the existence of other stars, and the spin of the test star itself
affect the measurements. As we will see, the simple
functional form of most sources of noise will allow us
to minimize these errors with careful choice of observables.
In Fig. 2, we present the apsidal and nodal precessions as a
function of the dimensionless pericenter distance due to
different effects.
In our results, the mass of the SMBH isM•¼4×106M⊙,

the mass of Sgr A�, and the spin magnitude is χ• ¼ 0.5.
Most of the detected S-stars are massive, so we choose to
present the shifts for a star with mass m⋆ ¼ 10M⊙ and a
radius r⋆ ¼ 100.5R⊙ [43]. However, we assume that selec-
tion effects have so far prevented the detection of a larger
population of fainter stars. Therefore, in this figure, the
mean stellar mass (of the population of background stars) is
1M⊙. We use a tabulated moment of inertia I [44] for the
stellar breakup frequency because real stars are centrally
concentrated. High-mass stars that are on the main
sequence have I ∼ 0.09m⋆r2⋆. Moreover, we take empiri-
cally measured spin magnitudes [23]. However, we do not
know the true orientation of the stellar spins. Therefore, to
get a typical value from observations of the projected spin,
we need to take an “isotropic average”—we assume that the
probability for each angle between the observed spin
magnitude to the breakup spin is the same, and then we
take an average angle. We will also use the concept of the
isotropic average when showing purely theoretical predic-
tions that depend on unknown angle variables (α, β, γ, δ).
Our estimates of both mass precession and precession

due to the stellar quadrupole moment require making
assumptions on the unresolved stellar mass distribution
at small radii. For concreteness, we take Γ ¼ 1 and consider
a range of masses enclosed within 1 mpc, from 1M⊙ (a very
low value) to 100M⊙, a value close to the upper limit
inferred by Ref. [29].
We can see that all shifts due to GR effects fall off as a

negative power of the dimensionless pericenter distance
rp=rg. Conversely, the stellar perturbations weaken at
smaller radii. Therefore, more relativistic stellar pericenters

FIG. 1. The ratios between the MPD and the quadrupole
precessions as a function of the spins’ directions. We show the
results with representative values for the angles. Top: the spin
orientation of the star is taken to be γ ¼ π=3, δ ¼ π=5. Bottom:
the spin orientation of the SMBH is taken to be α ¼ π=8,
β ¼ π=6. The SMBH spin and mass are M• ¼ 4 × 106M⊙ and
χ• ¼ 0.5. The mass and the radius of the star are m ¼ 10M⊙ and
r ¼ ffiffiffiffiffi

10
p

R⊙. The star spins with 30% of its breakup frequency,
and orbits the SMBH with a semimajor axis of a ¼ 3 mpc,
and eccentricity of e ¼ 0.8. The color bar presents the ratio
δΩMPD=δΩquad in a base-10 logarithmic scale.
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are doubly desirable, as they both increase the relativistic
shifts and decrease a major noise source. Furthermore, we
note that astrometric measurements will more easily detect
an angular shift (e.g., δϖ or δΩ) of fixed magnitude if the
star’s semimajor axis a is smaller [17]. This is because the

shorter orbital period of such a star (∝ a3=2) will accumu-
late a greater total shift in a fixed observing window,
outweighing the competing effect of smaller angular size of
the orbit (∝ a). When a star is getting closer to the SMBH,
tidal forces are more important. However, we show in Fig. 2

FIG. 2. Full-shifts plotted against the dimensionless pericenter distance, with different effects color-coded as per the label in the
bottom panel. Top: the full-shift of the argument of the pericenter. Bottom: the full-shift of the longitude of the ascending node. The mass
and the spin of the SMBH are M• ¼ 4 × 106M⊙, χ• ¼ 0.5. The S-star mass is always taken to be m ¼ 10M⊙, and its eccentricity is
e ¼ 0.8 except when otherwise noted. The boundaries of the shaded areas of the LT and the quadrupole terms are the maximum shifts
and the isotropic averages, given uncertainties in α and β. The mass precession and the stellar quadrupole are presented for a number
density exponent Γ ¼ 1, and their boundaries are for distributed masses of 1M⊙ and 100M⊙ enclosed within 1 mpc. The stellar
quadrupole direction is taken to be α⋆ ¼ π=4, β⋆ ¼ π=4. The boundaries of the MPD effect are for the breakup spin and 30% of it. The
data points are the shifts for different S-stars with different observed spin magnitudes. Data points are shown for various S-stars with
small pericenters; the center of each data point is shown at the isotropic mean of the relevant unknown angular variables, and the error
bars are a sum of the isotropic variances and the observational uncertainties of the stellar orbits [6]. The spin magnitude for each data
point is the observed spin [23]. The tidal precession [39] is presented for a stellar Love number k ¼ 0.014, approximating the B-type star
as an n ¼ 3 polytrope [42].
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that tides are highly subdominant in current-interest radii.
Therefore we will not consider them in our following
estimations.
In Fig. 2 we see that a star with orbital properties

similar to S2 will see shifts from Q2• swamped by stellar
perturbations, possibly by multiple orders of magnitude (in
agreement with past work [11,18]). Stars such as S4714
and S62 [19] may have quadrupole-order shifts that
dominate precession due to the background stellar poten-
tial, although as noted earlier, the orbital solutions of these
stars remain contested at present [20]. We also notice that
MPD effects due to the star’s spin are almost always
subdominant to precession from the SMBH quadrupole
moment, although spin-curvature coupling may set a noise
floor of ∼1%–10% in future no-hair tests. We note that it is
hard to determine the full spin vector of a distant star
because it depends on the unknown inclination of the star’s
pole to the line of sight. In our calculations, we can only set
lower and upper limits to the spin magnitude by measuring
the projected magnitude and calculating the breakup spin,
respectively.
We will now estimate more precisely how much mass

precession, a quadrupole moment in the stellar potential,
and the MPD effect can influence the SMBH quadrupole
measurement if these sources of noise are ignored during
parameter estimation. To do this systematically, we used a
Monte Carlo method. We chose 104 random directions for
the spin of the SMBH and another 104 random directions
for the spin of the star, and the stellar quadrupole. For each
iteration, we calculated the SMBH quadrupole moment,
assuming perfect measurement of relevant shifts and half-
shifts, but neglecting the effects of stellar perturbations and
stellar spin when converting these observables intoQ2•. We
calculated Q2• a second time adding in the influence of
other stars and the MPD precession terms, and then found
the relative error between the measurements. Our results are
computed for test stars with the properties of S2 and the
closest known star to the SMBH, S4714: their masses,
semimajor axes, and eccentricities. For S2, we use the
observed radius, but S4714’s radius is unknown, so we use
r⋆ ¼ ðm⋆=M⊙Þ0.5R⊙ [43]. The spin magnitude for S2 is
23% of breakup, which is the average deprojection of S2’s
observed value. The radial velocity of S4714 has not been
measured; therefore, we present our results with a spin
magnitude of 20% of breakup. The distributed mass
enclosed within 1 mpc is 35M⊙, the estimated upper limit
when taking Γ ¼ 1 and extrapolating inwards from con-
straints on distributed mass inside the S2 apocenter [29].
We note that the errors can increase or decrease for different
orbital and stellar elements. We consider three scenarios for
the astrophysical noise background: (i) only MPD preces-
sion, (ii) MPD plus mass precession, (iii) MPD, mass
precession, and a stellar quadrupole moment.
In order to convert mock observations into estimates of

Q2•, we need to make a concrete choice of observables,

which for us are different combinations of full- and
half-shifts (for one or more stars). However, the simple
functional form of different astrophysical noise sources
[Eqs. (4), (6), and (7)] suggests that by careful algebraic
rearrangement of these observables, we can tailor combi-
nations of full- and half-shifts that by design will com-
pletely eliminate individual astrophysical noise sources.
A simple example of this is removing the influence of

mass precession. Since the monopole component of the
stellar potential only creates apsidal (not nodal) precession,
we can eliminate this noise source altogether by using
the full-shifts sin iδΩ and δi for two different stellar orbits.
If we are limited to a single star, however, we seem to
have a problem. While we need four observables to isolate
Q2•, we cannot use a simple combination such as
fsin iδΩ; δi; sin iδΩ1

2
; δi1

2
g, because these observables are

mutually degenerate and only offer three independent
measurements. However, we can exploit the simple sym-
metry of the apsidal half-shift due to the mass precession
(δϖ1

2
;mass ¼ δϖmass=2, but δϖ1

2
≠ δϖ=2) to construct a new

observable that removes mass precession while leaving a
contribution from Q2•: δϖsub ≡ δϖ − 2δϖ1

2
(see a nice

illustration in the figures in [28]). We can now eliminate
mass precession entirely using only shifts and half-shifts
from a single star, e.g., using the combination
fsin iδΩ; δi; sin iδΩ1

2
; δϖsubg.

A similar approach can be taken to eliminate the
combined influence of MPD effects and mass precession.
We note that

sin iδΩMPD − 2 sin iδΩ1
2
;MPD þ 4e

3π
δiMPD ¼ 0 ð13aÞ

δiMPD − 2δi1
2
;MPD þ 4e

3π
sin iδΩMPD ¼ 0 ð13bÞ

δϖMPD − 2δϖ1
2
;MPD ¼ 0: ð13cÞ

We further note that the observables on the left-hand side
of the above combinations are independent of mass
precession, and their post-Newtonian values are

sin iδΩ − 2 sin iδΩ1
2
þ 4e
3π

δi ¼ 4e
3π

AJ sin α cos β ð14aÞ

δi − 2δi1
2
þ 4e
3π

sin iδΩ ¼ −
2e
3π

AJ sin α sin β ð14bÞ

δϖ − 2δϖ1
2
¼ 2ð1þ 2e2Þ

3πe
AQ2

sin2α sinð2βÞ:
ð14cÞ

In the same spirit, we can eliminate the combined
effect of mass precession and precession due to the
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mean-field stellar quadrupole moment, AQ⋆
2
. The algebra

here is somewhat more involved so we present the result
and its derivation in the Appendix.
We now estimate the percentage errors in the calculation

of Q2• estimation for three aforementioned combinations
of astrophysical noise, and five different combinations of
observables:
(1) The original method [10] using the full-shifts of two

stars (δΩ and δi). The two stars are assumed to have
S2’s semimajor axis and eccentricity, but with
random angular orbital elements.

(2) Using three full shifts (δϖ, δΩ and δi) and the nodal
half-shift (δΩ1

2
) for a single star.

(3) Using three full shifts (δϖ, δΩ and δi) and the half-
shift of the pericenter (δϖ1

2
) for a single star.

(4) Using two full shifts (δΩ and δi), the nodal half-shift
(δΩ1

2
), and the subtraction δϖsub ≡ δϖ − 2δϖ1

2
, for a

single star.
(5) Using shifts and half-shifts of two stars, in such a

way as to remove the stellar quadrupole and mass
precession noise (see Appendix).

(a1) (b1)

(a2) (b2)

(a3) (b3)

FIG. 3. Histograms showing relative errors in the quadrupole measurements due to top: MPD effects, middle: MPD effects and mass
precession, and bottom: MPD effects, mass precession and a stellar quadrupole moment, for left: S2-like orbit, and right: S4714-like
orbit (see main text). The results are presented for five different combinations of observables. Black: The original approach [10] using
the full-shifts of two stars. Blue: Using three full shifts and the nodal half-shift (δΩ1

2
) of a single star. Red: Using three full shifts and the

half-shift of the pericenter (δϖ1
2
) for a single star. Green: Using two full shifts (δΩ; δI), the half-shift of the nodal angle (δΩ1

2
), and the

subtraction δϖsub ≡ δϖ − 2δϖ1
2
for a single star. Pink: full shifts and half-shifts of two stars, with the removal of the stellar quadrupole

noise. The mass enclosed in 1 mpc is 35M⊙. The error bars were calculated using approximate analytic expressions based on Poisson
statistics at the 95% confidence level [45].
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Our results are presented in Fig. 3, which displays
histograms of the relative errors in the estimated BH
quadrupole moment for the five different approaches. In
the top panel (MPD precession alone), the median errors for
the first, second and fifth methods for S2-like orbit are
2.3%, 2.2%, and 1.9%, respectively, while for S4714 they
are 0.07%, 0.07%, and 0.06%, though they can reach a
higher value in some parts of parameter space. This example
shows how the MPD effect can set a noise floor, albeit a low
one, for Q2• measurements. The fourth approach gives a
moderately better result (median error of 0.75% for S2 and
0.02% for S4714). However, the errors are about two orders
of magnitude smaller for the third combination of shifts and
half-shifts (median error of 0.007% for S2 and 0.0007% for
S4714). This means that we have found a surprisingly good
combination of half-shifts that reduces the spin-induced
error of no-hair tests by roughly two orders of magnitude
compared to generic shift/half-shift combinations. Had we
used the combination of observables in Eq. (14), there
would have been exactly no error on this measurement
of Q2• (note that because Eq. (14) consist of only three
equations, they cannot be applied to a single stellar orbit; at
least two stars are required).
Next, we added the mass precession to the MPD effect to

examine the influence of other stars. We see that the error of
the original approach does not change because there is no
δϖ dependence. Conversely, we see a tremendous addition
to the error in the second and third approaches due to mass
precession; median errors here have risen to 1000% and
38000% for S2, and 21% and 20% to S4714, respectively.
But we also see that the error in the fourth and the fifth
approaches do not change, even though these both contain a
δϖ dependence.
To explain this contrast, the BH quadrupole moment can

be solved for exactly in the third approach as:

AQ2
¼ 1

2g

�
4f2 þ g2 þ 2gAS − 2gδϖ

− 2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f2 − 2gðgþ 2δϖ − 2ASÞ

q �
; ð15Þ

and in the fourth approach as:

AQ2
¼ 1

g
ðh − fÞ2 þ g; ð16Þ

where for both

f ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin iδΩÞ2 þ ðδiÞ2

q
; ð17aÞ

g≡ 3πe
4ð1þ 2e2Þ

f2

ðsin iδΩÞδi δϖsub; ð17bÞ

h≡ f

�
3π

2e
1

δi

�
sin iδΩ

2
− sin iδΩ1

2

�
þ 1

�
: ð17cÞ

In Eq. (15), δϖ explicitly enters the formula for AQ2
, which

therefore acquires a strong dependence on mass precession.
Conversely, in Eq. (16), apsidal precession rates only
appear via δϖsub, and as described earlier, this particular
combination of δϖ and δϖ1

2
completely removes the effect

of mass precession due to symmetry.
Finally, in the bottom panel of Fig. 3, we consider MPD

precessions, mass precession, and precession from the
stellar quadrupole moment all simultaneously. We see that
the first four combinations of observables we consider
all massively misestimate AQ2

, typically by 2–3 orders of
magnitude: median errors for approaches 1, 2, 3, and 4 are,
respectively, 30000%, 300000%, 700000%, and 50000%
for S2, and 400%, 450%, 500%, and 600% for S4714. For
approach number 3 the error is so large when using the S2’s
parameters, that we even get a large fraction of complex
values (more than 50%). The reason for this can already be
seen in Fig. 2: precession due to the stellar quadrupole
moment dominates precession due to the BH quadrupole
moment by ≈2 orders of magnitude for S2-like stars.
Notably, however, our fifth approach (see Appendix) still
produces a precision measurement of AQ2

despite the
inclusion of this additional noise source, retaining a median
percentage error of 1.9% for S2, and 0.06% for S4714. This
reflects the power of tailor-made observable combinations
that are capable of removing deterministic sources of noise;
this approach was constructed to completely remove the
effects of mass precession and the stellar quadrupole
moment, and all remaining error is due to the (compara-
tively weak) MPD effects.

V. DISCUSSION

General relativity predicts the no-hair theorem, which
states that astrophysical BHs are fully characterized by
their masses and spins, and are described by the Kerr
metric. The discovery of the S-stars at the center of our
Galaxy allows us the opportunity to probe the curved
spacetime of a rotating BH and verify whether Sgr A� is a
BH of the type predicted by classical GR. Previous
analytic work showed that it is possible to test the no-
hair theorem by combining the orbital precession mea-
surements from two S-stars, taken over their full orbital
periods [10], and recent work showed numerically that
this type of test could be extended even to the orbit of a
single star [18].
However, with current instruments, we cannot detect

such high-order effects with the stars we already observe.
Even using two new S-stars with more relativistic orbits
that may have been recently discovered [19], we would
have to monitor their orbits for at least ≈20 years in order
to detect a spin of χ• ¼ 0.9 [17]. If those stars are real, they
offer a good chance at measuring the Sgr A� spin using
existing instrumentation. The quadrupole moment is prob-
ably beyond the reach of current infrared optics technology
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and will need to wait for improvements in resolution
and/or sensitivity [24].
Therefore, we hope that new faint stars with more

relativistic orbits will be observed. Previous work [17]
estimated the expected number of stars, for which the
GRAVITY instrument would be able to detect the spin of
the SMBH. For a dimensionless spin of χ• ¼ 0.9 the
expected number is 0.035 and 0.12 for a 4-year and
10-year observing campaign, respectively. The next gen-
eration of this instrument, the GRAVITYþ project, would
be improved in sensitivity to K ¼ 22 mag. With this
improvement, we will be able to detect fainter stars in
more relativistic orbits, and would increase the expected
number of stars by a factor of 4.
In this paper, we explain physically how it is possible to

test the no-hair theorem using observations from only one
star with a simple analytical method. A single star orbit is
sufficient if one considers precessions seen over partial
orbits (in this paper, we have examined the simple case of
half-orbits). There is extra information thrown away in the
full orbital average that is accessible considering fractions
of orbits. We also showed that the high expected spins of
the S-stars may perturb precession measurements due to
spin-curvature coupling (the leading-order MPD effect).
We quantified the effect of the stellar spin on the quadru-
pole measurements and found that for most cases, the
relative errors are of order a few percentage points, but the
situation can be much worse for some orbital parameters.
Likewise, we examined two other astrophysical noise
sources related to the mean-field stellar potential: the mass
precession arising from the total stellar monopole moment
and the next order of precession arising from the total
stellar quadrupole moment.
Even in the limit of zero statistical or measurement error,

these sources of astrophysical noise are large and, if left
unaddressed, significantly limit future tests of the no-hair
theorem. We showed that the simple functional form of
these noise sources (MPD effects, mass precession, and the
stellar quadrupole moment) allow us to construct combi-
nations of observable precession angles that exclude
astrophysical noise sources, either on an individual basis
or in combination with each other. For example, we have
produced one combination of shifts and half-shifts that by
construction eliminates all errors associated with both the
MPD effect and with mass precession. We have produced
another such combination that by construction eliminates
all errors from mass precession and the stellar quadrupole
moment. In principle, although the mathematics is likely
laborious, similar algebraic combinations of observables
could be made to remove higher-order multipole moments
in the stellar potential [32].
We note that, aside from orbital measurements of the

S-stars, other tests for the no-hair theoremmay exist [46]. If
a pulsar is located sufficiently close to Sgr A�, its radio
pulses could provide another means to test the no-hair

theorem [47,48]. An alternative possibility to test the no-
hair theorem is by using images of the BH “shadows”
[49,50]. For a Schwarzschild BH, the shadow is exactly
circular and centered on the BH, and for a rotating BH, the
shadow is displaced but remains nearly circular (except for
high spin values or large inclination). However, if the no-
hair theorem is violated, the shape of the shadow can be
significantly different. Indirect constraints on the spin of
Sgr A� may also exist: for example, recent works have
noted that several of the innermost S-stars orbit in flattened,
disk-like configurations [51]. Such a disk, or disks, could in
principle be destroyed (through isotropization of the nodal
angles) by differential nodal precession, and indeed, the
Lense-Thirring precession time is less than the stellar age
for many of these S-stars unless χ• ≲ 0.1 [52,53]. These
indirect spin constraints merit further examination, how-
ever. The VRR timescale is even shorter than the Lense-
Thirring time at these radii [54], and VRR is capable of
producing dynamically cold, disklike configurations of
heavy stars [32,55,56], which may explain the apparent
survival of these kinematic features even if χ• is large.
Outside of the Galactic Center, model-fitting to accretion

disks can be another way to test the no-hair theorem. This
may be done on the shape of relativistically broadened iron
lines or on the x-ray thermal continuum spectra [57–59].
Another approach is using gravitational-wave (GW) mea-
surements [60–62]. Using today’s Earth-based LIGO-
Virgo-KAGRA detectors, it is challenging to measure an
individual object’s spins and quadrupole moments in a
GW binary. However, in the future, using the space-based
LISA detector, we will be able to detect the GWs from
extreme mass ratio inspirals and calculate the multipole
moments of the central BH. In some cases, combining
multiple methods will lead to a more accurate test for the
no-hair theorem [63].
In this paper, however, we have restricted our attention

to tests using S-star orbits. The main strength of our simple
algebraic approach is that it can in principle be used to
eliminate all nonstochastic sources of astrophysical noise.
While Bayesian methods [18] are capable of extracting the
parameters of interest from arbitrary combinations of
observables (at the cost of finite error from background
noise sources), our method allows observers to target future
observations to optimally subtract such astrophysical noise
and to minimize unnecessary observations. For example,
our calculations suggest that once statistical noise is
sufficiently low, observers interested in measuring Q2•

do not need to cover the entire orbit, but only to measure
precisely the pericenter and the apocenter passages. The
main weakness of this approach is that we are still
discarding some information contained in the relativistic
orbits of S-stars. By working with half-shifts, we access
more information than is contained in the full-shifts
alone, but less than what would exist in a Bayesian
approach that compares real observations to a large library
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of time-dependent orbits. In the future, it would be
interesting to see if these two approaches could be
combined in some way to make use of each of their
respective strengths.
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APPENDIX: REMOVING THE STELLAR
QUADRUPOLE MOMENT

Here we present our derivation of a 7th-order polynomial
that can be used to combine the shifts and half-shifts of two
stellar orbits in such a way that (i) mass precession and
(ii) precesssion from the mean-field stellar quadrupole
moment are both precisely removed from calculation
of AQ2

.
First, we can find the SMBH spin amplitude (AJ) and its

angles in the sky plane (A, B):

tanðB −Ω1Þ ¼ ½cosΩ1ðl2e1 cosΩ1 − l1e2 cosΩ2Þ
− sinΩ1ðl1e2 sinΩ2 − l2e1 sinΩ1Þ�=
½cosΩ1ðl1e2 sinΩ2 − l2e1 sinΩ1Þ
þ sinΩ1ðl2e1 cosΩ1 − l1e2 cosΩ2Þ�;

ðA1aÞ

AJ ¼
3π

e
1

sin i

�
k2 þ l2

4

�
tan2ðB −ΩÞcos2i

þ sin2i
cos2ðB − ΩÞ

�
− lk tanðB −ΩÞ cos i

�
1=2

ðA1bÞ

where the subscripts are the star index (AJ can be calculated
using any star) and

kj ≡ δi1
2
;j −

δij
2

−
2ej
3π

sin ijδΩj; ðA2aÞ

lj ≡ sin ijδΩj

2
− sin ijδΩ1

2
;j þ

2ej
3π

δij: ðA2bÞ

The SMBH spin angles in the orbital plane are:

sin αj cos βj ¼
3π

2ej

lj
AJ

; ðA3aÞ

sin αj sin βj ¼
3π

ej

kj
AJ

; ðA3bÞ

cos αj ¼
3π

ej

kj
AJ

cot ij −
3π

2ej

lj
AJ

tan ðB −ΩjÞ sec ij: ðA3cÞ

And finally, to find AQ2
we need to solve a seventh order

polynomial:

ΔΩ2
1Δi21 þ Δω2

1Δi21 þ ΔΩ2
1Δω2

1

Δω1ΔΩ1Δi1

¼ ΔΩ2
2Δi22 þ Δω2

2Δi22 þ ΔΩ2
2Δω2

2

Δω2ΔΩ2Δi2
ðA4Þ

where we denote:

ΔΩjðAQ2
Þ≡ AJ sin αj sin βj

− AQ2
cos αj sin αj sin βj − sin iδΩj ðA5aÞ

ΔijðAQ2
Þ≡ AJ sin αj cos βj − AQ2

cos αj sin αj cos βj − δij

ðA5bÞ

Δω1
2
;jðAQ2

Þ≡ −AQ2
sin2αj cos βj sin βj

þ 3πej
2ð1þ 2e2jÞ

�
δωj

2
− δω1

2
;j

�
: ðA5cÞ
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